1
|
Mansilla MC, de Mendoza D. Fatty acid synthesis and utilization in gram-positive bacteria: insights from Bacillus subtilis. Microbiol Mol Biol Rev 2025:e0006923. [PMID: 40434073 DOI: 10.1128/mmbr.00069-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025] Open
Abstract
SUMMARYThe bacterial cytoplasmic membrane, consisting of roughly equal proportions of proteins and lipids, plays a crucial role in cellular growth, metabolism, and maintaining the cytoplasmic boundary. It is a dynamic, fluid matrix that separates intracellular compartments, where lipids and proteins coexist in a highly organized yet flexible arrangement. Membrane fluidity, defined as the inverse of viscosity, determines how rapidly molecules diffuse within the membrane at a given temperature. This property is vital for protein mobility and biomolecular interactions. Structurally, the membrane primarily comprises a lamellar lipid bilayer, with glycerophospholipids and fatty acids forming its core framework. In Bacillus subtilis, a key model organism for studying gram-positive bacterial physiology, major membrane lipids include phospholipids, glycolipids, and lipoteichoic acids, the latter anchored to diacylglycerol glycolipids. This review examines the synthesis and regulation of membrane lipids in B. subtilis, with a focus on fatty acid biosynthesis, its diversification, and post-synthetic modifications such as desaturation. It also explores the production of phosphatidic acid and the integration of fatty acid and phospholipid biosynthesis. We review the well-characterized pathway of cold-induced membrane lipid modification in B. subtilis, arguably the best-studied model system for temperature sensing. This pathway is tightly linked to transcriptional responses triggered by changes in bilayer viscosity, detected by a membrane-associated thermosensor. Finally, this review highlights the importance of fatty acid biosynthesis in B. subtilis differentiation and its contributions to the production of biotin and lipoic acid, two universal cofactors essential for fatty acid synthesis and intermediary metabolism.
Collapse
Affiliation(s)
- María Cecilia Mansilla
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Rosario, Argentina
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina
| | - Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Rosario, Argentina
| |
Collapse
|
2
|
Ranzau B, Robinson TD, Scully JM, Kapelczak ED, Dean TS, TeSlaa T, Schmitt DL. A Genetically Encoded Fluorescent Biosensor for Intracellular Measurement of Malonyl-CoA. ACS BIO & MED CHEM AU 2025; 5:184-193. [PMID: 39990938 PMCID: PMC11843332 DOI: 10.1021/acsbiomedchemau.4c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 02/25/2025]
Abstract
Malonyl-CoA is the essential building block of fatty acids and regulates cell function through protein malonylation and allosteric regulation of signaling networks. Accordingly, the production and use of malonyl-CoA is finely tuned by the cellular energy status. Most studies of malonyl-CoA dynamics rely on bulk approaches that take only a snapshot of the average metabolic state of a population of cells, missing out on heterogeneous differences in malonyl-CoA and fatty acid biosynthesis that could be occurring among a cell population. To overcome this limitation, we have developed a genetically encoded fluorescent protein-based biosensor for malonyl-CoA that can be used to capture malonyl-CoA dynamics in single cells. This biosensor, termed Malibu (malonyl-CoA intracellular biosensor to understand dynamics), exhibits an excitation-ratiometric change in response to malonyl-CoA binding. We first used Malibu to monitor malonyl-CoA dynamics during inhibition of fatty acid biosynthesis using cerulenin in Escherichia coli, observing an increase in Malibu response in a time- and dose-dependent manner. In HeLa cells, we used Malibu to monitor the impact of fatty acid biosynthesis inhibition on malonyl-CoA dynamics in single cells, finding that two inhibitors of fatty acid biosynthesis, cerulenin and orlistat, which inhibit different steps of fatty acid biosynthesis, increase malonyl-CoA levels. Altogether, we have developed a new genetically encoded biosensor for malonyl-CoA, which can be used to study malonyl-CoA dynamics in single cells, providing an unparalleled view into fatty acid biosynthesis.
Collapse
Affiliation(s)
- Brodie
L. Ranzau
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tiffany D. Robinson
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jack M. Scully
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Edmund D. Kapelczak
- Department
of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Teagan S. Dean
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tara TeSlaa
- Department
of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Molecular
Biology Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Danielle L. Schmitt
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Molecular
Biology Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Institute
for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
3
|
Ranzau BL, Robinson TD, Scully JM, Kapelczack ED, Dean TS, TeSlaa T, Schmitt DL. A Genetically Encoded Fluorescent Biosensor for Intracellular Measurement of Malonyl-CoA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615526. [PMID: 39386450 PMCID: PMC11463626 DOI: 10.1101/2024.09.27.615526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Malonyl-CoA is the essential building block of fatty acids and regulates cell function through protein malonylation and allosteric regulation of signaling networks. Accordingly, the production and use of malonyl-CoA is finely tuned by the cellular energy status. Most studies of malonyl-CoA dynamics rely on bulk approaches that take only a snapshot of the average metabolic state of a population of cells, missing out on dynamic changes in malonyl-CoA and fatty acid biosynthesis that could be occurring within a single cell. To overcome this limitation, we have developed a genetically encoded fluorescent protein-based biosensor for malonyl-CoA that can be used to capture malonyl-CoA dynamics in single cells. This biosensor, termed Malibu (malonyl-CoA intracellular biosensor to understand dynamics), exhibits an excitation-ratiometric change in response to malonyl-CoA binding. We first used Malibu to monitor malonyl-CoA dynamics during inhibition of fatty acid biosynthesis using cerulenin in E. coli, observing an increase in Malibu response in a time- and dose-dependent manner. In HeLa cells, we used Malibu to monitor the impact of fatty acid biosynthesis inhibition on malonyl-CoA dynamics in single cells, finding that two inhibitors of fatty acid biosynthesis, cerulenin and orlistat, which inhibit different steps of fatty acid biosynthesis, increase malonyl-CoA levels. Altogether, we have developed a new genetically encoded biosensor for malonyl-CoA, which can be used to sensitively study malonyl-CoA dynamics in single cells, providing an unparalleled view into fatty acid biosynthesis.
Collapse
Affiliation(s)
- Brodie L. Ranzau
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
- These authors contributed equally
| | - Tiffany D. Robinson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
- These authors contributed equally
| | - Jack M. Scully
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Edmund D. Kapelczack
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Teagan S. Dean
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tara TeSlaa
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Danielle L. Schmitt
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
4
|
Willdigg JR, Patel Y, Helmann JD. A Decrease in Fatty Acid Synthesis Rescues Cells with Limited Peptidoglycan Synthesis Capacity. mBio 2023; 14:e0047523. [PMID: 37017514 PMCID: PMC10128001 DOI: 10.1128/mbio.00475-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/13/2023] [Indexed: 04/06/2023] Open
Abstract
Proper synthesis and maintenance of a multilayered cell envelope are critical for bacterial fitness. However, whether mechanisms exist to coordinate synthesis of the membrane and peptidoglycan layers is unclear. In Bacillus subtilis, synthesis of peptidoglycan (PG) during cell elongation is mediated by an elongasome complex acting in concert with class A penicillin-binding proteins (aPBPs). We previously described mutant strains limited in their capacity for PG synthesis due to a loss of aPBPs and an inability to compensate by upregulation of elongasome function. Growth of these PG-limited cells can be restored by suppressor mutations predicted to decrease membrane synthesis. One suppressor mutation leads to an altered function repressor, FapR*, that functions as a super-repressor and leads to decreased transcription of fatty acid synthesis (FAS) genes. Consistent with fatty acid limitation mitigating cell wall synthesis defects, inhibition of FAS by cerulenin also restored growth of PG-limited cells. Moreover, cerulenin can counteract the inhibitory effect of β-lactams in some strains. These results imply that limiting PG synthesis results in impaired growth, in part, due to an imbalance of PG and cell membrane synthesis and that B. subtilis lacks a robust physiological mechanism to reduce membrane synthesis when PG synthesis is impaired. IMPORTANCE Understanding how a bacterium coordinates cell envelope synthesis is essential to fully appreciate how bacteria grow, divide, and resist cell envelope stresses, such as β-lactam antibiotics. Balanced synthesis of the peptidoglycan cell wall and the cell membrane is critical for cells to maintain shape and turgor pressure and to resist external cell envelope threats. Using Bacillus subtilis, we show that cells deficient in peptidoglycan synthesis can be rescued by compensatory mutations that decrease the synthesis of fatty acids. Further, we show that inhibiting fatty acid synthesis with cerulenin is sufficient to restore growth of cells deficient in peptidoglycan synthesis. Understanding the coordination of cell wall and membrane synthesis may provide insights relevant to antimicrobial treatment.
Collapse
Affiliation(s)
| | - Yesha Patel
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
5
|
Construction and Optimization of Malonyl-CoA Sensors in Saccharomyces cerevisiae by Combining Promoter Engineering Strategies. Processes (Basel) 2022. [DOI: 10.3390/pr10122660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Biosensors can be used for high-throughput screening, real-time monitoring of metabolites, and dynamic regulation of metabolic processes, which have been a popular research direction in recent years. Here, five promoters from Saccharomyces cerevisiae were selected to construct Malonyl-CoA sensors with the fapO/fapR system derived from Bacillus subtilis, and pCCW12 was finally selected for further optimization. Based on pCCW12, a series of sensors with different response sensitivities were obtained by selecting different fapO insertion sites and combining the best two or three of them. Then, through a combination of promoter hybrid, intron insertion, and transcription factor modification strategies, we obtained sensors with different effects, one of which, the H-pCCW12(TFBS)-Cti6~fapR sensor, had the lowest background noise, doubled response range and higher response sensitivity compared to the original sensor. Sensors with different characteristics constructed in this study, can be applied to Malonyl-CoA related high-throughput screening and finer regulation of metabolism. It also proves that the combined application of different promoter engineering strategies is a feasible idea for the precise construction and regulation of biosensors.
Collapse
|
6
|
Nickels JD, Bonifer KS, Tindall RR, Yahya A, Tan L, Do C, Davison BH, Elkins JG. Improved chemical and isotopic labeling of biomembranes in Bacillus subtilis by leveraging CRISPRi inhibition of beta-ketoacyl-ACP synthase ( fabF). Front Mol Biosci 2022; 9:1011981. [PMID: 36339713 PMCID: PMC9634059 DOI: 10.3389/fmolb.2022.1011981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/05/2022] [Indexed: 09/08/2024] Open
Abstract
Assessing the structure of living microbial cell membranes is a challenging analytical goal. The cell membrane is defined by its transverse structure, an approximately 5 nm-thick selectively permeable bilayer that serves many important cellular functions. Compositionally complex, dynamic, and organized in both the transverse and lateral dimensions, understanding the cell membrane structure-and the role that structure plays in cellular function, communication, and environmental sensing is an active scientific effort. Previously, we have devised a novel isotopic labeling approach for membrane lipids to enable direct in vivo structural studies of the cell membrane in the Gram-positive bacterium, Bacillus subtilis, using small-angle neutron scattering. This was accomplished through a genetic inhibition of fatty acid (FA) degradation (ΔfadN) and a chemical inhibition of FA biosynthesis using cerulenin, an irreversible inhibitor of type II fatty acid synthases. Here, we improve upon the previous system by introducing a dCas9/sgRNA-fabF complex that blocks transcription of the essential fabF gene when under xylose induction. This leads to greater sensitivity to cerulenin in the mutant strain (JEBS102) and more robust cell growth when supplementary FAs are introduced to the culture medium. A subtle change in FA uptake is noted when compared to the prior labeling strategy. This is seen in the gas chromatography/mass spectrometry (GC/MS) data as a higher ratio of n16:0 to a15:0, and manifests in an apparent increase in the membrane thickness determined via neutron scattering. This represents an improved method of isotopic labeling for the cell membrane of Bacillus subtilis; enabling improved investigations of cellular uptake and utilization of FAs, cell membrane structure and organization as a phenotypic response to metabolic and environmental changes.
Collapse
Affiliation(s)
- Jonathan D. Nickels
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Kyle S. Bonifer
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Rachel R. Tindall
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Ahmad Yahya
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Luoxi Tan
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Changwoo Do
- Neutron Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Brian H. Davison
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - James G. Elkins
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
7
|
Moyo AC, Dufossé L, Giuffrida D, van Zyl LJ, Trindade M. Structure and biosynthesis of carotenoids produced by a novel Planococcus sp. isolated from South Africa. Microb Cell Fact 2022; 21:43. [PMID: 35305628 PMCID: PMC8933910 DOI: 10.1186/s12934-022-01752-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/26/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The genus Planococcus is comprised of halophilic bacteria generally reported for the production of carotenoid pigments and biosurfactants. In previous work, we showed that the culturing of the orange-pigmented Planococcus sp. CP5-4 isolate increased the evaporation rate of industrial wastewater brine effluent, which we attributed to the orange pigment. This demonstrated the potential application of this bacterium for industrial brine effluent management in evaporation ponds for inland desalination plants. Here we identified a C30-carotenoid biosynthetic gene cluster responsible for pigment biosynthesis in Planococcus sp. CP5-4 through isolation of mutants and genome sequencing. We further compare the core genes of the carotenoid biosynthetic gene clusters identified from different Planococcus species' genomes which grouped into gene cluster families containing BGCs linked to different carotenoid product chemotypes. Lastly, LC-MS analysis of saponified and unsaponified pigment extracts obtained from cultures of Planococcus sp. CP5-4, revealed the structure of the main (predominant) glucosylated C30-carotenoid fatty acid ester produced by Planococcus sp. CP5-4. RESULTS Genome sequence comparisons of isolated mutant strains of Planococcus sp. CP5-4 showed deletions of 146 Kb and 3 Kb for the non-pigmented and "yellow" mutants respectively. Eight candidate genes, likely responsible for C30-carotenoid biosynthesis, were identified on the wild-type genome region corresponding to the deleted segment in the non-pigmented mutant. Six of the eight candidate genes formed a biosynthetic gene cluster. A truncation of crtP was responsible for the "yellow" mutant phenotype. Genome annotation revealed that the genes encoded 4,4'-diapolycopene oxygenase (CrtNb), 4,4'- diapolycopen-4-al dehydrogenase (CrtNc), 4,4'-diapophytoene desaturase (CrtN), 4,4'- diaponeurosporene oxygenase (CrtP), glycerol acyltransferase (Agpat), family 2 glucosyl transferase 2 (Gtf2), phytoene/squalene synthase (CrtM), and cytochrome P450 hydroxylase enzymes. Carotenoid analysis showed that a glucosylated C30-carotenoid fatty acid ester, methyl 5-(6-C17:3)-glucosyl-5, 6'-dihydro-apo-4, 4'-lycopenoate was the main carotenoid compound produced by Planococcus sp. CP5-4. CONCLUSION We identified and characterized the carotenoid biosynthetic gene cluster and the C30-carotenoid compound produced by Planococcus sp. CP5-4. Mass-spectrometry guided analysis of the saponified and unsaponified pigment extracts showed that methyl 5-glucosyl-5, 6-dihydro-apo-4, 4'-lycopenoate esterified to heptadecatrienoic acid (C17:3). Furthermore, through phylogenetic analysis of the core carotenoid BGCs of Planococcus species we show that various C30-carotenoid product chemotypes, apart from methyl 5-glucosyl-5, 6-dihydro-apo-4, 4'-lycopenoate and 5-glucosyl-4, 4-diaponeurosporen-4'-ol-4-oic acid, may be produced that could offer opportunities for a variety of applications.
Collapse
Affiliation(s)
- Anesu Conrad Moyo
- Institute for Microbial Biotechnology and Metagenomics (IMBM), Department of Biotechnology, University of the Western Cape, Bellville, Cape Town, 7535, South Africa
- BioCiTi Laboratory, 4th Floor Block B, Bandwidth Barn, Woodstock Exchange Building, 66-68 Albert Road, Woodstock, Cape Town, 7925, South Africa
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, ESIROI Agroalimentaire, Université de La Réunion, 15 Avenue René Cassin, CS 92003, CEDEX 9, F-97744, Saint-Denis, France
| | - Daniele Giuffrida
- Università Degli Studi Di Messina, Dip. B.I.O.M.O.R.F, Polo Annunziata, 98168, Messina, ME, Italy
| | - Leonardo Joaquim van Zyl
- Institute for Microbial Biotechnology and Metagenomics (IMBM), Department of Biotechnology, University of the Western Cape, Bellville, Cape Town, 7535, South Africa
| | - Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics (IMBM), Department of Biotechnology, University of the Western Cape, Bellville, Cape Town, 7535, South Africa.
| |
Collapse
|
8
|
Pereira H, Azevedo F, Domingues L, Johansson B. Expression of Yarrowia lipolytica acetyl-CoA carboxylase in Saccharomyces cerevisiae and its effect on in-vivo accumulation of Malonyl-CoA. Comput Struct Biotechnol J 2022; 20:779-787. [PMID: 36284710 PMCID: PMC9582701 DOI: 10.1016/j.csbj.2022.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/18/2022] Open
Abstract
Novel S. cerevisiae strain with tetracycline repressible ACC1 promoter. Functional expression of Y. lipolytica ACC1 in S. cerevisiae. Higher malonyl-CoA concentration achieved with Y. lipolytica ACC1 gene. S. cerevisiae Acc1p seems to interact with the heterologous Y. lipolytica Acc1p.
Malonyl-CoA is an energy-rich molecule formed by the ATP-dependent carboxylation of acetyl coenzyme A catalyzed by acetyl-CoA carboxylase. This molecule is an important precursor for many biotechnologically interesting compounds such as flavonoids, polyketides, and fatty acids. The yeast Saccharomyces cerevisiae remains one of the preferred cell factories, but has a limited capacity to produce malonyl-CoA compared to oleaginous organisms. We developed a new S. cerevisiae strain with a conditional allele of ACC1, the essential acetyl-CoA carboxylase (ACC) gene, as a tool to test heterologous genes for complementation. Yarrowia lipolytica is an oleaginous yeast with a higher capacity for lipid production than S. cerevisiae, possibly due to a higher capacity to produce malonyl-CoA. Measuring relative intracellular malonyl-CoA levels with an in-vivo biosensor confirmed that expression of Y. lipolytica ACC in S. cerevisiae leads to a higher accumulation of malonyl-CoA compared with overexpression of the native gene from an otherwise identical vector. The higher accumulation was generally accompanied by a decreased growth rate. Concomitant expression of both the homologous and heterologous ACC1 genes eliminated the growth defect, with a marginal reduction of malonyl-CoA accumulation.
Collapse
Affiliation(s)
- Humberto Pereira
- CBMA - Center of Molecular and Environmental Biology Engineering
| | - Flávio Azevedo
- CBMA - Center of Molecular and Environmental Biology Engineering
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Björn Johansson
- CBMA - Center of Molecular and Environmental Biology Engineering
- Corresponding author.
| |
Collapse
|
9
|
Willdigg JR, Helmann JD. Mini Review: Bacterial Membrane Composition and Its Modulation in Response to Stress. Front Mol Biosci 2021; 8:634438. [PMID: 34046426 PMCID: PMC8144471 DOI: 10.3389/fmolb.2021.634438] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Antibiotics and other agents that perturb the synthesis or integrity of the bacterial cell envelope trigger compensatory stress responses. Focusing on Bacillus subtilis as a model system, this mini-review summarizes current views of membrane structure and insights into how cell envelope stress responses remodel and protect the membrane. Altering the composition and properties of the membrane and its associated proteome can protect cells against detergents, antimicrobial peptides, and pore-forming compounds while also, indirectly, contributing to resistance against compounds that affect cell wall synthesis. Many of these regulatory responses are broadly conserved, even where the details of regulation may differ, and can be important in the emergence of antibiotic resistance in clinical settings.
Collapse
Affiliation(s)
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
10
|
Inactivation of the Pta-AckA pathway impairs fitness of Bacillus anthracis during overflow metabolism. J Bacteriol 2021; 203:JB.00660-20. [PMID: 33593944 PMCID: PMC8092162 DOI: 10.1128/jb.00660-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Under conditions of glucose excess, aerobically growing bacteria predominantly direct carbon flux towards acetate fermentation, a phenomenon known as overflow metabolism or the bacterial 'Crabtree effect'. Numerous studies of the major acetate-generating pathway, the Pta-AckA, revealed its important role in bacterial fitness through the control of central metabolism to sustain balanced growth and cellular homeostasis. In this work, we highlight the contribution of the Pta-AckA pathway to fitness of the spore-forming bacterium, Bacillus anthracis We demonstrate that disruption of the Pta-AckA pathway causes a drastic growth reduction in the mutants and alters the metabolic and energy status of the cells. Our results revealed that inactivation of the Pta-AckA pathway increases the glucose consumption rate, affects intracellular ATP, NAD+ and NADH levels and leads to a metabolic block at the pyruvate and acetyl-CoA nodes. Consequently, accumulation of intracellular acetyl-CoA and pyruvate forces bacteria to direct carbon into the TCA and/or glyoxylate cycles as well as fatty acid and poly(3-hydroxybutyrate) (PHB) biosynthesis pathways. Notably, the presence of phosphate butyryltransferase in B. anthracis partially compensates for the loss of phosphotransacetylase activity. Furthermore, overexpression of the ptb gene not only eliminates the negative impact of the pta mutation on B. anthracis fitness, but also restores normal growth in the pta mutant of the non-butyrate-producing bacterium, Staphylococcus aureus Taken together, the results of this study demonstrate the importance of the Pta-AckA pathway for B. anthracis fitness by revealing its critical contribution to the maintenance of metabolic homeostasis during aerobic growth under conditions of carbon overflow.IMPORTANCE B. anthracis, the etiologic agent of anthrax, is a highly pathogenic, spore-forming bacterium that causes acute, life-threatening disease in both humans and livestock. A greater understanding of the metabolic determinants governing fitness of B. anthracis is essential for the development of successful therapeutic and vaccination strategies aimed at lessening the potential impact of this important biodefense pathogen. This study is the first to demonstrate the vital role of the Pta-AckA pathway in preserving energy and metabolic homeostasis in B. anthracis under conditions of carbon overflow, therefore, highlighting this pathway as a potential therapeutic target for drug discovery. Overall, the results of this study provide important insight into understanding the metabolic processes and requirements driving rapid B. anthracis proliferation during vegetative growth.
Collapse
|
11
|
Zhang Y, Shi S. Transcription Factor-Based Biosensor for Dynamic Control in Yeast for Natural Product Synthesis. Front Bioeng Biotechnol 2021; 9:635265. [PMID: 33614618 PMCID: PMC7892902 DOI: 10.3389/fbioe.2021.635265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
The synthesis of natural products in yeast has gained remarkable achievements with intensive metabolic engineering efforts. In particular, transcription factor (TF)-based biosensors for dynamic control of gene circuits could facilitate strain evaluation, high-throughput screening (HTS), and adaptive laboratory evolution (ALE) for natural product synthesis. In this review, we summarized recent developments of several TF-based biosensors for core intermediates in natural product synthesis through three important pathways, i.e., fatty acid synthesis pathway, shikimate pathway, and methylerythritol-4-phosphate (MEP)/mevalonate (MVA) pathway. Moreover, we have shown how these biosensors are implemented in synthetic circuits for dynamic control of natural product synthesis and also discussed the design/evaluation principles for improved biosensor performance.
Collapse
Affiliation(s)
- Yiming Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
12
|
Willdigg JR, Helmann JD. Mini Review: Bacterial Membrane Composition and Its Modulation in Response to Stress. Front Mol Biosci 2021. [PMID: 34046426 DOI: 10.3389/fmolb.2021.634438/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Antibiotics and other agents that perturb the synthesis or integrity of the bacterial cell envelope trigger compensatory stress responses. Focusing on Bacillus subtilis as a model system, this mini-review summarizes current views of membrane structure and insights into how cell envelope stress responses remodel and protect the membrane. Altering the composition and properties of the membrane and its associated proteome can protect cells against detergents, antimicrobial peptides, and pore-forming compounds while also, indirectly, contributing to resistance against compounds that affect cell wall synthesis. Many of these regulatory responses are broadly conserved, even where the details of regulation may differ, and can be important in the emergence of antibiotic resistance in clinical settings.
Collapse
Affiliation(s)
- Jessica R Willdigg
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
13
|
Li S, Zhang Q, Wang J, Liu Y, Zhao Y, Deng Y. Recent progress in metabolic engineering of Saccharomyces cerevisiae for the production of malonyl-CoA derivatives. J Biotechnol 2020; 325:83-90. [PMID: 33278463 DOI: 10.1016/j.jbiotec.2020.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 02/08/2023]
Abstract
To reduce dependence on petroleum, the biosynthesis of important chemicals from simple substrates using industrial microorganisms has attracted increased attention. Metabolic engineering of Saccharomyces cerevisiae offers a sustainable and flexible alternative for the production of various chemicals. As a key metabolic intermediate, malonyl-CoA is a precursor for many useful compounds. However, the productivity of malonyl-CoA derivatives is restricted by the low cellular level of malonyl-CoA and enzymatic performance. In this review, we focused on how to increase the intracellular malonyl-CoA level and summarize the recent advances in different metabolic engineering strategies for directing intracellular malonyl-CoA to the desired malonyl-CoA derivatives, including strengthening the malonyl-CoA supply, reducing malonyl-CoA consumption, and precisely controlling the intracellular malonyl-CoA level. These strategies provided new insights for further improving the synthesis of malonyl-CoA derivatives in microorganisms.
Collapse
Affiliation(s)
- Shiyun Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Qiyue Zhang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Yingli Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Yunying Zhao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
14
|
Cell morphology maintenance in Bacillus subtilis through balanced peptidoglycan synthesis and hydrolysis. Sci Rep 2020; 10:17910. [PMID: 33087775 PMCID: PMC7578834 DOI: 10.1038/s41598-020-74609-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/28/2020] [Indexed: 01/12/2023] Open
Abstract
The peptidoglycan layer is responsible for maintaining bacterial cell shape and permitting cell division. Cell wall growth is facilitated by peptidoglycan synthases and hydrolases and is potentially modulated by components of the central carbon metabolism. In Bacillus subtilis, UgtP synthesises the glucolipid precursor for lipoteichoic acid and has been suggested to function as a metabolic sensor governing cell size. Here we show that ugtP mutant cells have increased levels of cell wall precursors and changes in their peptidoglycan that suggest elevated DL-endopeptidase activity. The additional deletion of lytE, encoding a DL-endopeptidase important for cell elongation, in the ugtP mutant background produced cells with severe shape defects. Interestingly, the ugtP lytE mutant recovered normal rod-shape by acquiring mutations that decreased the expression of the peptidoglycan synthase PBP1. Together our results suggest that cells lacking ugtP must re-adjust the balance between peptidoglycan synthesis and hydrolysis to maintain proper cell morphology.
Collapse
|
15
|
Machinandiarena F, Nakamatsu L, Schujman GE, de Mendoza D, Albanesi D. Revisiting the coupling of fatty acid to phospholipid synthesis in bacteria with FapR regulation. Mol Microbiol 2020; 114:653-663. [PMID: 32671874 DOI: 10.1111/mmi.14574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/07/2020] [Accepted: 07/11/2020] [Indexed: 12/31/2022]
Abstract
A key aspect in membrane biogenesis is the coordination of fatty acid to phospholipid synthesis rates. In most bacteria, PlsX is the first enzyme of the phosphatidic acid synthesis pathway, the common precursor of all phospholipids. Previously, we proposed that PlsX is a key regulatory point that synchronizes the fatty acid synthase II with phospholipid synthesis in Bacillus subtilis. However, understanding the basis of such coordination mechanism remained a challenge in Gram-positive bacteria. Here, we show that the inhibition of fatty acid and phospholipid synthesis caused by PlsX depletion leads to the accumulation of long-chain acyl-ACPs, the end products of the fatty acid synthase II. Hydrolysis of the acyl-ACP pool by heterologous expression of a cytosolic thioesterase relieves the inhibition of fatty acid synthesis, indicating that acyl-ACPs are feedback inhibitors of this metabolic route. Unexpectedly, inactivation of PlsX triggers a large increase of malonyl-CoA leading to induction of the fap regulon. This finding discards the hypothesis, proposed for B. subtilis and extended to other Gram-positive bacteria, that acyl-ACPs are feedback inhibitors of the acetyl-CoA carboxylase. Finally, we propose that the continuous production of malonyl-CoA during phospholipid synthesis inhibition provides an additional mechanism for fine-tuning the coupling between phospholipid and fatty acid production in bacteria with FapR regulation.
Collapse
Affiliation(s)
- Federico Machinandiarena
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Leandro Nakamatsu
- División de Biología Sintética, Ingeniería Metabólica SA (INMET), Rosario, Argentina
| | - Gustavo E Schujman
- División de Biología Sintética, Ingeniería Metabólica SA (INMET), Rosario, Argentina.,CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Daniela Albanesi
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
16
|
Qiu C, Chen X, Rexida R, Shen Y, Qi Q, Bao X, Hou J. Engineering transcription factor-based biosensors for repressive regulation through transcriptional deactivation design in Saccharomyces cerevisiae. Microb Cell Fact 2020; 19:146. [PMID: 32690010 PMCID: PMC7372789 DOI: 10.1186/s12934-020-01405-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/13/2020] [Indexed: 12/27/2022] Open
Abstract
Background With the development of engineering the microbial cell factories, biosensors have been used widely for regulation of cellular metabolism and high-throughput screening. However, most of the biosensors constructed in Saccharomyces cerevisiae are designed for transcriptional activation. Very few studies have dedicated to the development of genetic circuit for repressive regulation, which is also indispensable for the dynamic control of metabolism. Results In this study, through transcriptional deactivation design, we developed transcription-factor-based biosensors to allow repressive regulation in response to ligand. Using a malonyl-CoA sensing system as an example, the biosensor was constructed and systematically engineered to optimize the dynamic range by comparing transcriptional activity of the activators, evaluating the positions and numbers of the operators in the promoter and comparing the effects of different promoters. A biosensor with 82% repression ratio was obtained. Based on this design principle, another two biosensors, which sense acyl-CoA or xylose and downregulate gene expression, were also successfully constructed. Conclusions Our work systematically optimized the biosensors for repressive regulation in yeast for the first time. It provided useful framework to construct similar biosensors. Combining the widely reported biosensors for transcriptional activation with the biosensors developed here, it is now possible to construct biosensors with opposing transcriptional activities in yeast. ![]()
Collapse
Affiliation(s)
- Chenxi Qiu
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Xiaoxu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Reheman Rexida
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China.,State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qi Lu University of Technology, Jinan, 250353, People's Republic of China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
17
|
Engineered dynamic distribution of malonyl-CoA flux for improving polyketide biosynthesis in Komagataella phaffii. J Biotechnol 2020; 320:80-85. [PMID: 32574793 DOI: 10.1016/j.jbiotec.2020.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/27/2020] [Accepted: 06/16/2020] [Indexed: 12/29/2022]
Abstract
Malonyl-CoA is a basic but limited precursor for the biosynthesis of various bioactive compounds and life-supporting fatty acids in cells. This study develops a biosynthetic system to dynamically redirect malonyl-CoA flux and improve production of malonyl-CoA derived polyketide (6-MSA) in Komagataella phaffii. A synthetic regulatory protein fusing a yeast activator Prm1 with a bacterial repressor FapR was proved to work with a hybrid promoter (-7)fapO-cPAOX1 and activate gene expression. Expression mode by the Prm1-FapR/(-7)fapO-cPAOX1 device was not affected by intracellular malonyl-CoA levels. Further, 9 promoter variants of PGAP with insertion of fapO at various sites were tested with the Prm1-FapR. It generated a biosensor of Prm1-FapR/PGAP-(+2)fapO with regulation behavior of malonyl-CoA-low-level repression/high-level derepression. Both devices were subsequently integrated into a single cell, for which fatty acid synthesis module was driven by Prm1-FapR/PGAP-(+2)fapO but 6-MSA synthesis module was expressed by Prm1-FapR/(-7)fapO-cPAOX1. The integrated system allowed continuous polyketide synthesis but malonyl-CoA-high-level "on"/low-level "off" fatty acid synthesis. This design finally increased 6-MSA production capacity by 260 %, proving the positive effects of dynamic malonyl-CoA distribution to the target compounds. It provides a new strategy for synthesis of malonyl-CoA derived compounds in eukaryotic chassis hosts.
Collapse
|
18
|
Wen J, Tian L, Xu M, Zhou X, Zhang Y, Cai M. A Synthetic Malonyl-CoA Metabolic Oscillator in Komagataella phaffii. ACS Synth Biol 2020; 9:1059-1068. [PMID: 32227991 DOI: 10.1021/acssynbio.9b00378] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Malonyl-CoA is a key metabolic molecule that participates in a diverse range of physiological responses and can act as a building block for a variety of value-added pharmaceuticals and chemicals. The cytosolic malonyl-CoA concentration is usually very low, and thus dynamic metabolic control of malonyl-CoA variation will aid its stable formation and efficient consumption. We developed a synthetic malonyl-CoA metabolic oscillator in yeast. A synthetic regulatory protein, Prm1-FapR, was constructed by fusing a yeast transcriptional activator, Prm1, with a bacterial malonyl-CoA-sensitive transcription repressor, FapR. Two oppositely regulated biosensors were then engineered. A total of 18 hybrid promoter variants were designed, each carrying the operator sequence (fapO) of FapR and the core promoter of PAOX1 (cPAOX1), which is naturally regulated by Prm1. The promoter activities of these variants, regulated by Prm1-FapR, were tested. Through this process, a sensor for Prm1-FapR/(-52)fapO-PAOX1 carrying an activation/deactivation regulation module was built. Meanwhile, 24 promoter variants of PGAP with fapO inserted were designed and tested using the fusion regulator, giving a sensor for Prm1-FapR/PGAP-(+22) fapO that contained a repression/derepression regulation module. Both sensors were subsequently integrated into a single cell, which exhibited correct metabolic switching of eGFP and mCherry reporters following manipulation of cytosolic malonyl-CoA levels. The Prm1-FapR/(-52)fapO-PAOX1 and the Prm1-FapR/PGAP-(+22)fapO were also used to control the malonyl-CoA source and sink pathways, respectively, for the synthesis of 6-methylsalicylic acid. This finally led to an oscillatory metabolic mode of cytosolic malonyl-CoA. Such a metabolator is useful in exploring potential industrial and biomedical applications not limited by natural cellular behavior.
Collapse
Affiliation(s)
- Jiao Wen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lin Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Mingqiang Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai 200237, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
19
|
Milke L, Marienhagen J. Engineering intracellular malonyl-CoA availability in microbial hosts and its impact on polyketide and fatty acid synthesis. Appl Microbiol Biotechnol 2020; 104:6057-6065. [PMID: 32385515 PMCID: PMC7316851 DOI: 10.1007/s00253-020-10643-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022]
Abstract
Malonyl-CoA is an important central metabolite serving as the basic building block for the microbial synthesis of many pharmaceutically interesting polyketides, but also fatty acid-derived compounds including biofuels. Especially Saccharomyces cerevisiae, Escherichia coli, and Corynebacterium glutamicum have been engineered towards microbial synthesis of such compounds in recent years. However, developed strains and processes often suffer from insufficient productivity. Usually, tightly regulated intracellular malonyl-CoA availability is regarded as the decisive bottleneck limiting overall product formation. Therefore, metabolic engineering towards improved malonyl-CoA availability is essential to design efficient microbial cell factories for the production of polyketides and fatty acid derivatives. This review article summarizes metabolic engineering strategies to improve intracellular malonyl-CoA formation in industrially relevant microorganisms and its impact on productivity and product range, with a focus on polyketides and other malonyl-CoA-dependent products.Key Points• Malonyl-CoA is the central building block of polyketide synthesis.• Increasing acetyl-CoA supply is pivotal to improve malonyl-CoA availability.• Improved acetyl-CoA carboxylase activity increases availability of malonyl-CoA.• Fatty acid synthesis as an ambivalent target to improve malonyl-CoA supply.
Collapse
Affiliation(s)
- Lars Milke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany. .,Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany. .,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
20
|
Sander KB, Chung D, Klingeman DM, Giannone RJ, Rodriguez M, Whitham J, Hettich RL, Davison BH, Westpheling J, Brown SD. Gene targets for engineering osmotolerance in Caldicellulosiruptor bescii. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:50. [PMID: 32190115 PMCID: PMC7071700 DOI: 10.1186/s13068-020-01690-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/27/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Caldicellulosiruptor bescii, a promising biocatalyst being developed for use in consolidated bioprocessing of lignocellulosic materials to ethanol, grows poorly and has reduced conversion at elevated medium osmolarities. Increasing tolerance to elevated fermentation osmolarities is desired to enable performance necessary of a consolidated bioprocessing (CBP) biocatalyst. RESULTS Two strains of C. bescii showing growth phenotypes in elevated osmolarity conditions were identified. The first strain, ORCB001, carried a deletion of the FapR fatty acid biosynthesis and malonyl-CoA metabolism repressor and had a severe growth defect when grown in high-osmolarity conditions-introduced as the addition of either ethanol, NaCl, glycerol, or glucose to growth media. The second strain, ORCB002, displayed a growth rate over three times higher than its genetic parent when grown in high-osmolarity medium. Unexpectedly, a genetic complement ORCB002 exhibited improved growth, failing to revert the observed phenotype, and suggesting that mutations other than the deleted transcription factor (the fruR/cra gene) are responsible for the growth phenotype observed in ORCB002. Genome resequencing identified several other genomic alterations (three deleted regions, three substitution mutations, one silent mutation, and one frameshift mutation), which may be responsible for the observed increase in osmolarity tolerance in the fruR/cra-deficient strain, including a substitution mutation in dnaK, a gene previously implicated in osmoresistance in bacteria. Differential expression analysis and transcription factor binding site inference indicates that FapR negatively regulates malonyl-CoA and fatty acid biosynthesis, as it does in many other bacteria. FruR/Cra regulates neighboring fructose metabolism genes, as well as other genes in global manner. CONCLUSIONS Two systems able to effect tolerance to elevated osmolarities in C. bescii are identified. The first is fatty acid biosynthesis. The other is likely the result of one or more unintended, secondary mutations present in another transcription factor deletion strain. Though the locus/loci and mechanism(s) responsible remain unknown, candidate mutations are identified, including a mutation in the dnaK chaperone coding sequence. These results illustrate both the promise of targeted regulatory manipulation for osmotolerance (in the case of fapR) and the challenges (in the case of fruR/cra).
Collapse
Affiliation(s)
- Kyle B. Sander
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
- Bredesen Center for Interdisciplinary Graduate Research and Education, University of Tennessee, Knoxville, TN USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN USA
- Present Address: Department of Bioengineering, University of California, Berkeley, Berkeley, CA USA
| | - Daehwan Chung
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
- Department of Genetics, University of Georgia, Athens, GA USA
- Present Address: National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO USA
| | - Dawn M. Klingeman
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Richard J. Giannone
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Miguel Rodriguez
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Jason Whitham
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- Present Address: Becton Dickinson Diagnostics, Sparks Glencoe, MD USA
| | - Robert L. Hettich
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Brian H. Davison
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
- Bredesen Center for Interdisciplinary Graduate Research and Education, University of Tennessee, Knoxville, TN USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Janet Westpheling
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
- Department of Genetics, University of Georgia, Athens, GA USA
| | - Steven D. Brown
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
- Bredesen Center for Interdisciplinary Graduate Research and Education, University of Tennessee, Knoxville, TN USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- Present Address: LanzaTech, Skokie, IL USA
| |
Collapse
|
21
|
Torres NJ, Hartson SD, Rogers J, Gustafson JE. Proteomic and Metabolomic Analyses of a Tea-Tree Oil-Selected Staphylococcus aureus Small Colony Variant. Antibiotics (Basel) 2019; 8:antibiotics8040248. [PMID: 31816949 PMCID: PMC6963719 DOI: 10.3390/antibiotics8040248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 11/16/2022] Open
Abstract
Tea tree oil (TTO) is hypothesized to kill bacteria by indiscriminately denaturing membrane and protein structures. A Staphylococcus aureus small colony variant (SCV) selected with TTO (SH1000-TTORS-1) demonstrated slowed growth, reduced susceptibility to TTO, a diminutive cell size, and a thinned cell wall. Utilizing a proteomics and metabolomics approach, we have now revealed that the TTO-selected SCV mutant demonstrated defective fatty acid synthesis, an alteration in the expression of genes and metabolites associated with central metabolism, the induction of a general stress response, and a reduction of proteins critical for active growth and translation. SH1000-TTORS-1 also demonstrated an increase in amino acid accumulation and a decrease in sugar content. The reduction in glycolytic pathway proteins and sugar levels indicated that carbon flow through glycolysis and gluconeogenesis is reduced in SH1000-TTORS-1. The increase in amino acid accumulation coincides with the reduced production of translation-specific proteins and the induction of proteins associated with the stringent response. The decrease in sugar content likely deactivates catabolite repression and the increased amino acid pool observed in SH1000-TTORS-1 represents a potential energy and carbon source which could maintain carbon flow though the tricarboxylic acid (TCA) cycle. It is noteworthy that processes that contribute to the production of the TTO targets (proteins and membrane) are reduced in SH1000-TTORS-1. This is one of a few studies describing a mechanism that bacteria utilize to withstand the action of an antiseptic which is thought to inactivate multiple cellular targets.
Collapse
|
22
|
Kalkreuter E, Keeler AM, Malico AA, Bingham KS, Gayen AK, Williams GJ. Development of a Genetically Encoded Biosensor for Detection of Polyketide Synthase Extender Units in Escherichia coli. ACS Synth Biol 2019; 8:1391-1400. [PMID: 31134799 PMCID: PMC6915837 DOI: 10.1021/acssynbio.9b00078] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The scaffolds of polyketides are constructed via assembly of extender units based on malonyl-CoA and its derivatives that are substituted at the C2-position with diverse chemical functionality. Subsequently, a transcription-factor-based biosensor for malonyl-CoA has proven to be a powerful tool for detecting malonyl-CoA, facilitating the dynamic regulation of malonyl-CoA biosynthesis and guiding high-throughput engineering of malonyl-CoA-dependent processes. Yet, a biosensor for the detection of malonyl-CoA derivatives has yet to be reported, severely restricting the application of high-throughput synthetic biology approaches to engineering extender unit biosynthesis and limiting the ability to dynamically regulate the biosynthesis of polyketide products that are dependent on such α-carboxyacyl-CoAs. Herein, the FapR biosensor was re-engineered and optimized for a range of mCoA concentrations across a panel of E. coli strains. The effector specificity of FapR was probed by cell-free transcription-translation, revealing that a variety of non-native and non-natural acyl-thioesters are FapR effectors. This FapR promiscuity proved sufficient for the detection of the polyketide extender unit methylmalonyl-CoA in E. coli, providing the first reported genetically encoded biosensor for this important metabolite. As such, the previously unknown broad effector promiscuity of FapR provides a platform to develop new tools and approaches that can be leveraged to overcome limitations of pathways that construct diverse α-carboxyacyl-CoAs and those that are dependent on them, including biofuels, antibiotics, anticancer drugs, and other value-added products.
Collapse
Affiliation(s)
- Edward Kalkreuter
- Department of Chemistry, NC State University, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, NC State University, Raleigh, North Carolina 27695, United States
- Present address: Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Aaron M. Keeler
- Department of Chemistry, NC State University, Raleigh, North Carolina 27695, United States
| | - Alexandra A. Malico
- Department of Chemistry, NC State University, Raleigh, North Carolina 27695, United States
| | - Kyle S. Bingham
- Department of Chemistry, NC State University, Raleigh, North Carolina 27695, United States
- Present address: UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina 27516, United States
| | - Anuran K. Gayen
- Department of Chemistry, NC State University, Raleigh, North Carolina 27695, United States
| | - Gavin J. Williams
- Department of Chemistry, NC State University, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, NC State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
23
|
Aris H, Borhani S, Cahn D, O'Donnell C, Tan E, Xu P. Modeling transcriptional factor cross-talk to understand parabolic kinetics, bimodal gene expression and retroactivity in biosensor design. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Du Y, Hu H, Pei X, Du K, Wei T. Genetically Encoded FapR-NLuc as a Biosensor to Determine Malonyl-CoA in Situ at Subcellular Scales. Bioconjug Chem 2019; 30:826-832. [PMID: 30629412 DOI: 10.1021/acs.bioconjchem.8b00920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Malonyl-CoA is one of the key metabolic intermediates in fatty acid metabolism as well as a key player in protein post-translational modifications. Detection of malonyl-CoA in live cells is challenging because of the lack of effective measuring tools. Here we developed a genetically encoded biosensor, FapR-NLuc, by combining a malonyl-CoA responsive bacterial transcriptional factor, FapR, with an engineered luciferase, NanoLuciferase (NLuc). FapR-NLuc specifically responds to malonyl-CoA and enables the rapid detection of malonyl-CoA at the micromolar level. More importantly, it is reflective of the fluctuations of malonyl-CoA in live cells. Upon being targeted to subcellular compartments, this biosensor can detect the changes of malonyl-CoA in situ within organelles. Thus, FapR-NLuc can potentially be used as a tool to study the kinetics of malonyl-CoA in live cells, which will shed light on the underlying mechanisms of malonyl-CoA-mediated biological processes.
Collapse
Affiliation(s)
- Yipeng Du
- National Laboratory of Biomacromolecules , Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101 , China
| | - Hao Hu
- National Laboratory of Biomacromolecules , Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiaoxia Pei
- National Laboratory of Biomacromolecules , Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Kang Du
- National Laboratory of Biomacromolecules , Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Taotao Wei
- National Laboratory of Biomacromolecules , Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
25
|
Bowman CE, Wolfgang MJ. Role of the malonyl-CoA synthetase ACSF3 in mitochondrial metabolism. Adv Biol Regul 2019; 71:34-40. [PMID: 30201289 PMCID: PMC6347522 DOI: 10.1016/j.jbior.2018.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 12/26/2022]
Abstract
Malonyl-CoA is a central metabolite in fatty acid biochemistry. It is the rate-determining intermediate in fatty acid synthesis but is also an allosteric inhibitor of the rate-setting step in mitochondrial long-chain fatty acid oxidation. While these canonical cytoplasmic roles of malonyl-CoA have been well described, malonyl-CoA can also be generated within the mitochondrial matrix by an alternative pathway: the ATP-dependent ligation of malonate to Coenzyme A by the malonyl-CoA synthetase ACSF3. Malonate, a competitive inhibitor of succinate dehydrogenase of the TCA cycle, is a potent inhibitor of mitochondrial respiration. A major role for ACSF3 is to provide a metabolic pathway for the clearance of malonate by the generation of malonyl-CoA, which can then be decarboxylated to acetyl-CoA by malonyl-CoA decarboxylase. Additionally, ACSF3-derived malonyl-CoA can be used to malonylate lysine residues on proteins within the matrix of mitochondria, possibly adding another regulatory layer to post-translational control of mitochondrial metabolism. The discovery of ACSF3-mediated generation of malonyl-CoA defines a new mitochondrial metabolic pathway and raises new questions about how the metabolic fates of this multifunctional metabolite intersect with mitochondrial metabolism.
Collapse
Affiliation(s)
- Caitlyn E Bowman
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Michael J Wolfgang
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
26
|
In vivo biosensors: mechanisms, development, and applications. ACTA ACUST UNITED AC 2018; 45:491-516. [DOI: 10.1007/s10295-018-2004-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/30/2017] [Indexed: 01/09/2023]
Abstract
Abstract
In vivo biosensors can recognize and respond to specific cellular stimuli. In recent years, biosensors have been increasingly used in metabolic engineering and synthetic biology, because they can be implemented in synthetic circuits to control the expression of reporter genes in response to specific cellular stimuli, such as a certain metabolite or a change in pH. There are many types of natural sensing devices, which can be generally divided into two main categories: protein-based and nucleic acid-based. Both can be obtained either by directly mining from natural genetic components or by engineering the existing genetic components for novel specificity or improved characteristics. A wide range of new technologies have enabled rapid engineering and discovery of new biosensors, which are paving the way for a new era of biotechnological progress. Here, we review recent advances in the design, optimization, and applications of in vivo biosensors in the field of metabolic engineering and synthetic biology.
Collapse
|
27
|
Interrelationships between Fatty Acid Composition, Staphyloxanthin Content, Fluidity, and Carbon Flow in the Staphylococcus aureus Membrane. Molecules 2018; 23:molecules23051201. [PMID: 29772798 PMCID: PMC6099573 DOI: 10.3390/molecules23051201] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 12/24/2022] Open
Abstract
Fatty acids play a major role in determining membrane biophysical properties. Staphylococcus aureus produces branched-chain fatty acids (BCFAs) and straight-chain saturated fatty acids (SCSFAs), and can directly incorporate exogenous SCSFAs and straight-chain unsaturated fatty acids (SCUFAs). Many S. aureus strains produce the triterpenoid pigment staphyloxanthin, and the balance of BCFAs, SCSFAs and staphyloxanthin determines membrane fluidity. Here, we investigated the relationship of fatty acid and carotenoid production in S. aureus using a pigmented strain (Pig1), its carotenoid-deficient mutant (Pig1ΔcrtM) and the naturally non-pigmented Staphylococcus argenteus that lacks carotenoid biosynthesis genes and is closely related to S. aureus. Fatty acid compositions in all strains were similar under a given culture condition indicating that staphyloxanthin does not influence fatty acid composition. Strain Pig1 had decreased membrane fluidity as measured by fluorescence anisotropy compared to the other strains under all conditions indicating that staphyloxanthin helps maintain membrane rigidity. We could find no evidence for correlation of expression of crtM and fatty acid biosynthesis genes. Supplementation of medium with glucose increased SCSFA production and decreased BCFA and staphyloxanthin production, whereas acetate-supplementation also decreased BCFAs but increased staphyloxanthin production. We believe that staphyloxanthin levels are influenced more through metabolic regulation than responding to fatty acids incorporated into the membrane.
Collapse
|
28
|
Chen X, Yang X, Shen Y, Hou J, Bao X. Screening Phosphorylation Site Mutations in Yeast Acetyl-CoA Carboxylase Using Malonyl-CoA Sensor to Improve Malonyl-CoA-Derived Product. Front Microbiol 2018; 9:47. [PMID: 29422886 PMCID: PMC5788913 DOI: 10.3389/fmicb.2018.00047] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/09/2018] [Indexed: 01/08/2023] Open
Abstract
Malonyl-coenzyme A (malonyl-CoA) is a critical precursor for the biosynthesis of a variety of biochemicals. It is synthesized by the catalysis of acetyl-CoA carboxylase (Acc1p), which was demonstrated to be deactivated by the phosphorylation of Snf1 protein kinase in yeast. In this study, we designed a synthetic malonyl-CoA biosensor and used it to screen phosphorylation site mutations of Acc1p in Saccharomyces cerevisiae. Thirteen phosphorylation sites were mutated, and a combination of three site mutations in Acc1p, S686A, S659A, and S1157A, was found to increase malonyl-CoA availability. ACC1S686AS659AS1157A expression also improved the production of 3-hydroxypropionic acid, a malonyl-CoA-derived chemical, compared to both wild type and the previously reported ACC1S659AS1157A mutation. This mutation will also be beneficial for other malonyl-CoA-derived products.
Collapse
Affiliation(s)
- Xiaoxu Chen
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Xiaoyu Yang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology, Jinan, China
| |
Collapse
|
29
|
Santos-Merino M, Garcillán-Barcia MP, de la Cruz F. Engineering the fatty acid synthesis pathway in Synechococcus elongatus PCC 7942 improves omega-3 fatty acid production. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:239. [PMID: 30202434 PMCID: PMC6123915 DOI: 10.1186/s13068-018-1243-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/27/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND The microbial production of fatty acids has received great attention in the last few years as feedstock for the production of renewable energy. The main advantage of using cyanobacteria over other organisms is their ability to capture energy from sunlight and to transform CO2 into products of interest by photosynthesis, such as fatty acids. Fatty acid synthesis is a ubiquitous and well-characterized pathway in most bacteria. However, the activity of the enzymes involved in this pathway in cyanobacteria remains poorly explored. RESULTS To characterize the function of some enzymes involved in the saturated fatty acid synthesis in cyanobacteria, we genetically engineered Synechococcus elongatus PCC 7942 by overexpressing or deleting genes encoding enzymes of the fatty acid synthase system and tested the lipid profile of the mutants. These modifications were in turn used to improve alpha-linolenic acid production in this cyanobacterium. The mutant resulting from fabF overexpression and fadD deletion, combined with the overexpression of desA and desB desaturase genes from Synechococcus sp. PCC 7002, produced the highest levels of this omega-3 fatty acid. CONCLUSIONS The fatty acid composition of S. elongatus PCC 7942 can be significantly modified by genetically engineering the expression of genes coding for the enzymes involved in the first reactions of fatty acid synthesis pathway. Variations in fatty acid composition of S. elongatus PCC 7942 mutants did not follow the pattern observed in Escherichia coli derivatives. Some of these modifications can be used to improve omega-3 fatty acid production. This work provides new insights into the saturated fatty acid synthesis pathway and new strategies that might be used to manipulate the fatty acid content of cyanobacteria.
Collapse
Affiliation(s)
- María Santos-Merino
- Instituto de Biomedicina y Biotecnología de Cantabria (Universidad de Cantabria—Consejo Superior de Investigaciones Científicas), Santander, Cantabria Spain
| | - M. Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (Universidad de Cantabria—Consejo Superior de Investigaciones Científicas), Santander, Cantabria Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria (Universidad de Cantabria—Consejo Superior de Investigaciones Científicas), Santander, Cantabria Spain
| |
Collapse
|
30
|
Li H, Chen W, Jin R, Jin JM, Tang SY. Biosensor-aided high-throughput screening of hyper-producing cells for malonyl-CoA-derived products. Microb Cell Fact 2017; 16:187. [PMID: 29096626 PMCID: PMC5669015 DOI: 10.1186/s12934-017-0794-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/24/2017] [Indexed: 11/26/2022] Open
Abstract
Background Malonyl-coenzyme A (CoA) is an important biosynthetic precursor in vivo. Although Escherichia coli is a useful organism for biosynthetic applications, its malonyl-CoA level is too low. Results To identify strains with the best potential for enhanced malonyl-CoA production, we developed a whole-cell biosensor for rapidly reporting intracellular malonyl-CoA concentrations. The biosensor was successfully applied as a high-throughput screening tool for identifying targets at a genome-wide scale that could be critical for improving the malonyl-CoA biosynthesis in vivo. The mutant strains selected synthesized significantly higher titers of the type III polyketide triacetic acid lactone (TAL), phloroglucinol, and free fatty acids compared to the wild-type strain, using malonyl-CoA as a precursor. Conclusion These results validated this novel whole-cell biosensor as a rapid and sensitive malonyl-CoA high-throughput screening tool. Further analysis of the mutant strains showed that the iron ion concentration is closely related to the intracellular malonyl-CoA biosynthesis. Electronic supplementary material The online version of this article (10.1186/s12934-017-0794-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heng Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wei Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ruinan Jin
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jian-Ming Jin
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.
| | - Shuang-Yan Tang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
31
|
Design and application of genetically-encoded malonyl-CoA biosensors for metabolic engineering of microbial cell factories. Metab Eng 2017; 44:253-264. [PMID: 29097310 DOI: 10.1016/j.ymben.2017.10.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/17/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022]
Abstract
Malonyl-CoA is the basic building block for synthesizing a range of important compounds including fatty acids, phenylpropanoids, flavonoids and non-ribosomal polyketides. Centering around malonyl-CoA, we summarized here the various metabolic engineering strategies employed recently to regulate and control malonyl-CoA metabolism and improve cellular productivity. Effective metabolic engineering of microorganisms requires the introduction of heterologous pathways and dynamically rerouting metabolic flux towards products of interest. Transcriptional factor-based biosensors translate an internal cellular signal to a transcriptional output and drive the expression of the designed genetic/biomolecular circuits to compensate the activity loss of the engineered biosystem. Recent development of genetically-encoded malonyl-CoA sensor has stood out as a classical example to dynamically reprogram cell metabolism for various biotechnological applications. Here, we reviewed the design principles of constructing a transcriptional factor-based malonyl-CoA sensor with superior detection limit, high sensitivity and broad dynamic range. We discussed various synthetic biology strategies to remove pathway bottleneck and how genetically-encoded metabolite sensor could be deployed to improve pathway efficiency. Particularly, we emphasized that integration of malonyl-CoA sensing capability with biocatalytic function would be critical to engineer efficient microbial cell factory. Biosensors have also advanced beyond its classical function of a sensor actuator for in situ monitoring of intracellular metabolite concentration. Applications of malonyl-CoA biosensors as a sensor-invertor for negative feedback regulation of metabolic flux, a metabolic switch for oscillatory balancing of malonyl-CoA sink pathway and source pathway and a screening tool for engineering more efficient biocatalyst are also presented in this review. We envision the genetically-encoded malonyl-CoA sensor will be an indispensable tool to optimize cell metabolism and cost-competitively manufacture malonyl-CoA-derived compounds.
Collapse
|
32
|
Sadykov MR, Ahn JS, Widhelm TJ, Eckrich VM, Endres JL, Driks A, Rutkowski GE, Wingerd KL, Bayles KW. Poly(3-hydroxybutyrate) fuels the tricarboxylic acid cycle andde novolipid biosynthesis duringBacillus anthracissporulation. Mol Microbiol 2017; 104:793-803. [DOI: 10.1111/mmi.13665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Marat R. Sadykov
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha NE 68198 USA
| | - Jong-Sam Ahn
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha NE 68198 USA
| | - Todd J. Widhelm
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha NE 68198 USA
| | - Valerie M. Eckrich
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha NE 68198 USA
| | - Jennifer L. Endres
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha NE 68198 USA
| | - Adam Driks
- Department of Microbiology and Immunology; Loyola University Chicago, Stritch School of Medicine; Maywood IL 60153 USA
| | | | | | - Kenneth W. Bayles
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha NE 68198 USA
| |
Collapse
|
33
|
Albanesi D, de Mendoza D. FapR: From Control of Membrane Lipid Homeostasis to a Biotechnological Tool. Front Mol Biosci 2016; 3:64. [PMID: 27766255 PMCID: PMC5052256 DOI: 10.3389/fmolb.2016.00064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/21/2016] [Indexed: 01/22/2023] Open
Abstract
Phospholipids and fatty acids are not only one of the major components of cell membranes but also important metabolic intermediates in bacteria. Since the fatty acid biosynthetic pathway is essential and energetically expensive, organisms have developed a diversity of homeostatic mechanisms to fine-tune the concentration of lipids at particular levels. FapR is the first global regulator of lipid synthesis discovered in bacteria and is largely conserved in Gram-positive organisms including important human pathogens, such as Staphylococcus aureus, Bacillus anthracis, and Listeria monocytogenes. FapR is a transcription factor that negatively controls the expression of several genes of the fatty acid and phospholipid biosynthesis and was first identified in Bacillus subtilis. This review focuses on the genetic, biochemical and structural advances that led to a detailed understanding of lipid homeostasis control by FapR providing unique opportunities to learn how Gram-positive bacteria monitor the status of fatty acid biosynthesis and adjust the lipid synthesis accordingly. Furthermore, we also cover the potential of the FapR system as a target for new drugs against Gram-positive bacteria as well as its recent biotechnological applications in diverse organisms.
Collapse
Affiliation(s)
- Daniela Albanesi
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario Rosario, Argentina
| | - Diego de Mendoza
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario Rosario, Argentina
| |
Collapse
|
34
|
Baraúna RA, das Graças DA, Nunes CIP, Schneider MPC, Silva A, Carepo MSP. De novo synthesis of fatty acids is regulated by FapR protein in Exiguobacterium antarcticum B7, a psychrotrophic bacterium isolated from Antarctica. BMC Res Notes 2016; 9:447. [PMID: 27646396 PMCID: PMC5028935 DOI: 10.1186/s13104-016-2250-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND FapR protein from the psychrotrophic species Exiguobacterium antarcticum B7 was expressed and purified, and subsequently evaluated for its capacity to bind to the promoter regions of the fabH1-fabF and fapR-plsX-fabD-fabG operons, using electrophoretic mobility shift assay. The genes that compose these operons encode for enzymes involved in the de novo synthesis of fatty acids molecules. In Bacillus subtilis, FapR regulates the expression of these operons, and consequently has influence in the synthesis of long or short-chain fatty acids. To analyze the bacterial cold adaptation, this is an important metabolic pathway because psychrotrophic microrganisms tend to synthesize short and branched-chain unsaturated fatty acids at cold to maintain cell membrane fluidity. RESULTS In this work, it was observed that recombinant protein was able to bind to the promoter of the fully amplified fabH1-fabF and fapR-plsX-fabD-fabG operons. However, FapR was unable to bind to the promoter of fapR-plsX-fabD-fabG operon when synthesized only up to the protein-binding palindrome 5'-TTAGTACCAGATACTAA-3', thus showing the importance of the entire promoter sequence for the correct protein-DNA interaction. CONCLUSIONS Through this observation, we demonstrate that the FapR protein possibly regulates the same operons as described for other species, which emphasizes its importance to cold adaptation process of E. antarcticum B7, a psychrotrophic bacterium isolated at Antarctica.
Collapse
Affiliation(s)
- Rafael A. Baraúna
- Laboratório de Genômica e Bioinformática, Centro de Genômica e Biologia de Sistemas, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA 66075-110 Brazil
| | - Diego A. das Graças
- Laboratório de Genômica e Bioinformática, Centro de Genômica e Biologia de Sistemas, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA 66075-110 Brazil
| | - Catarina I. P. Nunes
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Maria P. C. Schneider
- Laboratório de Genômica e Bioinformática, Centro de Genômica e Biologia de Sistemas, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA 66075-110 Brazil
| | - Artur Silva
- Laboratório de Genômica e Bioinformática, Centro de Genômica e Biologia de Sistemas, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA 66075-110 Brazil
| | - Marta S. P. Carepo
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
35
|
Fozo EM, Rucks EA. The Making and Taking of Lipids: The Role of Bacterial Lipid Synthesis and the Harnessing of Host Lipids in Bacterial Pathogenesis. Adv Microb Physiol 2016; 69:51-155. [PMID: 27720012 DOI: 10.1016/bs.ampbs.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to survive environmental stressors, including those induced by growth in the human host, bacterial pathogens will adjust their membrane physiology accordingly. These physiological changes also include the use of host-derived lipids to alter their own membranes and feed central metabolic pathways. Within the host, the pathogen is exposed to many stressful stimuli. A resulting adaptation is for pathogens to scavenge the host environment for readily available lipid sources. The pathogen takes advantage of these host-derived lipids to increase or decrease the rigidity of their own membranes, to provide themselves with valuable precursors to feed central metabolic pathways, or to impact host signalling and processes. Within, we review the diverse mechanisms that both extracellular and intracellular pathogens employ to alter their own membranes as well as their use of host-derived lipids in membrane synthesis and modification, in order to increase survival and perpetuate disease within the human host. Furthermore, we discuss how pathogen employed mechanistic utilization of host-derived lipids allows for their persistence, survival and potentiation of disease. A more thorough understanding of all of these mechanisms will have direct consequences for the development of new therapeutics, and specifically, therapeutics that target pathogens, while preserving normal flora.
Collapse
Affiliation(s)
- E M Fozo
- University of Tennessee, Knoxville, TN, United States.
| | - E A Rucks
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.
| |
Collapse
|
36
|
Wang Z, Cirino PC. New and improved tools and methods for enhanced biosynthesis of natural products in microorganisms. Curr Opin Biotechnol 2016; 42:159-168. [PMID: 27284635 DOI: 10.1016/j.copbio.2016.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 12/28/2022]
Abstract
Engineering efficient biosynthesis of natural products in microorganisms requires optimizing gene expression levels to balance metabolite flux distributions and to minimize accumulation of toxic intermediates. Such metabolic optimization is challenged with identifying the right gene targets, and then determining and achieving appropriate gene expression levels. After decades of having a relatively limited set of gene regulation tools available, metabolic engineers are recently enjoying an ever-growing repertoire of more precise and tunable gene expression platforms. Here we review recent applications of natural and designed transcriptional and translational regulatory machinery for engineering biosynthesis of natural products in microorganisms. Customized trans-acting RNAs (sgRNA, asRNA and sRNA), along with appropriate accessory proteins, are allowing for unparalleled tuning of gene expression. Meanwhile metabolite-responsive transcription factors and riboswitches have been implemented in strain screening and evolution, and in dynamic gene regulation. Further refinements and expansions on these platform technologies will circumvent many long-term obstacles in natural products biosynthesis.
Collapse
Affiliation(s)
- Zhiqing Wang
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Patrick C Cirino
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
37
|
David F, Nielsen J, Siewers V. Flux Control at the Malonyl-CoA Node through Hierarchical Dynamic Pathway Regulation in Saccharomyces cerevisiae. ACS Synth Biol 2016; 5:224-33. [PMID: 26750662 DOI: 10.1021/acssynbio.5b00161] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The establishment of a heterologous pathway in a microbial host for the production of industrially relevant chemicals at high titers and yields requires efficient adjustment of the central carbon metabolism to ensure that flux is directed toward the product of interest. This can be achieved through regulation at key branch points in the metabolic networks, and here we present a novel approach for dynamic modulation of pathway flux and enzyme expression levels. The approach is based on a hierarchical dynamic control system around the key pathway intermediate malonyl-CoA. The upper level of the control system ensures downregulation of endogenous use of malonyl-CoA for fatty acid biosynthesis, which results in accumulation of this pathway intermediate. The lower level of the control system is based on use of a novel biosensor for malonyl-CoA to activate expression of a heterologous pathway using this metabolite for production of 3-hydroxypropionic acid (3-HP). The malonyl-CoA sensor was developed based on the FapR transcription factor of Bacillus subtilis, and it demonstrates one of the first applications of a bacterial metabolite sensor in yeast. Introduction of the dual pathway control increased the production of 3-HP by 10-fold and can also be applied for production of other malonyl-CoA-derived products.
Collapse
Affiliation(s)
| | - Jens Nielsen
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2970 Hørsholm, Denmark
| | | |
Collapse
|
38
|
Li S, Si T, Wang M, Zhao H. Development of a Synthetic Malonyl-CoA Sensor in Saccharomyces cerevisiae for Intracellular Metabolite Monitoring and Genetic Screening. ACS Synth Biol 2015; 4:1308-15. [PMID: 26149896 DOI: 10.1021/acssynbio.5b00069] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Genetic sensors capable of converting key metabolite levels to fluorescence signals enable the monitoring of intracellular compound concentrations in living cells, and emerge as an efficient tool in high-throughput genetic screening. However, the development of genetic sensors in yeasts lags far behind their development in bacteria. Here we report the design of a malonyl-CoA sensor in Saccharomyces cerevisiae using an adapted bacterial transcription factor FapR and its corresponding operator fapO to gauge intracellular malonyl-CoA levels. By combining this sensor with a genome-wide overexpression library, we identified two novel gene targets that improved intracellular malonyl-CoA concentration. We further utilized the resulting recombinant yeast strain to produce a valuable compound, 3-hydroxypropionic acid, from malonyl-CoA and enhanced its titer by 120%. Such a genetic sensor provides a powerful approach for genome-wide screening and could further improve the synthesis of a large range of chemicals derived from malonyl-CoA in yeast.
Collapse
Affiliation(s)
- Sijin Li
- Energy Biosciences Institute, ‡Institute for Genomic Biology, §Department of Chemical
and Biomolecular Engineering, and ∥Departments of Chemistry, Biochemistry, and
Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Tong Si
- Energy Biosciences Institute, ‡Institute for Genomic Biology, §Department of Chemical
and Biomolecular Engineering, and ∥Departments of Chemistry, Biochemistry, and
Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Meng Wang
- Energy Biosciences Institute, ‡Institute for Genomic Biology, §Department of Chemical
and Biomolecular Engineering, and ∥Departments of Chemistry, Biochemistry, and
Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Energy Biosciences Institute, ‡Institute for Genomic Biology, §Department of Chemical
and Biomolecular Engineering, and ∥Departments of Chemistry, Biochemistry, and
Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
39
|
Carnitine palmitoyltransferase 1C: From cognition to cancer. Prog Lipid Res 2015; 61:134-48. [PMID: 26708865 DOI: 10.1016/j.plipres.2015.11.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 11/21/2022]
Abstract
Carnitine palmitoyltransferase 1 (CPT1) C was the last member of the CPT1 family of genes to be discovered. CPT1A and CPT1B were identified as the gate-keeper enzymes for the entry of long-chain fatty acids (as carnitine esters) into mitochondria and their further oxidation, and they show differences in their kinetics and tissue expression. Although CPT1C exhibits high sequence similarity to CPT1A and CPT1B, it is specifically expressed in neurons (a cell-type that does not use fatty acids as fuel to any major extent), it is localized in the endoplasmic reticulum of cells, and it has minimal CPT1 catalytic activity with l-carnitine and acyl-CoA esters. The lack of an easily measurable biological activity has hampered attempts to elucidate the cellular and physiological role of CPT1C but has not diminished the interest of the biomedical research community in this CPT1 isoform. The observations that CPT1C binds malonyl-CoA and long-chain acyl-CoA suggest that it is a sensor of lipid metabolism in neurons, where it appears to impact ceramide and triacylglycerol (TAG) metabolism. CPT1C global knock-out mice show a wide range of brain disorders, including impaired cognition and spatial learning, motor deficits, and a deregulation in food intake and energy homeostasis. The first disease-causing CPT1C mutation was recently described in humans, with Cpt1c being identified as the gene causing hereditary spastic paraplegia. The putative role of CPT1C in the regulation of complex-lipid metabolism is supported by the observation that it is highly expressed in certain virulent tumor cells, conferring them resistance to glucose- and oxygen-deprivation. Therefore, CPT1C may be a promising target in the treatment of cancer. Here we review the molecular, biochemical, and structural properties of CPT1C and discuss its potential roles in brain function, and cancer.
Collapse
|
40
|
Mutations upstream of fabI in triclosan resistant Staphylococcus aureus strains are associated with elevated fabI gene expression. BMC Genomics 2015; 16:345. [PMID: 25924916 PMCID: PMC4415318 DOI: 10.1186/s12864-015-1544-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 04/17/2015] [Indexed: 01/30/2023] Open
Abstract
Background The enoyl-acyl carrier protein (ACP) reductase enzyme (FabI) is the target for a series of antimicrobial agents including novel compounds in clinical trial and the biocide triclosan. Mutations in fabI and heterodiploidy for fabI have been shown to confer resistance in S. aureus strains in a previous study. Here we further determined the fabI upstream sequence of a selection of these strains and the gene expression levels in strains with promoter region mutations. Results Mutations in the fabI promoter were found in 18% of triclosan resistant clinical isolates, regardless the previously identified molecular mechanism conferring resistance. Although not significant, a higher rate of promoter mutations were found in strains without previously described mechanisms of resistance. Some of the mutations identified in the clinical isolates were also detected in a series of laboratory mutants. Microarray analysis of selected laboratory mutants with fabI promoter region mutations, grown in the absence of triclosan, revealed increased fabI expression in three out of four tested strains. In two of these strains, only few genes other than fabI were upregulated. Consistently with these data, whole genome sequencing of in vitro selected mutants identified only few mutations except the upstream and coding regions of fabI, with the promoter mutation as the most probable cause of fabI overexpression. Importantly the gene expression profiling of clinical isolates containing similar mutations in the fabI promoter also showed, when compared to unrelated non-mutated isolates, a significant up-regulation of fabI. Conclusions In conclusion, we have demonstrated the presence of C34T, T109G, and A101C mutations in the fabI promoter region of strains with fabI up-regulation, both in clinical isolates and/or laboratory mutants. These data provide further observations linking mutations upstream fabI with up-regulated expression of the fabI gene. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1544-y) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Reddy PJ, Sinha S, Ray S, Sathe GJ, Chatterjee A, Prasad TSK, Dhali S, Srikanth R, Panda D, Srivastava S. Comprehensive analysis of temporal alterations in cellular proteome of Bacillus subtilis under curcumin treatment. PLoS One 2015; 10:e0120620. [PMID: 25874956 PMCID: PMC4397091 DOI: 10.1371/journal.pone.0120620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 02/05/2015] [Indexed: 11/18/2022] Open
Abstract
Curcumin is a natural dietary compound with antimicrobial activity against various gram positive and negative bacteria. This study aims to investigate the proteome level alterations in Bacillus subtilis due to curcumin treatment and identification of its molecular/cellular targets to understand the mechanism of action. We have performed a comprehensive proteomic analysis of B. subtilis AH75 strain at different time intervals of curcumin treatment (20, 60 and 120 min after the drug exposure, three replicates) to compare the protein expression profiles using two complementary quantitative proteomic techniques, 2D-DIGE and iTRAQ. To the best of our knowledge, this is the first comprehensive longitudinal investigation describing the effect of curcumin treatment on B. subtilis proteome. The proteomics analysis revealed several interesting targets such UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1, putative septation protein SpoVG and ATP-dependent Clp protease proteolytic subunit. Further, in silico pathway analysis using DAVID and KOBAS has revealed modulation of pathways related to the fatty acid metabolism and cell wall synthesis, which are crucial for cell viability. Our findings revealed that curcumin treatment lead to inhibition of the cell wall and fatty acid synthesis in addition to differential expression of many crucial proteins involved in modulation of bacterial metabolism. Findings obtained from proteomics analysis were further validated using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) assay for respiratory activity, resazurin assay for metabolic activity and membrane integrity assay by potassium and inorganic phosphate leakage measurement. The gene expression analysis of selected cell wall biosynthesis enzymes has strengthened the proteomics findings and indicated the major effect of curcumin on cell division.
Collapse
Affiliation(s)
- Panga Jaipal Reddy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Sneha Sinha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Sandipan Ray
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Gajanan J. Sathe
- Institute of Bioinformatics, International Tech Park, Whitefield, Bangalore, India
- Manipal University, Madhav Nagar,Manipal, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Tech Park, Whitefield, Bangalore, India
- Manipal University, Madhav Nagar,Manipal, India
| | - T. S. Keshava Prasad
- Institute of Bioinformatics, International Tech Park, Whitefield, Bangalore, India
| | - Snigdha Dhali
- Proteomics Laboratory, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, India
| | - Rapole Srikanth
- Proteomics Laboratory, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
- * E-mail:
| |
Collapse
|
42
|
Fehér T, Libis V, Carbonell P, Faulon JL. A Sense of Balance: Experimental Investigation and Modeling of a Malonyl-CoA Sensor in Escherichia coli. Front Bioeng Biotechnol 2015; 3:46. [PMID: 25905101 PMCID: PMC4389729 DOI: 10.3389/fbioe.2015.00046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 03/23/2015] [Indexed: 01/26/2023] Open
Abstract
Production of value-added chemicals in microorganisms is regarded as a viable alternative to chemical synthesis. In the past decade, several engineered pathways producing such chemicals, including plant secondary metabolites in microorganisms have been reported; upscaling their production yields, however, was often challenging. Here, we analyze a modular device designed for sensing malonyl-CoA, a common precursor for both fatty acid and flavonoid biosynthesis. The sensor can be used either for high-throughput pathway screening in synthetic biology applications or for introducing a feedback circuit to regulate production of the desired chemical. Here, we used the sensor to compare the performance of several predicted malonyl-CoA-producing pathways, and validated the utility of malonyl-CoA reductase and malonate-CoA transferase for malonyl-CoA biosynthesis. We generated a second-order dynamic linear model describing the relation of the fluorescence generated by the sensor to the biomass of the host cell representing a filter/amplifier with a gain that correlates with the level of induction. We found the time constants describing filter dynamics to be independent of the level of induction but distinctively clustered for each of the production pathways, indicating the robustness of the sensor. Moreover, by monitoring the effect of the copy-number of the production plasmid on the dose–response curve of the sensor, we managed to coarse-tune the level of pathway expression to maximize malonyl-CoA synthesis. In addition, we provide an example of the sensor’s use in analyzing the effect of inducer or substrate concentrations on production levels. The rational development of models describing sensors, supplemented with the power of high-throughput optimization provide a promising potential for engineering feedback loops regulating enzyme levels to maximize productivity yields of synthetic metabolic pathways.
Collapse
Affiliation(s)
- Tamás Fehér
- Institute of Systems and Synthetic Biology, University of Evry Val d'Essonne , Evry , France ; Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences , Szeged , Hungary
| | - Vincent Libis
- Institute of Systems and Synthetic Biology, University of Evry Val d'Essonne , Evry , France ; Paris Diderot University , Paris , France
| | - Pablo Carbonell
- Institute of Systems and Synthetic Biology, University of Evry Val d'Essonne , Evry , France ; Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences, Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra , Barcelona , Spain ; SYNBIOCHEM Center, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester , Manchester , UK
| | - Jean-Loup Faulon
- Institute of Systems and Synthetic Biology, University of Evry Val d'Essonne , Evry , France ; SYNBIOCHEM Center, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester , Manchester , UK
| |
Collapse
|
43
|
Liu D, Xiao Y, Evans BS, Zhang F. Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator. ACS Synth Biol 2015; 4:132-40. [PMID: 24377365 DOI: 10.1021/sb400158w] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Engineering metabolic biosynthetic pathways has enabled the microbial production of many useful chemicals. However, pathway productivities and yields are often limited by metabolic imbalances. Synthetic regulatory circuits have been shown to be able to balance engineered pathways, improving titers and productivities. Here we developed a negative feedback regulatory circuit based on a malonyl-CoA-based sensor-actuator. Malonyl-CoA is biosynthesized from acetyl-CoA by the acetyl-CoA carboxylase, which is the rate-limiting step for fatty acid biosynthesis. Overexpression of acetyl-CoA carboxylase improves fatty acid production, but slows down cell growth. We have devised a malonyl-CoA sensor-actuator that controls gene expression levels based on intracellular malonyl-CoA concentrations. This sensor-actuator is used to construct a negative feedback circuit to regulate the expression of acetyl-CoA carboxylase. The negative feedback circuit is able to up-regulate acetyl-CoA carboxylase expression when the malonyl-CoA concentration is low and down-regulate acetyl-CoA carboxylase expression when excess amounts of malonyl-CoA have accumulated. We show that the regulatory circuit effectively alleviates the toxicity associated with acetyl-CoA carboxylase overexpression. When used to regulate the fatty acid pathway, the feedback circuit increases fatty acid titer and productivity by 34% and 33%, respectively.
Collapse
Affiliation(s)
- Di Liu
- Department
of Energy, Environmental and Chemical Engineering, Washington University, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Yi Xiao
- Department
of Energy, Environmental and Chemical Engineering, Washington University, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Bradley S. Evans
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, Missouri 63132, United States
| | - Fuzhong Zhang
- Department
of Energy, Environmental and Chemical Engineering, Washington University, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
44
|
Hara T, Matsui H, Shimizu H. Suppression of microbial metabolic pathways inhibits the generation of the human body odor component diacetyl by Staphylococcus spp. PLoS One 2014; 9:e111833. [PMID: 25390046 PMCID: PMC4229079 DOI: 10.1371/journal.pone.0111833] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/30/2014] [Indexed: 11/19/2022] Open
Abstract
Diacetyl (2,3-butanedione) is a key contributor to unpleasant odors emanating from the axillae, feet, and head regions. To investigate the mechanism of diacetyl generation on human skin, resident skin bacteria were tested for the ability to produce diacetyl via metabolism of the main organic acids contained in human sweat. l-Lactate metabolism by Staphylococcus aureus and Staphylococcus epidermidis produced the highest amounts of diacetyl, as measured by high-performance liquid chromatography. Glycyrrhiza glabra root extract (GGR) and α-tocopheryl-l-ascorbate-2-O-phosphate diester potassium salt (EPC-K1), a phosphate diester of α-tocopherol and ascorbic acid, effectively inhibited diacetyl formation without bactericidal effects. Moreover, a metabolic flux analysis revealed that GGR and EPC-K1 suppressed diacetyl formation by inhibiting extracellular bacterial conversion of l-lactate to pyruvate or by altering intracellular metabolic flow into the citrate cycle, respectively, highlighting fundamentally distinct mechanisms by GGR and EPC-K1 to suppress diacetyl formation. These results provide new insight into diacetyl metabolism by human skin bacteria and identify a regulatory mechanism of diacetyl formation that can facilitate the development of effective deodorant agents.
Collapse
Affiliation(s)
- Takeshi Hara
- Technical Development Center, Mandom Corp., Osaka, Japan
- * E-mail:
| | - Hiroshi Matsui
- Technical Development Center, Mandom Corp., Osaka, Japan
| | | |
Collapse
|
45
|
Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc Natl Acad Sci U S A 2014; 111:11299-304. [PMID: 25049420 DOI: 10.1073/pnas.1406401111] [Citation(s) in RCA: 370] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Global energy demand and environmental concerns have stimulated increasing efforts to produce carbon-neutral fuels directly from renewable resources. Microbially derived aliphatic hydrocarbons, the petroleum-replica fuels, have emerged as promising alternatives to meet this goal. However, engineering metabolic pathways with high productivity and yield requires dynamic redistribution of cellular resources and optimal control of pathway expression. Here we report a genetically encoded metabolic switch that enables dynamic regulation of fatty acids (FA) biosynthesis in Escherichia coli. The engineered strains were able to dynamically compensate the critical enzymes involved in the supply and consumption of malonyl-CoA and efficiently redirect carbon flux toward FA biosynthesis. Implementation of this metabolic control resulted in an oscillatory malonyl-CoA pattern and a balanced metabolism between cell growth and product formation, yielding 15.7- and 2.1-fold improvement in FA titer compared with the wild-type strain and the strain carrying the uncontrolled metabolic pathway. This study provides a new paradigm in metabolic engineering to control and optimize metabolic pathways facilitating the high-yield production of other malonyl-CoA-derived compounds.
Collapse
|
46
|
Heine A, Herrmann G, Selmer T, Terwesten F, Buckel W, Reuter K. High resolution crystal structure of Clostridium propionicum β-alanyl-CoA:ammonia lyase, a new member of the "hot dog fold" protein superfamily. Proteins 2014; 82:2041-53. [PMID: 24623648 DOI: 10.1002/prot.24557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/21/2014] [Accepted: 03/06/2014] [Indexed: 11/11/2022]
Abstract
Clostridium propionicum is the only organism known to ferment β-alanine, a constituent of coenzyme A (CoA) and the phosphopantetheinyl prosthetic group of holo-acyl carrier protein. The first step in the fermentation is a CoA-transfer to β-alanine. Subsequently, the resulting β-alanyl-CoA is deaminated by the enzyme β-alanyl-CoA:ammonia lyase (Acl) to reversibly form ammonia and acrylyl-CoA. We have determined the crystal structure of Acl in its apo-form at a resolution of 0.97 Å as well as in complex with CoA at a resolution of 1.59 Å. The structures reveal that the enyzme belongs to a superfamily of proteins exhibiting a so called "hot dog fold" which is characterized by a five-stranded antiparallel β-sheet with a long α-helix packed against it. The functional unit of all "hot dog fold" proteins is a homodimer containing two equivalent substrate binding sites which are established by the dimer interface. In the case of Acl, three functional dimers combine to a homohexamer strongly resembling the homohexamer formed by YciA-like acyl-CoA thioesterases. Here, we propose an enzymatic mechanism based on the crystal structure of the Acl·CoA complex and molecular docking.
Collapse
Affiliation(s)
- Andreas Heine
- Institut für Pharmazeutische Chemie, Fachbereich Pharmazie, Philipps-Universität Marburg, Marbacher Weg 6, D-35032, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Xu P, Wang W, Li L, Bhan N, Zhang F, Koffas MAG. Design and kinetic analysis of a hybrid promoter-regulator system for malonyl-CoA sensing in Escherichia coli. ACS Chem Biol 2014; 9:451-8. [PMID: 24191643 DOI: 10.1021/cb400623m] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Malonyl-CoA is the rate-limiting precursor involved in the chain elongation reaction of a range of value-added pharmaceuticals and biofuels. Development of malonyl-CoA responsive sensors holds great promise in overcoming critical pathway limitations and optimizing production titers and yields. By incorporating the Bacillus subtilis trans-regulatory protein FapR and the cis-regulatory element fapO, we constructed a hybrid promoter-regulatory system that responds to a broad range of intracellular malonyl-CoA concentrations (from 0.1 to 1.1 nmol/mgDW) in Escherichia coli. Elimination of regulatory protein and nonspecific DNA cross-communication leads to a sensor construct that exhibits malonyl-CoA-dependent linear phase kinetics with increased dynamic response range. The sensors reported in this study could potentially control and optimize carbon flux leading to robust biosynthetic pathways for the production of malonyl-CoA-derived compounds.
Collapse
Affiliation(s)
- Peng Xu
- Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Wenya Wang
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- College
of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lingyun Li
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department
of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Namita Bhan
- Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Fuming Zhang
- Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Mattheos A. G. Koffas
- Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department
of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
48
|
Porrini L, Cybulski LE, Altabe SG, Mansilla MC, de Mendoza D. Cerulenin inhibits unsaturated fatty acids synthesis in Bacillus subtilis by modifying the input signal of DesK thermosensor. Microbiologyopen 2014; 3:213-24. [PMID: 24574048 PMCID: PMC3996569 DOI: 10.1002/mbo3.154] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/14/2013] [Accepted: 11/25/2013] [Indexed: 11/11/2022] Open
Abstract
Bacillus subtilis responds to a sudden decrease in temperature by transiently inducing the expression of the des gene encoding for a lipid desaturase, Δ5-Des, which introduces a double bond into the acyl chain of preexisting membrane phospholipids. This Δ5-Des-mediated membrane remodeling is controlled by the cold-sensor DesK. After cooling, DesK activates the response regulator DesR, which induces transcription of des. We show that inhibition of fatty acid synthesis by the addition of cerulenin, a potent and specific inhibitor of the type II fatty acid synthase, results in increased levels of short-chain fatty acids (FA) in membrane phospholipids that lead to inhibition of the transmembrane-input thermal control of DesK. Furthermore, reduction of phospholipid synthesis by conditional inactivation of the PlsC acyltransferase causes significantly elevated incorporation of long-chain FA and constitutive upregulation of the des gene. Thus, we provide in vivo evidence that the thickness of the hydrophobic core of the lipid bilayer serves as one of the stimulus sensed by the membrane spanning region of DesK.
Collapse
Affiliation(s)
- Lucía Porrini
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina; Departamento de Microbiología Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Ocampo y Esmeralda, Rosario, Argentina
| | | | | | | | | |
Collapse
|
49
|
Parsons JB, Yao J, Jackson P, Frank M, Rock CO. Phosphatidylglycerol homeostasis in glycerol-phosphate auxotrophs of Staphylococcus aureus. BMC Microbiol 2013; 13:260. [PMID: 24238430 PMCID: PMC3840577 DOI: 10.1186/1471-2180-13-260] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/04/2013] [Indexed: 12/27/2022] Open
Abstract
Background The balanced synthesis of membrane phospholipids, fatty acids and cell wall constituents is a vital facet of bacterial physiology, but there is little known about the biochemical control points that coordinate these activities in Gram-positive bacteria. In Escherichia coli, the glycerol-phosphate acyltransferase (PlsB) plays a key role in coordinating fatty acid and phospholipid synthesis, but pathogens like Staphylococcus aureus have a different acyltransferase (PlsY), and the headgroup of the major membrane phospholipid, phosphatidylglycerol (PtdGro), is used as a precursor for lipoteichoic acid synthesis. Results The PlsY acyltransferase in S. aureus was switched off by depriving strain PDJ28 (ΔgpsA) of the required glycerol supplement. Removal of glycerol from the growth medium led to the rapid cessation of phospholipid synthesis. However, the continued utilization of the headgroup caused a reduction in PtdGro coupled with the accumulation of CDP-diacylglycerol and phosphatidic acid. PtdGro was further decreased by its stimulated conversion to cardiolipin. Although acyl-acyl carrier protein (ACP) and malonyl-CoA accumulated, fatty acid synthesis continued at a reduced level leading to the intracellular accumulation of unusually long-chain free fatty acids. Conclusions The cessation of new phospholipid synthesis led to an imbalance in membrane compositional homeostasis. PtdGro biosynthesis was not coupled to headgroup turnover leading to the accumulation of pathway intermediates. The synthesis of cardiolipin significantly increased revealing a stress response to liberate glycerol-phosphate for PtdGro synthesis. Acyl-ACP accumulation correlated with a decrease in fatty acid synthesis; however, the coupling was not tight leading to the accumulation of intracellular fatty acids.
Collapse
Affiliation(s)
- Joshua B Parsons
- Department of Infectious Diseases, St, Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis TN 38105, USA.
| | | | | | | | | |
Collapse
|
50
|
Parsons JB, Rock CO. Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res 2013; 52:249-76. [PMID: 23500459 PMCID: PMC3665635 DOI: 10.1016/j.plipres.2013.02.002] [Citation(s) in RCA: 347] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 11/29/2022]
Abstract
Membrane lipid homeostasis is a vital facet of bacterial cell physiology. For decades, research in bacterial lipid synthesis was largely confined to the Escherichia coli model system. This basic research provided a blueprint for the biochemistry of lipid metabolism that has largely defined the individual steps in bacterial fatty acid and phospholipids synthesis. The advent of genomic sequencing has revealed a surprising amount of diversity in the genes, enzymes and genetic organization of the components responsible for bacterial lipid synthesis. Although the chemical steps in fatty acid synthesis are largely conserved in bacteria, there are surprising differences in the structure and cofactor requirements for the enzymes that perform these reactions in Gram-positive and Gram-negative bacteria. This review summarizes how the explosion of new information on the diversity of biochemical and genetic regulatory mechanisms has impacted our understanding of bacterial lipid homeostasis. The potential and problems of developing therapeutics that block pathogen phospholipid synthesis are explored and evaluated. The study of bacterial lipid metabolism continues to be a rich source for new biochemistry that underlies the variety and adaptability of bacterial life styles.
Collapse
Affiliation(s)
- Joshua B Parsons
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | |
Collapse
|