1
|
Koutsi M, Pouliou M, Chatzopoulos D, Champezou L, Zagkas K, Vasilogianni M, Kouroukli A, Agelopoulos M. An evolutionarily conserved constellation of functional cis-elements programs the virus-responsive fate of the human (epi)genome. Nucleic Acids Res 2025; 53:gkaf207. [PMID: 40131776 PMCID: PMC11934927 DOI: 10.1093/nar/gkaf207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 02/11/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Human health depends on perplexing defensive cellular responses against microbial pathogens like Viruses. Despite the major effort undertaken, the (epi)genomic mechanisms that human cells utilize to tailor defensive gene expression programs against microbial attacks have remained inadequately understood, mainly due to a significant lack of recording of the in vivo functional cis-regulatory modules (CRMs) of the human genome. Here, we introduce the virus-responsive fate of the human (epi)genome as characterized in naïve and infected cells by functional genomics, computational biology, DNA evolution, and DNA Grammar and Syntax investigations. We discovered that multitudes of novel functional virus-responsive CRMs (vrCRMs) compose typical enhancers (tEs), super-enhancers (SEs), repetitive-DNA enhancers (rDEs), and stand-alone functional genomic stretches that grant human cells regulatory underpinnings for layering basal immunity and eliminating illogical/harmful defensive responses under homeostasis, yet stimulating virus-responsive genes and transposable elements (TEs) upon infection. Moreover, extensive epigenomic reprogramming of previously unknown SE landscapes marks the transition from naïve to antiviral human cell states and involves the functions of the antimicrobial transcription factors (TFs), including interferon response factor 3 (IRF3) and nuclear factor-κB (NF-κB), as well as coactivators and transcriptional apparatus, along with intensive modifications/alterations in histone marks and chromatin accessibility. Considering the polyphyletic evolutionary fingerprints of the composite DNA sequences of the vrCRMs assessed by TFs-STARR-seq, ranging from the animal to microbial kingdoms, the conserved features of antimicrobial TFs and chromatin complexes, and their pluripotent stimulus-induced activation, these findings shed light on how mammalian (epi)genomes evolved their functions to interpret the exogenous stress inflicted and program defensive transcriptional responses against microbial agents. Crucially, many known human short variants, e.g. single-nucleotide polymorphisms (SNPs), insertions, deletions etc., and quantitative trait loci (QTLs) linked to autoimmune diseases, such as multiple sclerosis (MS), systemic lupus erythematosus (SLE), Crohn's disease (CD) etc., were mapped within or vastly proximal (±2.5 kb) to the novel in vivo functional SEs and vrCRMs discovered, thus underscoring the impact of their (mal)functions on human physiology and disease development. Hence, we delved into the virus-responsive fate of the human (epi)genome and illuminated its architecture, function, evolutionary origins, and its significance for cellular homeostasis. These results allow us to chart the "Human hyper-Atlas of virus-infection", an integrated "molecular in silico" encyclopedia situated in the UCSC Genome Browser that benefits our mechanistic understanding of human infectious/(auto)immune diseases development and can facilitate the generation of in vivo preclinical animal models, drug design, and evolution of therapeutic applications.
Collapse
Affiliation(s)
- Marianna A Koutsi
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Marialena Pouliou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Dimitris Chatzopoulos
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Lydia Champezou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Konstantinos Zagkas
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Marili Vasilogianni
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Alexandra G Kouroukli
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Marios Agelopoulos
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| |
Collapse
|
2
|
Arroyo M, Casas-Delucchi C, Pabba M, Prorok P, Pradhan S, Rausch C, Lehmkuhl A, Maiser A, Buschbeck M, Pasque V, Bernstein E, Luck K, Cardoso M. Histone variant macroH2A1 regulates synchronous firing of replication origins in the inactive X chromosome. Nucleic Acids Res 2024; 52:11659-11688. [PMID: 39189450 PMCID: PMC11514477 DOI: 10.1093/nar/gkae734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
MacroH2A has been linked to transcriptional silencing, cell identity, and is a hallmark of the inactive X chromosome (Xi). However, it remains unclear whether macroH2A plays a role in DNA replication. Using knockdown/knockout cells for each macroH2A isoform, we show that macroH2A-containing nucleosomes slow down replication progression rate in the Xi reflecting the higher nucleosome stability. Moreover, macroH2A1, but not macroH2A2, regulates the number of nano replication foci in the Xi, and macroH2A1 downregulation increases DNA loop sizes corresponding to replicons. This relates to macroH2A1 regulating replicative helicase loading during G1 by interacting with it. We mapped this interaction to a phenylalanine in macroH2A1 that is not conserved in macroH2A2 and the C-terminus of Mcm3 helicase subunit. We propose that macroH2A1 enhances the licensing of pre-replication complexes via DNA helicase interaction and loading onto the Xi.
Collapse
Affiliation(s)
- Maria Arroyo
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Corella S Casas-Delucchi
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Maruthi K Pabba
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Paulina Prorok
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Sunil K Pradhan
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Cathia Rausch
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Anne Lehmkuhl
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Andreas Maiser
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, LMU Munich, Munich 81377, Germany
| | - Marcus Buschbeck
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute (IJC), Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, Camí de les Escoles, 08916 Badalona, Barcelona, Spain
| | - Vincent Pasque
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-Cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, NY, NY 10029, USA
| | - Katja Luck
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
3
|
Ouararhni K, Mietton F, Sabir JSM, Ibrahim A, Molla A, Albheyri RS, Zari AT, Bahieldin A, Menoni H, Bronner C, Dimitrov S, Hamiche A. Identification of a novel DNA oxidative damage repair pathway, requiring the ubiquitination of the histone variant macroH2A1.1. BMC Biol 2024; 22:188. [PMID: 39218869 PMCID: PMC11368025 DOI: 10.1186/s12915-024-01987-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The histone variant macroH2A (mH2A), the most deviant variant, is about threefold larger than the conventional histone H2A and consists of a histone H2A-like domain fused to a large Non-Histone Region responsible for recruiting PARP-1 to chromatin. The available data suggest that the histone variant mH2A participates in the regulation of transcription, maintenance of heterochromatin, NAD+ metabolism, and double-strand DNA repair. RESULTS Here, we describe a novel function of mH2A, namely its implication in DNA oxidative damage repair through PARP-1. The depletion of mH2A affected both repair and cell survival after the induction of oxidative lesions in DNA. PARP-1 formed a specific complex with mH2A nucleosomes in vivo. The mH2A nucleosome-associated PARP-1 is inactive. Upon oxidative damage, mH2A is ubiquitinated, PARP-1 is released from the mH2A nucleosomal complex, and is activated. The in vivo-induced ubiquitination of mH2A, in the absence of any oxidative damage, was sufficient for the release of PARP-1. However, no release of PARP-1 was observed upon treatment of the cells with either the DNA alkylating agent MMS or doxorubicin. CONCLUSIONS Our data identify a novel pathway for the repair of DNA oxidative lesions, requiring the ubiquitination of mH2A for the release of PARP-1 from chromatin and its activation.
Collapse
Affiliation(s)
- Khalid Ouararhni
- Département de Génomique Fonctionnelle Et Cancer, Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), Université de Strasbourg/CNRS/INSERM, Equipe Labellisée La Ligue Nationale Contre Le Cancer, 67404, Illkirch Cedex, France
| | - Flore Mietton
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000, Grenoble, France
| | - Jamal S M Sabir
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulkhaleg Ibrahim
- Département de Génomique Fonctionnelle Et Cancer, Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), Université de Strasbourg/CNRS/INSERM, Equipe Labellisée La Ligue Nationale Contre Le Cancer, 67404, Illkirch Cedex, France
- National Research Centre for Tropical and Transboundary Diseases (NRCTTD), Alzentan, 99316, Libya
| | - Annie Molla
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000, Grenoble, France
| | - Raed S Albheyri
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ali T Zari
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Bahieldin
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hervé Menoni
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000, Grenoble, France
| | - Christian Bronner
- Département de Génomique Fonctionnelle Et Cancer, Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), Université de Strasbourg/CNRS/INSERM, Equipe Labellisée La Ligue Nationale Contre Le Cancer, 67404, Illkirch Cedex, France
| | - Stefan Dimitrov
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000, Grenoble, France.
- Institute of Molecular Biology Roumen Tsanev, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Ali Hamiche
- Département de Génomique Fonctionnelle Et Cancer, Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), Université de Strasbourg/CNRS/INSERM, Equipe Labellisée La Ligue Nationale Contre Le Cancer, 67404, Illkirch Cedex, France.
| |
Collapse
|
4
|
Magkouta S, Veroutis D, Pousias A, Papaspyropoulos A, Pippa N, Lougiakis N, Kambas K, Lagopati N, Polyzou A, Georgiou M, Chountoulesi M, Pispas S, Foutadakis S, Pouli N, Marakos P, Kotsinas A, Verginis P, Valakos D, Mizi A, Papantonis A, Vatsellas G, Galanos P, Bartek J, Petty R, Serrano M, Thanos D, Roussos C, Demaria M, Evangelou K, Gorgoulis VG. A fluorophore-conjugated reagent enabling rapid detection, isolation and live tracking of senescent cells. Mol Cell 2023; 83:3558-3573.e7. [PMID: 37802028 DOI: 10.1016/j.molcel.2023.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/31/2023] [Accepted: 09/07/2023] [Indexed: 10/08/2023]
Abstract
Cellular senescence is a stress-response mechanism implicated in various physiological processes, diseases, and aging. Current detection approaches have partially addressed the issue of senescent cell identification in clinical specimens. Effective methodologies enabling precise isolation or live tracking of senescent cells are still lacking. In-depth analysis of truly senescent cells is, therefore, an extremely challenging task. We report (1) the synthesis and validation of a fluorophore-conjugated, Sudan Black-B analog (GLF16), suitable for in vivo and in vitro analysis of senescence by fluorescence microscopy and flow cytometry and (2) the development and application of a GLF16-carrying micelle vector facilitating GLF16 uptake by living senescent cells in vivo and in vitro. The compound and the applied methodology render isolation of senescent cells an easy, rapid, and precise process. Straightforward nanocarrier-mediated GLF16 delivery in live senescent cells comprises a unique tool for characterization of senescence at an unprecedented depth.
Collapse
Affiliation(s)
- Sophia Magkouta
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; Marianthi Simou and G.P.Livanos Labs, 1st Department of Critical Care and Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, 10676, Greece
| | - Dimitris Veroutis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Athanasios Pousias
- Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Angelos Papaspyropoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Nikolaos Lougiakis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | | | - Nefeli Lagopati
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Aikaterini Polyzou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Georgiou
- Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Maria Chountoulesi
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Spyros Foutadakis
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Nicole Pouli
- Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Panagiotis Marakos
- Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Athanassios Kotsinas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Panayotis Verginis
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, University of Crete Medical School, 70013 Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013 Heraklion, Greece
| | - Dimitrios Valakos
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Athanasia Mizi
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany; Clinical Research Unit 5002, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany; Clinical Research Unit 5002, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Giannis Vatsellas
- Greek Genome Center, Biomedical Research Foundation, Academy of Athens, 11527, Athens, Greece
| | - Panagiotis Galanos
- Genome Integrity Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Jiri Bartek
- Genome Integrity Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, 171 77 Stockholm, Sweden
| | - Russell Petty
- Ninewells Hospital and Medical School, University of Dundee, DD19SY Dundee, UK
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Altos Labs, Cambridge Institute of Science, Granta Park CB21 6GP, United Kingdom
| | - Dimitris Thanos
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; Greek Genome Center, Biomedical Research Foundation, Academy of Athens, 11527, Athens, Greece
| | - Charis Roussos
- Marianthi Simou and G.P.Livanos Labs, 1st Department of Critical Care and Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, 10676, Greece
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; Ninewells Hospital and Medical School, University of Dundee, DD19SY Dundee, UK; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, M20 4GJ Manchester, UK; Faculty of Health and Medical Sciences, University of Surrey, GU2 7YH Surrey, UK.
| |
Collapse
|
5
|
Pouliou M, Koutsi MA, Champezou L, Giannopoulou AI, Vatsellas G, Piperi C, Agelopoulos M. MYCN Amplifications and Metabolic Rewiring in Neuroblastoma. Cancers (Basel) 2023; 15:4803. [PMID: 37835497 PMCID: PMC10571721 DOI: 10.3390/cancers15194803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Cancer is a disease caused by (epi)genomic and gene expression abnormalities and characterized by metabolic phenotypes that are substantially different from the normal phenotypes of the tissues of origin. Metabolic reprogramming is one of the key features of tumors, including those established in the human nervous system. In this work, we emphasize a well-known cancerous genomic alteration: the amplification of MYCN and its downstream effects in neuroblastoma phenotype evolution. Herein, we extend our previous computational biology investigations by conducting an integrative workflow applied to published genomics datasets and comprehensively assess the impact of MYCN amplification in the upregulation of metabolism-related transcription factor (TF)-encoding genes in neuroblastoma cells. The results obtained first emphasized overexpressed TFs, and subsequently those committed in metabolic cellular processes, as validated by gene ontology analyses (GOs) and literature curation. Several genes encoding for those TFs were investigated at the mechanistic and regulatory levels by conducting further omics-based computational biology assessments applied on published ChIP-seq datasets retrieved from MYCN-amplified- and MYCN-enforced-overexpression within in vivo systems of study. Hence, we approached the mechanistic interrelationship between amplified MYCN and overexpression of metabolism-related TFs in neuroblastoma and showed that many are direct targets of MYCN in an amplification-inducible fashion. These results illuminate how MYCN executes its regulatory underpinnings on metabolic processes in neuroblastoma.
Collapse
Affiliation(s)
- Marialena Pouliou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 11527 Athens, Greece; (M.P.); (M.A.K.); (L.C.); (G.V.)
| | - Marianna A. Koutsi
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 11527 Athens, Greece; (M.P.); (M.A.K.); (L.C.); (G.V.)
| | - Lydia Champezou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 11527 Athens, Greece; (M.P.); (M.A.K.); (L.C.); (G.V.)
| | - Angeliki-Ioanna Giannopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street Bldg 16, 11527 Athens, Greece;
| | - Giannis Vatsellas
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 11527 Athens, Greece; (M.P.); (M.A.K.); (L.C.); (G.V.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street Bldg 16, 11527 Athens, Greece;
| | - Marios Agelopoulos
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 11527 Athens, Greece; (M.P.); (M.A.K.); (L.C.); (G.V.)
| |
Collapse
|
6
|
Romhányi D, Szabó K, Kemény L, Groma G. Histone and Histone Acetylation-Related Alterations of Gene Expression in Uninvolved Psoriatic Skin and Their Effects on Cell Proliferation, Differentiation, and Immune Responses. Int J Mol Sci 2023; 24:14551. [PMID: 37833997 PMCID: PMC10572426 DOI: 10.3390/ijms241914551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Psoriasis is a chronic immune-mediated skin disease in which the symptom-free, uninvolved skin carries alterations in gene expression, serving as a basis for lesion formation. Histones and histone acetylation-related processes are key regulators of gene expression, controlling cell proliferation and immune responses. Dysregulation of these processes is likely to play an important role in the pathogenesis of psoriasis. To gain a complete overview of these potential alterations, we performed a meta-analysis of a psoriatic uninvolved skin dataset containing differentially expressed transcripts from nearly 300 individuals and screened for histones and histone acetylation-related molecules. We identified altered expression of the replication-dependent histones HIST2H2AA3 and HIST2H4A and the replication-independent histones H2AFY, H2AFZ, and H3F3A/B. Eight histone chaperones were also identified. Among the histone acetyltransferases, ELP3 and KAT5 and members of the ATAC, NSL, and SAGA acetyltransferase complexes are affected in uninvolved skin. Histone deacetylation-related alterations were found to affect eight HDACs and members of the NCOR/SMRT, NURD, SIN3, and SHIP HDAC complexes. In this article, we discuss how histone and histone acetylation-related expression changes may affect proliferation and differentiation, as well as innate, macrophage-mediated, and T cell-mediated pro- and anti-inflammatory responses, which are known to play a central role in the development of psoriasis.
Collapse
Affiliation(s)
- Dóra Romhányi
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
| | - Kornélia Szabó
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
- Hungarian Centre of Excellence for Molecular Medicine-University of Szeged Skin Research Group (HCEMM-USZ Skin Research Group), H-6720 Szeged, Hungary
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
- Hungarian Centre of Excellence for Molecular Medicine-University of Szeged Skin Research Group (HCEMM-USZ Skin Research Group), H-6720 Szeged, Hungary
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| | - Gergely Groma
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| |
Collapse
|
7
|
Filipescu D, Carcamo S, Agarwal A, Tung N, Humblin É, Goldberg MS, Vyas NS, Beaumont KG, Demircioglu D, Sridhar S, Ghiraldini FG, Capparelli C, Aplin AE, Salmon H, Sebra R, Kamphorst AO, Merad M, Hasson D, Bernstein E. MacroH2A restricts inflammatory gene expression in melanoma cancer-associated fibroblasts by coordinating chromatin looping. Nat Cell Biol 2023; 25:1332-1345. [PMID: 37605008 PMCID: PMC10495263 DOI: 10.1038/s41556-023-01208-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
MacroH2A has established tumour suppressive functions in melanoma and other cancers, but an unappreciated role in the tumour microenvironment. Using an autochthonous, immunocompetent mouse model of melanoma, we demonstrate that mice devoid of macroH2A variants exhibit increased tumour burden compared with wild-type counterparts. MacroH2A-deficient tumours accumulate immunosuppressive monocytes and are depleted of functional cytotoxic T cells, characteristics consistent with a compromised anti-tumour response. Single cell and spatial transcriptomics identify increased dedifferentiation along the neural crest lineage of the tumour compartment and increased frequency and activation of cancer-associated fibroblasts following macroH2A loss. Mechanistically, macroH2A-deficient cancer-associated fibroblasts display increased myeloid chemoattractant activity as a consequence of hyperinducible expression of inflammatory genes, which is enforced by increased chromatin looping of their promoters to enhancers that gain H3K27ac. In summary, we reveal a tumour suppressive role for macroH2A variants through the regulation of chromatin architecture in the tumour stroma with potential implications for human melanoma.
Collapse
Affiliation(s)
- Dan Filipescu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Saul Carcamo
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aman Agarwal
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Navpreet Tung
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Étienne Humblin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew S Goldberg
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nikki S Vyas
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deniz Demircioglu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Subhasree Sridhar
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Flavia G Ghiraldini
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Claudia Capparelli
- Department of Pharmacology, Physiology and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew E Aplin
- Department of Pharmacology, Physiology and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hélène Salmon
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institut Curie, INSERM, U932, and PSL Research University, Paris, France
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice O Kamphorst
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Patsouras M, Alexopoulou E, Foutadakis S, Tsiki E, Karagianni P, Agelopoulos M, Vlachoyiannopoulos PG. Antiphospholipid antibodies induce proinflammatory and procoagulant pathways in endothelial cells. J Transl Autoimmun 2023; 6:100202. [PMID: 37216142 PMCID: PMC10197110 DOI: 10.1016/j.jtauto.2023.100202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/01/2023] [Accepted: 04/30/2023] [Indexed: 05/24/2023] Open
Abstract
Antiphospholipid syndrome (APS) is an autoimmune thrombophilia characterized by recurrent thrombotic events and/or pregnancy morbidity in the presence of antiphospholipid antibodies detected either as anti-cardiolipin, anti-β2 Glycoprotein I (anti-β2GPI) or Lupus anticoagulant (LA). Endothelial deregulation characterizes the syndrome. To address gene expression changes accompanying the development of autoimmune phenotype in endothelial cells in the context of APS, we performed transcriptomics analysis in Human Umbilical Vein Endothelial Cells (HUVECs) stimulated with IgG from APS patients and β2GPI, followed by intersection of RNA-seq data with published microarray and ChIP-seq results (Chromatin Immunoprecipitation). Our strategy revealed that during HUVEC activation diverse signaling pathways such as TNF-α, TGF-β, MAPK38, and Hippo are triggered as indicated by Gene Ontology (GO) classification and pathway analysis. Finally, cell biology approaches performed side-by-side in naïve and stimulated cultured HUVECs, as well as, in placenta specimens derived from Healthy donors (HDs) and APS-patients verified the evolution of an APS-characteristic gene expression program in endothelial cells during the initial stages of the disease's development.
Collapse
Affiliation(s)
- Markos Patsouras
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Greece
| | - Eirini Alexopoulou
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Greece
| | - Spyros Foutadakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou Street, Athens, 11527, Greece
| | - Eirini Tsiki
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Greece
| | - Panagiota Karagianni
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Greece
| | - Marios Agelopoulos
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou Street, Athens, 11527, Greece
| | | |
Collapse
|
9
|
Typical Enhancers, Super-Enhancers, and Cancers. Cancers (Basel) 2022; 14:cancers14184375. [PMID: 36139535 PMCID: PMC9496678 DOI: 10.3390/cancers14184375] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary The cancer genome has been exhaustively studied upon the advent of Next-Generation Sequencing technologies. Coding and non-coding sequences have been defined as hotspots of genomic variations that affect the naïve gene expression programs established in normal cells, thus working as endogenous drivers of carcinogenesis. In this review, we comprehensively summarize fundamental aspects of gene expression regulation, with emphasis on the impact of sequence and structural variations mapped across non-coding cis-acting elements of genes encoding for tumor-related transcription factors. Chromatin architecture, epigenome reprogramming, transcriptional enhancers and Super-enhancers, oncogene regulation, cutting-edge technologies, and pharmacological treatment are substantially highlighted. Abstract Non-coding segments of the human genome are enriched in cis-regulatory modules that constitute functional elements, such as transcriptional enhancers and Super-enhancers. A hallmark of cancer pathogenesis is the dramatic dysregulation of the “archetype” gene expression profiles of normal human cells. Genomic variations can promote such deficiencies when occurring across enhancers and Super-enhancers, since they affect their mechanistic principles, their functional capacity and specificity, and the epigenomic features of the chromatin microenvironment across which these regulatory elements reside. Here, we comprehensively describe: fundamental mechanisms of gene expression dysregulation in cancers that involve genomic abnormalities within enhancers’ and Super-enhancers’ (SEs) sequences, which alter the expression of oncogenic transcription factors (TFs); cutting-edge technologies applied for the analysis of variation-enriched hotspots of the cancer genome; and pharmacological approaches for the treatment of Super-enhancers’ aberrant function. Finally, we provide an intratumor meta-analysis, which highlights that genomic variations in transcription-factor-driven tumors are accompanied overexpression of genes, a portion of which encodes for additional cancer-related transcription factors.
Collapse
|
10
|
Corujo D, Malinverni R, Carrillo-Reixach J, Meers O, Garcia-Jaraquemada A, Le Pannérer MM, Valero V, Pérez A, Del Río-Álvarez Á, Royo L, Pérez-González B, Raurell H, Acemel RD, Santos-Pereira JM, Garrido-Pontnou M, Gómez-Skarmeta JL, Pasquali L, Manyé J, Armengol C, Buschbeck M. MacroH2As regulate enhancer-promoter contacts affecting enhancer activity and sensitivity to inflammatory cytokines. Cell Rep 2022; 39:110988. [PMID: 35732123 DOI: 10.1016/j.celrep.2022.110988] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/04/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022] Open
Abstract
MacroH2A histone variants have a function in gene regulation that is poorly understood at the molecular level. We report that macroH2A1.2 and macroH2A2 modulate the transcriptional ground state of cancer cells and how they respond to inflammatory cytokines. Removal of macroH2A1.2 and macroH2A2 in hepatoblastoma cells affects the contact frequency of promoters and distal enhancers coinciding with changes in enhancer activity or preceding them in response to the cytokine tumor necrosis factor alpha. Although macroH2As regulate genes in both directions, they globally facilitate the nuclear factor κB (NF-κB)-mediated response. In contrast, macroH2As suppress the response to the pro-inflammatory cytokine interferon gamma. MacroH2A2 has a stronger contribution to gene repression than macroH2A1.2. Taken together, our results suggest that macroH2As have a role in regulating the response of cancer cells to inflammatory signals on the level of chromatin structure. This is likely relevant for the interaction of cancer cells with immune cells of their microenvironment.
Collapse
Affiliation(s)
- David Corujo
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-GTP-UAB, Badalona, Barcelona 08916, Spain; Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Badalona, Barcelona 08916, Spain
| | - Roberto Malinverni
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-GTP-UAB, Badalona, Barcelona 08916, Spain
| | - Juan Carrillo-Reixach
- Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Badalona, Barcelona 08916, Spain; Childhood Liver Oncology Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona 08916, Spain
| | - Oliver Meers
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-GTP-UAB, Badalona, Barcelona 08916, Spain; Doctoral Programme in Biomedicine, Universitat de Barcelona, Facultat de Farmàcia i Ciències de l'Alimentació, Barcelona 08028, Spain
| | - Arce Garcia-Jaraquemada
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona 08916, Spain
| | - Marguerite-Marie Le Pannérer
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-GTP-UAB, Badalona, Barcelona 08916, Spain; PhD Programme in Biomedicine, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Vanesa Valero
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-GTP-UAB, Badalona, Barcelona 08916, Spain
| | - Ainhoa Pérez
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-GTP-UAB, Badalona, Barcelona 08916, Spain
| | - Álvaro Del Río-Álvarez
- Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Badalona, Barcelona 08916, Spain; Childhood Liver Oncology Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona 08916, Spain
| | - Laura Royo
- Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Badalona, Barcelona 08916, Spain; Childhood Liver Oncology Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona 08916, Spain
| | - Beatriz Pérez-González
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Helena Raurell
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Rafael D Acemel
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla 41013, Spain
| | - José M Santos-Pereira
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla 41013, Spain
| | | | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla 41013, Spain
| | - Lorenzo Pasquali
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Josep Manyé
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona 08916, Spain; Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), Madrid 28029, Spain
| | - Carolina Armengol
- Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Badalona, Barcelona 08916, Spain; Childhood Liver Oncology Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona 08916, Spain; Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), Madrid 28029, Spain.
| | - Marcus Buschbeck
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-GTP-UAB, Badalona, Barcelona 08916, Spain; Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Badalona, Barcelona 08916, Spain.
| |
Collapse
|
11
|
The TΑp63/BCL2 Axis Represents A Novel Mechanism Of Clinical Aggressiveness In Chronic Lymphocytic Leukemia. Blood Adv 2022; 6:2646-2656. [PMID: 35235952 PMCID: PMC9043946 DOI: 10.1182/bloodadvances.2021006348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/18/2022] [Indexed: 11/20/2022] Open
Abstract
High expression of TAp63 is linked to adverse clinical outcomes in CLL. TAp63 contributes to the antiapoptotic phenotype of CLL cells, likely through modulating BCL2 protein expression.
The TA-isoform of the p63 transcription factor (TAp63) has been reported to contribute to clinical aggressiveness in chronic lymphocytic leukemia (CLL) in a hitherto elusive way. Here, we sought to further understand and define the role of TAp63 in the pathophysiology of CLL. First, we found that elevated TAp63 expression levels are linked with adverse clinical outcomes, including disease relapse and shorter time-to-first treatment and overall survival. Next, prompted by the fact that TAp63 participates in an NF-κB/TAp63/BCL2 antiapoptotic axis in activated mature, normal B cells, we explored molecular links between TAp63 and BCL2 also in CLL. We documented a strong correlation at both the protein and the messenger RNA (mRNA) levels, alluding to the potential prosurvival role of TAp63. This claim was supported by inducible downregulation of TAp63 expression in the MEC1 CLL cell line using clustered regularly interspaced short palindromic repeats (CRISPR) system, which resulted in downregulation of BCL2 expression. Next, using chromatin immunoprecipitation (ChIP) sequencing, we examined whether BCL2 might constitute a transcriptional target of TAp63 and identified a significant binding profile of TAp63 in the BCL2 gene locus, across a genomic region previously characterized as a super enhancer in CLL. Moreover, we identified high-confidence TAp63 binding regions in genes mainly implicated in immune response and DNA-damage procedures. Finally, we found that upregulated TAp63 expression levels render CLL cells less responsive to apoptosis induction with the BCL2 inhibitor venetoclax. On these grounds, TAp63 appears to act as a positive modulator of BCL2, hence contributing to the antiapoptotic phenotype that underlies clinical aggressiveness and treatment resistance in CLL.
Collapse
|
12
|
The Role of Coronavirus RNA-Processing Enzymes in Innate Immune Evasion. Life (Basel) 2021; 11:life11060571. [PMID: 34204549 PMCID: PMC8235370 DOI: 10.3390/life11060571] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/21/2023] Open
Abstract
Viral RNA sensing triggers innate antiviral responses in humans by stimulating signaling pathways that include crucial antiviral genes such as interferon. RNA viruses have evolved strategies to inhibit or escape these mechanisms. Coronaviruses use multiple enzymes to synthesize, modify, and process their genomic RNA and sub-genomic RNAs. These include Nsp15 and Nsp16, whose respective roles in RNA capping and dsRNA degradation play a crucial role in coronavirus escape from immune surveillance. Evolutionary studies on coronaviruses demonstrate that genome expansion in Nidoviruses was promoted by the emergence of Nsp14-ExoN activity and led to the acquisition of Nsp15- and Nsp16-RNA-processing activities. In this review, we discuss the main RNA-sensing mechanisms in humans as well as recent structural, functional, and evolutionary insights into coronavirus Nsp15 and Nsp16 with a view to potential antiviral strategies.
Collapse
|
13
|
Hsu CJ, Meers O, Buschbeck M, Heidel FH. The Role of MacroH2A Histone Variants in Cancer. Cancers (Basel) 2021; 13:cancers13123003. [PMID: 34203934 PMCID: PMC8232725 DOI: 10.3390/cancers13123003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The structural unit of chromatin is the nucleosome that is composed of DNA wrapped around a core of eight histone proteins. Histone variants can replace ‘standard’ histones at specific sites of the genome. Thus, histone variants modulate all functions in the context of chromatin, such as gene expression. Here, we provide a concise review on a group of histone variants termed macroH2A. They contain two additional domains that contribute to their increased size. We discuss how these domains mediate molecular functions in normal cells and the role of macroH2As in gene expression and cancer. Abstract The epigenome regulates gene expression and provides a molecular memory of cellular events. A growing body of evidence has highlighted the importance of epigenetic regulation in physiological tissue homeostasis and malignant transformation. Among epigenetic mechanisms, the replacement of replication-coupled histones with histone variants is the least understood. Due to differences in protein sequence and genomic distribution, histone variants contribute to the plasticity of the epigenome. Here, we focus on the family of macroH2A histone variants that are particular in having a tripartite structure consisting of a histone fold, an intrinsically disordered linker and a globular macrodomain. We discuss how these domains mediate different molecular functions related to chromatin architecture, transcription and DNA repair. Dysregulated expression of macroH2A histone variants has been observed in different subtypes of cancer and has variable prognostic impact, depending on cellular context and molecular background. We aim to provide a concise review regarding the context- and isoform-dependent contributions of macroH2A histone variants to cancer development and progression.
Collapse
Affiliation(s)
- Chen-Jen Hsu
- Internal Medicine C, Greifswald University Medicine, 17475 Greifswald, Germany;
| | - Oliver Meers
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916 Badalona, Spain;
| | - Marcus Buschbeck
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916 Badalona, Spain;
- Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Campus Can Ruti, 08916 Badalona, Spain
- Correspondence: (M.B.); (F.H.H.); Tel.: +34-935-572-800 (M.B.); +49-383-486-6698 (F.H.H.); Fax: +49-383-486-6713 (F.H.H.)
| | - Florian H. Heidel
- Internal Medicine C, Greifswald University Medicine, 17475 Greifswald, Germany;
- Leibniz Institute on Aging, Fritz-Lipmann Institute, 07745 Jena, Germany
- Correspondence: (M.B.); (F.H.H.); Tel.: +34-935-572-800 (M.B.); +49-383-486-6698 (F.H.H.); Fax: +49-383-486-6713 (F.H.H.)
| |
Collapse
|
14
|
Agelopoulos M, Foutadakis S, Thanos D. The Causes and Consequences of Spatial Organization of the Genome in Regulation of Gene Expression. Front Immunol 2021; 12:682397. [PMID: 34149720 PMCID: PMC8212036 DOI: 10.3389/fimmu.2021.682397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/18/2021] [Indexed: 01/05/2023] Open
Abstract
Regulation of gene expression in time, space and quantity is orchestrated by the functional interplay of cis-acting elements and trans-acting factors. Our current view postulates that transcription factors recognize enhancer DNA and read the transcriptional regulatory code by cooperative DNA binding to specific DNA motifs, thus instructing the recruitment of transcriptional regulatory complexes forming a plethora of higher-ordered multi-protein-DNA and protein-protein complexes. Here, we reviewed the formation of multi-dimensional chromatin assemblies implicated in gene expression with emphasis on the regulatory role of enhancer hubs as coordinators of stochastic gene expression. Enhancer hubs contain many interacting regulatory elements and represent a remarkably dynamic and heterogeneous network of multivalent interactions. A functional consequence of such complex interaction networks could be that individual enhancers function synergistically to ensure coordination, tight control and robustness in regulation of expression of spatially connected genes. In this review, we discuss fundamental paradigms of such inter- and intra- chromosomal associations both in the context of immune-related genes and beyond.
Collapse
Affiliation(s)
| | | | - Dimitris Thanos
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
15
|
Karaosmanoğlu O. P38-β/SAPK-inhibiting and apoptosis-inducing activities of (E)-4-chloro-2-((3-ethoxy-2-hydroxybenzylidene) amino)phenol. Hum Exp Toxicol 2020; 39:1374-1389. [PMID: 32394730 DOI: 10.1177/0960327120924112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study has three purposes; first evaluating cytotoxicity of (E)-4-chloro-2-((3-ethoxy-2-hydroxybenzylidene)amino)phenol (ACES), second deciphering ACES-mediated cellular death mechanism, and third estimating ACES-mediated alterations in the expressions of mitogen-activated protein kinase (MAPK) pathway-related genes. Neutral red uptake assay, cell cycle analysis, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) measurements, caspase 3/7 and 9 activations, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) were implemented. IC50 values of ACES-treated five cells were around 4-6 µg/mL. However, Caco-2 and Huh-7 cells were found to be twofold resistant and fivefold sensitive with IC50 values of 11 µg/mL and 0.93 µg/mL, respectively. In this study, it was initially reported that ACES exhibits selective cytotoxicity to Huh-7 cells. In addition, ACES induced apoptosis by nuclear fragmentation, MMP disruption, and intracellular ROS elevation in MCF-7 cells. qRT-PCR experiment indicated the expressions of 30 genes including ATF2, CREB1, MYC, NFATC4 (NFAT3), CCNA1, CCNB1, CCND2, CDK2, CDKN1A (p21CIP1), CDKN1C (p57KIP2), CDKN2A (p16INK4a), CDKN2B (p15INK4b), DLK1, NRAS, CDC42, PAK1, MAP4K1 (HPK1), MAP3K3 (MEKK3), MAP2K3 (MEK3), MAP2K6 (MEK6), MOS, MAPK1 (ERK2), MAPK8 (JNK1), MAPK10 (JNK3), MAPK11 (p38-β), LAMTOR3 (MP1), MAPK8IP2 (JIP-1), PRDX6 (AOP2), COL1A1, and HSPA5 (Grp78) were downregulated at least 1.5-fold. Moreover, ACES effectively inhibited expressions of genes that code for elements of p38-β/stress-activated protein kinase (SAPK) pathway. ACES has the potential to be used for the reversal of trastuzumab resistance in breast cancer patients by inhibiting p38/SAPK pathway in MCF-7 cells. Therefore, with the selective cytotoxic, apoptosis-inducing, and p38-β/SAPK-inhibiting activities, ACES can be utilized for developing a novel anticancer drug.
Collapse
Affiliation(s)
- O Karaosmanoğlu
- Department of Biology, Kamil Özdağ Faculty of Science, Karamanoğlu Mehmetbey University, Karaman, Turkey
| |
Collapse
|
16
|
Histone variant macroH2A: from chromatin deposition to molecular function. Essays Biochem 2019; 63:59-74. [DOI: 10.1042/ebc20180062] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/01/2023]
Abstract
Abstract
The eukaryotic genome is regulated in the context of chromatin. Specialized histones, known as histone variants, incorporate into chromatin to replace their canonical counterparts and represent an important layer of regulation to diversify the structural characteristics and functional outputs of chromatin. MacroH2A is an unusual histone variant with a bulky C-terminal non-histone domain that distinguishes it from all other histones. It is a critical player in stabilizing differentiated cell identity by posing as a barrier to somatic cell reprogramming toward pluripotency and acts as a tumor suppressor in a wide range of cancers. MacroH2A histones are generally regarded as repressive variants that are enriched at the inactive X chromosome (Xi) and broad domains across autosomal chromatin. Recent studies have shed light on to how macroH2A influences transcriptional outputs within distinct genomic contexts and revealed new intriguing molecular functions of macroH2A variants beyond transcriptional regulation. Furthermore, the mechanisms of its mysterious chromatin deposition are beginning to be unraveled, facilitating our understanding of its complex regulation of genome function.
Collapse
|
17
|
The Histone Variant MacroH2A Blocks Cellular Reprogramming by Inhibiting Mesenchymal-to-Epithelial Transition. Mol Cell Biol 2018; 38:MCB.00669-17. [PMID: 29483300 DOI: 10.1128/mcb.00669-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/19/2018] [Indexed: 01/02/2023] Open
Abstract
Transcription factor-induced reprogramming of somatic cells to pluripotency is mediated via profound alterations in the epigenetic landscape. The histone variant macroH2A1 (mH2A1) is a barrier to the cellular reprogramming process. We demonstrate here that mH2A1 blocks reprogramming and contributes to the preservation of cell identity by trapping cells at the very early stages of the process, namely, at the mesenchymal-to-epithelial transition (MET). We provide a comprehensive analysis of the genomic sites occupied by the mH2A1 nucleosomes in human fibroblasts and embryonic stem (ES) cells and how they affect the reprogramming of fibroblasts to pluripotency. We have integrated chromatin immunoprecipitation sequencing (ChIP-seq) data with transcriptome sequencing (RNA-seq) data using cells containing reduced levels of mH2A1 and have inferred mH2A1-centered gene-regulatory networks that support the fibroblast and ES cell fates. We found that the exact positions of mH2A1 nucleosomes in regulatory regions of specific network genes with key regulatory roles guarantee the functional robustness of the regulatory networks. Using the reconstructed networks, we can predict and validate several components and their interactions in the establishment of stable cell types by limiting progression to alternative cell fates.
Collapse
|
18
|
Haque N, Ouda R, Chen C, Ozato K, Hogg JR. ZFR coordinates crosstalk between RNA decay and transcription in innate immunity. Nat Commun 2018; 9:1145. [PMID: 29559679 PMCID: PMC5861047 DOI: 10.1038/s41467-018-03326-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 02/05/2018] [Indexed: 12/29/2022] Open
Abstract
Control of type I interferon production is crucial to combat infection while preventing deleterious inflammatory responses, but the extent of the contribution of post-transcriptional mechanisms to innate immune regulation is unclear. Here, we show that human zinc finger RNA-binding protein (ZFR) represses the interferon response by regulating alternative pre-mRNA splicing. ZFR expression is tightly controlled during macrophage development; monocytes express truncated ZFR isoforms, while macrophages induce full-length ZFR to modulate macrophage-specific alternative splicing. Interferon-stimulated genes are constitutively activated by ZFR depletion, and immunostimulation results in hyper-induction of interferon β (IFNβ/IFNB1). Through whole-genome analyses, we show that ZFR controls interferon signaling by preventing aberrant splicing and nonsense-mediated decay of histone variant macroH2A1/H2AFY mRNAs. Together, our data suggest that regulation of ZFR in macrophage differentiation guards against aberrant interferon responses and reveal a network of mRNA processing and decay that shapes the transcriptional response to infection. Type I interferon signaling is critical for the control of infection. Here the authors show that zinc finger RNA-binding protein (ZFR) can control type I interferon responses, and that this control is itself regulated by distinct ZFR truncation patterns that differ between monocytes and macrophages.
Collapse
Affiliation(s)
- Nazmul Haque
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Room 2341, Bethesda, MD, 20892, USA.
| | - Ryota Ouda
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Drive, Room 2A01, Bethesda, MD, 20892, USA
| | - Chao Chen
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Drive, Room 2A01, Bethesda, MD, 20892, USA
| | - Keiko Ozato
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Drive, Room 2A01, Bethesda, MD, 20892, USA
| | - J Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Room 2341, Bethesda, MD, 20892, USA.
| |
Collapse
|
19
|
Liu S, Wang F, Liu J, Jin P, Wang X, Yang L, Xi S. ATF2 partly mediated the expressions of proliferative factors and inhibited pro-inflammatory factors' secretion in arsenite-treated human uroepithelial cells. Toxicol Res (Camb) 2017; 6:468-476. [PMID: 30090515 PMCID: PMC6062379 DOI: 10.1039/c6tx00407e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/28/2017] [Indexed: 11/21/2022] Open
Abstract
Inorganic arsenic (iAs) could induce the expression of activating transcription factor-2 (ATF2) in the human urinary bladder epithelial cell line (SV-HUC-1 cells). ATF2, as a member of the bZIP transcription factor family, has been implicated in a transcriptional response leading to cell growth, migration and malignant tumor progression. However, little is known about the effects of ATF2 on proliferative factors in iAs treated human urothelial cells. In this study, ATF2 siRNA was employed to investigate the relationship between ATF2 activation and the expressions of proliferative factors, such as BCL2, cyclin D1, COX-2, MMP1 and PCNA, and pro-inflammatory factors (TNFα, TGFα and IL-8) in SV-HUC-1 cells. The results showed that low concentration arsenite increased the expressions of proliferative factors BCL2, cyclin D1, COX-2, MMP1 and PCNA in SV-HUC-1 cells, and ATF2 siRNA partly decreased the expressions of BCL2, cyclin D1, and COX-2. A neutralizing antibody of IL-8 was used for attenuating the levels of IL-8 and neutralizing antibody of IL-8 did not relieve the expressions of ATF2 and proliferative factors induced by arsenite in SV-HUC-1 cells. In addition, ATF2 knockdown did not decrease the expressions of pro-inflammatory cytokines induced by arsenite in SV-HUC-1 cells, but dramatically increased mRNA expressions of TNFα, TGFα and IL-8 under arsenite and non-arsenite conditions. In conclusion, our present study indicated that ATF2, but not IL-8, played a partial role in the expressions of proliferative factors induced by arsenite in human uroepithelial cells.
Collapse
Affiliation(s)
- Shengnan Liu
- Department of Environmental and Occupational Health , School of Public Health , China Medical University , No. 77 Puhe Road , Shenyang North New Area , Shenyang , Liaoning Province 110122 , People's Republic of China .
| | - Fei Wang
- Department of Environmental and Occupational Health , School of Public Health , China Medical University , No. 77 Puhe Road , Shenyang North New Area , Shenyang , Liaoning Province 110122 , People's Republic of China .
| | - Jieyu Liu
- Department of Environmental and Occupational Health , School of Public Health , China Medical University , No. 77 Puhe Road , Shenyang North New Area , Shenyang , Liaoning Province 110122 , People's Republic of China .
| | - Peiyu Jin
- Department of Environmental and Occupational Health , School of Public Health , China Medical University , No. 77 Puhe Road , Shenyang North New Area , Shenyang , Liaoning Province 110122 , People's Republic of China .
| | - Xiaoyan Wang
- Department of Environmental and Occupational Health , School of Public Health , China Medical University , No. 77 Puhe Road , Shenyang North New Area , Shenyang , Liaoning Province 110122 , People's Republic of China .
| | - Li Yang
- Department of Environmental and Occupational Health , School of Public Health , China Medical University , No. 77 Puhe Road , Shenyang North New Area , Shenyang , Liaoning Province 110122 , People's Republic of China .
| | - Shuhua Xi
- Department of Environmental and Occupational Health , School of Public Health , China Medical University , No. 77 Puhe Road , Shenyang North New Area , Shenyang , Liaoning Province 110122 , People's Republic of China .
| |
Collapse
|
20
|
Konstantinov NK, Ulff-Møller CJ, Dimitrov S. Histone variants and melanoma: facts and hypotheses. Pigment Cell Melanoma Res 2016; 29:426-33. [DOI: 10.1111/pcmr.12467] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 02/10/2016] [Indexed: 12/22/2022]
Affiliation(s)
| | | | - Stefan Dimitrov
- Institut Albert Bonniot; U823, INSERM/Université Joseph Fourier; Grenoble Cedex 9 France
| |
Collapse
|
21
|
Turinetto V, Giachino C. Histone variants as emerging regulators of embryonic stem cell identity. Epigenetics 2016; 10:563-73. [PMID: 26114724 DOI: 10.1080/15592294.2015.1053682] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dynamic regulation of chromatin structure is an important mechanism for balancing the pluripotency and cell fate decision in embryonic stem cells (ESCs). Indeed ESCs are characterized by unusual chromatin packaging, and a wide variety of chromatin regulators have been implicated in control of pluripotency and differentiation. Genome-wide maps of epigenetic factors have revealed a unique epigenetic signature in pluripotent ESCs and have contributed models to explain their plasticity. In addition to the well known epigenetic regulation through DNA methylation, histone posttranslational modifications, chromatin remodeling, and non-coding RNA, histone variants are emerging as important regulators of ESC identity. In this review, we summarize and discuss the recent progress that has highlighted the central role of histone variants in ESC pluripotency and ESC fate, focusing, in particular, on H1 variants, H2A variants H2A.X, H2A.Z and macroH2A and H3 variant H3.3.
Collapse
Affiliation(s)
- Valentina Turinetto
- a Department of Clinical and Biological Sciences; University of Turin ; Orbassano , Turin , Italy
| | | |
Collapse
|
22
|
Nicolaides NC, Lamprokostopoulou A, Polyzos A, Kino T, Katsantoni E, Triantafyllou P, Christophoridis A, Katzos G, Dracopoulou M, Sertedaki A, Chrousos GP, Charmandari E. Transient generalized glucocorticoid hypersensitivity. Eur J Clin Invest 2015; 45:1306-15. [PMID: 26479047 DOI: 10.1111/eci.12554] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 10/15/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Transient generalized glucocorticoid hypersensitivity is a rare disorder characterized by increased tissue sensitivity to glucocorticoids and compensatory hypo-activation of the hypothalamic-pituitary-adrenal axis. The condition itself and the underlying molecular mechanisms have not been elucidated. OBJECTIVE To present the clinical manifestations, endocrinologic evaluation and transcriptomic profile in a patient with transient generalized glucocorticoid hypersensitivity. DESIGN AND RESULTS A 9-year-old girl presented with an 8-month history of clinical manifestations suggestive of Cushing syndrome. Endocrinologic evaluation revealed undetectable 08:00 h ACTH (<1 pg/mL) and cortisol (0·025 μg/dL) concentrations, which remained decreased throughout the 24-h period and did not respond to stimulation with ovine CRH. The disease gradually resolved spontaneously over the ensuing 3 months. Sequencing of the human glucocorticoid receptor gene revealed no mutations or polymorphisms. Western blot analysis in peripheral blood mononuclear cells revealed equal protein expression of hGRα of the patient in the disease and postresolution phases compared with a control subject. Transcriptomic analysis in peripheral blood mononuclear cells in the disease and postresolution phases identified 903 differentially expressed genes. Of these, 106 genes were up-regulated and 797 were down-regulated in the disease compared with the resolution phase. Bioinformatics analysis on the differentially expressed gene networks revealed Nuclear Factor-κB as the predominant transcription factor influencing the expression of the majority of differentially expressed genes. CONCLUSIONS Our findings indicate that a transient postreceptor defect, or a virus- or bacterium-encoded molecule, may have enhanced glucocorticoid signal transduction, leading to transient generalized glucocorticoid hypersensitivity and hypo-activation of the HPA axis.
Collapse
Affiliation(s)
- Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece.,Division of Endocrinology and Metabolism, Clinical Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Agaristi Lamprokostopoulou
- Division of Endocrinology and Metabolism, Clinical Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Alexandros Polyzos
- Institute of Molecular Biology, Genetics and Biotechnology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Tomoshige Kino
- Unit on Molecular Hormone Action, Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Eleni Katsantoni
- Division of Hematology, Clinical Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | | | - George Katzos
- First Pediatric Department, Aristotle University Medical School, Thessaloniki, Greece
| | - Maria Dracopoulou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece
| | - Amalia Sertedaki
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece
| | - George P Chrousos
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece.,Division of Endocrinology and Metabolism, Clinical Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Saudi Diabetes Study Research Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece.,Division of Endocrinology and Metabolism, Clinical Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
23
|
Broekgaarden M, Weijer R, van Gulik TM, Hamblin MR, Heger M. Tumor cell survival pathways activated by photodynamic therapy: a molecular basis for pharmacological inhibition strategies. Cancer Metastasis Rev 2015; 34:643-90. [PMID: 26516076 PMCID: PMC4661210 DOI: 10.1007/s10555-015-9588-7] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Photodynamic therapy (PDT) has emerged as a promising alternative to conventional cancer therapies such as surgery, chemotherapy, and radiotherapy. PDT comprises the administration of a photosensitizer, its accumulation in tumor tissue, and subsequent irradiation of the photosensitizer-loaded tumor, leading to the localized photoproduction of reactive oxygen species (ROS). The resulting oxidative damage ultimately culminates in tumor cell death, vascular shutdown, induction of an antitumor immune response, and the consequent destruction of the tumor. However, the ROS produced by PDT also triggers a stress response that, as part of a cell survival mechanism, helps cancer cells to cope with the PDT-induced oxidative stress and cell damage. These survival pathways are mediated by the transcription factors activator protein 1 (AP-1), nuclear factor E2-related factor 2 (NRF2), hypoxia-inducible factor 1 (HIF-1), nuclear factor κB (NF-κB), and those that mediate the proteotoxic stress response. The survival pathways are believed to render some types of cancer recalcitrant to PDT and alter the tumor microenvironment in favor of tumor survival. In this review, the molecular mechanisms are elucidated that occur post-PDT to mediate cancer cell survival, on the basis of which pharmacological interventions are proposed. Specifically, pharmaceutical inhibitors of the molecular regulators of each survival pathway are addressed. The ultimate aim is to facilitate the development of adjuvant intervention strategies to improve PDT efficacy in recalcitrant solid tumors.
Collapse
Affiliation(s)
- Mans Broekgaarden
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Ruud Weijer
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Thomas M van Gulik
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA, USA
| | - Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Vlahopoulos SA, Cen O, Hengen N, Agan J, Moschovi M, Critselis E, Adamaki M, Bacopoulou F, Copland JA, Boldogh I, Karin M, Chrousos GP. Dynamic aberrant NF-κB spurs tumorigenesis: a new model encompassing the microenvironment. Cytokine Growth Factor Rev 2015; 26:389-403. [PMID: 26119834 PMCID: PMC4526340 DOI: 10.1016/j.cytogfr.2015.06.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/15/2015] [Indexed: 12/15/2022]
Abstract
Recently it was discovered that a transient activation of transcription factor NF-κB can give cells properties essential for invasiveness and cancer initiating potential. In contrast, most oncogenes to date were characterized on the basis of mutations or by their constitutive overexpression. Study of NF-κB actually leads to a far more dynamic perspective on cancer: tumors caused by diverse oncogenes apparently evolve into cancer after loss of feedback regulation for NF-κB. This event alters the cellular phenotype and the expression of hormonal mediators, modifying signals between diverse cell types in a tissue. The result is a disruption of stem cell hierarchy in the tissue, and pervasive changes in the microenvironment and immune response to the malignant cells.
Collapse
Affiliation(s)
- Spiros A Vlahopoulos
- First Department of Pediatrics, University of Athens, Horemeio Research Laboratory, Athens, Greece.
| | - Osman Cen
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, United States
| | - Nina Hengen
- Bernard J. Dunn School of Pharmacy, Shenandoah University, United States
| | - James Agan
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, United States
| | - Maria Moschovi
- First Department of Pediatrics, University of Athens, Horemeio Research Laboratory, Athens, Greece
| | - Elena Critselis
- First Department of Pediatrics, University of Athens, Horemeio Research Laboratory, Athens, Greece
| | - Maria Adamaki
- First Department of Pediatrics, University of Athens, Horemeio Research Laboratory, Athens, Greece
| | - Flora Bacopoulou
- First Department of Pediatrics, University of Athens, Horemeio Research Laboratory, Athens, Greece
| | - John A Copland
- Mayo Clinic Comprehensive Cancer Center, Department of Cancer Biology, United States
| | - Istvan Boldogh
- Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch at Galveston, United States
| | - Michael Karin
- Department of Pharmacology, University of California, San Diego, United States
| | - George P Chrousos
- First Department of Pediatrics, University of Athens, Horemeio Research Laboratory, Athens, Greece
| |
Collapse
|
25
|
Abstract
Hox and other homeobox-containing genes encode critical transcriptional regulators of animal development. Although these genes are well known for their roles in the body axis and appendage development, little is known regarding the mechanisms by which these factors influence chromatin landscapes. Chromatin structure can have a profound influence on gene expression during animal body formation. However, when applied to developing embryos, conventional chromatin analysis of genes and cis-regulatory modules (CRMs) typically lacks the required cell type-specific resolution due to the heterogeneous nature of animal bodies. Here we present a strategy to analyze both the composition and conformation of in vivo-tagged CRM sequences in a cell type-specific manner, using as a system Drosophila embryos. We term this method cgChIP (cell- and gene-specific Chromatin Immunoprecipitation) by which we access and analyze regulatory chromatin in specific cell types. cgChIP is an in vivo method designed to analyze genetic elements derived from limited cell populations. cgChIP can be used for both the analysis of chromatin structure (e.g., long-distance interactions between DNA elements) and the composition of histones and histone modifications and the occupancy of transcription factors and chromatin modifiers. This method was applied to the Hox target gene Distalless (Dll), which encodes for a homeodomain-containing transcription factor critical for the formation of appendages in Drosophila. However, cgChIP can be applied in diverse animal models to better dissect CRM-dependent gene regulation and body formation in developing animals.
Collapse
|
26
|
Composite macroH2A/NRF-1 Nucleosomes Suppress Noise and Generate Robustness in Gene Expression. Cell Rep 2015; 11:1090-101. [DOI: 10.1016/j.celrep.2015.04.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 03/06/2015] [Accepted: 04/08/2015] [Indexed: 01/28/2023] Open
|
27
|
Abstract
MacroH2A core histone variants have a unique structure that includes a C-terminal nonhistone domain. They are highly conserved in vertebrates and are thought to regulate gene expression. However, the nature of genes regulated by macroH2As and their biological significance remain unclear. Here, we examine macroH2A function in vivo by knocking out both macroH2A1 and macroH2A2 in the mouse. While macroH2As are not required for early development, the absence of macroH2As impairs prenatal and postnatal growth and can significantly reduce reproductive efficiency. The distributions of macroH2A.1- and macroH2A.2-containing nucleosomes show substantial overlap, as do their effects on gene expression. Our studies in fetal and adult liver indicate that macroH2As can exert large positive or negative effects on gene expression, with macroH2A.1 and macroH2A.2 acting synergistically on the expression of some genes and apparently having opposing effects on others. These effects are very specific and in the adult liver preferentially involve genes related to lipid metabolism, including the leptin receptor. MacroH2A-dependent gene regulation changes substantially in postnatal development and can be strongly affected by fasting. We propose that macroH2As produce adaptive changes to gene expression, which in the liver focus on metabolism.
Collapse
|
28
|
Rudraraju B, Droog M, Abdel-Fatah TMA, Zwart W, Giannoudis A, Malki MI, Moore D, Patel H, Shaw J, Ellis IO, Chan S, Brooke GN, Nevedomskaya E, Lo Nigro C, Carroll J, Coombes RC, Bevan C, Ali S, Palmieri C. Phosphorylation of activating transcription factor-2 (ATF-2) within the activation domain is a key determinant of sensitivity to tamoxifen in breast cancer. Breast Cancer Res Treat 2014; 147:295-309. [PMID: 25141981 DOI: 10.1007/s10549-014-3098-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/07/2014] [Indexed: 12/31/2022]
Abstract
Activating transcription factor-2 (ATF-2) has been implicated as a tumour suppressor in breast cancer (BC). c-JUN N-terminal kinase (JNK) and p38 MAPK phosphorylate ATF-2 within the activation domain (AD), which is required for its transcriptional activity. To date, the role of ATF-2 in determining response to endocrine therapy has not been explored. Effects of ATF-2 loss in the oestrogen receptor (ER)-positive luminal BC cell line MCF7 were explored, as well as its role in response to tamoxifen treatment. Genome-wide chromatin binding patterns of ATF-2 when phosphorylated within the AD in MCF-7 cells were determined using ChIP-seq. The expression of ATF-2 and phosphorylated ATF-2 (pATF-2-Thr71) was determined in a series of 1,650 BC patients and correlated with clinico-pathological features and clinical outcome. Loss of ATF-2 diminished the growth-inhibitory effects of tamoxifen, while tamoxifen treatment induced ATF-2 phosphorylation within the AD, to regulate the expression of a set of 227 genes for proximal phospho-ATF-2 binding, involved in cell development, assembly and survival. Low expression of both ATF-2 and pATF-2-Thr71 was significantly associated with aggressive pathological features. Furthermore, pATF-2 was associated with both p-p38 and pJNK1/2 (< 0.0001). While expression of ATF-2 is not associated with outcome, pATF-2 is associated with longer disease-free (p = 0.002) and BC-specific survival in patients exposed to tamoxifen (p = 0.01). Furthermore, multivariate analysis confirmed pATF-2-Thr71 as an independent prognostic factor. ATF-2 is important for modulating the effect of tamoxifen and phosphorylation of ATF-2 within the AD at Thr71 predicts for improved outcome for ER-positive BC receiving tamoxifen.
Collapse
Affiliation(s)
- Bharath Rudraraju
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, The Duncan Building, Daulby Street, Liverpool, L69 3GA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sansoni V, Casas-Delucchi CS, Rajan M, Schmidt A, Bönisch C, Thomae AW, Staege MS, Hake SB, Cardoso MC, Imhof A. The histone variant H2A.Bbd is enriched at sites of DNA synthesis. Nucleic Acids Res 2014; 42:6405-20. [PMID: 24753410 PMCID: PMC4041467 DOI: 10.1093/nar/gku303] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 01/04/2023] Open
Abstract
Histone variants play an important role in shaping the mammalian epigenome and their aberrant expression is frequently observed in several types of cancer. However, the mechanisms that mediate their function and the composition of the variant-containing chromatin are still largely unknown. A proteomic interrogation of chromatin containing the different H2A variants macroH2A.1.2, H2A.Bbd and H2A revealed a strikingly different protein composition. Gene ontology analysis reveals a strong enrichment of splicing factors as well as components of the mammalian replisome in H2A.Bbd-containing chromatin. We find H2A.Bbd localizing transiently to sites of DNA synthesis during S-phase and during DNA repair. Cells that express H2A.Bbd have a shortened S-phase and are more susceptible to DNA damage, two phenotypes that are also observed in human Hodgkin's lymphoma cells that aberrantly express this variant. Based on our experiments we conclude that H2A.Bbd is targeted to newly synthesized DNA during replication and DNA repair. The transient incorporation of H2A.Bbd may be due to the intrinsic instability of nucleosomes carrying this variant or a faster chromatin loading. This potentially leads to a disturbance of the existing chromatin structure, which may have effects on cell cycle regulation and DNA damage sensitivity.
Collapse
Affiliation(s)
- Viola Sansoni
- Munich Center of Integrated Protein Science, Ludwig Maximilians University of Munich, 80336 Munich, Germany
| | | | - Malini Rajan
- Technische Universität Darmstadt Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Andreas Schmidt
- Munich Center of Integrated Protein Science, Ludwig Maximilians University of Munich, 80336 Munich, Germany
| | - Clemens Bönisch
- Adolf-Butenandt Institute, Ludwig Maximilians University of Munich, 80336 Munich, Germany
| | - Andreas W Thomae
- Munich Center of Integrated Protein Science, Ludwig Maximilians University of Munich, 80336 Munich, Germany
| | - Martin S Staege
- Department of Pediatrics, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06097 Halle, Germany
| | - Sandra B Hake
- Munich Center of Integrated Protein Science, Ludwig Maximilians University of Munich, 80336 Munich, Germany Adolf-Butenandt Institute, Ludwig Maximilians University of Munich, 80336 Munich, Germany
| | - M Cristina Cardoso
- Technische Universität Darmstadt Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Axel Imhof
- Munich Center of Integrated Protein Science, Ludwig Maximilians University of Munich, 80336 Munich, Germany Adolf-Butenandt Institute, Ludwig Maximilians University of Munich, 80336 Munich, Germany
| |
Collapse
|
30
|
Genetic ablation of macrohistone H2A1 leads to increased leanness, glucose tolerance and energy expenditure in mice fed a high-fat diet. Int J Obes (Lond) 2014; 39:331-8. [PMID: 24849394 DOI: 10.1038/ijo.2014.91] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/06/2014] [Accepted: 05/15/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND/OBJECTIVES In the context of obesity, epigenetic mechanisms regulate cell-specific chromatin plasticity, perpetuating gene expression responses to nutrient excess. MacroH2A1, a variant of histone H2A, emerged as a key chromatin regulator sensing small nutrients during cell proliferation and differentiation. Mice genetically ablated for macroH2A1 (knockout (KO)) do not show overt phenotypes under a standard diet. Our objective was to analyse the in vivo role of macroH2A1 in response to nutritional excess. METHODS Twelve-week-old whole-body macroH2A1 KO male mice were given a high-fat diet (60% energy from lard) for 12 weeks until being killed, and examined for glucose and insulin tolerance, and for body fat composition. Energy expenditure was assessed using metabolic cages and by measuring the expression levels of genes involved in thermogenesis in the brown adipose tissue (BAT) or in adipogenesis in the visceral adipose tissue (VAT). RESULTS Under a chow diet, macroH2A1 KO mice did not differ from their wild-type (WT) littermates for body weight, and for sensitivity to glucose or insulin. However, KO mice displayed decreased heat production (P<0.05), and enhanced total activity during the night (P<0.01). These activities related to protection against diet-induced obesity in KO mice, which displayed decreased body weight owing to a specific decrease in fat mass (P<0.05), increased tolerance to glucose (P<0.05), and enhanced total activity during the day (P<0.05), compared with WT mice. KO mice displayed increased expression of thermogenic genes (Ucp1, P<0.05; Glut4, P<0.05; Cox4, P<0.01) in BAT and a decreased expression of adipogenic genes (Pparγ, P<0.05; Fabp4, P<0.05; Glut4, P<0.05) in VAT compared with WT mice, indicative of augmented energy expenditure. CONCLUSIONS Genetic eviction of macroH2A1 confers protection against diet-induced obesity and metabolic derangements in mice. Inhibition of macroH2A1 might be a helpful strategy for epigenetic therapy of obesity.
Collapse
|
31
|
Abstract
Eukaryotic gene regulation involves a balance between packaging of the genome into nucleosomes and enabling access to regulatory proteins and RNA polymerase. Nucleosomes, consisting of DNA wrapped around a core of histone proteins, are integral components of gene regulation that restrict access to both regulatory sequences and the underlying template. In this review, Weber and Henikoff consider how histone variants and their interacting partners are involved in transcriptional regulation through the creation of unique chromatin states. Eukaryotic gene regulation involves a balance between packaging of the genome into nucleosomes and enabling access to regulatory proteins and RNA polymerase. Nucleosomes are integral components of gene regulation that restrict access to both regulatory sequences and the underlying template. Whereas canonical histones package the newly replicated genome, they can be replaced with histone variants that alter nucleosome structure, stability, dynamics, and, ultimately, DNA accessibility. Here we consider how histone variants and their interacting partners are involved in transcriptional regulation through the creation of unique chromatin states.
Collapse
Affiliation(s)
- Christopher M Weber
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
32
|
The histone variant MacroH2A1 regulates target gene expression in part by recruiting the transcriptional coregulator PELP1. Mol Cell Biol 2014; 34:2437-49. [PMID: 24752897 DOI: 10.1128/mcb.01315-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MacroH2A1 is a histone variant harboring an ∼25-kDa carboxyl-terminal macrodomain. Due to its enrichment on the inactive X chromosome, macroH2A1 was thought to play a role in transcriptional repression. However, recent studies have shown that macroH2A1 occupies autosomal chromatin and regulates genes in a context-specific manner. The macrodomain may play a role in the modulation of gene expression outcomes via physical interactions with effector proteins, which may depend on the ability of the macrodomain to bind NAD(+) metabolite ligands. Here, we identify proline, glutamic acid, and leucine-rich protein 1 (PELP1), a chromatin-associated factor and transcriptional coregulator, as a ligand-independent macrodomain-interacting factor. We used chromatin immunoprecipitation coupled with tiling microarrays (ChIP-chip) to determine the genomic localization of PELP1 in MCF-7 human breast cancer cells. We find that PELP1 genomic localization is highly correlated with that of macroH2A1. Additionally, PELP1 positively correlates with heterochromatic chromatin marks and negatively correlates with active transcription marks, much like macroH2A1. MacroH2A1 specifically recruits PELP1 to the promoters of macroH2A1 target genes, but macroH2A1 occupancy occurs independent of PELP1. This recruitment allows macroH2A1 and PELP1 to cooperatively regulate gene expression outcomes.
Collapse
|
33
|
Lone IN, Shukla MS, Charles Richard JL, Peshev ZY, Dimitrov S, Angelov D. Binding of NF-κB to nucleosomes: effect of translational positioning, nucleosome remodeling and linker histone H1. PLoS Genet 2013; 9:e1003830. [PMID: 24086160 PMCID: PMC3784511 DOI: 10.1371/journal.pgen.1003830] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/12/2013] [Indexed: 01/29/2023] Open
Abstract
NF-κB is a key transcription factor regulating the expression of inflammatory responsive genes. How NF-κB binds to naked DNA templates is well documented, but how it interacts with chromatin is far from being clear. Here we used a combination of UV laser footprinting, hydroxyl footprinting and electrophoretic mobility shift assay to investigate the binding of NF-κB to nucleosomal templates. We show that NF-κB p50 homodimer is able to bind to its recognition sequence, when it is localized at the edge of the core particle, but not when the recognition sequence is at the interior of the nucleosome. Remodeling of the nucleosome by the chromatin remodeling machine RSC was not sufficient to allow binding of NF-κB to its recognition sequence located in the vicinity of the nucleosome dyad, but RSC-induced histone octamer sliding allowed clearly detectable binding of NF-κB with the slid particle. Importantly, nucleosome dilution-driven removal of H2A–H2B dimer led to complete accessibility of the site located close to the dyad to NF-κB. Finally, we found that NF-κB was able to displace histone H1 and prevent its binding to nucleosome. These data provide important insight on the role of chromatin structure in the regulation of transcription of NF-κB dependent genes. In eukaryotes DNA is hierarchically packaged into chromatin by histones. The fundamental subunit of chromatin is the nucleosome. The packaging of DNA into nucleosomes not only restricts DNA accessibility for regulatory proteins but also provides opportunities to regulate DNA based processes. Accessibility of transcription factor NF-κB to their recognition sequences embedded in nucleosomes is highly controversial. On one hand in vivo studies have suggested that packaging of DNA into chromatin plays an important role in regulating the expression of NF-κB dependent genes, and on the other hand some in vitro studies reported that NF-κB can bind by itself to its recognition sequences embedded in the nucleosome. In this study, we show that NF-κB can specifically bind to its recognition sequences placed at the end of the nucleosome but not when placed inside the nucleosome core. We then demonstrate that disruption of nucleosome is necessary for the productive binding of NF-κB. Finally, we show that the presence of histone H1 does not affect the specific binding of NF-κB to its cognate sequence, when its binding region overlaps with the binding site of NF-κB. We propose that histone eviction is needed for NF-κB to bind specifically to its recognition sequence embedded in the nucleosome.
Collapse
Affiliation(s)
- Imtiaz Nisar Lone
- Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Manu Shubhdarshan Shukla
- Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239, Ecole Normale Supérieure de Lyon, Lyon, France
- Université Joseph Fourier - Grenoble 1, INSERM Institut Albert Bonniot, U823, Site Santé-BP 170, Grenoble, France
| | - John Lalith Charles Richard
- Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239, Ecole Normale Supérieure de Lyon, Lyon, France
- Université Joseph Fourier - Grenoble 1, INSERM Institut Albert Bonniot, U823, Site Santé-BP 170, Grenoble, France
| | - Zahary Yordanov Peshev
- Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239, Ecole Normale Supérieure de Lyon, Lyon, France
- Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Stefan Dimitrov
- Université Joseph Fourier - Grenoble 1, INSERM Institut Albert Bonniot, U823, Site Santé-BP 170, Grenoble, France
- * E-mail: (SD); (DA)
| | - Dimitar Angelov
- Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239, Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail: (SD); (DA)
| |
Collapse
|
34
|
Posavec M, Timinszky G, Buschbeck M. Macro domains as metabolite sensors on chromatin. Cell Mol Life Sci 2013; 70:1509-24. [PMID: 23455074 PMCID: PMC11113152 DOI: 10.1007/s00018-013-1294-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/30/2022]
Abstract
How metabolism and epigenetics are molecularly linked and regulate each other is poorly understood. In this review, we will discuss the role of direct metabolite-binding to chromatin components and modifiers as a possible regulatory mechanism. We will focus on globular macro domains, which are evolutionarily highly conserved protein folds that can recognize NAD(+)-derived metabolites. Macro domains are found in histone variants, histone modifiers, and a chromatin remodeler among other proteins. Here we summarize the macro domain-containing chromatin proteins and the enzymes that generate relevant metabolites. Focusing on the histone variant macroH2A, we further discuss possible implications of metabolite binding for chromatin function.
Collapse
Affiliation(s)
- Melanija Posavec
- Institute for Predictive and Personalized Medicine of Cancer (IMPPC), Crta. Can Ruti, Cami de les Escoles, 08916 Badalona, Barcelona Spain
| | - Gyula Timinszky
- Butenandt Institute of Physiological Chemistry, Ludwig Maximilian University of Munich, Butenandtstrasse 5, 81377 Munich, Germany
| | - Marcus Buschbeck
- Institute for Predictive and Personalized Medicine of Cancer (IMPPC), Crta. Can Ruti, Cami de les Escoles, 08916 Badalona, Barcelona Spain
| |
Collapse
|
35
|
Abstract
We present a strategy to examine the chromatin conformation of individual loci in specific cell types during Drosophila embryogenesis. Regulatory DNA is tagged with binding sites (lacO) for LacI, which is used to immunoprecipitate the tagged chromatin from specific cell types. We applied this approach to Distalless (Dll), a gene required for limb development in Drosophila. We show that the local chromatin conformation at Dll depends on the cell type: in cells that express Dll, the 5' regulatory region is in close proximity to the Dll promoter. In Dll-nonexpressing cells this DNA is in a more extended configuration. In addition, transcriptional activators and repressors are bound to Dll regulatory DNA in a cell type-specific manner. The pattern of binding by GAGA factor and the variant histone H2Av suggest that they play a role in the regulation of Dll chromatin conformation in expressing and nonexpressing cell types, respectively.
Collapse
|
36
|
Abstract
Histones are the protein components of chromatin and are important for its organization and compaction. Although core histones are exclusively expressed during S phase of the cell cycle, there exist variants of canonical histones that are expressed throughout the cell cycle. These histone variants are often deposited at defined regions of the genome and they play important roles in a variety of cellular processes, such as transcription regulation, heterochromatin formation and DNA repair. In this chapter, we will focus on several histone variants that have been linked to transcription regulation, and highlight their physical and functional features that facilitate their activities in this context.
Collapse
Affiliation(s)
- Cindy Law
- Ontario Cancer Institute, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | | |
Collapse
|
37
|
Ioudinkova ES, Barat A, Pichugin A, Markova E, Sklyar I, Pirozhkova I, Robin C, Lipinski M, Ogryzko V, Vassetzky YS, Razin SV. Distinct distribution of ectopically expressed histone variants H2A.Bbd and MacroH2A in open and closed chromatin domains. PLoS One 2012; 7:e47157. [PMID: 23118866 PMCID: PMC3484066 DOI: 10.1371/journal.pone.0047157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 09/13/2012] [Indexed: 12/12/2022] Open
Abstract
Background It becomes increasingly evident that nuclesomes are far from being identical to each other. This nucleosome diversity is due partially to the existence of histone variants encoded by separate genes. Among the known histone variants the less characterized are H2A.Bbd and different forms of macroH2A. This is especially true in the case of H2A.Bbd as there are still no commercially available antibodies specific to H2A.Bbd that can be used for chromatin immunoprecipitation (ChIP). Methods We have generated HeLa S3 cell lines stably expressing epitope-tagged versions of macroH2A1.1, H2A.Bbd or canonical H2A and analyzed genomic distribution of the tagged histones using ChIP-on-chip technique. Results The presence of histone H2A variants macroH2A1.1 and H2A.Bbd has been analyzed in the chromatin of several segments of human chromosomes 11, 16 and X that have been chosen for their different gene densities and chromatin status. Chromatin immunoprecipitation (ChIP) followed by hybridization with custom NimbleGene genomic microarrays demonstrated that in open chromatin domains containing tissue-specific along with housekeeping genes, the H2A.Bbd variant was preferentially associated with the body of a subset of transcribed genes. The macroH2A1.1 variant was virtually absent from some genes and underrepresented in others. In contrast, in closed chromatin domains which contain only tissue-specific genes inactive in HeLa S3 cells, both macroH2A1.1 and H2A.Bbd histone variants were present and often colocalized. Conclusions Genomic distribution of macro H2A and H2A.Bbd does not follow any simple rule and is drastically different in open and closed genomic domains.
Collapse
Affiliation(s)
- Elena S. Ioudinkova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- CNRS UMR 8126, Univ. Paris-Sud 11, Institut de cancérologie Gustave Roussy, Villejuif, France
- LIA1066, Laboratoire Franco-Russe de recherches en oncologie, Villejuif, France
| | - Ana Barat
- CNRS UMR 8126, Univ. Paris-Sud 11, Institut de cancérologie Gustave Roussy, Villejuif, France
- The Centre for Scientific Computing & Complex Systems Modelling (SCI-SYM), School of Computing, Dublin City University, Dublin, Ireland
| | - Andrey Pichugin
- CNRS UMR 8126, Univ. Paris-Sud 11, Institut de cancérologie Gustave Roussy, Villejuif, France
- LIA1066, Laboratoire Franco-Russe de recherches en oncologie, Villejuif, France
| | - Elena Markova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- CNRS UMR 8126, Univ. Paris-Sud 11, Institut de cancérologie Gustave Roussy, Villejuif, France
- LIA1066, Laboratoire Franco-Russe de recherches en oncologie, Villejuif, France
| | - Ilya Sklyar
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- CNRS UMR 8126, Univ. Paris-Sud 11, Institut de cancérologie Gustave Roussy, Villejuif, France
- LIA1066, Laboratoire Franco-Russe de recherches en oncologie, Villejuif, France
| | - Iryna Pirozhkova
- CNRS UMR 8126, Univ. Paris-Sud 11, Institut de cancérologie Gustave Roussy, Villejuif, France
- LIA1066, Laboratoire Franco-Russe de recherches en oncologie, Villejuif, France
| | - Chloe Robin
- CNRS UMR 8126, Univ. Paris-Sud 11, Institut de cancérologie Gustave Roussy, Villejuif, France
- LIA1066, Laboratoire Franco-Russe de recherches en oncologie, Villejuif, France
| | - Marc Lipinski
- CNRS UMR 8126, Univ. Paris-Sud 11, Institut de cancérologie Gustave Roussy, Villejuif, France
- LIA1066, Laboratoire Franco-Russe de recherches en oncologie, Villejuif, France
| | - Vasily Ogryzko
- CNRS UMR 8126, Univ. Paris-Sud 11, Institut de cancérologie Gustave Roussy, Villejuif, France
- LIA1066, Laboratoire Franco-Russe de recherches en oncologie, Villejuif, France
| | - Yegor S. Vassetzky
- CNRS UMR 8126, Univ. Paris-Sud 11, Institut de cancérologie Gustave Roussy, Villejuif, France
- LIA1066, Laboratoire Franco-Russe de recherches en oncologie, Villejuif, France
- * E-mail:
| | - Sergey V. Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- LIA1066, Laboratoire Franco-Russe de recherches en oncologie, Villejuif, France
| |
Collapse
|
38
|
Bönisch C, Hake SB. Histone H2A variants in nucleosomes and chromatin: more or less stable? Nucleic Acids Res 2012; 40:10719-41. [PMID: 23002134 PMCID: PMC3510494 DOI: 10.1093/nar/gks865] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In eukaryotes, DNA is organized together with histones and non-histone proteins into a highly complex nucleoprotein structure called chromatin, with the nucleosome as its monomeric subunit. Various interconnected mechanisms regulate DNA accessibility, including replacement of canonical histones with specialized histone variants. Histone variant incorporation can lead to profound chromatin structure alterations thereby influencing a multitude of biological processes ranging from transcriptional regulation to genome stability. Among core histones, the H2A family exhibits highest sequence divergence, resulting in the largest number of variants known. Strikingly, H2A variants differ mostly in their C-terminus, including the docking domain, strategically placed at the DNA entry/exit site and implicated in interactions with the (H3–H4)2-tetramer within the nucleosome and in the L1 loop, the interaction interface of H2A–H2B dimers. Moreover, the acidic patch, important for internucleosomal contacts and higher-order chromatin structure, is altered between different H2A variants. Consequently, H2A variant incorporation has the potential to strongly regulate DNA organization on several levels resulting in meaningful biological output. Here, we review experimental evidence pinpointing towards outstanding roles of these highly variable regions of H2A family members, docking domain, L1 loop and acidic patch, and close by discussing their influence on nucleosome and higher-order chromatin structure and stability.
Collapse
Affiliation(s)
- Clemens Bönisch
- Department of Molecular Biology, Center for Integrated Protein Science Munich, Adolf-Butenandt-Institute, Ludwig-Maximilians-University Munich, 80336 Munich, Germany.
| | | |
Collapse
|
39
|
Lau E, Ronai ZA. ATF2 - at the crossroad of nuclear and cytosolic functions. J Cell Sci 2012; 125:2815-24. [PMID: 22685333 DOI: 10.1242/jcs.095000] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
An increasing number of transcription factors have been shown to elicit oncogenic and tumor suppressor activities, depending on the tissue and cell context. Activating transcription factor 2 (ATF2; also known as cAMP-dependent transcription factor ATF-2) has oncogenic activities in melanoma and tumor suppressor activities in non-malignant skin tumors and breast cancer. Recent work has shown that the opposing functions of ATF2 are associated with its subcellular localization. In the nucleus, ATF2 contributes to global transcription and the DNA damage response, in addition to specific transcriptional activities that are related to cell development, proliferation and death. ATF2 can also translocate to the cytosol, primarily following exposure to severe genotoxic stress, where it impairs mitochondrial membrane potential and promotes mitochondrial-based cell death. Notably, phosphorylation of ATF2 by the epsilon isoform of protein kinase C (PKCε) is the master switch that controls its subcellular localization and function. Here, we summarize our current understanding of the regulation and function of ATF2 in both subcellular compartments. This mechanism of control of a non-genetically modified transcription factor represents a novel paradigm for 'oncogene addiction'.
Collapse
Affiliation(s)
- Eric Lau
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd, La Jolla, CA 92130, USA.
| | | |
Collapse
|
40
|
Seong KH, Maekawa T, Ishii S. Inheritance and memory of stress-induced epigenome change: roles played by the ATF-2 family of transcription factors. Genes Cells 2012; 17:249-63. [PMID: 22380515 PMCID: PMC3444692 DOI: 10.1111/j.1365-2443.2012.01587.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Data on the inheritance-of-stress effect have been accumulating and some mechanistic insights, such as epigenetic regulation, have also been suggested. In particular, the modern view of Lamarckian inheritance appears to be affected by the finding that stress-induced epigenetic changes can be inherited. This review summarizes the current data on the inheritance of stress effect and possible mechanisms involved in this process. In particular, we focus on the stress-induced epigenetic changes mediated by the ATF-2 family of transcription factors.
Collapse
Affiliation(s)
- Ki-Hyeon Seong
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | |
Collapse
|
41
|
MacroH2A1 regulates the balance between self-renewal and differentiation commitment in embryonic and adult stem cells. Mol Cell Biol 2012; 32:1442-52. [PMID: 22331466 DOI: 10.1128/mcb.06323-11] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
One of the most striking epigenetic alterations that occurs at the level of the nucleosome is the complete exchange of the canonical H2A histones for the macroH2A variant. Here, we provide insight into the poorly recognized function of macroH2A in transcriptional activation and demonstrate its relevance in embryonic and adult stem cells. Knockdown of macroH2A1 in mouse embryonic stem (mES) cells limited their capacity to differentiate but not their self-renewal. The loss of macroH2A1 interfered with the proper activation of differentiation genes, most of which are direct target genes of macroH2A. Additionally, macroH2A1-deficient mES cells displayed incomplete inactivation of pluripotency genes and formed defective embryoid bodies. In vivo, macroH2A1-deficient teratomas contained a massive expansion of malignant, undifferentiated carcinoma tissue. In the heterogeneous culture of primary human keratinocytes, macroH2A1 levels negatively correlated with the self-renewal capacity of the pluripotent compartment. Together these results establish macroH2A1 as a critical chromatin component that regulates the delicate balance between self-renewal and differentiation of embryonic and adult stem cells.
Collapse
|
42
|
Huang YC, Saito S, Yokoyama KK. Histone chaperone Jun dimerization protein 2 (JDP2): role in cellular senescence and aging. Kaohsiung J Med Sci 2012; 26:515-31. [PMID: 20950777 DOI: 10.1016/s1607-551x(10)70081-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 06/22/2010] [Indexed: 01/12/2023] Open
Abstract
Transcription factor Jun dimerization protein 2 (JDP2) binds directly to histones and DNA, and inhibits p300-mediated acetylation of core histones and reconstituted nucleosomes that contain JDP2-recognition DNA sequences. The region of JDP2 that encompasses its histone-binding domain and DNA-binding region is essential to inhibit histone acetylation by histone acetyltransferases. Moreover, assays of nucleosome assembly in vitro demonstrate that JDP2 also has histone-chaperone activity. The mutation of the region responsible for inhibition of histone acetyltransferase activity within JDP2 eliminates repression of transcription from the c-jun promoter by JDP2, as well as JDP2-mediated inhibition of retinoic-acid-induced differentiation. Thus JDP2 plays a key role as a repressor of cell differentiation by regulating the expression of genes with an activator protein 1 (AP-1) site via inhibition of histone acetylation and/or assembly and disassembly of nucleosomes. Senescent cells show a series of alterations, including flatten and enlarged morphology, increase in nonspecific acidic β-galactosidase activity, chromatin condensation, and changes in gene expression patterns. The onset and maintenance of senescence are regulated by two tumor suppressors, p53 and retinoblastoma proteins. The expression of p53 and retinoblastoma proteins is regulated by two distinct proteins, p16(Ink4a) and Arf, respectively, which are encoded by cdkn2a. JDP2 inhibits recruitment of the polycomb repressive complexes 1 and 2 (PRC-1 and PRC-2) to the promoter of the gene that encodes p16(Ink4a) and inhibits the methylation of lysine 27 of histone H3 (H3K27). The PRCs associate with the p16(Ink4a)/Arf locus in young proliferating cells and dissociate from it in senescent cells. Therefore, it seems that chromatin-remodeling factors that regulate association and dissociation of PRCs, and are controlled by JDP2, might play an important role in the senescence program. The molecular mechanisms that underlie the action of JDP2 in cellular aging and replicative senescence by mediating the dissociation of PRCs from the p16(Ink4a)/Arf locus are discussed.
Collapse
Affiliation(s)
- Yu-Chang Huang
- Center of Excellence for Environmental Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | |
Collapse
|
43
|
Kim W, Chakraborty G, Kim S, Shin J, Park CH, Jeong MW, Bharatham N, Yoon HS, Kim KT. Macro histone H2A1.2 (macroH2A1) protein suppresses mitotic kinase VRK1 during interphase. J Biol Chem 2011; 287:5278-89. [PMID: 22194607 DOI: 10.1074/jbc.m111.281709] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
VRK1-mediated phosphorylation of histone H3 should be restricted in mitosis for consistent cell cycling, and defects in this process trigger cellular catastrophe. However, an interphasic regulator against VRK1 has not been actually investigated so far. Here, we show that the histone variant macrodomain-containing histone H2A1.2 functions as a suppressor against VRK1 during interphase. The level of macroH2A1.2 was markedly reduced in the mitotic phase, and the macroH2A1.2-mediated inhibition of histone H3 phosphorylation occurred mainly during interphase. We also found direct interaction and binding features between VRK1 and macroH2A1.2 by NMR spectroscopy. Hence, our findings might provide valuable insight into the underlying molecular mechanism regarding an epigenetic regulation of histone H3 during the cell cycle.
Collapse
Affiliation(s)
- Wanil Kim
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chauhan S, Boyd DD. Regulation of u-PAR gene expression by H2A.Z is modulated by the MEK-ERK/AP-1 pathway. Nucleic Acids Res 2011; 40:600-13. [PMID: 21937508 PMCID: PMC3258129 DOI: 10.1093/nar/gkr725] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The urokinase receptor (u-PAR) which is largely regulated at the transcriptional level has been implicated in tumor progression. In this study, we explored the epigenetic regulation of u-PAR and showed that the histone variant H2A.Z negatively regulates its expression in multiple cell lines. Chromatin immunoprecipitation assays revealed that H2A.Z was enriched at previously characterized u-PAR-regulatory regions (promoter and a downstream enhancer) and dissociates upon activation of gene expression by phorbol ester (PMA). Using specific chemical and dominant negative expression constructs, we show that the MEK–ERK signaling pathway terminating at AP-1 transcription factors intersects with the epigenetic control of u-PAR expression by H2A.Z. Furthermore, we demonstrate that two other AP-1 targets (MMP9 gene and miR-21 microRNA) are also H2A.Z regulated. In conclusion, our work demonstrates that (i) the expression of two genes and a microRNA all implicated in tumor progression are directly regulated by H2A.Z and (ii) MEK–ERK signaling terminating at AP-1 intersects with the epigenetic control of target gene expression by H2A.Z.
Collapse
Affiliation(s)
- Santosh Chauhan
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
45
|
Antonaki A, Demetriades C, Polyzos A, Banos A, Vatsellas G, Lavigne MD, Apostolou E, Mantouvalou E, Papadopoulou D, Mosialos G, Thanos D. Genomic analysis reveals a novel nuclear factor-κB (NF-κB)-binding site in Alu-repetitive elements. J Biol Chem 2011; 286:38768-38782. [PMID: 21896491 DOI: 10.1074/jbc.m111.234161] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The transcription factor NF-κB is a critical regulator of immune responses. To determine how NF-κB builds transcriptional control networks, we need to obtain a topographic map of the factor bound to the genome and correlate it with global gene expression. We used a ChIP cloning technique and identified novel NF-κB target genes in response to virus infection. We discovered that most of the NF-κB-bound genomic sites deviate from the consensus and are located away from conventional promoter regions. Remarkably, we identified a novel abundant NF-κB-binding site residing in specialized Alu-repetitive elements having the potential for long range transcription regulation, thus suggesting that in addition to its known role, NF-κB has a primate-specific function and a role in human evolution. By combining these data with global gene expression profiling of virus-infected cells, we found that most of the sites bound by NF-κB in the human genome do not correlate with changes in gene expression of the nearby genes and they do not appear to function in the context of synthetic promoters. These results demonstrate that repetitive elements interspersed in the human genome function as common target sites for transcription factors and may play an important role in expanding the repertoire of binding sites to engage new genes into regulatory networks.
Collapse
Affiliation(s)
- Athina Antonaki
- Institute of Molecular Biology, Genetics and Biotechnology, Biomedical Research Foundation, Academy of Athens, 4 Soranou Efesiou Street, Athens 11527, Greece
| | - Constantinos Demetriades
- Department of Biology, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
| | - Alexander Polyzos
- Institute of Molecular Biology, Genetics and Biotechnology, Biomedical Research Foundation, Academy of Athens, 4 Soranou Efesiou Street, Athens 11527, Greece
| | - Aggelos Banos
- Institute of Molecular Biology, Genetics and Biotechnology, Biomedical Research Foundation, Academy of Athens, 4 Soranou Efesiou Street, Athens 11527, Greece
| | - Giannis Vatsellas
- Institute of Molecular Biology, Genetics and Biotechnology, Biomedical Research Foundation, Academy of Athens, 4 Soranou Efesiou Street, Athens 11527, Greece
| | - Matthieu D Lavigne
- Institute of Molecular Biology, Genetics and Biotechnology, Biomedical Research Foundation, Academy of Athens, 4 Soranou Efesiou Street, Athens 11527, Greece
| | - Effie Apostolou
- Institute of Molecular Biology, Genetics and Biotechnology, Biomedical Research Foundation, Academy of Athens, 4 Soranou Efesiou Street, Athens 11527, Greece
| | - Eva Mantouvalou
- Institute of Molecular Biology, Genetics and Biotechnology, Biomedical Research Foundation, Academy of Athens, 4 Soranou Efesiou Street, Athens 11527, Greece
| | - Deppie Papadopoulou
- Institute of Molecular Biology, Genetics and Biotechnology, Biomedical Research Foundation, Academy of Athens, 4 Soranou Efesiou Street, Athens 11527, Greece
| | - George Mosialos
- Department of Biology, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece.
| | - Dimitris Thanos
- Institute of Molecular Biology, Genetics and Biotechnology, Biomedical Research Foundation, Academy of Athens, 4 Soranou Efesiou Street, Athens 11527, Greece.
| |
Collapse
|
46
|
Takiya S, Inoue H, Kimoto M. Novel enhancer and promoter elements indispensable for the tissue-specific expression of the sericin-1 gene of the silkworm Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:592-601. [PMID: 21496486 DOI: 10.1016/j.ibmb.2011.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/21/2011] [Accepted: 03/29/2011] [Indexed: 05/30/2023]
Abstract
Sericins are glue proteins produced specifically in the middle silk gland (MSG) of the silkworm Bombyx mori, while the silk fiber protein, fibroin, is produced in the posterior silk gland (PSG). These silk proteins are expected to be useful biomaterials in medical technology as well as biotechnology. In this study, we analyzed promoter elements of the sericin-1 gene (ser1) in vivo by introducing reporter constructs into silk glands via gene gun technology. The region from -1602 to +47 was sufficient to induce MSG-specific expression. The 5' deletion mutants showed a three-step decrease in promoter activity with the key sequences located between -1362 and -1250, -201 and -116, and -115 and -37. We detected a tissue- and stage-specific factor complex (MSG-intermolt-specific complex: MIC) bound to the sequence elements around the -1350, -320, -180, and -70 regions. A mutation in the -70 region, which inhibits MIC-binding, diminished almost all promoter activity, while another mutation that did not inhibit MIC-binding showed no effect on promoter activity. The results suggest that the binding of MIC to the above elements is intrinsic for the spatiotemporal specificity of ser1 in vivo.
Collapse
Affiliation(s)
- Shigeharu Takiya
- Division of Biological Sciences and Center for Genome Dynamics, Faculty of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo 060-0810, Japan.
| | | | | |
Collapse
|
47
|
Tanasijevic B, Rasmussen TP. X chromosome inactivation and differentiation occur readily in ES cells doubly-deficient for macroH2A1 and macroH2A2. PLoS One 2011; 6:e21512. [PMID: 21738686 PMCID: PMC3127949 DOI: 10.1371/journal.pone.0021512] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/31/2011] [Indexed: 12/29/2022] Open
Abstract
Macrohistones (mH2As) are unusual histone variants found exclusively in vertebrate chromatin. In mice, the H2afy gene encodes two splice variants, mH2A1.1 and mH2A1.2 and a second gene, H2afy2, encodes an additional mH2A2 protein. Both mH2A isoforms have been found enriched on the inactive X chromosome (Xi) in differentiated mammalian female cells, and are incorporated into the chromatin of developmentally-regulated genes. To investigate the functional significance of mH2A isoforms for X chromosome inactivation (XCI), we produced male and female embryonic stem cell (ESC) lines with stably-integrated shRNA constructs that simultaneously target both mH2A1 and mH2A2. Surprisingly, we find that female ESCs deficient for both mH2A1 and mH2A2 readily execute and maintain XCI upon differentiation. Furthermore, male and female mH2A-deficient ESCs proliferate normally under pluripotency culture conditions, and respond to several standard differentiation procedures efficiently. Our results show that XCI can readily proceed with substantially reduced total mH2A content.
Collapse
Affiliation(s)
- Borko Tanasijevic
- Center for Regenerative Biology, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Theodore P. Rasmussen
- Center for Regenerative Biology, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
48
|
Friedman N, Barzily-Rokni M, Isaac S, Eden A. The histone H2A variant macroH2A1 does not localize to the centrosome. PLoS One 2011; 6:e17262. [PMID: 21364955 PMCID: PMC3043097 DOI: 10.1371/journal.pone.0017262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/27/2011] [Indexed: 12/31/2022] Open
Abstract
MacroH2A1 is a histone H2A variant which contains a large non-histone C-terminal region of largely unknown function. Within this region is a macro domain which can bind ADP-ribose and related molecules. Most studies of macroH2A1 focus on the involvement of this variant in transcriptional repression. Studies in mouse embryos and in embryonic stem cells suggested that during early development macroH2A can be found at the centrosome. Centrosomal localization of macroH2A was later reported in somatic cells. Here we provide data showing that macroH2A1 does not localize to the centrosome and that the centrosomal signal observed with antibodies directed against the macroH2A1 non-histone region may be the result of antibody cross-reactivity.
Collapse
Affiliation(s)
- Nathalie Friedman
- Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Barzily-Rokni
- Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sara Isaac
- Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amir Eden
- Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
49
|
Duffey D, Dolgilevich S, Razzouk S, Li L, Green R, Gorti GK. Activating transcription factor-2 in survival mechanisms in head and neck carcinoma cells. Head Neck 2010; 33:1586-99. [PMID: 21990224 DOI: 10.1002/hed.21648] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 09/08/2010] [Accepted: 09/14/2010] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Activating transcription factor-2 (ATF2) is associated with tumor progression but is not well studied in head and neck squamous cell carcinoma (HNSCC). Its effects in stress and its importance in other survival mechanisms were studied. METHODS ATF2 expression and nuclear activation were confirmed in HNSCC. After modulation of ATF2, in vitro effects on proliferation and chemosensitivity were studied. Effects on in vivo tumor growth and interleukin 8 (IL-8) expression were determined. Tumor necrosis factor-alpha (TNF-α) treatment was used to further evaluate cytokine production and chemosensitivity. RESULTS Reductions of ATF2 resulted in significant nuclear p-ATF2 activation, cisplatin resistance, and augmented IL-8 expression without affecting in vivo tumor growth. In this setting, TNF increases p-p38 phosphorylation and chemosensitivity while further enhancing IL-8 production. CONCLUSION Our data suggest regulatory roles for ATF2 in TNF-related mechanisms of HNSCC. Its perturbation and nuclear activation are associated with significant effects on survival and cytokine production.
Collapse
Affiliation(s)
- Dianne Duffey
- Yale University School of Medicine Section of Otolaryngology, 333 Cedar St, Box 208041, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Jun dimerization protein 2 controls senescence and differentiation via regulating histone modification. J Biomed Biotechnol 2010; 2011:569034. [PMID: 21197464 PMCID: PMC3005813 DOI: 10.1155/2011/569034] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 09/08/2010] [Indexed: 01/23/2023] Open
Abstract
Transcription factor, Jun dimerization protein 2 (JDP2), binds directly to histones and DNAs and then inhibits the p300-mediated acetylation both of core histones and of reconstituted nucleosomes that contain JDP2 recognition DNA sequences. JDP2 plays a key role as a repressor of adipocyte differentiation by regulation of the expression of the gene
C/EBPδ
via inhibition of histone acetylation. Moreover, JDP2-deficient mouse embryonic fibroblasts (JDP2−/− MEFs)
are resistant to replicative senescence. JDP2 inhibits the recruitment of polycomb repressive complexes (PRC1 and PRC2) to the promoter
of the gene encoding p16Ink4a, resulting from the inhibition of methylation of lysine 27 of histone H3 (H3K27). Therefore, it seems that chromatin-remodeling factors, including the PRC complex controlled by JDP2, may be important players in the senescence program. The novel mechanisms that underline the action of JDP2 in inducing cellular senescence and suppressing adipocyte differentiation are reviewed.
Collapse
|