1
|
de Crécy-Lagard V, Barahoglu Z, Yuan Y, Boël G, Babor J, Bacusmo JM, Dedon PC, Ho P, Hummels KR, Kearns D. Are Bacterial Processes Dependent on Global Ribosome Pausing Affected by tRNA Modification Defects? J Mol Biol 2025:169107. [PMID: 40210524 DOI: 10.1016/j.jmb.2025.169107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/12/2025]
Abstract
By integrating a literature review with transcriptomic, proteomic, and phenotypic data from two model bacteria, Escherichia coli and Vibrio cholerae, we put forward the hypothesis that defects in tRNA modification broadly impact processes that are evolutionarily tuned to be sensitive to translation speed. These include the translation of regulatory proteins associated with motility, iron homeostasis, and leader peptide-driven attenuation mechanisms. Some of these translation speed-dependent processes are influenced by the absence of a single modification, while others are affected by the absence of multiple modifications. Although further experiments are needed to clarify the mechanisms involved in each case, this work provides a foundational framework to guide future research.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; Genetics Institute, University of Florida, Gainesville, FL 32611, USA.
| | - Zeynep Barahoglu
- Institut Pasteur, Université Paris Cité, Epitranscriptomic and Translational Responses to Anti-bacterial Stress, 75015 Paris, France; Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, F-75005 Paris, France.
| | - Yifeng Yuan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA.
| | - Grégory Boël
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, F-75005 Paris, France.
| | - Jill Babor
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA.
| | - Jo Marie Bacusmo
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA.
| | - Peter C Dedon
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance IRG, Singapore 138602 Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Peiying Ho
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance IRG, Singapore 138602 Singapore
| | | | - Daniel Kearns
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
2
|
Fruchard L, Babosan A, Carvalho A, Lang M, Li B, Duchateau M, Giai Gianetto Q, Matondo M, Bonhomme F, Hatin I, Arbes H, Fabret C, Corler E, Sanchez G, Marchand V, Motorin Y, Namy O, de Crécy-Lagard V, Mazel D, Baharoglu Z. Aminoglycoside tolerance in Vibrio cholerae engages translational reprogramming associated with queuosine tRNA modification. eLife 2025; 13:RP96317. [PMID: 39761105 DOI: 10.7554/elife.96317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Tgt is the enzyme modifying the guanine (G) in tRNAs with GUN anticodon to queuosine (Q). tgt is required for optimal growth of Vibrio cholerae in the presence of sub-lethal aminoglycoside concentrations. We further explored here the role of the Q34 in the efficiency of codon decoding upon tobramycin exposure. We characterized its impact on the overall bacterial proteome, and elucidated the molecular mechanisms underlying the effects of Q34 modification in antibiotic translational stress response. Using molecular reporters, we showed that Q34 impacts the efficiency of decoding at tyrosine TAT and TAC codons. Proteomics analyses revealed that the anti-SoxR factor RsxA is better translated in the absence of tgt. RsxA displays a codon bias toward tyrosine TAT and overabundance of RsxA leads to decreased expression of genes belonging to SoxR oxidative stress regulon. We also identified conditions that regulate tgt expression. We propose that regulation of Q34 modification in response to environmental cues leads to translational reprogramming of transcripts bearing a biased tyrosine codon usage. In silico analysis further identified candidate genes which could be subject to such translational regulation, among which DNA repair factors. Such transcripts, fitting the definition of modification tunable transcripts, are central in the bacterial response to antibiotics.
Collapse
Affiliation(s)
- Louna Fruchard
- Institut Pasteur, Université Paris Cité, Unité Plasticité du Génome Bactérien, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Anamaria Babosan
- Institut Pasteur, Université Paris Cité, Unité Plasticité du Génome Bactérien, Paris, France
| | - Andre Carvalho
- Institut Pasteur, Université Paris Cité, Unité Plasticité du Génome Bactérien, Paris, France
| | - Manon Lang
- Institut Pasteur, Université Paris Cité, Unité Plasticité du Génome Bactérien, Paris, France
| | - Blaise Li
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Magalie Duchateau
- Institut Pasteur, Université Paris Cité, Proteomics Platform, Mass Spectrometry for Biology Unit, Paris, France
| | - Quentin Giai Gianetto
- Institut Pasteur, Université Paris Cité, Proteomics Platform, Mass Spectrometry for Biology Unit, Paris, France
- Institut Pasteur, Université Paris Cité, Department of Computation Biology, Bioinformatics and Biostatistics Hub, Paris, France
| | - Mariette Matondo
- Institut Pasteur, Université Paris Cité, Proteomics Platform, Mass Spectrometry for Biology Unit, Paris, France
| | - Frederic Bonhomme
- Institut Pasteur, Université Paris cité, Epigenetic Chemical Biology Unit, Paris, France
| | - Isabelle Hatin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif sur Yvette, France
| | - Hugo Arbes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif sur Yvette, France
| | - Céline Fabret
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif sur Yvette, France
| | - Enora Corler
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif sur Yvette, France
| | - Guillaume Sanchez
- Université de Lorraine, CNRS, Inserm, UAR2008/US40 IBSLor, Epitranscriptomics and RNA Sequencing Core Facility and UMR7365 IMoPA, Nancy, France
| | - Virginie Marchand
- Université de Lorraine, CNRS, Inserm, UAR2008/US40 IBSLor, Epitranscriptomics and RNA Sequencing Core Facility and UMR7365 IMoPA, Nancy, France
| | - Yuri Motorin
- Université de Lorraine, CNRS, Inserm, UAR2008/US40 IBSLor, Epitranscriptomics and RNA Sequencing Core Facility and UMR7365 IMoPA, Nancy, France
| | - Olivier Namy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif sur Yvette, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, United States
- University of Florida Genetics Institute, Gainesville, United States
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, Unité Plasticité du Génome Bactérien, Paris, France
| | - Zeynep Baharoglu
- Institut Pasteur, Université Paris Cité, Unité Plasticité du Génome Bactérien, Paris, France
| |
Collapse
|
3
|
Zhong Z, Li Y, Sun Q, Chen D. Tiny but mighty: Diverse functions of uORFs that regulate gene expression. Comput Struct Biotechnol J 2024; 23:3771-3779. [PMID: 39525088 PMCID: PMC11550727 DOI: 10.1016/j.csbj.2024.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Upstream open reading frames (uORFs) are critical cis-acting regulators of downstream gene expression. Specifically, uORFs regulate translation by disrupting translation initiation or mediating mRNA decay. We herein summarize the effects of several uORFs that regulate gene expression in microbes to illustrate the detailed mechanisms mediating uORF functions. Microbes are ideal for uORF studies because of their prompt responses to stimuli. Recent studies revealed uORFs are ubiquitous in higher eukaryotes. Moreover, they influence various physiological processes in mammalian cells by regulating gene expression, mostly at the translational level. Research conducted using rapidly evolving methods for ribosome profiling combined with protein analyses and computational annotations showed that uORFs in mammalian cells control gene expression similar to microbial uORFs, but they also have unique tumorigenesis-related roles because of their protein-encoding capacities. We briefly introduce cutting-edge research findings regarding uORFs in mammalian cells.
Collapse
Affiliation(s)
- Zhenfei Zhong
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan 650500, China
| | - Yajie Li
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan 650500, China
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dahua Chen
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan 650500, China
- Southwest United Graduate School, Kunming 650500, China
| |
Collapse
|
4
|
Barrault M, Leclair E, Kumeko EK, Jacquet E, Bouloc P. Staphylococcal sRNA IsrR downregulates methylthiotransferase MiaB under iron-deficient conditions. Microbiol Spectr 2024; 12:e0388823. [PMID: 39162503 PMCID: PMC11448259 DOI: 10.1128/spectrum.03888-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/09/2024] [Indexed: 08/21/2024] Open
Abstract
Staphylococcus aureus is a major contributor to bacterial-associated mortality, owing to its exceptional adaptability across diverse environments. Iron is vital to most organisms but can be toxic in excess. To manage its intracellular iron, S. aureus, like many pathogens, employs intricate systems. We have recently identified IsrR as a key regulatory RNA induced during iron starvation. Its role is to reduce the synthesis of non-essential iron-containing proteins under iron-depleted conditions. In this study, we unveil IsrR's regulatory action on MiaB, an enzyme responsible for methylthio group addition to specific sites on transfer RNAs (tRNAs). We use predictive tools and reporter fusion assays to demonstrate IsrR's binding to the Shine-Dalgarno sequence of miaB RNA, thereby impeding its translation. The effectiveness of IsrR hinges on the integrity of a specific C-rich region. As MiaB is non-essential and has iron-sulfur clusters, IsrR induction spares iron by downregulating miaB. This may improve S. aureus fitness and aid in navigating the host's nutritional immune defenses.IMPORTANCEIn many biotopes, including those found within an infected host, bacteria confront the challenge of iron deficiency. They employ various strategies to adapt to this scarcity of nutrients, one of which involves regulating iron-containing proteins through the action of small regulatory RNAs. Our study shows how IsrR, a small RNA from S. aureus, prevents the production of MiaB, a tRNA-modifying enzyme containing iron-sulfur clusters. With this illustration, we propose a new substrate for an iron-sparing small RNA, which, when downregulated, should reduce the need for iron and save it to essential functions.
Collapse
Affiliation(s)
- Maxime Barrault
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Elise Leclair
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Etornam Kofi Kumeko
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Eric Jacquet
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR2301, Gif-sur-Yvette, France
| | - Philippe Bouloc
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
5
|
Olivieri P, Zupok A, Yildiz T, Oltmanns J, Lehmann A, Sokolowska E, Skirycz A, Schünemann V, Leimkühler S. TusA influences Fe-S cluster assembly and iron homeostasis in E. coli by reducing the translation efficiency of Fur. Microbiol Spectr 2024; 12:e0055624. [PMID: 38916309 PMCID: PMC11302051 DOI: 10.1128/spectrum.00556-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/20/2024] [Indexed: 06/26/2024] Open
Abstract
All sulfur transfer pathways have generally a l-cysteine desulfurase as an initial sulfur-mobilizing enzyme in common, which serves as a sulfur donor for the biosynthesis of numerous sulfur-containing biomolecules in the cell. In Escherichia coli, the housekeeping l-cysteine desulfurase IscS has several interaction partners, which bind at different sites of the protein. So far, the interaction sites of IscU, Fdx, CyaY, and IscX involved in iron-sulfur (Fe-S) cluster assembly have been mapped, in addition to TusA, which is required for molybdenum cofactor biosynthesis and mnm5s2U34 tRNA modifications, and ThiI, which is involved in thiamine biosynthesis and s4U8 tRNA modifications. Previous studies predicted that the sulfur acceptor proteins bind to IscS one at a time. E. coli TusA has, however, been suggested to be involved in Fe-S cluster assembly, as fewer Fe-S clusters were detected in a ∆tusA mutant. The basis for this reduction in Fe-S cluster content is unknown. In this work, we investigated the role of TusA in iron-sulfur cluster assembly and iron homeostasis. We show that the absence of TusA reduces the translation of fur, thereby leading to pleiotropic cellular effects, which we dissect in detail in this study.IMPORTANCEIron-sulfur clusters are evolutionarily ancient prosthetic groups. The ferric uptake regulator plays a major role in controlling the expression of iron homeostasis genes in bacteria. We show that a ∆tusA mutant is impaired in the assembly of Fe-S clusters and accumulates iron. TusA, therefore, reduces fur mRNA translation leading to pleiotropic cellular effects.
Collapse
Affiliation(s)
- Paolo Olivieri
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, Potsdam, Germany
| | - Arkadiuz Zupok
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, Potsdam, Germany
| | - Tugba Yildiz
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, Potsdam, Germany
| | - Jonathan Oltmanns
- Department of Physics, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Angelika Lehmann
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, Potsdam, Germany
| | - Ewelina Sokolowska
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Aleksandra Skirycz
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Volker Schünemann
- Department of Physics, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Silke Leimkühler
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
6
|
Abstract
Small regulatory RNA (sRNAs) are key mediators of posttranscriptional gene control in bacteria. Assisted by RNA-binding proteins, a single sRNA often modulates the expression of dozens of genes, and thus sRNAs frequently adopt central roles in regulatory networks. Posttranscriptional regulation by sRNAs comes with several unique features that cannot be achieved by transcriptional regulators. However, for optimal network performance, transcriptional and posttranscriptional control mechanisms typically go hand-in-hand. This view is reflected by the ever-growing class of mixed network motifs involving sRNAs and transcription factors, which are ubiquitous in biology and whose regulatory properties we are beginning to understand. In addition, sRNA activity can be antagonized by base-pairing with sponge RNAs, adding yet another layer of complexity to these networks. In this article, we summarize the regulatory concepts underlying sRNA-mediated gene control in bacteria and discuss how sRNAs shape the output of a network, focusing on several key examples.
Collapse
Affiliation(s)
- Kai Papenfort
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany;
- Microverse Cluster, Friedrich Schiller University Jena, Jena, Germany
| | - Sahar Melamed
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel;
| |
Collapse
|
7
|
Jaworska K, Konarska J, Gomza P, Rożen P, Nieckarz M, Krawczyk-Balska A, Brzostek K, Raczkowska A. Interplay between the RNA Chaperone Hfq, Small RNAs and Transcriptional Regulator OmpR Modulates Iron Homeostasis in the Enteropathogen Yersinia enterocolitica. Int J Mol Sci 2023; 24:11157. [PMID: 37446335 DOI: 10.3390/ijms241311157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Iron is both essential for and potentially toxic to bacteria, so the precise maintenance of iron homeostasis is necessary for their survival. Our previous study indicated that in the human enteropathogen Yersinia enterocolitica, the regulator OmpR directly controls the transcription of the fur, fecA and fepA genes, encoding the ferric uptake repressor and two transporters of ferric siderophores, respectively. This study was undertaken to determine the significance of the RNA chaperone Hfq and the small RNAs OmrA and RyhB1 in the post-transcriptional control of the expression of these OmpR targets. We show that Hfq silences fur, fecA and fepA expression post-transcriptionally and negatively affects the production of FLAG-tagged Fur, FecA and FepA proteins. In addition, we found that the fur gene is under the negative control of the sRNA RyhB1, while fecA and fepA are negatively regulated by the sRNA OmrA. Finally, our data revealed that the role of OmrA results from a complex interplay of transcriptional and post-transcriptional effects in the feedback circuit between the regulator OmpR and the sRNA OmrA. Thus, the expression of fur, fecA and fepA is subject to complex transcriptional and post-transcriptional regulation in order to maintain iron homeostasis in Y. enterocolitica.
Collapse
Affiliation(s)
- Karolina Jaworska
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Julia Konarska
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Patrycja Gomza
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Paula Rożen
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Marta Nieckarz
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Agata Krawczyk-Balska
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Katarzyna Brzostek
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Adrianna Raczkowska
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
8
|
Majumder R, Ghosh S, Das A, Singh MK, Samanta S, Saha A, Saha RP. Prokaryotic ncRNAs: Master regulators of gene expression. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100136. [PMID: 36568271 PMCID: PMC9780080 DOI: 10.1016/j.crphar.2022.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/11/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022] Open
Abstract
ncRNA plays a very pivotal role in various biological activities ranging from gene regulation to controlling important developmental networks. It is imperative to note that this small molecule is not only present in all three domains of cellular life, but is an important modulator of gene regulation too in all these domains. In this review, we discussed various aspects of ncRNA biology, especially their role in bacteria. The last two decades of scientific research have proved that this molecule plays an important role in the modulation of various regulatory pathways in bacteria including the adaptive immune system and gene regulation. It is also very surprising to note that this small molecule is also employed in various processes related to the pathogenicity of virulent microorganisms.
Collapse
Affiliation(s)
- Rajib Majumder
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India
| | - Sanmitra Ghosh
- Department of Biological Sciences, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India
| | - Arpita Das
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India
| | - Manoj Kumar Singh
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India
| | - Saikat Samanta
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India
| | - Abinit Saha
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India,Corresponding authors.
| | - Rudra P. Saha
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India,Corresponding authors.
| |
Collapse
|
9
|
Wu Z, Shao J, Zheng J, Liu B, Li Z, Shen N. A zero-sum game or an interactive frame? Iron competition between bacteria and humans in infection war. Chin Med J (Engl) 2022; 135:1917-1926. [PMID: 35830263 PMCID: PMC9746790 DOI: 10.1097/cm9.0000000000002233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Iron is an essential trace element for both humans and bacteria. It plays a vital role in life, such as in redox reactions and electron transport. Strict regulatory mechanisms are necessary to maintain iron homeostasis because both excess and insufficient iron are harmful to life. Competition for iron is a war between humans and bacteria. To grow, reproduce, colonize, and successfully cause infection, pathogens have evolved various mechanisms for iron uptake from humans, principally Fe 3+ -siderophore and Fe 2+ -heme transport systems. Humans have many innate immune mechanisms that regulate the distribution of iron and inhibit bacterial iron uptake to help resist bacterial invasion and colonization. Meanwhile, researchers have invented detection test strips and coupled antibiotics with siderophores to create tools that take advantage of this battle for iron, to help eliminate pathogens. In this review, we summarize bacterial and human iron metabolism, competition for iron between humans and bacteria, siderophore sensors, antibiotics coupled with siderophores, and related phenomena. We also discuss how competition for iron can be used for diagnosis and treatment of infection in the future.
Collapse
Affiliation(s)
- Zhenchao Wu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Center for Infectious Diseases, Peking University Third Hospital, Beijing 100191, China
| | - Jiqi Shao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Beibei Liu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Zhiyuan Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ning Shen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Center for Infectious Diseases, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
10
|
Cellular RNA Targets of Cold Shock Proteins CspC and CspE and Their Importance for Serum Resistance in Septicemic Escherichia coli. mSystems 2022; 7:e0008622. [PMID: 35695420 PMCID: PMC9426608 DOI: 10.1128/msystems.00086-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The RNA chaperones, cold shock proteins CspC and CspE, are important in stress response and adaptation. We studied their role in the pathogenesis of a virulent Escherichia coli, representative of extraintestinal pathogenic E. coli (ExPEC) which are serum resistant and septicemic. We performed a global analysis to identify transcripts that interact with these cold shock proteins (CSPs), focusing on virulence-related genes. We used CLIP-seq, which combines UV cross-linking, immunoprecipitation and RNA sequencing. A large number of transcripts bound to the CSPs were identified, and many bind both CspC and CspE. Many transcripts were of genes involved in protein synthesis, transcription and energy metabolism. In addition, there were virulence-related genes, (i.e., fur and ryhB), essential for iron homeostasis. The CLIP-seq results were validated on two transcripts, clpX and tdcA, reported as virulence-associated. Deletion of either CspC or CspE significantly decreased their transcript levels and in a double deletion mutant cspC/cspE, the transcript stability of tdcA and clpX was reduced by 32-fold and 10-fold, respectively. We showed that these two genes are important for virulence, as deleting either of them resulted in loss of serum resistance, a requirement for sepsis. As several virulence-related transcripts interact with CspC or CspE, we determined the importance of these proteins for growth in serum and showed that deletion of either gene significantly reduced serum survival. This phenotype could be partially complemented by cspE and fully complemented by cspC. These results indicate that the two RNA chaperones are essential for virulence, and that CspC particularly critical. IMPORTANCE Virulent Escherichia coli strains that cause infections outside the intestinal tract—extraintestinal pathogenic E. coli (ExPEC)—constitute a major clinical problem worldwide. They are involved in several distinct conditions, including urinary tract infections, newborn meningitis, and sepsis. Due to increasing antibiotic resistance, these strains are a main factor in hospital and community-acquired infections. Because many strains, which do not cross-react immunologically are involved, developing a simple vaccine is not possible. Therefore, it is essential to understand the pathogenesis of these bacteria to identify potential targets for developing drugs or vaccines. One of the least investigated systems involves RNA binding proteins, important for stability of transcripts and global gene regulation. Two such proteins are CspC and CspE (“cold shock proteins”), RNA chaperones involved in stress adaptation. Here we performed a global analysis to identify the transcripts which are affected by these two chaperones, with focus on virulence-associated transcripts.
Collapse
|
11
|
Niu L, Cai W, Cheng X, Li Z, Ruan J, Li F, Qi K, Tu J. Fur Protein Regulates the Motility of Avian Pathogenic Escherichia coli AE17 Through Promoter Regions of the Flagella Key Genes flhD. Front Vet Sci 2022; 9:854916. [PMID: 35518642 PMCID: PMC9062578 DOI: 10.3389/fvets.2022.854916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/21/2022] [Indexed: 12/01/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is an important pathogen causing several diseases in birds. It is responsible for local and systemic infections in poultry, seriously impeding the development of the poultry industry, and poses a potential risk to public health. The iron absorption regulatory protein Fur and the noncoding RNA, RyhB, that it negatively regulates are important factors in bacterial iron uptake, but the regulation of bacterial virulence genes varies greatly among different bacteria. We found that Fur is very important for the mobility of APEC. The expression of fur and RyhB is extensively regulated in APEC, and RyhB expression is also negatively regulated by Fur. A transcriptomic analysis showed that the genes significantly differentially regulated by Fur are related to cell movement, including pilus- or flagellum-dependent cell motility. To verify these results, we examined the effects of fur knockdown on cell movement by measuring the diameter of the bacteria colonies. Consistent with the RNA sequencing results, the mobility of AE17Δfur was significantly reduced compared with that of the wild type, and it had almost lost its ability to move. Using an electrophoretic mobility assay, we confirmed that the Fur protein directly binds to the promoter region of the key flagellum-related gene flhD, thereby affecting the assembly and synthesis of the APEC flagellum. This study extends our understanding of gene regulation in APEC.
Collapse
Affiliation(s)
- Lulu Niu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Weizhen Cai
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xi Cheng
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhe Li
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jianming Ruan
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Fangguo Li
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jian Tu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
12
|
Barsheshet M, Fisher S, Margalit H. Inferring the contribution of small RNAs to changes in gene expression in response to stress. NAR Genom Bioinform 2022; 4:lqac015. [PMID: 35261974 PMCID: PMC8896160 DOI: 10.1093/nargab/lqac015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/26/2022] [Accepted: 02/14/2022] [Indexed: 12/03/2022] Open
Abstract
A main strategy of bacteria adapting to environmental changes is the remodeling of their transcriptome. Changes in the transcript levels of specific genes are due to combined effects of various regulators, including small RNAs (sRNAs). sRNAs are post-transcriptional regulators of gene expression that mainly control translation, but also directly and indirectly affect the levels of their target transcripts. Yet, the relative contribution of an sRNA to the total change in the transcript level of a gene upon an environmental change has not been assessed. We present a design of differential gene expression analysis by RNA-seq that allows extracting the contribution of an sRNA to the total change in the transcript level of each gene in response to an environmental change by fitting a linear model to the data. We exemplify this for the sRNA RyhB in cells growing under iron limitation and show a variation among genes in the relative contribution of RyhB to the change in their transcript level upon iron limitation, from subtle to very substantial. Extracting the relative contribution of an sRNA to the total change in expression of genes is important for understanding the integration of regulation by sRNAs with other regulatory mechanisms in the cell.
Collapse
Affiliation(s)
- Meshi Barsheshet
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Shira Fisher
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
13
|
Lee KW, Wen Y, Park NY, Kim KS. Quorum sensing and iron-dependent coordinated control of autoinducer-2 production via small RNA RyhB in Vibrio vulnificus. Sci Rep 2022; 12:831. [PMID: 35039556 PMCID: PMC8764119 DOI: 10.1038/s41598-021-04757-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Roles for the non-coding small RNA RyhB in quorum-sensing and iron-dependent gene modulation in the human pathogen V. vulnificus were assessed in this study. Both the quorum sensing master regulator SmcR and the Fur-iron complex were observed to bind to the region upstream of the non-coding small RNA RyhB gene to repress expression, which suggests that RyhB is associated with both quorum-sensing and iron-dependent signaling in this pathogen. We found that expression of LuxS, which is responsible for the biosynthesis of autoinducer-2 (AI-2), was higher in wild type than in a ryhB-deletion isotype. RyhB binds directly to the 5′-UTR (untranslated region) of the luxS transcript to form a heteroduplex, which not only stabilizes luxS mRNA but also disrupts the secondary structure that normally obscures the translational start codon and thereby allows translation of LuxS to begin. The binding of RyhB to luxS mRNA requires the chaperone protein Hfq, which stabilizes RyhB. These results demonstrate that the small RNA RyhB is a key element associated with feedback control of AI-2 production, and that it inhibits quorum-sensing signaling in an iron-dependent manner. This study, taken together with previous studies, shows that iron availability and cell density signals are funneled to SmcR and RyhB, and that these regulators coordinate cognate signal pathways that result in the proper balance of protein expression in response to environmental conditions.
Collapse
Affiliation(s)
- Keun-Woo Lee
- Department of Life Sciences, Sogang University, Baekbeom-Ro, Mapo-Gu, Seoul, 121-742, Korea
| | - Yancheng Wen
- Department of Life Sciences, Sogang University, Baekbeom-Ro, Mapo-Gu, Seoul, 121-742, Korea.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer Research Center for Molecular Medicine, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Na-Young Park
- Department of Life Sciences, Sogang University, Baekbeom-Ro, Mapo-Gu, Seoul, 121-742, Korea
| | - Kun-Soo Kim
- Department of Life Sciences, Sogang University, Baekbeom-Ro, Mapo-Gu, Seoul, 121-742, Korea.
| |
Collapse
|
14
|
Abstract
Iron is an essential element for Escherichia, Salmonella, and Shigella species. The acquisition of sufficient amounts of iron is difficult in many environments, including the intestinal tract, where these bacteria usually reside. Members of these genera have multiple iron transport systems to transport both ferrous and ferric iron. These include transporters for free ferrous iron, ferric iron associated with chelators, and heme. The numbers and types of transport systems in any species reflect the diversity of niches that it can inhabit. Many of the iron transport genes are found on mobile genetic elements or pathogenicity islands, and there is evidence of the spread of the genes among different species and pathotypes. This is notable among the pathogenic members of the genera in which iron transport systems acquired by horizontal gene transfer allow the bacteria to overcome host innate defenses that act to restrict the availability of iron to the pathogen. The need for iron is balanced by the need to avoid iron overload since excess iron is toxic to the cell. Genes for iron transport and metabolism are tightly regulated and respond to environmental cues, including iron availability, oxygen, and temperature. Master regulators, the iron sensor Fur and the Fur-regulated small RNA (sRNA) RyhB, coordinate the expression of iron transport and cellular metabolism genes in response to the availability of iron.
Collapse
|
15
|
Evguenieva-Hackenberg E. Riboregulation in bacteria: From general principles to novel mechanisms of the trp attenuator and its sRNA and peptide products. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1696. [PMID: 34651439 DOI: 10.1002/wrna.1696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Gene expression strategies ensuring bacterial survival and competitiveness rely on cis- and trans-acting RNA-regulators (riboregulators). Among the cis-acting riboregulators are transcriptional and translational attenuators, and antisense RNAs (asRNAs). The trans-acting riboregulators are small RNAs (sRNAs) that bind proteins or base pairs with other RNAs. This classification is artificial since some regulatory RNAs act both in cis and in trans, or function in addition as small mRNAs. A prominent example is the archetypical, ribosome-dependent attenuator of tryptophan (Trp) biosynthesis genes. It responds by transcription attenuation to two signals, Trp availability and inhibition of translation, and gives rise to two trans-acting products, the attenuator sRNA rnTrpL and the leader peptide peTrpL. In Escherichia coli, rnTrpL links Trp availability to initiation of chromosome replication and in Sinorhizobium meliloti, it coordinates regulation of split tryptophan biosynthesis operons. Furthermore, in S. meliloti, peTrpL is involved in mRNA destabilization in response to antibiotic exposure. It forms two types of asRNA-containing, antibiotic-dependent ribonucleoprotein complexes (ARNPs), one of them changing the target specificity of rnTrpL. The posttranscriptional role of peTrpL indicates two emerging paradigms: (1) sRNA reprograming by small molecules and (2) direct involvement of antibiotics in regulatory RNPs. They broaden our view on RNA-based mechanisms and may inspire new approaches for studying, detecting, and using antibacterial compounds. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
|
16
|
Chu W, Jiang K, Lu P, Xu Y, Yang J, Wei X, Li L, Liu S, Wu Y, Wang S, Zhao H, Zhao H. Metabolic regulation and optimization of oxygen supply enhance the 2,3-butanediol yield of the novel Klebsiella sp. isolate FSoil 024. Biotechnol J 2021; 16:e2100279. [PMID: 34390606 DOI: 10.1002/biot.202100279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Biogenic 2,3-butanediol (2,3-BDO) is a high-value-added compound that can be used as a liquid fuel and a platform chemical. Bioproduction of 2,3-BDO is an environmentally friendly choice. METHOD AND RESULTS Three recombinant derivatives of the novel Klebsiella sp. isolate FSoil 024 (WT) were constructed via different strategies including deletion of lactate dehydrogenase by λ-Red homologous recombination technology, overexpression of the small-noncoding RNA RyhB and a combination of both. The 2,3-BDO productivity of the mutants increased by 61.3-79%, and WT-Δldh/ryhB displayed the highest 2,3-BDO yield of 42.36 mM after 24 h of shake-flask fermentation. Glucose was shown as the best carbon source for 2,3-BDO production by WT-Δldh/ryhB. In addition, higher oxygenation was favorable for ideal product synthesis. The maximal 2,3-BDO yield of WT and WT-Δldh/ryhB were increased by 23.3 and 52.5% respectively compared to the control group in the presence of 70% oxygen (V:V' = O2 :(O2 +N2 )). CONCLUSION AND IMPLICATIONS According to the present study, deletion of lactate dehydrogenase, RyhB overexpression and manipulation of oxygen supply showed great impacts on cell growth, 2,3-BDO productivity and cellular metabolism of the novel isolated strain Klebsiella sp. FSoil 024. This work would also provide insights for promoting 2,3-BDO biosynthesis for industrial applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wanying Chu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ke Jiang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ping Lu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yudong Xu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiayao Yang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xuan Wei
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Li Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shuxin Liu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yan Wu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shenghou Wang
- Experimental Teaching Center, College of Life Science, Shenyang Normal University, Shenyang, China
| | - Hongxin Zhao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongxin Zhao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
17
|
Abstract
Escherichia coli was one of the first species to have its genome sequenced and remains one of the best-characterized model organisms. Thus, it is perhaps surprising that recent studies have shown that a substantial number of genes have been overlooked. Genes encoding more than 140 small proteins, defined as those containing 50 or fewer amino acids, have been identified in E. coli in the past 10 years, and there is substantial evidence indicating that many more remain to be discovered. This review covers the methods that have been successful in identifying small proteins and the short open reading frames that encode them. The small proteins that have been functionally characterized to date in this model organism are also discussed. It is hoped that the review, along with the associated databases of known as well as predicted but undetected small proteins, will aid in and provide a roadmap for the continued identification and characterization of these proteins in E. coli as well as other bacteria.
Collapse
|
18
|
Positive regulation of Type III secretion effectors and virulence by RyhB paralogs in Salmonella enterica serovar Enteritidis. Vet Res 2021; 52:44. [PMID: 33691799 PMCID: PMC7944605 DOI: 10.1186/s13567-021-00915-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/17/2021] [Indexed: 01/02/2023] Open
Abstract
Small non-coding RNA RyhB is a key regulator of iron homeostasis in bacteria by sensing iron availability in the environment. Although RyhB is known to influence bacterial virulence by interacting with iron metabolism related regulators, its interaction with virulence genes, especially the Type III secretion system (T3SS), has not been reported. Here, we demonstrate that two RyhB paralogs of Salmonella enterica serovar Enteritidis upregulate Type III secretion system (T3SS) effectors, and consequently affect Salmonella invasion into intestinal epithelial cells. Specifically, we found that RyhB-1 modulate Salmonella response to stress condition of iron deficiency and hypoxia, and stress in simulated intestinal environment (SIE). Under SIE culture conditions, both RyhB-1 and RyhB-2 are drastically induced and directly upregulate the expression of T3SS effector gene sipA by interacting with its 5′ untranslated region (5′ UTR) via an incomplete base-pairing mechanism. In addition, the RyhB paralogs upregulate the expression of T3SS effector gene sopE. By regulating the invasion-related genes, RyhBs in turn affect the ability of S. Enteritidis to adhere to and invade into intestinal epithelial cells. Our findings provide evidence that RyhBs function as critical virulence factors by directly regulating virulence-related gene expression. Thus, inhibition of RyhBs may be a potential strategy to attenuate Salmonella.
Collapse
|
19
|
Jaworska K, Ludwiczak M, Murawska E, Raczkowska A, Brzostek K. The Regulator OmpR in Yersinia enterocolitica Participates in Iron Homeostasis by Modulating Fur Level and Affecting the Expression of Genes Involved in Iron Uptake. Int J Mol Sci 2021; 22:ijms22031475. [PMID: 33540627 PMCID: PMC7867234 DOI: 10.3390/ijms22031475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/02/2022] Open
Abstract
In this study, we found that the loss of OmpR, the response regulator of the two-component EnvZ/OmpR system, increases the cellular level of Fur, the master regulator of iron homeostasis in Y. enterocolitica. Furthermore, we demonstrated that transcription of the fur gene from the YePfur promoter is subject to negative OmpR-dependent regulation. Four putative OmpR-binding sites (OBSs) were indicated by in silico analysis of the fur promoter region, and their removal affected OmpR-dependent fur expression. Moreover, OmpR binds specifically to the predicted OBSs which exhibit a distinct hierarchy of binding affinity. Finally, the data demonstrate that OmpR, by direct binding to the promoters of the fecA, fepA and feoA genes, involved in the iron transport and being under Fur repressor activity, modulates their expression. It seems that the negative effect of OmpR on fecA and fepA transcription is sufficient to counteract the indirect, positive effect of OmpR resulting from decreasing the Fur repressor level. The expression of feoA was positively regulated by OmpR and this mode of action seems to be direct and indirect. Together, the expression of fecA, fepA and feoA in Y. enterocolitica has been proposed to be under a complex mode of regulation involving OmpR and Fur regulators.
Collapse
|
20
|
McCown PJ, Ruszkowska A, Kunkler CN, Breger K, Hulewicz JP, Wang MC, Springer NA, Brown JA. Naturally occurring modified ribonucleosides. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1595. [PMID: 32301288 PMCID: PMC7694415 DOI: 10.1002/wrna.1595] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022]
Abstract
The chemical identity of RNA molecules beyond the four standard ribonucleosides has fascinated scientists since pseudouridine was characterized as the "fifth" ribonucleotide in 1951. Since then, the ever-increasing number and complexity of modified ribonucleosides have been found in viruses and throughout all three domains of life. Such modifications can be as simple as methylations, hydroxylations, or thiolations, complex as ring closures, glycosylations, acylations, or aminoacylations, or unusual as the incorporation of selenium. While initially found in transfer and ribosomal RNAs, modifications also exist in messenger RNAs and noncoding RNAs. Modifications have profound cellular outcomes at various levels, such as altering RNA structure or being essential for cell survival or organism viability. The aberrant presence or absence of RNA modifications can lead to human disease, ranging from cancer to various metabolic and developmental illnesses such as Hoyeraal-Hreidarsson syndrome, Bowen-Conradi syndrome, or Williams-Beuren syndrome. In this review article, we summarize the characterization of all 143 currently known modified ribonucleosides by describing their taxonomic distributions, the enzymes that generate the modifications, and any implications in cellular processes, RNA structure, and disease. We also highlight areas of active research, such as specific RNAs that contain a particular type of modification as well as methodologies used to identify novel RNA modifications. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Phillip J. McCown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Agnieszka Ruszkowska
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
- Present address:
Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| | - Charlotte N. Kunkler
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Kurtis Breger
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jacob P. Hulewicz
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Matthew C. Wang
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Noah A. Springer
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jessica A. Brown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
21
|
Fröhlich KS, Papenfort K. Regulation outside the box: New mechanisms for small RNAs. Mol Microbiol 2020; 114:363-366. [PMID: 32367584 PMCID: PMC7534054 DOI: 10.1111/mmi.14523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 01/24/2023]
Abstract
Regulation at the post‐transcriptional level is an important mode of gene expression control in bacteria. Small RNA regulators (sRNAs) that act via intramolecular base‐pairing with target mRNAs are key players in this process and most often sequester the target's ribosome binding site (RBS) to down‐regulate translation initiation. Over the past few years, several exceptions from this mechanism have been reported, revealing that sRNAs are able to influence translation initiation from a distance. In this issue of Molecular Microbiology, Azam and Vanderpool show that repression of the manY mRNA by the sRNA SgrS relies on an unconventional mechanism involving a translational enhancer element and ribosomal protein S1. Binding of S1 to an AU‐rich sequence within the 5ʹ untranslated region of the manY transcript promotes translation of the mRNA, and base‐pairing of SgrS to the same site can interfere with this process. Therefore, instead of blocking translation initiation by occluding the manY RBS, SgrS reduces ManY synthesis by inhibiting S1‐dependent translation activation. These findings increase the base‐pairing window for sRNA‐mediated gene expression control in bacteria and highlight the role of ribosomal protein S1 for translation initiation.
Collapse
Affiliation(s)
- Kathrin S Fröhlich
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany.,Microverse Cluster, Friedrich Schiller University Jena, Jena, Germany
| | - Kai Papenfort
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany.,Microverse Cluster, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
22
|
Edwards AM, Addo MA, Dos Santos PC. Extracurricular Functions of tRNA Modifications in Microorganisms. Genes (Basel) 2020; 11:genes11080907. [PMID: 32784710 PMCID: PMC7466049 DOI: 10.3390/genes11080907] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 12/29/2022] Open
Abstract
Transfer RNAs (tRNAs) are essential adaptors that mediate translation of the genetic code. These molecules undergo a variety of post-transcriptional modifications, which expand their chemical reactivity while influencing their structure, stability, and functionality. Chemical modifications to tRNA ensure translational competency and promote cellular viability. Hence, the placement and prevalence of tRNA modifications affects the efficiency of aminoacyl tRNA synthetase (aaRS) reactions, interactions with the ribosome, and transient pairing with messenger RNA (mRNA). The synthesis and abundance of tRNA modifications respond directly and indirectly to a range of environmental and nutritional factors involved in the maintenance of metabolic homeostasis. The dynamic landscape of the tRNA epitranscriptome suggests a role for tRNA modifications as markers of cellular status and regulators of translational capacity. This review discusses the non-canonical roles that tRNA modifications play in central metabolic processes and how their levels are modulated in response to a range of cellular demands.
Collapse
|
23
|
de Crécy-Lagard V, Jaroch M. Functions of Bacterial tRNA Modifications: From Ubiquity to Diversity. Trends Microbiol 2020; 29:41-53. [PMID: 32718697 DOI: 10.1016/j.tim.2020.06.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 01/21/2023]
Abstract
Modified nucleotides in tRNA are critical components of the translation apparatus, but their importance in the process of translational regulation had until recently been greatly overlooked. Two breakthroughs have recently allowed a fuller understanding of the importance of tRNA modifications in bacterial physiology. One is the identification of the full set of tRNA modification genes in model organisms such as Escherichia coli K12. The second is the improvement of available analytical tools to monitor tRNA modification patterns. The role of tRNA modifications varies greatly with the specific modification within a given tRNA and with the organism studied. The absence of these modifications or reductions can lead to cell death or pleiotropic phenotypes or may have no apparent visible effect. By linking translation through their decoding functions to metabolism through their biosynthetic pathways, tRNA modifications are emerging as important components of the bacterial regulatory toolbox.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA; Genetics Institute, University of Florida, Gainesville, FL 32611, USA.
| | - Marshall Jaroch
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
24
|
Kimura S, Dedon PC, Waldor MK. Comparative tRNA sequencing and RNA mass spectrometry for surveying tRNA modifications. Nat Chem Biol 2020; 16:964-972. [PMID: 32514182 DOI: 10.1038/s41589-020-0558-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
Chemical modifications of the nucleosides that comprise transfer RNAs are diverse. However, the structure, location and extent of modifications have been systematically charted in very few organisms. Here, we describe an approach in which rapid prediction of modified sites through reverse transcription-derived signatures in high-throughput transfer RNA-sequencing (tRNA-seq) data is coupled with identification of tRNA modifications through RNA mass spectrometry. Comparative tRNA-seq enabled prediction of several Vibrio cholerae modifications that are absent from Escherichia coli and also revealed the effects of various environmental conditions on V. cholerae tRNA modification. Through RNA mass spectrometric analyses, we showed that two of the V. cholerae-specific reverse transcription signatures reflected the presence of a new modification (acetylated acp3U (acacp3U)), while the other results from C-to-Ψ RNA editing, a process not described before. These findings demonstrate the utility of this approach for rapid surveillance of tRNA modification profiles and environmental control of tRNA modification.
Collapse
Affiliation(s)
- Satoshi Kimura
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA. .,Department of Microbiology, Harvard Medical School, Boston, MA, USA. .,Howard Hughes Medical Institute, Boston, MA, USA.
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institution of Technology, Cambridge, MA, USA.,Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA. .,Department of Microbiology, Harvard Medical School, Boston, MA, USA. .,Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
25
|
Hou B, Yang X, Xia H, Wu H, Ye J, Zhang H. sRNA EsrE Is Transcriptionally Regulated by the Ferric Uptake Regulator Fur in Escherichia coli. J Microbiol Biotechnol 2020; 30:127-135. [PMID: 31693839 PMCID: PMC9728176 DOI: 10.4014/jmb.1907.07026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Small RNAs (sRNAs) are widespread and play major roles in regulation circuits in bacteria. Previously, we have demonstrated that transcription of esrE is under the control of its own promoter. However, the regulatory elements involved in EsrE sRNA expression are still unknown. In this study, we found that different cis-regulatory elements exist in the promoter region of esrE. We then screened and analyzed seven potential corresponding trans-regulatory elements by using pull-down assays based on DNA affinity chromatography. Among these candidate regulators, we investigated the relationship between the ferric uptake regulator (Fur) and the EsrE sRNA. Electrophoresis mobility shift assays (EMSAs) and β-galactosidase activity assays demonstrated that Fur can bind to the promoter region of esrE, and positively regulate EsrE sRNA expression in the presence of Fe2+.
Collapse
Affiliation(s)
- Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P.R. China,Department of Applied Biology, East China University of Science and Technology, Shanghai, P.R. China
| | - Xichen Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P.R. China
| | - Hui Xia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P.R. China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P.R. China,Department of Applied Biology, East China University of Science and Technology, Shanghai, P.R. China,Corresponding authors H.W. Phone: +86-021-64252507 Fax: +86-021-64252507 E-mail:
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P.R. China,Department of Applied Biology, East China University of Science and Technology, Shanghai, P.R. China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P.R. China,Department of Applied Biology, East China University of Science and Technology, Shanghai, P.R. China,H.Z. Phone: +86-021-64252507 Fax: +86-012-64252507 E-mail:
| |
Collapse
|
26
|
van der Meulen SB, Hesseling-Meinders A, de Jong A, Kok J. The protein regulator ArgR and the sRNA derived from the 3'-UTR region of its gene, ArgX, both regulate the arginine deiminase pathway in Lactococcus lactis. PLoS One 2019; 14:e0218508. [PMID: 31220124 PMCID: PMC6586332 DOI: 10.1371/journal.pone.0218508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/04/2019] [Indexed: 01/09/2023] Open
Abstract
Small regulatory RNAs (sRNAs) and their enormous potential and versatility have provided us with an astounding insight in the complexity of bacterial transcriptomes. sRNAs have been shown to be involved in a variety of cellular processes that range from stress to general metabolism. Here we report that the gene encoding the transcriptional regulator ArgR is immediately followed by the gene of the small regulatory RNA ArgX. The latter is transcribed from its own promoter. The production of ArgX is induced by increasing arginine concentrations and repressed by CcpA. Previously, ArgR was shown to act as a transcriptional repressor of the catabolic arginine deiminase pathway (arc operon) by binding in the promoter region of arcA. Here we demonstrate that ArgX downregulates arc mRNA levels. Furthermore, ArgX putatively blocks the translation of one of the genes in the operon, arcC1, a process that would redirect an intermediate in arginine degradation, carbamoyl phosphate, towards pyrimidine synthesis. Our findings exemplify, for the first time, the combinatorial power of a transcription factor and a small regulatory RNA derived from the 3’-UTR region. The regulators ArgR and ArgX share a common target, but act on transcription and on RNA level, respectively.
Collapse
Affiliation(s)
- Sjoerd Bouwe van der Meulen
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
| | - Anne Hesseling-Meinders
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Anne de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
| | - Jan Kok
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
27
|
Gao D, Zhang Y, Liu R, Fang Z, Lu C. EsR240, a non-coding sRNA, is required for the resistance of Edwardsiella tarda to stresses in macrophages and for virulence. Vet Microbiol 2019; 231:254-263. [PMID: 30955819 DOI: 10.1016/j.vetmic.2019.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/01/2019] [Accepted: 03/20/2019] [Indexed: 11/19/2022]
Abstract
Bacterial small non-coding RNAs (sRNAs) are gene expression modulators that respond to environmental changes and pathogenic conditions. In this study, 13 novel sRNAs were identified in the intracellular pathogen, Edwardsiella tarda (E. tarda) ET13 strain, based on RNA sequencing and bioinformatic analyses. Eight of the 13 putative sRNAs from the ET13 strain were transcribed (as indicated by RT-PCR) following exposure to different stresses. The transcription levels of three sRNAs (EsR128, EsR139 and EsR240) were all highly induced under these stress conditions. Northern blot hybridization was employed to verify that EsR240 was expressed in the ET13 strain under both logarithmic and stationary growth phases, and that it formed a single copy transcript in the chromosomes of the ET13 strain. The precise start and end points of EsR240 were determined using 5'and 3' RACE. The conservation of EsR240 was in agreement with the characteristics of sRNA, as indicated by a BLAST analysis. Furthermore, the survival rates of EsR240 mutant were lower than the rates of the wild type ET13 under stress conditions. When the infection time was extended 4 or 6 h, the CFUs of the wild type bacteria increased more significantly within macrophages compared to the mutant. When the intra-peritoneal (i.p.) route of infection was used in mice, the bacterial loads of the tissues in the mice infected with the wild type bacteria were significantly higher than in the mice infected with the mutants. The virulence of the EsR240 mutant was 6.79-fold lower than the wild type bacterium based on the LD50. In addition, the IntaRNA program was used to predict the target genes of EsR240. Out of the top 10 predicted target genes, 9 genes were regulated by EsR240. These target genes may encode FtsH protease modulator YccA, Na+ and H+ antiporters, FtsX-like permease family protein, glycoside hydrolases or various other proteins. Therefore, EsR240 may positively regulate its target genes in E. tarda to maintain intracellular survival within host macrophages and to increase its virulence.
Collapse
Affiliation(s)
- Daqing Gao
- Department of Pathogenic Microbiology and Immunology, Southeast University School of Medicine, Nanjing, China.
| | - Yuanyuan Zhang
- Department of Pathogenic Microbiology and Immunology, Southeast University School of Medicine, Nanjing, China
| | - Rui Liu
- Department of Pathogenic Microbiology and Immunology, Southeast University School of Medicine, Nanjing, China
| | - Zhengzou Fang
- Department of Pathogenic Microbiology and Immunology, Southeast University School of Medicine, Nanjing, China
| | - Chengping Lu
- Department of Microbiology and Immunology, Agricultural University, College of Veterinary Medicine, Nanjing, China
| |
Collapse
|
28
|
The RNA degradosome promotes tRNA quality control through clearance of hypomodified tRNA. Proc Natl Acad Sci U S A 2019; 116:1394-1403. [PMID: 30622183 DOI: 10.1073/pnas.1814130116] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The factors and mechanisms that govern tRNA stability in bacteria are not well understood. Here, we investigated the influence of posttranscriptional modification of bacterial tRNAs (tRNA modification) on tRNA stability. We focused on ThiI-generated 4-thiouridine (s4U), a modification found in bacterial and archaeal tRNAs. Comprehensive quantification of Vibrio cholerae tRNAs revealed that the abundance of some tRNAs is decreased in a ΔthiI strain in a stationary phase-specific manner. Multiple mechanisms, including rapid degradation of a subset of hypomodified tRNAs, account for the reduced abundance of tRNAs in the absence of thiI Through transposon insertion sequencing, we identified additional tRNA modifications that promote tRNA stability and bacterial viability. Genetic analysis of suppressor mutants as well as biochemical analyses revealed that rapid degradation of hypomodified tRNA is mediated by the RNA degradosome. Elongation factor Tu seems to compete with the RNA degradosome, protecting aminoacyl tRNAs from decay. Together, our observations describe a previously unrecognized bacterial tRNA quality control system in which hypomodification sensitizes tRNAs to decay mediated by the RNA degradosome.
Collapse
|
29
|
Zupok A, Iobbi-Nivol C, Méjean V, Leimkühler S. The regulation of Moco biosynthesis and molybdoenzyme gene expression by molybdenum and iron in bacteria. Metallomics 2019; 11:1602-1624. [DOI: 10.1039/c9mt00186g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The regulation of the operons involved in Moco biosynthesis is dependent on the availability of Fe–S clusters in the cell.
Collapse
Affiliation(s)
- Arkadiusz Zupok
- University of Potsdam
- Institute of Biochemistry and Biology
- Molecular Enzymology
- Potsdam-Golm
- Germany
| | - Chantal Iobbi-Nivol
- Aix-Marseille Université
- Institut de Microbiologie de la Méditerranée
- Laboratoire de Bioénergétique et Ingénierie des Protéines
- Centre National de la Recherche Scientifique
- Marseille
| | - Vincent Méjean
- Aix-Marseille Université
- Institut de Microbiologie de la Méditerranée
- Laboratoire de Bioénergétique et Ingénierie des Protéines
- Centre National de la Recherche Scientifique
- Marseille
| | - Silke Leimkühler
- University of Potsdam
- Institute of Biochemistry and Biology
- Molecular Enzymology
- Potsdam-Golm
- Germany
| |
Collapse
|
30
|
Bocci F, Jolly MK, Levine H, Onuchic JN. Quantitative Characteristic of ncRNA Regulation in Gene Regulatory Networks. Methods Mol Biol 2019; 1912:341-366. [PMID: 30635901 DOI: 10.1007/978-1-4939-8982-9_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RNA is mostly known for its role in protein synthesis, where it encodes information for protein sequence in its messenger RNA (mRNA) form (translation). Yet, RNA molecules regulate several cellular processes other than translation. Here, we present an overview of several mathematical models that help understanding and characterizing the role of noncoding RNA molecules (ncRNAs) in regulating gene expression and protein synthesis. First, we discuss relatively simple models where ncRNAs can modulate protein synthesis via targeting a mRNA. Then, we consider the case of feedback interactions between ncRNAs and their target proteins, and discuss several biological applications where these feedback architectures modulate a cellular phenotype and control the levels of intrinsic and extrinsic noise. Building from these simple circuit motifs, we examine feed-forward circuit motifs involving ncRNAs that generate precise spatial and temporal patterns of protein expression. Further, we investigate the competition between ncRNAs and other endogenous RNA molecules and show that the cross talk between coding and noncoding RNAs can form large genetic circuits that involve up to hundreds of chemical species. Finally, we discuss the role of ncRNAs in modulating cell-cell signaling pathways and therefore the dynamics of spatiotemporal pattern formation in a tissue.
Collapse
Affiliation(s)
- Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.,Department of Chemistry, Rice University, Houston, TX, USA
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA. .,Department of Chemistry, Rice University, Houston, TX, USA. .,Department of Bioengineering, Rice University, Houston, TX, USA. .,Department of Physics and Astronomy, Rice University, Houston, TX, USA.
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA. .,Department of Chemistry, Rice University, Houston, TX, USA. .,Department of Physics and Astronomy, Rice University, Houston, TX, USA. .,Department of Biosciences, Rice University, Houston, TX, USA.
| |
Collapse
|
31
|
Pollo-Oliveira L, de Crécy-Lagard V. Can Protein Expression Be Regulated by Modulation of tRNA Modification Profiles? Biochemistry 2018; 58:355-362. [PMID: 30511849 DOI: 10.1021/acs.biochem.8b01035] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
tRNAs are the central adaptor molecules in translation. Their decoding properties are influenced by post-transcriptional modifications, particularly in the critical anticodon-stem-loop (ASL) region. Synonymous codon choice, also called codon usage bias, affects both translation efficiency and accuracy, and ASL modifications play key roles in both of these processes. In combination with a handful of historical examples, recent studies integrating ribosome profiling, proteomics, codon-usage analyses, and modification quantifications show that levels of tRNA modifications can change under stress, during development, or under specific metabolic conditions and can modulate the expression of specific genes. Deconvoluting the different responses (global or specific) to tRNA modification deficiencies can be difficult because of pleiotropic effects, but, as more cases emerge, it does seem that tRNA modification changes could add another layer of regulation in the transfer of information from DNA to protein.
Collapse
Affiliation(s)
- Leticia Pollo-Oliveira
- Department of Microbiology and Cell Science , University of Florida , Gainesville , Florida 32603 , United States
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science , University of Florida , Gainesville , Florida 32603 , United States.,University of Florida Genetics Institute , Gainesville , Florida 32608 , United States
| |
Collapse
|
32
|
Sinha D, Matz LM, Cameron TA, De Lay NR. Poly(A) polymerase is required for RyhB sRNA stability and function in Escherichia coli. RNA (NEW YORK, N.Y.) 2018; 24:1496-1511. [PMID: 30061117 PMCID: PMC6191717 DOI: 10.1261/rna.067181.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/24/2018] [Indexed: 05/05/2023]
Abstract
Small regulatory RNAs (sRNAs) are an important class of bacterial post-transcriptional regulators that control numerous physiological processes, including stress responses. In Gram-negative bacteria including Escherichia coli, the RNA chaperone Hfq binds many sRNAs and facilitates pairing to target transcripts, resulting in changes in mRNA transcription, translation, or stability. Here, we report that poly(A) polymerase (PAP I), which promotes RNA degradation by exoribonucleases through the addition of poly(A) tails, has a crucial role in the regulation of gene expression by Hfq-dependent sRNAs. Specifically, we show that deletion of pcnB, encoding PAP I, paradoxically resulted in an increased turnover of certain Hfq-dependent sRNAs, including RyhB. RyhB instability in the pcnB deletion strain was suppressed by mutations in hfq or ryhB that disrupt pairing of RyhB with target RNAs, by mutations in the 3' external transcribed spacer of the glyW-cysT-leuZ transcript (3'ETSLeuZ) involved in pairing with RyhB, or an internal deletion in rne, which encodes the endoribonuclease RNase E. Finally, the reduced stability of RyhB in the pcnB deletion strain resulted in impaired regulation of some of its target mRNAs, specifically sodB and sdhCDAB. Altogether our data support a model where PAP I plays a critical role in ensuring the efficient decay of the 3'ETSLeuZ In the absence of PAP I, the 3'ETSLeuZ transcripts accumulate, bind Hfq, and pair with RyhB, resulting in its depletion via RNase E-mediated decay. This ultimately leads to a defect in RyhB function in a PAP I deficient strain.
Collapse
Affiliation(s)
- Dhriti Sinha
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Lisa M Matz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Todd A Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Nicholas R De Lay
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas 77030, USA
| |
Collapse
|
33
|
Brosse A, Guillier M. Bacterial Small RNAs in Mixed Regulatory Networks. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0014-2017. [PMID: 29916348 PMCID: PMC11633589 DOI: 10.1128/microbiolspec.rwr-0014-2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Indexed: 12/16/2022] Open
Abstract
Small regulatory RNAs are now recognized as key regulators of gene expression in bacteria. They accumulate under specific conditions, most often because their synthesis is directly controlled by transcriptional regulators, including but not limited to alternative sigma factors and response regulators of two-component systems. In turn, small RNAs regulate, mostly at the posttranscriptional level, expression of multiple genes, among which are genes encoding transcriptional regulators. Small RNAs are thus embedded in mixed regulatory circuits combining transcriptional and posttranscriptional controls, and whose properties are discussed here.
Collapse
Affiliation(s)
- Anaïs Brosse
- CNRS UMR8261, Associated with University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Maude Guillier
- CNRS UMR8261, Associated with University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| |
Collapse
|
34
|
Kimura S, Sakai Y, Ishiguro K, Suzuki T. Biogenesis and iron-dependency of ribosomal RNA hydroxylation. Nucleic Acids Res 2018; 45:12974-12986. [PMID: 29069499 PMCID: PMC5727448 DOI: 10.1093/nar/gkx969] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022] Open
Abstract
Post-transcriptional modifications of ribosomal RNAs (rRNAs) are involved in ribosome biogenesis and fine-tuning of translation. 5-Hydroxycytidine (ho5C), a modification of unknown biogenesis and function, is present at position 2501 of Escherichia coli 23S rRNA. We conducted a genome-wide screen in E. coli to identify genes required for ho5C2501 formation, and found a previously-uncharacterized gene, ydcP (renamed rlhA), iron-sulfur cluster (isc) genes, and a series of genes responsible for prephenate biosynthesis, indicating that iron-sulfur clusters and prephenate are required for ho5C2501 formation. RlhA interacted with precursors of the 50S ribosomal subunit, suggesting that this protein is directly involved in formation of ho5C2501. RlhA belongs to a family of enzymes with an uncharacterized peptidase U32 motif and conserved Cys residues in the C-terminal region. These elements were essential for ho5C2501 formation. We also found that the frequency of ho5C2501 is modulated by environmental iron concentration. Together, our results reveal a novel biosynthetic pathway for RNA hydroxylation and its response to iron.
Collapse
Affiliation(s)
- Satoshi Kimura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yusuke Sakai
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kensuke Ishiguro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
35
|
Impact of bacterial sRNAs in stress responses. Biochem Soc Trans 2017; 45:1203-1212. [PMID: 29101308 PMCID: PMC5730939 DOI: 10.1042/bst20160363] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 12/11/2022]
Abstract
Bacterial life is harsh and involves numerous environmental and internal challenges that are perceived as stresses. Consequently, adequate responses to survive, cope with, and counteract stress conditions have evolved. In the last few decades, a class of small, non-coding RNAs (sRNAs) has been shown to be involved as key players in stress responses. This review will discuss — primarily from an enterobacterial perspective — selected stress response pathways that involve antisense-type sRNAs. These include themes of how bacteria deal with severe envelope stress, threats of DNA damage, problems with poisoning due to toxic sugar intermediates, issues of iron homeostasis, and nutrient limitation/starvation. The examples discussed highlight how stress relief can be achieved, and how sRNAs act mechanistically in regulatory circuits. For some cases, we will propose scenarios that may suggest why contributions from post-transcriptional control by sRNAs, rather than transcriptional control alone, appear to be a beneficial and universally selected feature.
Collapse
|
36
|
Pokorzynski ND, Thompson CC, Carabeo RA. Ironing Out the Unconventional Mechanisms of Iron Acquisition and Gene Regulation in Chlamydia. Front Cell Infect Microbiol 2017; 7:394. [PMID: 28951853 PMCID: PMC5599777 DOI: 10.3389/fcimb.2017.00394] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/23/2017] [Indexed: 01/19/2023] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis, along with its close species relatives, is known to be strictly dependent upon the availability of iron. Deprivation of iron in vitro induces an aberrant morphological phenotype termed "persistence." This persistent phenotype develops in response to various immunological and nutritional insults and may contribute to the development of sub-acute Chlamydia-associated chronic diseases in susceptible populations. Given the importance of iron to Chlamydia, relatively little is understood about its acquisition and its role in gene regulation in comparison to other iron-dependent bacteria. Analysis of the genome sequences of a variety of chlamydial species hinted at the involvement of unconventional mechanisms, being that Chlamydia lack many conventional systems of iron homeostasis that are highly conserved in other bacteria. Herein we detail past and current research regarding chlamydial iron biology in an attempt to provide context to the rapid progress of the field in recent years. We aim to highlight recent discoveries and innovations that illuminate the strategies involved in chlamydial iron homeostasis, including the vesicular mode of acquiring iron from the intracellular environment, and the identification of a putative iron-dependent transcriptional regulator that is synthesized as a fusion with a ABC-type transporter subunit. These recent findings, along with the noted absence of iron-related homologs, indicate that Chlamydia have evolved atypical approaches to the problem of iron homeostasis, reinvigorating research into the iron biology of this pathogen.
Collapse
Affiliation(s)
- Nick D Pokorzynski
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State UniversityPullman, WA, United States
| | - Christopher C Thompson
- Jefferiss Trust Laboratories, Faculty of Medicine, Imperial College London, St. Mary's HospitalLondon, United Kingdom
| | - Rey A Carabeo
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State UniversityPullman, WA, United States
| |
Collapse
|
37
|
Abstract
Small RNAs (sRNAs) are central regulators of gene expression in bacteria, controlling target genes posttranscriptionally by base pairing with their mRNAs. sRNAs are involved in many cellular processes and have unique regulatory characteristics. In this review, we discuss the properties of regulation by sRNAs and how it differs from and combines with transcriptional regulation. We describe the global characteristics of the sRNA-target networks in bacteria using graph-theoretic approaches and review the local integration of sRNAs in mixed regulatory circuits, including feed-forward loops and their combinations, feedback loops, and circuits made of an sRNA and another regulator, both derived from the same transcript. Finally, we discuss the competition effects in posttranscriptional regulatory networks that may arise over shared targets, shared regulators, and shared resources and how they may lead to signal propagation across the network.
Collapse
Affiliation(s)
- Mor Nitzan
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; .,Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Rotem Rehani
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
| |
Collapse
|
38
|
Sun Y, Zhang J, Qin L, Yan C, Zhang X, Liu D. Identification and validation of sRNAs in Edwardsiella tarda S08. PLoS One 2017; 12:e0172783. [PMID: 28267754 PMCID: PMC5340389 DOI: 10.1371/journal.pone.0172783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 02/09/2017] [Indexed: 11/29/2022] Open
Abstract
Bacterial small non-coding RNAs (sRNAs) are known as novel regulators involved in virulence, stress responsibility, and so on. Recently, a lot of new researches have highlighted the critical roles of sRNAs in fine-tune gene regulation in both prokaryotes and eukaryotes. Edwardsiella tarda (E. tarda) is a gram-negative, intracellular pathogen that causes edwardsiellosis in fish. Thus far, no sRNA has been reported in E. tarda. The present study represents the first attempt to identify sRNAs in E. tarda S08. Ten sRNAs were validated by RNA sequencing and quantitative PCR (qPCR). ET_sRNA_1 and ET_sRNA_2 were homolous to tmRNA and GcvB, respectively. However, the other candidate sRNAs have not been reported till now. The cellular abundance of 10 validated sRNA was detected by qPCR at different growth phases to monitor their biosynthesis. Nine candidate sRNAs were expressed in the late-stage of exponential growth and stationary stages of growth (36~60 h). And the expression of the nine sRNAs was growth phase-dependent. But ET_sRNA_10 was almost expressed all the time and reached the highest peak at 48 h. Their targets were predicted by TargetRNA2 and each sRNA target contains some genes that directly or indirectly relate to virulence. These results preliminary showed that sRNAs probably play a regulatory role of virulence in E. tarda.
Collapse
Affiliation(s)
- Yuying Sun
- College of Marine Life and Fisheries, Huaihai Institute of Technology, Lianyungang, China
- Jiangsu Marine Resources Development Research Institute, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang, China
| | - Jiquan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail:
| | - Lei Qin
- College of Marine Life and Fisheries, Huaihai Institute of Technology, Lianyungang, China
| | - Cui Yan
- College of Marine Life and Fisheries, Huaihai Institute of Technology, Lianyungang, China
| | - Xiaojun Zhang
- College of Marine Life and Fisheries, Huaihai Institute of Technology, Lianyungang, China
| | - Dandan Liu
- College of Marine Life and Fisheries, Huaihai Institute of Technology, Lianyungang, China
| |
Collapse
|
39
|
Baumgartner D, Kopf M, Klähn S, Steglich C, Hess WR. Small proteins in cyanobacteria provide a paradigm for the functional analysis of the bacterial micro-proteome. BMC Microbiol 2016; 16:285. [PMID: 27894276 PMCID: PMC5126843 DOI: 10.1186/s12866-016-0896-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022] Open
Abstract
Background Despite their versatile functions in multimeric protein complexes, in the modification of enzymatic activities, intercellular communication or regulatory processes, proteins shorter than 80 amino acids (μ-proteins) are a systematically underestimated class of gene products in bacteria. Photosynthetic cyanobacteria provide a paradigm for small protein functions due to extensive work on the photosynthetic apparatus that led to the functional characterization of 19 small proteins of less than 50 amino acids. In analogy, previously unstudied small ORFs with similar degrees of conservation might encode small proteins of high relevance also in other functional contexts. Results Here we used comparative transcriptomic information available for two model cyanobacteria, Synechocystis sp. PCC 6803 and Synechocystis sp. PCC 6714 for the prediction of small ORFs. We found 293 transcriptional units containing candidate small ORFs ≤80 codons in Synechocystis sp. PCC 6803, also including the known mRNAs encoding small proteins of the photosynthetic apparatus. From these transcriptional units, 146 are shared between the two strains, 42 are shared with the higher plant Arabidopsis thaliana and 25 with E. coli. To verify the existence of the respective μ-proteins in vivo, we selected five genes as examples to which a FLAG tag sequence was added and re-introduced them into Synechocystis sp. PCC 6803. These were the previously annotated gene ssr1169, two newly defined genes norf1 and norf4, as well as nsiR6(nitrogen stress-induced RNA 6) and hliR1(high light-inducible RNA 1) , which originally were considered non-coding. Upon activation of expression via the Cu2+.responsive petE promoter or from the native promoters, all five proteins were detected in Western blot experiments. Conclusions The distribution and conservation of these five genes as well as their regulation of expression and the physico-chemical properties of the encoded proteins underline the likely great bandwidth of small protein functions in bacteria and makes them attractive candidates for functional studies.
Collapse
Affiliation(s)
- Desiree Baumgartner
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Matthias Kopf
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104, Freiburg, Germany.,Present Address: Molecular Health GmbH, Kurfürsten-Anlage 21, 69115, Heidelberg, Germany
| | - Stephan Klähn
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Claudia Steglich
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Wolfgang R Hess
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104, Freiburg, Germany.
| |
Collapse
|
40
|
Azhikina TL, Ignatov DV, Salina EG, Fursov MV, Kaprelyants AS. Role of Small Noncoding RNAs in Bacterial Metabolism. BIOCHEMISTRY (MOSCOW) 2016; 80:1633-46. [PMID: 26878570 DOI: 10.1134/s0006297915130015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The study of prokaryotic small RNAs is one of the most important directions in modern molecular biology. In the last decade, multiple short regulatory transcripts have been found in prokaryotes, and for some of them functional roles have been elucidated. Bacterial small RNAs are implicated in the regulation of transcription and translation, and they affect mRNA stability and gene expression via different mechanisms, including changes in mRNA conformation and interaction with proteins. Most small RNAs are expressed in response to external factors, and they help bacteria to adapt to changing environmental conditions. Bacterial infections of various origins remain a serious medical problem, despite significant progress in fighting them. Discovery of mechanisms that bacteria employ to survive in infected organisms and ways to block these mechanisms is promising for finding new treatments for bacterial infections. Regulation of pathogenesis with small RNAs is an attractive example of such mechanisms. This review considers the role of bacterial small RNAs in adaptation to stress conditions. We pay special attention to the role of small RNAs in Mycobacterium tuberculosis infection, in particular during establishment and maintenance of latent infection.
Collapse
Affiliation(s)
- T L Azhikina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | | | | | | | | |
Collapse
|
41
|
Mechanistic study of base-pairing small regulatory RNAs in bacteria. Methods 2016; 117:67-76. [PMID: 27693881 DOI: 10.1016/j.ymeth.2016.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/22/2016] [Indexed: 11/24/2022] Open
Abstract
In all three kingdoms of life, RNA is not only involved in the expression of genetic information, but also carries out extremely diverse cellular functions. This versatility is essentially due to the fact that RNA molecules can exploit the power of base pairing to allow them to fold into a wide variety of structures through which they can perform diverse roles, but also to selectively target and bind to other nucleic acids. This is true in particular for bacterial small regulatory RNAs that act by imperfect base-pairing with target mRNAs, and thereby control their expression through different mechanisms. Here we outline an overview of in vivo and in vitro approaches that are currently used to gain mechanistic insights into how these sRNAs control gene expression in bacteria.
Collapse
|
42
|
Abstract
Over the last decade, small (often noncoding) RNA molecules have been discovered as important regulators influencing myriad aspects of bacterial physiology and virulence. In particular, small RNAs (sRNAs) have been implicated in control of both primary and secondary metabolic pathways in many bacterial species. This chapter describes characteristics of the major classes of sRNA regulators, and highlights what is known regarding their mechanisms of action. Specific examples of sRNAs that regulate metabolism in gram-negative bacteria are discussed, with a focus on those that regulate gene expression by base pairing with mRNA targets to control their translation and stability.
Collapse
|
43
|
Arbel-Goren R, Tal A, Parasar B, Dym A, Costantino N, Muñoz-García J, Court DL, Stavans J. Transcript degradation and noise of small RNA-controlled genes in a switch activated network in Escherichia coli. Nucleic Acids Res 2016; 44:6707-20. [PMID: 27085802 PMCID: PMC5001584 DOI: 10.1093/nar/gkw273] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/05/2016] [Indexed: 12/20/2022] Open
Abstract
Post-transcriptional regulatory processes may change transcript levels and affect cell-to-cell variability or noise. We study small-RNA downregulation to elucidate its effects on noise in the iron homeostasis network of Escherichia coli. In this network, the small-RNA RyhB undergoes stoichiometric degradation with the transcripts of target genes in response to iron stress. Using single-molecule fluorescence in situ hybridization, we measured transcript numbers of the RyhB-regulated genes sodB and fumA in individual cells as a function of iron deprivation. We observed a monotonic increase of noise with iron stress but no evidence of theoretically predicted, enhanced stoichiometric fluctuations in transcript numbers, nor of bistable behavior in transcript distributions. Direct detection of RyhB in individual cells shows that its noise is much smaller than that of these two targets, when RyhB production is significant. A generalized two-state model of bursty transcription that neglects RyhB fluctuations describes quantitatively the dependence of noise and transcript distributions on iron deprivation, enabling extraction of in vivo RyhB-mediated transcript degradation rates. The transcripts’ threshold-linear behavior indicates that the effective in vivo interaction strength between RyhB and its two target transcripts is comparable. Strikingly, the bacterial cell response exhibits Fur-dependent, switch-like activation instead of a graded response to iron deprivation.
Collapse
Affiliation(s)
- Rinat Arbel-Goren
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Asaf Tal
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Bibudha Parasar
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alvah Dym
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nina Costantino
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Javier Muñoz-García
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel Departamento de Matemáticas and GISC, Universidad Carlos III de Madrid, Av. de la Universidad 30, 28911 Leganés, Madrid, Spain
| | - Donald L Court
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Joel Stavans
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
44
|
Kim JN. Roles of two RyhB paralogs in the physiology of Salmonella enterica. Microbiol Res 2016; 186-187:146-52. [PMID: 27242152 DOI: 10.1016/j.micres.2016.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/07/2016] [Accepted: 04/10/2016] [Indexed: 11/18/2022]
Abstract
Salmonella has evolved complicated regulatory systems to regulate the expression of virulence determinants that are acquired by horizontal gene transfer in response to various environmental niches. Among these, small RNA (sRNA)-mediated regulation exhibits unique features, distinct from those of protein factor-mediated regulation, which may provide benefits for a pathogen coping with the complex stress conditions encountered during host infection. Specifically, iron acquisition by this pathogenic bacterium is important for cellular processes such as energy metabolism and DNA replication. Many studies on the role of RyhB sRNA have begun to unveil the essential nature of iron acquisition in allowing the organism to persist and develop pathogenicity. The Salmonella genome encodes two RyhB paralogs, RyhB-1 and RyhB-2, which are known to act singularly or together on target expression. Based on the mechanism of Escherichia coli RyhB function, this review proposes a possible model to show how two Salmonella RyhB paralogs regulate the level of target mRNAs by sensing environmental inputs or conditions. This review also describes the involvement of Salmonella RyhBs in diverse functions including nitrate homeostasis, adaptive system to oxidative stress, and intracellular survival. Thus, the two Salmonella RyhBs play a critical role in the regulation of gene expression that appears to be essential for persistence and pathogenesis of Salmonella spp.
Collapse
Affiliation(s)
- Jeong Nam Kim
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
45
|
Payne SM, Mey AR, Wyckoff EE. Vibrio Iron Transport: Evolutionary Adaptation to Life in Multiple Environments. Microbiol Mol Biol Rev 2016; 80:69-90. [PMID: 26658001 PMCID: PMC4711184 DOI: 10.1128/mmbr.00046-15] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Iron is an essential element for Vibrio spp., but the acquisition of iron is complicated by its tendency to form insoluble ferric complexes in nature and its association with high-affinity iron-binding proteins in the host. Vibrios occupy a variety of different niches, and each of these niches presents particular challenges for acquiring sufficient iron. Vibrio species have evolved a wide array of iron transport systems that allow the bacteria to compete for this essential element in each of its habitats. These systems include the secretion and uptake of high-affinity iron-binding compounds (siderophores) as well as transport systems for iron bound to host complexes. Transporters for ferric and ferrous iron not complexed to siderophores are also common to Vibrio species. Some of the genes encoding these systems show evidence of horizontal transmission, and the ability to acquire and incorporate additional iron transport systems may have allowed Vibrio species to more rapidly adapt to new environmental niches. While too little iron prevents growth of the bacteria, too much can be lethal. The appropriate balance is maintained in vibrios through complex regulatory networks involving transcriptional repressors and activators and small RNAs (sRNAs) that act posttranscriptionally. Examination of the number and variety of iron transport systems found in Vibrio spp. offers insights into how this group of bacteria has adapted to such a wide range of habitats.
Collapse
Affiliation(s)
- Shelley M Payne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Alexandra R Mey
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Elizabeth E Wyckoff
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
46
|
Pain A, Ott A, Amine H, Rochat T, Bouloc P, Gautheret D. An assessment of bacterial small RNA target prediction programs. RNA Biol 2016; 12:509-13. [PMID: 25760244 PMCID: PMC4615726 DOI: 10.1080/15476286.2015.1020269] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Most bacterial regulatory RNAs exert their function through base-pairing with target RNAs. Computational prediction of targets is a busy research field that offers biologists a variety of web sites and software. However, it is difficult for a non-expert to evaluate how reliable those programs are. Here, we provide a simple benchmark for bacterial sRNA target prediction based on trusted E. coli sRNA/target pairs. We use this benchmark to assess the most recent RNA target predictors as well as earlier programs for RNA-RNA hybrid prediction. Moreover, we consider how the definition of mRNA boundaries can impact overall predictions. Recent algorithms that exploit both conservation of targets and accessibility information offer improved accuracy over previous software. However, even with the best predictors, the number of true biological targets with low scores and non-targets with high scores remains puzzling.
Collapse
Affiliation(s)
- Adrien Pain
- a Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS ; Université Paris-Sud ; Orsay Cedex , France
| | | | | | | | | | | |
Collapse
|
47
|
Becker J, Gießelmann G, Hoffmann SL, Wittmann C. Corynebacterium glutamicum for Sustainable Bioproduction: From Metabolic Physiology to Systems Metabolic Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 162:217-263. [DOI: 10.1007/10_2016_21] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Wang J, Rennie W, Liu C, Carmack CS, Prévost K, Caron MP, Massé E, Ding Y, Wade JT. Identification of bacterial sRNA regulatory targets using ribosome profiling. Nucleic Acids Res 2015; 43:10308-20. [PMID: 26546513 PMCID: PMC4666370 DOI: 10.1093/nar/gkv1158] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 10/19/2015] [Indexed: 12/30/2022] Open
Abstract
Bacteria express large numbers of non-coding, regulatory RNAs known as ‘small RNAs’ (sRNAs). sRNAs typically regulate expression of multiple target messenger RNAs (mRNAs) through base-pairing interactions. sRNA:mRNA base-pairing often results in altered mRNA stability and/or altered translation initiation. Computational identification of sRNA targets is challenging due to the requirement for only short regions of base-pairing that can accommodate mismatches. Experimental approaches have been applied to identify sRNA targets on a genomic scale, but these focus only on those targets regulated at the level of mRNA stability. Here, we utilize ribosome profiling (Ribo-seq) to experimentally identify regulatory targets of the Escherichia coli sRNA RyhB. We not only validate a majority of known RyhB targets using the Ribo-seq approach, but also discover many novel ones. We further confirm regulation of a selection of known and novel targets using targeted reporter assays. By mutating nucleotides in the mRNA of a newly discovered target, we demonstrate direct regulation of this target by RyhB. Moreover, we show that Ribo-seq distinguishes between mRNAs regulated at the level of RNA stability and those regulated at the level of translation. Thus, Ribo-seq represents a powerful approach for genome-scale identification of sRNA targets.
Collapse
Affiliation(s)
- Jing Wang
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - William Rennie
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Chaochun Liu
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Charles S Carmack
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Karine Prévost
- RNA Group, Department of Biochemistry, University of Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Marie-Pier Caron
- RNA Group, Department of Biochemistry, University of Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Eric Massé
- RNA Group, Department of Biochemistry, University of Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Ye Ding
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA Department of Biomedical Sciences, University at Albany, Albany, NY 12201, USA
| | - Joseph T Wade
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA Department of Biomedical Sciences, University at Albany, Albany, NY 12201, USA
| |
Collapse
|
49
|
The Staphylococcus aureus protein-coding gene gdpS modulates sarS expression via mRNA-mRNA interaction. Infect Immun 2015; 83:3302-10. [PMID: 26056387 DOI: 10.1128/iai.00159-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/29/2015] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus is an important Gram-positive pathogen responsible for numerous diseases ranging from localized skin infections to life-threatening systemic infections. The virulence of S. aureus is essentially determined by a wide spectrum of factors, including cell wall-associated proteins and secreted toxins that are precisely controlled in response to environmental changes. GGDEF domain protein from Staphylococcus (GdpS) is the only conserved staphylococcal GGDEF domain protein that is involved not in c-di-GMP synthesis but in the virulence regulation of S. aureus NCTC8325. Our previous study showed that the inactivation of gdpS generates an extensive change of virulence factors together with, in particular, a major Spa (protein A) surface protein. As reported, sarS is a direct positive regulator of spa. The decreased transcript levels of sarS in the gdpS mutant compared with the parental NCTC8325 strain suggest that gdpS affects spa through interaction with sarS. In this study, site mutation and complementary experiments showed that the translation product of gdpS was not involved in the regulation of transcript levels of sarS. We found that gdpS functioned through direct RNA-RNA base pairing with the 5' untranslated region (5'UTR) of sarS mRNA and that a putative 18-nucleotide region played a significant role in the regulatory process. Furthermore, the mRNA half-life analysis of sarS in the gdpS mutant showed that gdpS positively regulates the mRNA levels of sarS by contributing to the stabilization of sarS mRNA, suggesting that gdpS mRNA may regulate spa expression in an RNA-dependent pathway.
Collapse
|
50
|
Nitzan M, Shimoni Y, Rosolio O, Margalit H, Biham O. Stochastic analysis of bistability in coherent mixed feedback loops combining transcriptional and posttranscriptional regulations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052706. [PMID: 26066198 DOI: 10.1103/physreve.91.052706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Indexed: 06/04/2023]
Abstract
Mixed feedback loops combining transcriptional and posttranscriptional regulations are common in cellular regulatory networks. They consist of two genes, encoding a transcription factor and a small noncoding RNA (sRNA), which mutually regulate each other's expression. We present a theoretical and numerical study of coherent mixed feedback loops of this type, in which both regulations are negative. Under suitable conditions, these feedback loops are expected to exhibit bistability, namely, two stable states, one dominated by the transcriptional repressor and the other dominated by the sRNA. We use deterministic methods based on rate equation models, in order to identify the range of parameters in which bistability takes place. However, the deterministic models do not account for the finite lifetimes of the bistable states and the spontaneous, fluctuation-driven transitions between them. Therefore, we use stochastic methods to calculate the average lifetimes of the two states. It is found that these lifetimes strongly depend on rate coefficients such as the transcription rates of the transcriptional repressor and the sRNA. In particular, we show that the fraction of time the system spends in the sRNA-dominated state follows a monotonically decreasing sigmoid function of the transcriptional repressor transcription rate. The biological relevance of these results is discussed in the context of such mixed feedback loops in Escherichia coli. It is shown that the fluctuation-driven transitions and the dependence of some rate coefficients on the biological conditions enable the cells to switch to the state which is better suited for the existing conditions and to remain in that state as long as these conditions persist.
Collapse
Affiliation(s)
- Mor Nitzan
- Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Yishai Shimoni
- Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
- Center for Computational Biology and Bioinformatics (C2B2), Columbia University, New York, New York 10027, USA
| | - Oded Rosolio
- Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Ofer Biham
- Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|