1
|
Hosseini SH, Roussel MR. Analytic delay distributions for a family of gene transcription models. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:6225-6262. [PMID: 39176425 DOI: 10.3934/mbe.2024273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Models intended to describe the time evolution of a gene network must somehow include transcription, the DNA-templated synthesis of RNA, and translation, the RNA-templated synthesis of proteins. In eukaryotes, the DNA template for transcription can be very long, often consisting of tens of thousands of nucleotides, and lengthy pauses may punctuate this process. Accordingly, transcription can last for many minutes, in some cases hours. There is a long history of introducing delays in gene expression models to take the transcription and translation times into account. Here we study a family of detailed transcription models that includes initiation, elongation, and termination reactions. We establish a framework for computing the distribution of transcription times, and work out these distributions for some typical cases. For elongation, a fixed delay is a good model provided elongation is fast compared to initiation and termination, and there are no sites where long pauses occur. The initiation and termination phases of the model then generate a nontrivial delay distribution, and elongation shifts this distribution by an amount corresponding to the elongation delay. When initiation and termination are relatively fast, the distribution of elongation times can be approximated by a Gaussian. A convolution of this Gaussian with the initiation and termination time distributions gives another analytic approximation to the transcription time distribution. If there are long pauses during elongation, because of the modularity of the family of models considered, the elongation phase can be partitioned into reactions generating a simple delay (elongation through regions where there are no long pauses), and reactions whose distribution of waiting times must be considered explicitly (initiation, termination, and motion through regions where long pauses are likely). In these cases, the distribution of transcription times again involves a nontrivial part and a shift due to fast elongation processes.
Collapse
Affiliation(s)
- S Hossein Hosseini
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Marc R Roussel
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
2
|
Zhan Y, Grabbe F, Oberbeckmann E, Dienemann C, Cramer P. Three-step mechanism of promoter escape by RNA polymerase II. Mol Cell 2024; 84:1699-1710.e6. [PMID: 38604172 DOI: 10.1016/j.molcel.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/04/2024] [Accepted: 03/16/2024] [Indexed: 04/13/2024]
Abstract
The transition from transcription initiation to elongation is highly regulated in human cells but remains incompletely understood at the structural level. In particular, it is unclear how interactions between RNA polymerase II (RNA Pol II) and initiation factors are broken to enable promoter escape. Here, we reconstitute RNA Pol II promoter escape in vitro and determine high-resolution structures of initially transcribing complexes containing 8-, 10-, and 12-nt ordered RNAs and two elongation complexes containing 14-nt RNAs. We suggest that promoter escape occurs in three major steps. First, the growing RNA displaces the B-reader element of the initiation factor TFIIB without evicting TFIIB. Second, the rewinding of the transcription bubble coincides with the eviction of TFIIA, TFIIB, and TBP. Third, the binding of DSIF and NELF facilitates TFIIE and TFIIH dissociation, establishing the paused elongation complex. This three-step model for promoter escape fills a gap in our understanding of the initiation-elongation transition of RNA Pol II transcription.
Collapse
Affiliation(s)
- Yumeng Zhan
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Frauke Grabbe
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Elisa Oberbeckmann
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Dienemann
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
3
|
Archuleta SR, Goodrich JA, Kugel JF. Mechanisms and Functions of the RNA Polymerase II General Transcription Machinery during the Transcription Cycle. Biomolecules 2024; 14:176. [PMID: 38397413 PMCID: PMC10886972 DOI: 10.3390/biom14020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Central to the development and survival of all organisms is the regulation of gene expression, which begins with the process of transcription catalyzed by RNA polymerases. During transcription of protein-coding genes, the general transcription factors (GTFs) work alongside RNA polymerase II (Pol II) to assemble the preinitiation complex at the transcription start site, open the promoter DNA, initiate synthesis of the nascent messenger RNA, transition to productive elongation, and ultimately terminate transcription. Through these different stages of transcription, Pol II is dynamically phosphorylated at the C-terminal tail of its largest subunit, serving as a control mechanism for Pol II elongation and a signaling/binding platform for co-transcriptional factors. The large number of core protein factors participating in the fundamental steps of transcription add dense layers of regulation that contribute to the complexity of temporal and spatial control of gene expression within any given cell type. The Pol II transcription system is highly conserved across different levels of eukaryotes; however, most of the information here will focus on the human Pol II system. This review walks through various stages of transcription, from preinitiation complex assembly to termination, highlighting the functions and mechanisms of the core machinery that participates in each stage.
Collapse
Affiliation(s)
| | - James A. Goodrich
- Department of Biochemistry, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA;
| | - Jennifer F. Kugel
- Department of Biochemistry, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA;
| |
Collapse
|
4
|
Chen X, Liu W, Wang Q, Wang X, Ren Y, Qu X, Li W, Xu Y. Structural visualization of transcription initiation in action. Science 2023; 382:eadi5120. [PMID: 38127763 DOI: 10.1126/science.adi5120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/11/2023] [Indexed: 12/23/2023]
Abstract
Transcription initiation is a complex process, and its mechanism is incompletely understood. We determined the structures of de novo transcribing complexes TC2 to TC17 with RNA polymerase II halted on G-less promoters when nascent RNAs reach 2 to 17 nucleotides in length, respectively. Connecting these structures generated a movie and a working model. As initially synthesized RNA grows, general transcription factors (GTFs) remain bound to the promoter and the transcription bubble expands. Nucleoside triphosphate (NTP)-driven RNA-DNA translocation and template-strand accumulation in a nearly sealed channel may promote the transition from initially transcribing complexes (ITCs) (TC2 to TC9) to early elongation complexes (EECs) (TC10 to TC17). Our study shows dynamic processes of transcription initiation and reveals why ITCs require GTFs and bubble expansion for initial RNA synthesis, whereas EECs need GTF dissociation from the promoter and bubble collapse for promoter escape.
Collapse
Affiliation(s)
- Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Weida Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Qianmin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xinxin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yulei Ren
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xuechun Qu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Wanjun Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| |
Collapse
|
5
|
De Castro F, Stefàno E, De Luca E, Benedetti M, Fanizzi FP. Platinum-Nucleos(t)ide Compounds as Possible Antimetabolites for Antitumor/Antiviral Therapy: Properties and Perspectives. Pharmaceutics 2023; 15:941. [PMID: 36986802 PMCID: PMC10058173 DOI: 10.3390/pharmaceutics15030941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023] Open
Abstract
Nucleoside analogues (NAs) are a family of compounds which include a variety of purine and pyrimidine derivatives, widely used as anticancer and antiviral agents. For their ability to compete with physiological nucleosides, NAs act as antimetabolites exerting their activity by interfering with the synthesis of nucleic acids. Much progress in the comprehension of their molecular mechanisms has been made, including providing new strategies for potentiating anticancer/antiviral activity. Among these strategies, new platinum-NAs showing a good potential to improve the therapeutic indices of NAs have been synthesized and studied. This short review aims to describe the properties and future perspectives of platinum-NAs, proposing these complexes as a new class of antimetabolites.
Collapse
Affiliation(s)
| | | | | | - Michele Benedetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, 73100 Lecce, Italy
| | | |
Collapse
|
6
|
Abstract
In this review, Core et al. discuss the recent advances in our understanding of the early steps in Pol II transcription, highlighting the events and factors involved in the establishment and release of paused Pol II. They also discuss a number of unanswered questions about the regulation and function of Pol II pausing. Precise spatio–temporal control of gene activity is essential for organismal development, growth, and survival in a changing environment. Decisive steps in gene regulation involve the pausing of RNA polymerase II (Pol II) in early elongation, and the controlled release of paused polymerase into productive RNA synthesis. Here we describe the factors that enable pausing and the events that trigger Pol II release into the gene. We also discuss open questions in the field concerning the stability of paused Pol II, nucleosomes as obstacles to elongation, and potential roles of pausing in defining the precision and dynamics of gene expression.
Collapse
Affiliation(s)
- Leighton Core
- Department of Molecular and Cell Biology, Institute of Systems Genomics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
7
|
Benedetti M, Romano A, De Castro F, Girelli CR, Antonucci D, Migoni D, Verri T, Fanizzi FP. N7-platinated ribonucleotides are not incorporated by RNA polymerases. New perspectives for a rational design of platinum antitumor drugs. J Inorg Biochem 2016; 163:143-146. [PMID: 27421694 DOI: 10.1016/j.jinorgbio.2016.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/24/2016] [Accepted: 07/07/2016] [Indexed: 12/31/2022]
Abstract
In this work, we assessed the capacity of RNA polymerases to use platinated ribonucleotides as substrates for RNA synthesis by testing the incorporation of the model compound [Pt(dien)(N7-5'-GTP)] (dien=diethylenetriamine; GTP=5'-guanosine triphosphate) into a natural RNA sequence. The yield of in vitro transcription operated by T7 RNA polymerase, on the LacZ (Escherichia coli gene encoding for β-galactosidase) sequence, decreases progressively with decreasing the concentration of natural GTP, in favor of the platinated nucleotide, [Pt(dien)(N7-5'-GTP)]. Comparison of the T7 RNA polymerase transcription activities for [Pt(dien)(N7-5'-GTP)] compound incorporation reaction test, with respect to the effect of a decreasing concentration of natural GTP, showed no major differences. A specific inhibitory effect of compound [Pt(dien)(N7-5'-GTP)] (which may pair the complementary base on the DNA strand, without being incorporated in the RNA by the T7 RNA polymerase) was evidenced. Our findings therefore suggest that RNA polymerases, unlike DNA polymerases, are unable to incorporate N7-platinated nucleotides into newly synthesized nucleic acids. In this respect, specifically designed N7-platinated nucleotides based compounds could be used in alternative to the classical platinum based drugs. This approach may offer a possible strategy to target specifically DNA, without affecting RNA, and is potentially able to better modulate pharmacological activity.
Collapse
Affiliation(s)
- Michele Benedetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, I-73100 Lecce, Italy.
| | - Alessandro Romano
- Neuropathology Unit, Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Federica De Castro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Chiara R Girelli
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Daniela Antonucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Danilo Migoni
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Tiziano Verri
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Francesco P Fanizzi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, I-73100 Lecce, Italy.
| |
Collapse
|
8
|
Hieb AR, Gansen A, Böhm V, Langowski J. The conformational state of the nucleosome entry-exit site modulates TATA box-specific TBP binding. Nucleic Acids Res 2014; 42:7561-76. [PMID: 24829456 PMCID: PMC4081063 DOI: 10.1093/nar/gku423] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The TATA binding protein (TBP) is a critical transcription factor used for nucleating assembly of the RNA polymerase II machinery. TBP binds TATA box elements with high affinity and kinetic stability and in vivo is correlated with high levels of transcription activation. However, since most promoters use less stable TATA-less or TATA-like elements, while also competing with nucleosome occupancy, further mechanistic insight into TBP's DNA binding properties and ability to access chromatin is needed. Using bulk and single-molecule FRET, we find that TBP binds a minimal consensus TATA box as a two-state equilibrium process, showing no evidence for intermediate states. However, upon addition of flanking DNA sequence, we observe non-specific cooperative binding to multiple DNA sites that compete for TATA-box specificity. Thus, we conclude that TBP binding is defined by a branched pathway, wherein TBP initially binds with little sequence specificity and is thermodynamically positioned by its kinetic stability to the TATA box. Furthermore, we observed the real-time access of TBP binding to TATA box DNA located within the DNA entry–exit site of the nucleosome. From these data, we determined salt-dependent changes in the nucleosome conformation regulate TBP's access to the TATA box, where access is highly constrained under physiological conditions, but is alleviated by histone acetylation and TFIIA.
Collapse
Affiliation(s)
- Aaron R Hieb
- Division Biophysics of Macromolecules, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Alexander Gansen
- Division Biophysics of Macromolecules, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Vera Böhm
- Division Biophysics of Macromolecules, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Jörg Langowski
- Division Biophysics of Macromolecules, German Cancer Research Center, D-69120 Heidelberg, Germany
| |
Collapse
|
9
|
Protein-primed terminal transferase activity of hepatitis B virus polymerase. J Virol 2012; 87:2563-76. [PMID: 23255788 DOI: 10.1128/jvi.02786-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hepatitis B virus (HBV) replication requires reverse transcription of an RNA pregenome (pgRNA) by a multifunctional polymerase (HP). HP initiates viral DNA synthesis by using itself as a protein primer and an RNA signal on pgRNA, termed epsilon (Hε), as the obligatory template. We discovered a Mn(2+)-dependent transferase activity of HP in vitro that was independent of Hε but also used HP as a protein primer. This protein-primed transferase activity was completely dependent on the HP polymerase active site. The DNA products of the transferase reaction were linked to HP via a phosphotyrosyl bond, and replacement of the Y63 residue of HP, the priming site for templated DNA synthesis, almost completely eliminated DNA synthesis by the transferase activity, suggesting that Y63 also serves as the predominant priming site for the transferase reaction. For this transferase activity, HP could use all four deoxynucleotide substrates, but TTP was clearly favored for extensive polymerization. The transferase activity was highly distributive, leading to the synthesis of DNA homo- and hetero-oligomeric and -polymeric ladders ranging from 1 nucleotide (nt) to >100 nt in length, with single-nt increments. As with Hε-templated DNA synthesis, the protein-primed transferase reaction was characterized by an initial stage that was resistant to the pyrophosphate analog phosphonoformic acid (PFA) followed by PFA-sensitive DNA synthesis, suggestive of an HP conformational change upon the synthesis of a nascent DNA oligomer. These findings have important implications for HBV replication, pathogenesis, and therapy.
Collapse
|
10
|
Abstract
We provide here a molecular movie that captures key aspects of RNA polymerase II initiation and elongation. To create the movie, we combined structural snapshots of the initiation-elongation transition and of elongation, including nucleotide addition, translocation, pausing, proofreading, backtracking, arrest, reactivation, and inhibition. The movie reveals open questions about the mechanism of transcription and provides a useful teaching tool.
Collapse
Affiliation(s)
- Alan C M Cheung
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | | |
Collapse
|
11
|
Titov DV, Gilman B, He QL, Bhat S, Low WK, Dang Y, Smeaton M, Demain AL, Miller PS, Kugel JF, Goodrich JA, Liu JO. XPB, a subunit of TFIIH, is a target of the natural product triptolide. Nat Chem Biol 2011; 7:182-8. [PMID: 21278739 DOI: 10.1038/nchembio.522] [Citation(s) in RCA: 390] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 01/06/2011] [Indexed: 11/09/2022]
Abstract
Triptolide (1) is a structurally unique diterpene triepoxide isolated from a traditional Chinese medicinal plant with anti-inflammatory, immunosuppressive, contraceptive and antitumor activities. Its molecular mechanism of action, however, has remained largely elusive to date. We report that triptolide covalently binds to human XPB (also known as ERCC3), a subunit of the transcription factor TFIIH, and inhibits its DNA-dependent ATPase activity, which leads to the inhibition of RNA polymerase II-mediated transcription and likely nucleotide excision repair. The identification of XPB as the target of triptolide accounts for the majority of the known biological activities of triptolide. These findings also suggest that triptolide can serve as a new molecular probe for studying transcription and, potentially, as a new type of anticancer agent through inhibition of the ATPase activity of XPB.
Collapse
Affiliation(s)
- Denis V Titov
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Tran K, Gralla JD. The TFIIB tip domain couples transcription initiation to events involved in RNA processing. J Biol Chem 2010; 285:39580-7. [PMID: 20880846 DOI: 10.1074/jbc.m110.171850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
TFIIB is the only factor within the multimegadalton transcription complex that is obligatorily required to undergo dissociation and re-association with each round of mRNA transcription. Here we show that a six-amino acid human TFIIB tip region is needed for appropriate levels of serine 5 C-terminal domain phosphorylation and mRNA capping and for retention of the required elongation factor TFIIF. We suggest that the broad functions of this tiny region are used to suppress transcription noise by restricting functional RNA synthesis from non-promoter sites on the genome, which will not contain TFIIB.
Collapse
Affiliation(s)
- Khiem Tran
- Department of Chemistry and Biochemistry and The Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
13
|
Yakovchuk P, Gilman B, Goodrich JA, Kugel JF. RNA polymerase II and TAFs undergo a slow isomerization after the polymerase is recruited to promoter-bound TFIID. J Mol Biol 2010; 397:57-68. [PMID: 20083121 DOI: 10.1016/j.jmb.2010.01.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 01/12/2010] [Indexed: 11/25/2022]
Abstract
Transcription of mRNA genes requires that RNA polymerase II (Pol II) and the general transcription factors assemble on promoter DNA to form an organized complex capable of initiating transcription. Biochemical studies have shown that Pol II and TFIID (transcription factor IID) contact overlapping regions of the promoter, leading to the question of how these large factors reconcile their promoter interactions during complex assembly. To investigate how the TAF (TATA-binding protein-associated factor) subunits of TFIID alter the kinetic mechanism by which complexes assemble on promoters, we used a highly purified human transcription system. We found that TAFs sharply decrease the rate at which Pol II, TFIIB, and TFIIF assemble on promoter-bound TFIID-TFIIA. Interestingly, the slow step in this process is not recruitment of these factors to the DNA, but rather a postrecruitment isomerization of protein-DNA contacts that occurs throughout the core promoter. Our findings support a model in which Pol II and the general transcription factors rapidly bind promoter-bound TFIID-TFIIA, after which complexes undergo a slow isomerization in which the TAFs reorganize their contacts with the promoter to allow Pol II to properly engage the DNA. In this manner, TAFs kinetically repress basal transcription.
Collapse
Affiliation(s)
- Petro Yakovchuk
- Department of Chemistry and Biochemistry, University of Colorado, 215 UCB, Boulder, CO 80309-0215, USA
| | | | | | | |
Collapse
|
14
|
Kuchta RD. Nucleotide Analogues as Probes for DNA and RNA Polymerases. CURRENT PROTOCOLS IN CHEMICAL BIOLOGY 2010; 2:111-124. [PMID: 21822500 PMCID: PMC3149870 DOI: 10.1002/9780470559277.ch090203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nucleotide analogues represent a major class of anti-cancer and anti-viral drugs, and provide an extremely powerful tool for dissecting the mechanisms of DNA and RNA polymerases. While the basic assays themselves are relatively straight-forward, a key issue is to appropriately design the studies to answer the mechanistic question of interest. This article addresses the major issues involved in designing these studies, and some of the potential difficulties that arise in interpreting the data. Examples are given both of the type of analogues typically used, the experimental approaches with different polymerases, and issues with data interpretation.
Collapse
Affiliation(s)
- Robert D Kuchta
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
| |
Collapse
|
15
|
Gilman B, Drullinger LF, Kugel JF, Goodrich JA. TATA-binding protein and transcription factor IIB induce transcript slipping during early transcription by RNA polymerase II. J Biol Chem 2009; 284:9093-8. [PMID: 19193635 DOI: 10.1074/jbc.m900019200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To better understand the mechanism of steps in early transcription by RNA polymerase II (pol II), we investigated the molecular determinants of transcript slipping within complexes assembled on promoters containing a pre-melted transcription bubble from -9 to +3. Transcript slippage occurs when an RNA transcript contains a repetitive sequence that allows the transcript to slip back and pair with the template strand of the DNA at a new register before transcription continues. We established the contributions of individual transcription factors, DNA elements, and RNA length to slipping on a heteroduplex template using a highly purified human pol II transcription system. We found that transcripts slip at a very defined point in the transcription reaction, after pol II completes phosphodiester bond synthesis at register +5. This point is set by the position of the polymerase active site on the DNA template, as opposed to the length of the transcript, as well as by a repetitive CUCU sequence that must occur from +2 to +5. Interestingly, slipping at this juncture is induced by TATA-binding protein and transcription factor IIB and requires a TATA box but not a transcription factor IIB recognition sequence. We propose a model in which transcribing complexes, upon completing phosphodiester bond synthesis at register +5, enter one of two branches in which they either complete productive synthesis of the transcript or undergo multiple rounds of transcript slipping.
Collapse
Affiliation(s)
- Benjamin Gilman
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| | | | | | | |
Collapse
|
16
|
Beck BD, Hah DS, Lee SH. XPB and XPD between transcription and DNA repair. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 637:39-46. [PMID: 19181109 DOI: 10.1007/978-0-387-09599-8_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Brian D Beck
- Department of Biochemistry and Molecular Biology, Walther Cancer Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
17
|
Abstract
The c-myc promoter is regulated by scores of signals, transcription factors, and chromatin components. The logic integrating these multiple signals remains unexplored. Recent evidence suggests that activated MYC expression is regulated in several phases: 1) conventional transcription factors trigger transcription by the RNA polymerase II (pol II) paused within the proximal promoter region. Concurrently (and probably consequently), newly arrived chromatin-remodeling complexes mobilize a nucleosome masking the far upstream element (FUSE), 1.7-kb upstream of the P2 start site; 2) binding by FUSE-binding proteins (first FBP3, then FBP); and 3) FBP-interacting repressor (FIR) binds FUSE and returns transcription to basal or steady-state levels. The recruitment and release of the FBPs and FIR is governed by FUSE-DNA conformation, itself controlled by dynamic supercoils propagated behind pol II. The organization and operation of the c-myc promoter make it difficult to inactivate, but sensitive to disturbances (translocations, viral insertions, amplification, and mutation) that disrupt the fine-tuning seen at its normal chromosomal context.
Collapse
Affiliation(s)
- David Levens
- Gene Regulation Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bldg 10, Rm 2N106, Bethesda, MD 20892-1500, USA.
| |
Collapse
|
18
|
Transcription initiation in a single-subunit RNA polymerase proceeds through DNA scrunching and rotation of the N-terminal subdomains. Mol Cell 2008; 30:567-77. [PMID: 18538655 DOI: 10.1016/j.molcel.2008.04.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 03/03/2008] [Accepted: 04/07/2008] [Indexed: 11/21/2022]
Abstract
Elucidating the mechanism of transcription initiation by RNA polymerases (RNAP) is essential for understanding gene transcription and regulation. Although several models, such as DNA scrunching, RNAP translation, and RNAP rotation, have been proposed, the mechanism of initiation by T7 RNAP has remained unclear. Using ensemble and single-molecule Förster resonance energy transfer (FRET) studies, we provide evidence for concerted DNA scrunching and rotation during initiation by T7 RNAP. A constant spatial distance between the upstream and downstream edges of initiation complexes making 4-7 nt RNA supports the DNA scrunching model, but not the RNAP translation or the pure rotation model. DNA scrunching is accompanied by moderate hinging motion (18 degrees +/- 4 degrees ) of the promoter toward the downstream DNA. The observed stepwise conformational changes provide a basis to understand abortive RNA synthesis during early stages of initiation and promoter escape during the later stages that allows transition to processive elongation.
Collapse
|
19
|
Biogenesis of mRNPs: integrating different processes in the eukaryotic nucleus. Chromosoma 2008; 117:319-31. [PMID: 18427828 DOI: 10.1007/s00412-008-0158-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 03/14/2008] [Accepted: 03/14/2008] [Indexed: 12/13/2022]
Abstract
Transcription is a central function occurring in the nucleus of eukaryotic cells in coordination with other nuclear processes. During transcription, the nascent pre-mRNA associates with mRNA-binding proteins and undergoes a series of processing steps, resulting in export-competent mRNA ribonucleoprotein complexes (mRNPs) that are transported into the cytoplasm. Experimental evidence increasingly indicates that the different processing steps (5'-end capping, splicing, 3'-end cleavage) and mRNP export are connected to each other as well as to transcription, both functionally and physically. Here, we review the overall process of mRNP biogenesis with particular emphasis on the functional coupling of transcription with mRNP biogenesis and export and its relationship to nuclear organization.
Collapse
|
20
|
Saunders A, Core LJ, Lis JT. Breaking barriers to transcription elongation. Nat Rev Mol Cell Biol 2006; 7:557-67. [PMID: 16936696 DOI: 10.1038/nrm1981] [Citation(s) in RCA: 387] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Abbie Saunders
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|