1
|
Lee KW, Ryu KJ, Kim M, Lim S, Kim J, Kim JY, Hwangbo C, Yoo J, Cho YY, Kim KD. RCHY1 and OPTN are required for melanophagy, selective autophagy of melanosomes. Proc Natl Acad Sci U S A 2024; 121:e2318039121. [PMID: 38536750 PMCID: PMC10998605 DOI: 10.1073/pnas.2318039121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024] Open
Abstract
Melanosomes are specific organelles dedicated to melanin synthesis and accumulation in melanocytes. Autophagy is suggestively involved in melanosome degradation, although the potential underlying molecular mechanisms remain elusive. In selective autophagy, autophagy receptors and E3-ligases are the key factors conferring cargo selectivity. In B16F10 cells, β-mangostin efficiently induced melanosome degradation without affecting other organelles such as mitochondria, peroxisomes, and the endoplasmic reticulum. Among various autophagy receptors, optineurin (OPTN) contributes TANK-binding kinase 1 (TBK1)-dependently to melanosome degradation and its knockdown inhibited β-mangostin-mediated melanosome degradation. OPTN translocation to melanosomes was dependent on its ubiquitin-binding domain. Moreover, OPTN-mediated TBK1 activation and subsequent TBK1-mediated S187 OPTN phosphorylation were essential for melanosome degradation. β-mangostin increased K63-linked melanosome ubiquitination. Finally, the E3-ligase RCHY1 knockdown inhibited the melanosome ubiquitination required for OPTN- and TBK1-phosphorylation as well as melanosome degradation. This study suggests that melanophagy, melanosome-selective autophagy, contributes to melanosome degradation, and OPTN and RCHY1 are an essential autophagy receptor and a E3-ligase, respectively, conferring cargo selectivity in melanophagy.
Collapse
Affiliation(s)
- Ki Won Lee
- Anti-aging Bio Cell factory Regional Leading Research Center, Gyeongsang National University, Jinju52828, South Korea
- Division of Applied Life Science (Brain Korea 21 Four), Gyeongsang National University, Jinju 52828, South Korea
| | - Ki-jun Ryu
- Research Institute of Life Sciences, Gyeongsang National University, Jinju52828, South Korea
| | - Minju Kim
- Division of Applied Life Science (Brain Korea 21 Four), Gyeongsang National University, Jinju 52828, South Korea
| | - Seyeon Lim
- Division of Applied Life Science (Brain Korea 21 Four), Gyeongsang National University, Jinju 52828, South Korea
| | - Jisu Kim
- Division of Applied Life Science (Brain Korea 21 Four), Gyeongsang National University, Jinju 52828, South Korea
| | - Jeong Yoon Kim
- Department of Pharmaceutical Engineering, Gyeongsang National University, Jinju52725, South Korea
| | - Cheol Hwangbo
- Division of Applied Life Science (Brain Korea 21 Four), Gyeongsang National University, Jinju 52828, South Korea
- Division of Life Science, Gyeongsang National University, Jinju52828, South Korea
| | - Jiyun Yoo
- Division of Applied Life Science (Brain Korea 21 Four), Gyeongsang National University, Jinju 52828, South Korea
- Division of Life Science, Gyeongsang National University, Jinju52828, South Korea
| | - Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, Wonmi-Gu, Bucheon-si, Gyeonggi-Do14662, South Korea
| | - Kwang Dong Kim
- Anti-aging Bio Cell factory Regional Leading Research Center, Gyeongsang National University, Jinju52828, South Korea
- Division of Applied Life Science (Brain Korea 21 Four), Gyeongsang National University, Jinju 52828, South Korea
- Division of Life Science, Gyeongsang National University, Jinju52828, South Korea
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju52828, South Korea
| |
Collapse
|
2
|
Wang S, Chen H, Huang Y, Zhang X, Chen Y, Du H, Wang H, Qin F, Ding S. Ubiquitin E3 ligase AtCHYR2 functions in glucose regulation of germination and post-germinative growth in Arabidopsis thaliana. PLANT CELL REPORTS 2023; 42:989-1002. [PMID: 36991149 DOI: 10.1007/s00299-023-03008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/19/2023] [Indexed: 05/12/2023]
Abstract
KEY MESSAGE Cytoplasm-localized RING ubiquitin E3 ligase AtCHYR2 involved in plant glucose responses during germination and post-germinative growth. CHY ZINC FINGER AND RING PROTEIN (CHYR) containing both a CHY zinc finger and a C3H2C3-type RING domain plays important roles in plant drought tolerance and the abscisic acid (ABA) response; however, their functions in sugar signaling pathways are less studied. Here, we report a glucose (Glc) response gene AtCHYR2, a homolog of RZFP34/CHYR1, which is induced by various abiotic stresses, ABA, and sugar treatments. In vitro, we demonstrated that AtCHYR2 is a cytoplasm-localized RING ubiquitin E3 ligase. Overexpression of AtCHYR2 led to hypersensitivity to Glc and enhanced Glc-mediated inhibition of cotyledon greening and post-germinative growth. Contrastingly, AtCHYR2 loss-of-function plants were insensitive to Glc-regulated seed germination and primary root growth, suggesting that AtCHYR2 is a positively regulator of the plant glucose response. Additionally, physiological analyses showed that overexpression AtCHYR2 increased stomata aperture and photosynthesis under normal condition, and promoted accumulation of endogenous soluble sugar and starch in response to high Glc. Genome-wide RNA sequencing analysis showed that AtCHYR2 affects a major proportion of Glc-responsive genes. Particularly, sugar marker gene expression analysis suggested that AtCHYR2 enhances the Glc response via a signaling pathway dependent on glucose metabolism. Taken together, our findings show that a novel RING ubiquitin E3 ligase, AtCHYR2, plays an important role in glucose responses in Arabidopsis.
Collapse
Affiliation(s)
- Shengyong Wang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, 1 Jingmi Road, Jingzhou, 434025, Hubei, China
| | - Huili Chen
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, 1 Jingmi Road, Jingzhou, 434025, Hubei, China
| | - Yujie Huang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, 1 Jingmi Road, Jingzhou, 434025, Hubei, China
| | - Xiaotian Zhang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, 1 Jingmi Road, Jingzhou, 434025, Hubei, China
| | - Yuhang Chen
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, 1 Jingmi Road, Jingzhou, 434025, Hubei, China
| | - Hewei Du
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Hongwei Wang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, 1 Jingmi Road, Jingzhou, 434025, Hubei, China.
| | - Feng Qin
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| | - Shuangcheng Ding
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, 1 Jingmi Road, Jingzhou, 434025, Hubei, China.
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
3
|
Invergo BM. Accurate, high-coverage assignment of in vivo protein kinases to phosphosites from in vitro phosphoproteomic specificity data. PLoS Comput Biol 2022; 18:e1010110. [PMID: 35560139 PMCID: PMC9132282 DOI: 10.1371/journal.pcbi.1010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/25/2022] [Accepted: 04/15/2022] [Indexed: 12/03/2022] Open
Abstract
Phosphoproteomic experiments routinely observe thousands of phosphorylation sites. To understand the intracellular signaling processes that generated this data, one or more causal protein kinases must be assigned to each phosphosite. However, limited knowledge of kinase specificity typically restricts assignments to a small subset of a kinome. Starting from a statistical model of a high-throughput, in vitro kinase-substrate assay, I have developed an approach to high-coverage, multi-label kinase-substrate assignment called IV-KAPhE (“In vivo-Kinase Assignment for Phosphorylation Evidence”). Tested on human data, IV-KAPhE outperforms other methods of similar scope. Such computational methods generally predict a densely connected kinase-substrate network, with most sites targeted by multiple kinases, pointing either to unaccounted-for biochemical constraints or significant cross-talk and signaling redundancy. I show that such predictions can potentially identify biased kinase-site misannotations within families of closely related kinase isozymes and they provide a robust basis for kinase activity analysis. Proteins can pass around information inside cells about changes in the environment. This process, called intracellular signaling, helps to trigger appropriate cellular responses to environmental changes. One of the main ways information is passed to proteins is through chemical “tagging,” called phosphorylation, by enzymes called protein kinases. We can measure the phosphorylation state of practically all proteins in a cell at any moment. Starting from known cases of phosphorylation by a kinase, many computational methods have been developed to predict if the kinase might tag a certain spot on another protein or if an observed tag was attached by the kinase, with different models for each kinase. I have developed a new method that instead uses a single model to assign one or more kinases to each observed tag, built from the latest large-scale experimental data. This change in focus and unbiased training data allows my method to be significantly more accurate than past methods. I also explored useful applications for my method. For example, I used it to show that much of our knowledge about which kinase is responsible for each tag is probably inaccurately biased towards the commonly studied ones.
Collapse
Affiliation(s)
- Brandon M. Invergo
- Translational Research Exchange @ Exeter, University of Exeter, Exeter, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Daks A, Fedorova O, Parfenyev S, Nevzorov I, Shuvalov O, Barlev NA. The Role of E3 Ligase Pirh2 in Disease. Cells 2022; 11:1515. [PMID: 35563824 PMCID: PMC9101203 DOI: 10.3390/cells11091515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
The p53-dependent ubiquitin ligase Pirh2 regulates a number of proteins involved in different cancer-associated processes. Targeting the p53 family proteins, Chk2, p27Kip1, Twist1 and others, Pirh2 participates in such cellular processes as proliferation, cell cycle regulation, apoptosis and cellular migration. Thus, it is not surprising that Pirh2 takes part in the initiation and progression of different diseases and pathologies including but not limited to cancer. In this review, we aimed to summarize the available data on Pirh2 regulation, its protein targets and its role in various diseases and pathological processes, thus making the Pirh2 protein a promising therapeutic target.
Collapse
Affiliation(s)
- Alexandra Daks
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (O.F.); (S.P.); (I.N.); (O.S.)
| | | | | | | | | | - Nickolai A. Barlev
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (O.F.); (S.P.); (I.N.); (O.S.)
| |
Collapse
|
5
|
Targeting T-type channels in cancer: What is on and what is off? Drug Discov Today 2021; 27:743-758. [PMID: 34838727 DOI: 10.1016/j.drudis.2021.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/10/2021] [Accepted: 11/18/2021] [Indexed: 12/27/2022]
Abstract
Over the past 20 years, various studies have demonstrated a pivotal role of T-type calcium channels (TTCCs) in tumor progression. Cytotoxic effects of TTCC pharmacological blockers have been reported in vitro and in preclinical models. However, their roles in cancer physiology are only beginning to be understood. In this review, we discuss evidence for the signaling pathways and cellular processes stemming from TTCC activity, mainly inferred by inverse reasoning from pharmacological blocks and, only in a few studies, by gene silencing or channel activation. A thorough analysis indicates that drug-induced cytotoxicity is partially an off-target effect. Dissection of on/off-target activity is paramount to elucidate the physiological roles of TTCCs, and to deliver efficacious therapies suited to different cancer types and stages.
Collapse
|
6
|
Abou Zeinab R, Wu HH, Abuetabh Y, Leng S, Sergi C, Eisenstat DD, Leng RP. Pirh2, an E3 ligase, regulates the AIP4-p73 regulatory pathway by modulating AIP4 expression and ubiquitination. Carcinogenesis 2021; 42:650-662. [PMID: 33569599 PMCID: PMC8086772 DOI: 10.1093/carcin/bgab009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 02/05/2023] Open
Abstract
Pirh2 is an E3 ligase belonging to the RING-H2 family and shown to bind, ubiquitinate and downregulate p73 tumor suppressor function without altering p73 protein levels. AIP4, an E3 ligase belonging to the HECT domain family, has been reported to be a negative regulatory protein that promotes p73 ubiquitination and degradation. Herein, we found that Pirh2 is a key regulator of AIP4 that inhibits p73 function. Pirh2 physically interacts with AIP4 and significantly downregulates AIP4 expression. This downregulation is shown to involve the ubiquitination of AIP4 by Pirh2. Importantly, we demonstrated that the ectopic expression of Pirh2 inhibits the AIP4-p73 negative regulatory pathway, which was restored when depleting endogenous Pirh2 utilizing Pirh2-siRNAs. We further observed that Pirh2 decreases AIP4-mediated p73 ubiquitination. At the translational level and specifically regarding p73 cell cycle arrest function, Pirh2 still ensures the arrest of p73-mediated G1 despite AIP4 expression. Our study reveals a novel link between two E3 ligases previously thought to be unrelated in regulating the same effector substrate, p73. These findings open a gateway to explain how E3 ligases differentiate between regulating multiple substrates that may belong to the same family of proteins, as it is the case for the p53 and p73 proteins.
Collapse
Affiliation(s)
- Rami Abou Zeinab
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - H Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Yasser Abuetabh
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Sarah Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, Alberta, Canada
| | - David D Eisenstat
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Roger P Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Wang L, Ginnan RG, Wang YX, Zheng YM. Interactive Roles of CaMKII/Ryanodine Receptor Signaling and Inflammation in Lung Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:305-317. [PMID: 33788199 DOI: 10.1007/978-3-030-63046-1_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional protein kinase and has been recently recognized to play a vital role in pathological events in the pulmonary system. CaMKII has diverse downstream targets that promote vascular disease, asthma, and cancer, so improved understanding of CaMKII signaling has the potential to lead to new therapies for lung diseases. Multiple studies have demonstrated that CaMKII is involved in redox modulation of ryanodine receptors (RyRs). CaMKII can be directly activated by reactive oxygen species (ROS) which then regulates RyR activity, which is essential for Ca2+-dependent processes in lung diseases. Furthermore, both CaMKII and RyRs participate in the inflammation process. However, their role in the pulmonary physiology in response to ROS is still an ambiguous one. Because CaMKII and RyRs are important in pulmonary biology, cell survival, cell cycle control, and inflammation, it is possible that the relationship between ROS and CaMKII/RyRs signal complex will be necessary for understanding and treating lung diseases. Here, we review roles of CaMKII/RyRs in lung diseases to understand with how CaMKII/RyRs may act as a transduction signal to connect prooxidant conditions into specific downstream pathological effects that are relevant to rare and common forms of pulmonary disease.
Collapse
Affiliation(s)
- Lan Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.,Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Roman G Ginnan
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
8
|
Yan S, Wu G. Spatial and temporal roles of SARS-CoV PL pro -A snapshot. FASEB J 2021; 35:e21197. [PMID: 33368679 PMCID: PMC7883198 DOI: 10.1096/fj.202002271] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023]
Abstract
SARS‐CoV and SARS‐CoV‐2 encode four structural and accessory proteins (spike, envelope, membrane and nucleocapsid proteins) and two polyproteins (pp1a and pp1ab). The polyproteins are further cleaved by 3C‐like cysteine protease (3CLpro) and papain‐like protease (PLpro) into 16 nonstructural proteins (nsps). PLpro is released from nsp3 through autocleavage, and then it cleaves the sites between nsp1/2, between nsp2/3 and between nsp3/4 with recognition motif of LXGG, and the sites in the C‐terminus of ubiquitin and of protein interferon‐stimulated gene 15 (ISG15) with recognition motif of RLRGG. Alone or together with SARS unique domain (SUD), PLpro can stabilize an E3 ubiquitin ligase, the ring‐finger, and CHY zinc‐finger domain‐containing 1 (RCHY1), through domain interaction, and thus, promote RCHY1 to ubiquitinate its target proteins including p53. However, a dilemma appears in terms of PLpro roles. On the one hand, the ubiquitination of p53 is good for SARS‐CoV because the ubiquitinated p53 cannot inhibit SARS‐CoV replication. On the other hand, the ubiquitination of NF‐κB inhibitor (IκBα), TNF receptor‐associated factors (TRAFs), and stimulator of interferon gene (STING), and the ISGylation of targeted proteins are bad for SARS‐CoV because these ubiquitination and ISGylation initiate the innate immune response and antiviral state. This mini‐review analyzes the dilemma and provides a snapshot on how the viral PLpro smartly manages its roles to avoid its simultaneously contradictory actions, which could shed lights on possible strategies to deal with SARS‐CoV‐2 infections.
Collapse
Affiliation(s)
- Shaomin Yan
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Guangxi Key Laboratory of Bio-Refinery, Guangxi Academy of Sciences, Nanning, China
| | - Guang Wu
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Guangxi Key Laboratory of Bio-Refinery, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
9
|
Zhao CY, Xue HW. PI4Kγ2 Interacts with E3 Ligase MIEL1 to Regulate Auxin Metabolism and Root Development. PLANT PHYSIOLOGY 2020; 184:933-944. [PMID: 32788299 PMCID: PMC7536656 DOI: 10.1104/pp.20.00799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/20/2020] [Indexed: 05/07/2023]
Abstract
Root development is important for normal plant growth and nutrient absorption. Studies have revealed the involvement of various factors in this complex process, improving our understanding of the relevant regulatory mechanisms. Here, we functionally characterize the role of Arabidopsis (Arabidopsis thaliana) phosphatidylinositol 4-kinase γ2 (PI4Kγ2) in root elongation regulation, which functions to modulate stability of the RING-type E3 ligase MYB30-INTERACTING E3 LIGASE1 (MIEL1) and auxin metabolism. Mutant plants deficient in PI4Kγ2 (pi4kγ2) exhibited a shortened root length and elongation zone due to reduced auxin level. PI4Kγ2 was shown to interact with MIEL1, regulating its degradation and furthering the stability of transcription factor MYB30 (which suppresses auxin metabolism by directly binding to promoter regions of GH3 2 and GH3 6). Interestingly, pi4kγ2 plants presented altered hypersensitive response, indicating that PI4Kγ2 regulates synergetic growth and defense of plants through modulating auxin metabolism. These results reveal the importance of protein interaction in regulating ubiquitin-mediated protein degradation in eukaryotic cells, and illustrate a mechanism coordinating plant growth and biotic stress response.
Collapse
Affiliation(s)
- Chun-Yan Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hong-Wei Xue
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
10
|
p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1. Proc Natl Acad Sci U S A 2016; 113:E5192-201. [PMID: 27519799 DOI: 10.1073/pnas.1603435113] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) has developed strategies to inhibit host immune recognition. We identify cellular E3 ubiquitin ligase ring-finger and CHY zinc-finger domain-containing 1 (RCHY1) as an interacting partner of the viral SARS-unique domain (SUD) and papain-like protease (PL(pro)), and, as a consequence, the involvement of cellular p53 as antagonist of coronaviral replication. Residues 95-144 of RCHY1 and 389-652 of SUD (SUD-NM) subdomains are crucial for interaction. Association with SUD increases the stability of RCHY1 and augments RCHY1-mediated ubiquitination as well as degradation of p53. The calcium/calmodulin-dependent protein kinase II delta (CAMK2D), which normally influences RCHY1 stability by phosphorylation, also binds to SUD. In vivo phosphorylation shows that SUD does not regulate phosphorylation of RCHY1 via CAMK2D. Similarly to SUD, the PL(pro)s from SARS-CoV, MERS-CoV, and HCoV-NL63 physically interact with and stabilize RCHY1, and thus trigger degradation of endogenous p53. The SARS-CoV papain-like protease is encoded next to SUD within nonstructural protein 3. A SUD-PL(pro) fusion interacts with RCHY1 more intensively and causes stronger p53 degradation than SARS-CoV PL(pro) alone. We show that p53 inhibits replication of infectious SARS-CoV as well as of replicons and human coronavirus NL63. Hence, human coronaviruses antagonize the viral inhibitor p53 via stabilizing RCHY1 and promoting RCHY1-mediated p53 degradation. SUD functions as an enhancer to strengthen interaction between RCHY1 and nonstructural protein 3, leading to a further increase in in p53 degradation. The significance of these findings is that down-regulation of p53 as a major player in antiviral innate immunity provides a long-sought explanation for delayed activities of respective genes.
Collapse
|
11
|
Nickel N, Cleven A, Enders V, Lisak D, Schneider L, Methner A. Androgen-inducible gene 1 increases the ER Ca2+ content and cell death susceptibility against oxidative stress. Gene 2016; 586:62-8. [DOI: 10.1016/j.gene.2016.03.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 11/27/2022]
|
12
|
Wang YY, Zhao R, Zhe H. The emerging role of CaMKII in cancer. Oncotarget 2016; 6:11725-34. [PMID: 25961153 PMCID: PMC4494900 DOI: 10.18632/oncotarget.3955] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/08/2015] [Indexed: 12/13/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional serine/threonine kinases best known for its critical role in learning and memory. Recent studies suggested that high levels of CaMKII also expressed in variety of malignant diseases. In this review, we focus on the structure and biology properties of CaMKII, including the role of CaMKII in the regulation of cancer progression and therapy response. We also describe the role of CaMKII in the diagnosis of different kinds of cancer and recent progress in the development of CaMKII inhibitors. These data establishes CaMKII as a novel target whose modulation presents new opportunities for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yan-yang Wang
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Cancer Institute, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ren Zhao
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Cancer Institute, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hong Zhe
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Cancer Institute, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
13
|
Bridoux L, Deneyer N, Bergiers I, Rezsohazy R. Molecular Analysis of the HOXA2-Dependent Degradation of RCHY1. PLoS One 2015; 10:e0141347. [PMID: 26496426 PMCID: PMC4619689 DOI: 10.1371/journal.pone.0141347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/07/2015] [Indexed: 01/19/2023] Open
Abstract
The homeodomain transcription factor Hoxa2 interacts with the RING-finger type E3 ubiquitin ligase RCHY1 and induces its proteasomal degradation. In this work, we dissected this non-transcriptional activity of Hoxa2 at the molecular level. The Hoxa2-mediated decay of RCHY1 involves both the 19S and 20S proteasome complexes. It relies on both the Hoxa2 homeodomain and C-terminal moiety although no single deletion in the Hoxa2 sequence could disrupt the RCHY1 interaction. That the Hoxa2 homeodomain alone could mediate RCHY1 binding is consistent with the shared ability all the Hox proteins we tested to interact with RCHY1. Nonetheless, the ability to induce RCHY1 degradation although critically relying on the homeodomain is not common to all Hox proteins. This identifies the homeodomain as necessary but not sufficient for what appears to be an almost generic Hox protein activity. Finally we provide evidence that the Hoxa2-induced degradation of RCHY1 is evolutionarily conserved among vertebrates. These data therefore support the hypothesis that the molecular and functional interaction between Hox proteins and RCHY1 is an ancestral Hox property.
Collapse
Affiliation(s)
- Laure Bridoux
- From the Animal Molecular and Cellular Biology group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Noémie Deneyer
- From the Animal Molecular and Cellular Biology group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Isabelle Bergiers
- From the Animal Molecular and Cellular Biology group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - René Rezsohazy
- From the Animal Molecular and Cellular Biology group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
- * E-mail:
| |
Collapse
|
14
|
Mendoza M, Mandani G, Momand J. The MDM2 gene family. Biomol Concepts 2015; 5:9-19. [PMID: 25372739 DOI: 10.1515/bmc-2013-0027] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/04/2013] [Indexed: 01/09/2023] Open
Abstract
MDM2 is an oncoprotein that blocks p53 tumor suppressor-mediated transcriptional transactivation, escorts p53 from the cell nucleus to the cytoplasm, and polyubiquitylates p53. Polyubiquitylated p53 is rapidly degraded in the cytoplasm by the 26S proteasome. MDM2 is abnormally upregulated in several types of cancers, especially those of mesenchymal origin. MDM4 is a homolog of MDM2 that also inhibits p53 by blocking p53-mediated transactivation. MDM4 is required for MDM2-mediated polyubiquitylated of p53 and is abnormally upregulated in several cancer types. MDM2 and MDM4 genes have been detected in all vertebrates to date and only a single gene homolog, named MDM, has been detected in some invertebrates. MDM2, MDM4, and MDM have similar gene structures, suggesting that MDM2 and MDM4 arose through a duplication event more than 440 million years ago. All members of this small MDM2 gene family contain a single really interesting new gene (RING) domain (with the possible exception of lancelet MDM) which places them in the RING-domain superfamily. Similar to MDM2, the vast majority of proteins with RING domains are E3 ubiquitin ligases. Other RING domain E3 ubiquitin ligases that target p53 are COP1, Pirh2, and MSL2. In this report, we present evidence that COP1, Pirh2, and MSL2 evolved independently of MDM2 and MDM4. We also show, through structure homology models of invertebrate MDM RING domains, that MDM2 is more evolutionarily conserved than MDM4.
Collapse
|
15
|
Gu H, Li Q, Huang S, Lu W, Cheng F, Gao P, Wang C, Miao L, Mei Y, Wu M. Mitochondrial E3 ligase March5 maintains stemness of mouse ES cells via suppression of ERK signalling. Nat Commun 2015; 6:7112. [PMID: 26033541 PMCID: PMC4458872 DOI: 10.1038/ncomms8112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 04/02/2015] [Indexed: 01/06/2023] Open
Abstract
Embryonic stem cells (ESCs) possess pluripotency, which is the capacity of cells to differentiate into all lineages of the mature organism. Increasing evidence suggests that the pluripotent state of ESCs is regulated by a combination of extrinsic and intrinsic factors. The underlying mechanisms, however, are not completely understood. Here, we show that March5, an E3 ubiquitin ligase, is involved in maintaining mouse-ESC (mESC) pluripotency. Knockdown of March5 in mESCs led to differentiation from naive pluripotency. Mechanistically, as a transcriptional target of Klf4, March5 catalyses K63-linked polyubiquitination of Prkar1a, a negative regulatory subunit of PKA, to activate PKA, thereby inhibiting the Raf/MEK/ERK pathway. Moreover, March5 is able to replace a MEK/ERK inhibitor to maintain mESC pluripotency under serum-free culture conditions. In addition, March5 can partially replace the use of Klf4 for somatic cell reprogramming. Collectively, our study uncovers a role for the Klf4–March5–PKA–ERK pathway in maintaining the stemness properties of mESCs. The pluripotent state of mouse embryonic stem cells (mESCs) is regulated by extrinsic and intrinsic signals but the underlying mechanisms are not completely understood. Here the authors show that the E3 ligase, March5, contributes to the maintenance of the pluripotent state in mESCs via suppression of ERK activation.
Collapse
Affiliation(s)
- Hao Gu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qidong Li
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Shan Huang
- Pathology Department, The Second Hospital of Anhui Medical University, Hefei, Anhui 230061, China
| | - Weiguang Lu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Fangyuan Cheng
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ping Gao
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chen Wang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lin Miao
- Scientific and Educational Department, The Second Hospital of Anhui Medical University, Hefei, Anhui 230061, China
| | - Yide Mei
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Mian Wu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
16
|
Brinkmann K, Schell M, Hoppe T, Kashkar H. Regulation of the DNA damage response by ubiquitin conjugation. Front Genet 2015; 6:98. [PMID: 25806049 PMCID: PMC4354423 DOI: 10.3389/fgene.2015.00098] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/23/2015] [Indexed: 12/12/2022] Open
Abstract
In response to DNA damage, cells activate a highly conserved and complex kinase-based signaling network, commonly referred to as the DNA damage response (DDR), to safeguard genomic integrity. The DDR consists of a set of tightly regulated events, including detection of DNA damage, accumulation of DNA repair factors at the site of damage, and finally physical repair of the lesion. Upon overwhelming damage the DDR provokes detrimental cellular actions by involving the apoptotic machinery and inducing a coordinated demise of the damaged cells (DNA damage-induced apoptosis, DDIA). These diverse actions involve transcriptional activation of several genes that govern the DDR. Moreover, recent observations highlighted the role of ubiquitylation in orchestrating the DDR, providing a dynamic cellular regulatory circuit helping to guarantee genomic stability and cellular homeostasis (Popovic et al., 2014). One of the hallmarks of human cancer is genomic instability (Hanahan and Weinberg, 2011). Not surprisingly, deregulation of the DDR can lead to human diseases, including cancer, and can induce resistance to genotoxic anti-cancer therapy (Lord and Ashworth, 2012). Here, we summarize the role of ubiquitin-signaling in the DDR with special emphasis on its role in cancer and highlight the therapeutic value of the ubiquitin-conjugation machinery as a target in anti-cancer treatment strategy.
Collapse
Affiliation(s)
- Kerstin Brinkmann
- Centre for Molecular Medicine Cologne and Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of CologneCologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University Hospital of CologneCologne, Germany
| | - Michael Schell
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University Hospital of CologneCologne, Germany
- Institute for Genetics, University of CologneCologne, Germany
| | - Thorsten Hoppe
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University Hospital of CologneCologne, Germany
- Institute for Genetics, University of CologneCologne, Germany
| | - Hamid Kashkar
- Centre for Molecular Medicine Cologne and Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of CologneCologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University Hospital of CologneCologne, Germany
| |
Collapse
|
17
|
Bergiers I, Bridoux L, Nguyen N, Twizere JC, Rezsöhazy R. The homeodomain transcription factor Hoxa2 interacts with and promotes the proteasomal degradation of the E3 ubiquitin protein ligase RCHY1. PLoS One 2013; 8:e80387. [PMID: 24244684 PMCID: PMC3820564 DOI: 10.1371/journal.pone.0080387] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/02/2013] [Indexed: 12/19/2022] Open
Abstract
Hox proteins are conserved homeodomain transcription factors known to be crucial regulators of animal development. As transcription factors, the functions and modes of action (co-factors, target genes) of Hox proteins have been very well studied in a multitude of animal models. However, a handful of reports established that Hox proteins may display molecular activities distinct from gene transcription regulation. Here, we reveal that Hoxa2 interacts with 20S proteasome subunits and RCHY1 (also known as PIRH2), an E3 ubiquitin ligase that targets p53 for degradation. We further show that Hoxa2 promotes proteasome-dependent degradation of RCHY1 in an ubiquitin-independent manner. Correlatively, Hoxa2 alters the RCHY1-mediated ubiquitination of p53 and promotes p53 stabilization. Together, our data establish that Hoxa2 can regulate the proteasomal degradation of RCHY1 and stabilization of p53.
Collapse
Affiliation(s)
- Isabelle Bergiers
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Laure Bridoux
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Nathan Nguyen
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jean-Claude Twizere
- Laboratory of Signaling and Protein Interactions, GIGA-R, University of Liege, Liège, Belgium
| | - René Rezsöhazy
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- * E-mail:
| |
Collapse
|
18
|
Bagashev A, Fan S, Mukerjee R, Claudio PP, Chabrashvili T, Leng RP, Benchimol S, Sawaya BE. Cdk9 phosphorylates Pirh2 protein and prevents degradation of p53 protein. Cell Cycle 2013; 12:1569-77. [PMID: 23603988 DOI: 10.4161/cc.24733] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Several reports have pointed to the negative involvement of p53 in transcriptional regulation of the human immunodeficiency virus type 1 long-terminal repeat (HIV-1 LTR). We recently demonstrated that through their physical interaction, cdk9 phosphorylates p53 on Ser-392, leading to p53 stability and accumulation. As a result, p53 stalled transcriptional elongation of the HIV-1 LTR and significantly reduced HIV-1 replication in primary microglia and astrocytes. Therefore, we sought to identify the mechanisms used by cdk9 to allow this p53 function. Using western blot analysis, we found that cdk9 promotes inhibition and phosphorylation of Mdm2 on Ser-395, thus preventing degradation of p53, a protein that is directly involved in promoting p53 ubiquitination. On the other hand, we showed that cdk9 phosphorylates Pirh2 on Ser-211 and Thr-217 residues through their physical interaction. Phosphorylation of Pirh2 renders it inactive and may contribute to p53-inhibition of transcriptional elongation of the HIV-1 LTR. Hence, we suggest that phosphorylation of Pirh2 may be a novel target for the inhibition of HIV-1 gene expression.
Collapse
Affiliation(s)
- Asen Bagashev
- Molecular Studies of Neurodegenerative Diseases Lab, The Fels Institute for Cancer Research & Molecular Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Chen J, Zou F, Fu H, Mao H, Gong M, Ni L, Xu X, Shi J, Ke K, Cao M, Zhou F, Shi W. SCY1-like 1 binding protein 1 (SCYL1-bp1) interacts with p53-induced RING H2 protein (Pirh2) after traumatic brain injury in rats. J Mol Histol 2013; 44:271-83. [DOI: 10.1007/s10735-013-9488-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/04/2013] [Indexed: 01/06/2023]
|
20
|
Kv3.4 potassium channel-mediated electrosignaling controls cell cycle and survival of irradiated leukemia cells. Pflugers Arch 2013; 465:1209-21. [PMID: 23443853 DOI: 10.1007/s00424-013-1249-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/29/2013] [Accepted: 02/08/2013] [Indexed: 10/27/2022]
Abstract
Aberrant ion channel expression in the plasma membrane is characteristic for many tumor entities and has been attributed to neoplastic transformation, tumor progression, metastasis, and therapy resistance. The present study aimed to define the function of these "oncogenic" channels for radioresistance of leukemia cells. Chronic myeloid leukemia cells were irradiated (0-6 Gy X ray), ion channel expression and activity, Ca(2+)- and protein signaling, cell cycle progression, and cell survival were assessed by quantitative reverse transcriptase-polymerase chain reaction, patch-clamp recording, fura-2 Ca(2+)-imaging, immunoblotting, flow cytometry, and clonogenic survival assays, respectively. Ionizing radiation-induced G2/M arrest was preceded by activation of Kv3.4-like voltage-gated potassium channels. Channel activation in turn resulted in enhanced Ca(2+) entry and subsequent activation of Ca(2+)/calmodulin-dependent kinase-II, and inactivation of the phosphatase cdc25B and the cyclin-dependent kinase cdc2. Accordingly, channel inhibition by tetraethylammonium and blood-depressing substance-1 and substance-2 or downregulation by RNA interference led to release from radiation-induced G2/M arrest, increased apoptosis, and decreased clonogenic survival. Together, these findings indicate the functional significance of voltage-gated K(+) channels for the radioresistance of myeloid leukemia cells.
Collapse
|
21
|
Abstract
p63, a homologue of the tumor suppressor p53, is essential for the development of epidermis and limb. p63 is highly expressed in epithelial cell layer and acts as a molecular switch that initiates epithelial stratification. However, the mechanisms controlling p63 protein level is still far from fully understood. Here, we demonstrate a regulatory protein for the p63 activity. We found that Pirh2 E3 ubiquitin ligase physically interacts with p63 and targets p63 for polyubiquitination and subsequently proteasomal degradation. We also found that ectopic expression of Pirh2 in HaCaT cells suppresses cell proliferation. Consistent with this, we found that along with altered expression of ΔNp63 protein, ectopic expression of Pirh2 promotes, whereas knockdown of Pirh2 inhibits, keratinocyte differentiation. Collectively, our data suggest that Pirh2 plays a physiologically relevant role in keratinocyte differentiation through posttranslational modification of p63 protein.
Collapse
|
22
|
Love IM, Grossman SR. It Takes 15 to Tango: Making Sense of the Many Ubiquitin Ligases of p53. Genes Cancer 2012; 3:249-63. [PMID: 23150758 DOI: 10.1177/1947601912455198] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The transcription factor p53 regulates numerous cellular processes to guard against tumorigenesis. Cell-cycle inhibition, apoptosis, and autophagy are all regulated by p53 in a cell- and context-specific manner, underscoring the need for p53 activity to be kept low in most circumstances. p53 is kept in check primarily through its regulated ubiquitination and degradation by a number of different factors, whose contributions may reflect complex context-specific needs to restrain p53 activity. Chief among these E3 ubiquitin ligases in p53 homeostasis is the ubiquitously expressed proto-oncogene MDM2, whose loss renders vertebrates unable to limit p53 activity, resulting in early embryonic lethality. MDM2 has been validated as a critical, universal E3 ubiquitin ligase for p53 in numerous tissues and organisms to date, but additional E3 ligases have also been identified for p53 whose contribution to p53 activity is unclear. In this review, we summarize the recent advances in our knowledge regarding how p53 activity is apparently controlled by a multitude of ubiquitin ligases beyond MDM2.
Collapse
Affiliation(s)
- Ian M Love
- Division of Hematology, Oncology, and Palliative Care, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | | |
Collapse
|
23
|
Wu XR, Sha JJ, Liu DM, Chen YH, Yang GL, Zhang J, Chen YY, Bo JJ, Huang YR. High expression of P53-induced Ring-h2 protein is associated with poor prognosis in clear cell renal cell carcinoma. Eur J Surg Oncol 2012; 39:100-6. [PMID: 23102595 DOI: 10.1016/j.ejso.2012.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 08/02/2012] [Accepted: 10/03/2012] [Indexed: 11/19/2022] Open
Abstract
PURPOSE This study was carried out to examine P53-induced Ring-h2 protein (Pirh2) expression and investigate its clinical and prognostic significance in patients with clear cell renal cell carcinoma (ccRCC). METHODS Pirh2 mRNA and protein expressions were detected by quantitative reverse-transcription polymerase chain reaction (Q-RT PCR) and Western blotting in 35 frozen renal cancer tissue specimens and 35 adjacent normal renal tissue specimens of the same patients. Pirh2 protein expression was assessed by immunohistochemical analysis in 92 paraffin-embedded specimens of human ccRCC and 30 specimens of adjacent normal renal tissue. Correlations between Pirh2 and clinicopathologic features and prognosis were analyzed statistically. RESULTS Pirh2 mRNA and protein levels in ccRCC samples were increased significantly as compared with the adjacent normal renal tissues (P < 0.001). Pirh2 mRNA overexpression correlated with high stage and grade of the renal cancer (P < 0.001 and P < 0.001 respectively). Pirh2 protein expression was negative in most normal renal tissue specimens (23/30) but positive in 52.2% (48/92) of ccRCC specimens (P = 0.006). Pirh2 protein expression correlated with tumor grade and stage (P < 0.001 and P < 0.001 respectively). The median follow-up interval was 42.0 months. Overexpression of Pirh2 protein in ccRCC was significantly associated with shorter overall survival and recurrence-free survival (P = 0.001 and P = 0.003, respectively). Multivariate analysis showed that Pirh2 expression was an independent prognostic factor for ccRCC patients (P = 0.037). CONCLUSIONS Pirh2 was up-regulated in ccRCC at both transcriptional and translational levels compared with normal renal tissues, suggesting that Pirh2 may be a potential prognostic marker for ccRCC.
Collapse
Affiliation(s)
- X R Wu
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, Shanghai 200001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lee SW, Seong MW, Jeon YJ, Chung CH. Ubiquitin E3 ligases controlling p53 stability. Anim Cells Syst (Seoul) 2012. [DOI: 10.1080/19768354.2012.688769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
25
|
Gu B, Zhu WG. Surf the post-translational modification network of p53 regulation. Int J Biol Sci 2012; 8:672-84. [PMID: 22606048 PMCID: PMC3354625 DOI: 10.7150/ijbs.4283] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 05/07/2012] [Indexed: 02/07/2023] Open
Abstract
Among the human genome, p53 is one of the first tumor suppressor genes to be discovered. It has a wide range of functions covering cell cycle control, apoptosis, genome integrity maintenance, metabolism, fertility, cellular reprogramming and autophagy. Although different possible underlying mechanisms for p53 regulation have been proposed for decades, none of them is conclusive. While much literature focuses on the importance of individual post-translational modifications, further explorations indicate a new layer of p53 coordination through the interplay of the modifications, which builds up a complex 'network'. This review focuses on the necessity, characteristics and mechanisms of the crosstalk among post-translational modifications and its effects on the precise and selective behavior of p53.
Collapse
Affiliation(s)
- Bo Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | | |
Collapse
|
26
|
Hu L, Liu M, Chen L, Chan THM, Wang J, Huo KK, Zheng BJ, Xie D, Guan XY. SCYL1 binding protein 1 promotes the ubiquitin-dependent degradation of Pirh2 and has tumor-suppressive function in the development of hepatocellular carcinoma. Carcinogenesis 2012; 33:1581-8. [PMID: 22570270 DOI: 10.1093/carcin/bgs162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pirh2 is a Ring-H2 domain containing E3 ubiquitin ligase that targets several important tumor suppressor genes for proteasomal degradation. Overexpression of Pirh2 is frequently detected in many clinical tumor tissues including hepatocellular carcinoma (HCC). However, the molecular mechanism of Pirh2 activation in tumorigenesis still remains poorly understood. In this study, we find a Pirh2-binding protein, SCYL1 binding protein 1 (SCYL1BP1), that can promote the ubiquitin-dependent degradation of Pirh2. SCYL1BP1 colocalized with Pirh2 in the cytoplasm and prevented its localization to the nucleus. Ectopic expression of SCYL1BP1 increased the expression of p53 and further inhibited the G(1)/S transition of HCC cell lines. Conversely, knock down of SCYL1BP1 restored the expression of Pirh2 and inhibited p53 at protein level. Functional assays found that reintroduction of SCYL1BP1 into HCC cell lines significantly inhibited cell proliferation, foci formation, colony formation in soft agar and tumor formation in nude mice, suggesting the strong tumor-suppressive function of SCYL1BP1 in HCC progression. Furthermore, SCYL1BP1 was found to be frequently downregulated in HCC clinical specimens compared to their paired non-tumor tissues by immunohistochemical staining. Taken together, our data suggested that the interaction of SCYL1BP1/Pirh2 could accelerate Pirh2 degradation through an ubiquitin-dependent pathway. SCYL1BP1 may function as an important tumor suppressor gene in HCC development.
Collapse
Affiliation(s)
- Liang Hu
- Institute of Reproductive and Stem Cell Engineering, Central South University P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jung YS, Qian Y, Chen X. Pirh2 RING-finger E3 ubiquitin ligase: its role in tumorigenesis and cancer therapy. FEBS Lett 2012; 586:1397-402. [PMID: 22673504 DOI: 10.1016/j.febslet.2012.03.052] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 01/12/2023]
Abstract
The ubiquitin-dependent proteasome system plays a critical role in many cellular processes and pathogenesis of various human diseases, including cancer. Although there are a large number of E3 ubiquitin ligases, the majority are RING-finger type E3s. Pirh2, a target of p53 transcription factor, contains a highly conserved C(3)H(2)C(3) type RING domain. Importantly, Pirh2 was found to regulate a group of key factors dedicated to the DNA damage response, such as p53, p73, PolH, and c-Myc. Interestingly, Pirh2 was upregulated or downregulated in different types of cancers. These suggest that Pirh2 is implicated in either promoting or suppressing tumor progression in a tissue-dependent manner. This review will focus on the major findings in these studies and discuss the potential to explore Pirh2 as a cancer therapeutic target.
Collapse
Affiliation(s)
- Yong-Sam Jung
- Comparative Oncology Laboratory, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
28
|
Wu H, Zeinab RA, Flores ER, Leng RP. Pirh2, a ubiquitin E3 ligase, inhibits p73 transcriptional activity by promoting its ubiquitination. Mol Cancer Res 2011; 9:1780-90. [PMID: 21994467 DOI: 10.1158/1541-7786.mcr-11-0157] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
p73, a homolog of the tumor suppressor p53, transactivates many p53 target genes, leading to apoptosis or cell-cycle arrest. p73 has recently been reported to play an important role in tumor suppression in a mouse model. Here, we show that Pirh2 physically interacted with p73 and downregulated p73 function through its E3 ligase activity. Pirh2 promoted p73 ubiquitination in vivo and in vitro. Intriguingly, Pirh2 primarily used K63-linked chains to ubiquitinate p73 in vitro, but in vivo, Pirh2 utilized K11-, K29-, K48-, and K63-linked chains to promote p73 ubiquitination. Depletion of Pirh2 by siRNA significantly reduced the ubiquitination of p73 in p53 null cells. Ectopic expression of Pirh2 repressed p73-dependent transcriptional activity, but the levels of p73 were not decreased. We consistently showed that ablation of endogenous Pirh2 restored p73-mediated transactivational activity. We found that Pirh2 repressed p73 transcriptional activity by directly inhibiting the p73 transcript, and p73 repression by Pirh2 was required for p73-dependent transcriptional activity and G(1) arrest but not for apoptosis. This study provides evidence that the ubiquitination of p73 mediated by Pirh2 represents an important pathway for controlling the suppressive function of p73. Furthermore, the data suggest a link between the transcriptional activity of p73 and its ubiquitination.
Collapse
Affiliation(s)
- Hong Wu
- Department of Laboratory Medicine and Pathology, 370 Heritage Medical Research Center, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | |
Collapse
|
29
|
Kuster DWD, Merkus D, Jorna HJJ, Dekkers DHW, Duncker DJ, Verhoeven AJM. Nuclear protein extraction from frozen porcine myocardium. J Physiol Biochem 2011; 67:165-73. [PMID: 21061196 DOI: 10.1007/s13105-010-0059-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 10/15/2010] [Indexed: 01/04/2023]
Abstract
Protocols for the extraction of nuclear proteins have been developed for cultured cells and fresh tissue, but sometimes only frozen tissue is available. We have optimized the homogenization procedure and subsequent fractionation protocol for the preparation of nuclear protein extracts from frozen porcine left ventricular (LV) tissue. This method gave a highly reproducible protein yield (6.5±0.7% of total protein; mean±SE, n=9) and a 6-fold enrichment of the nuclear marker protein B23. The nuclear protein extracts were essentially devoid of cytosolic, myofilament, and histone proteins. Compared to nuclear extracts from fresh LV tissue, some loss of nuclear proteins to the cytosolic fraction was observed. Using this method, we studied the distribution of tyrosine phosphorylated signal transducer and activator of transcription 3 (PY-STAT3) in LV tissue of animals treated with the β-agonist dobutamine. Upon treatment, PY-STAT3 increased 30.2±8.5-fold in total homogenates, but only 6.9±2.1-fold (n=4, P=0.03) in nuclear protein extracts. Of all PY-STAT3 formed, only a minor fraction appeared in the nuclear fraction. This simple and reproducible protocol yielded nuclear protein extracts that were highly enriched in nuclear proteins with almost complete removal of cytosolic and myofilament proteins. This nuclear protein extraction protocol is therefore well-suited for nuclear proteome analysis of frozen heart tissue collected in biobanks.
Collapse
Affiliation(s)
- Diederik W D Kuster
- Department of Biochemistry, Cardiovascular Research Institute COEUR, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
30
|
Jung YS, Qian Y, Chen X. The p73 tumor suppressor is targeted by Pirh2 RING finger E3 ubiquitin ligase for the proteasome-dependent degradation. J Biol Chem 2011; 286:35388-35395. [PMID: 21852228 DOI: 10.1074/jbc.m111.261537] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The p73 gene, a homologue of the p53 tumor suppressor, is expressed as TA and ΔN isoforms. TAp73 has similar activity as p53 and functions as a tumor suppressor whereas ΔNp73 has both pro- and anti-survival functions. While p73 is rarely mutated in spontaneous tumors, the expression status of p73 is linked to the sensitivity of tumor cells to chemotherapy and prognosis for many types of human cancer. Thus, uncovering its regulators in tumors is of great interest. Here, we found that Pirh2, a RING finger E3 ubiquitin ligase, promotes the proteasome-dependent degradation of p73. Specifically, we showed that knockdown of Pirh2 up-regulates, whereas ectopic expression of Pirh2 down-regulates, expression of endogenous and exogenous p73. In addition, Pirh2 physically associates with and promotes TAp73 polyubiquitination both in vivo and in vitro. Moreover, we found that p73 can be degraded by both 20 S and 26 S proteasomes. Finally, we showed that Pirh2 knockdown leads to growth suppression in a TAp73-dependent manner. Taken together, our findings indicate that Pirh2 promotes the proteasomal turnover of TAp73, and thus targeting Pirh2 to restore TAp73-mediated growth suppression in p53-deficient tumors may be developed as a novel anti-cancer strategy.
Collapse
Affiliation(s)
- Yong-Sam Jung
- Comparative Oncology Laboratory, University of California, Davis, California 95616
| | - Yingjuan Qian
- Comparative Oncology Laboratory, University of California, Davis, California 95616
| | - Xinbin Chen
- Comparative Oncology Laboratory, University of California, Davis, California 95616.
| |
Collapse
|
31
|
Abstract
Pirh2 (p53-induced RING-H2) is an E3 ubiquitin ligase that can target p53 for degradation and thereby repress a diverse group of biological activities regulated by p53. Notably, Pirh2, rather than MDM2, is the primary degrader of active p53 under conditions of DNA damage. Moreover, Pirh2 is highly expressed in multiple cancer cell lines regardless of p53 status. Recent research has shown that Pirh2 is involved in many signalling pathways related to the genesis and evolution of cancer. This review aims to summarize a comprehensive picture of the role of Pirh2 in cellular processes and its significance to tumorigenesis. Furthermore, this review focuses on its potential role as a cancer therapeutic target.
Collapse
Affiliation(s)
- Zhihao Wang
- School of Medicine, Wuhan University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
32
|
Yao Z, Duan S, Hou D, Wang W, Wang G, Liu Y, Wen L, Wu M. B23 acts as a nucleolar stress sensor and promotes cell survival through its dynamic interaction with hnRNPU and hnRNPA1. Oncogene 2010; 29:1821-34. [DOI: 10.1038/onc.2009.473] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
33
|
Pirh2 E3 ubiquitin ligase targets DNA polymerase eta for 20S proteasomal degradation. Mol Cell Biol 2009; 30:1041-8. [PMID: 20008555 DOI: 10.1128/mcb.01198-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA polymerase eta (PolH), a Y family translesion polymerase, is required for repairing UV-induced DNA damage, and loss of PolH is responsible for early onset of malignant skin cancers in patients with xeroderma pigmentosum variant (XPV), an autosomal recessive disorder. Here, we show that PolH, a target of the p53 tumor suppressor, is a short-half-life protein. We found that PolH is degraded by proteasome, which is enhanced upon UV irradiation. We also found that PolH interacts with Pirh2 E3 ligase, another target of the p53 tumor suppressor, via the polymerase-associated domain in PolH and the RING finger domain in Pirh2. In addition, we show that overexpression of Pirh2 decreases PolH protein stability, whereas knockdown of Pirh2 increases it. Interestingly, we found that PolH is recruited by Pirh2 and degraded by 20S proteasome in a ubiquitin-independent manner. Finally, we observed that Pirh2 knockdown leads to accumulation of PolH and, subsequently, enhances the survival of UV-irradiated cells. We postulate that UV irradiation promotes cancer formation in part by destabilizing PolH via Pirh2-mediated 20S proteasomal degradation.
Collapse
|
34
|
Karuppannan AK, Liu S, Jia Q, Selvaraj M, Kwang J. Porcine circovirus type 2 ORF3 protein competes with p53 in binding to Pirh2 and mediates the deregulation of p53 homeostasis. Virology 2009; 398:1-11. [PMID: 20004925 DOI: 10.1016/j.virol.2009.11.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/13/2009] [Accepted: 11/17/2009] [Indexed: 11/28/2022]
Abstract
The ORF3 protein of porcine circovirus type 2 (PCV2) causes apoptosis in virus-infected cells and is not essential for virus replication. The ORF3 protein plays an important role in the pathogenesis of the PCV2 infection in mouse models and SPF piglets. The ORF3 protein interacts with the porcine homologue of Pirh2 (pPirh2), a p53-induced ubiquitin-protein E3 ligase, which regulates p53 ubiquitination. Here, we present our study analyzing the details of the molecular interaction between these three factors. Our experiments, in vitro and in vivo, show that ORF3 protein competes with p53 in binding to pPirh2. The amino acid residues 20 to 65 of the ORF3 protein are essential in this competitive interaction of ORF3 protein with pPirh2 over p53. The interaction of ORF3 protein with pPirh2 also leads to an alteration in the physiological cellular localization of pPirh2 and a significant reduction in the stability of pPirh2. These events contribute to the deregulation of p53 by pPirh2, leading to increased p53 levels and apoptosis of the infected cells.
Collapse
Affiliation(s)
- Anbu K Karuppannan
- Animal Health Biotechnology Group, Temasek Lifesciences Laboratory, The National University of Singapore, 1 Research Link, Singapore 117604
| | | | | | | | | |
Collapse
|
35
|
|
36
|
Paula-Silva FWG, Ghosh A, Silva LAB, Kapila YL. TNF-alpha promotes an odontoblastic phenotype in dental pulp cells. J Dent Res 2009; 88:339-44. [PMID: 19407154 DOI: 10.1177/0022034509334070] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dental pulp cells can differentiate toward an odontoblastic phenotype to produce reparative dentin beneath caries lesions. However, the mechanisms involved in pulp cell differentiation under pro-inflammatory stimuli have not been well-explored. Thus, we hypothesized that the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) could be a mediator involved in dental pulp cell differentiation toward an odontoblastic phenotype. We observed that TNF-alpha-challenged pulp cells exhibited increased mineralization and early and increased expression of dentin phosphoprotein (DPP), dentin sialoprotein (DSP), dentin matrix protein-1, and osteocalcin during a phase of reduced matrix metalloproteinase (MMP) expression. We investigated whether these events were related and found that p38, a mitogen-activated protein kinase, differentially regulated MMP-1 and DSP/DPP expression and mediated mineralization upon TNF-alpha treatment. These findings indicate that TNF-alpha stimulates differentiation of dental pulp cells toward an odontoblastic phenotype via p38, while negatively regulating MMP-1 expression.
Collapse
Affiliation(s)
- F W G Paula-Silva
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109-1078, USA
| | | | | | | |
Collapse
|
37
|
Duan S, Yao Z, Zhu Y, Wang G, Hou D, Wen L, Wu M. The Pirh2-keratin 8/18 interaction modulates the cellular distribution of mitochondria and UV-induced apoptosis. Cell Death Differ 2009; 16:826-37. [PMID: 19282868 DOI: 10.1038/cdd.2009.12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Intermediate filaments (IFs) provide crucial structural support in higher eukaryotic cells. Accumulating evidences show that IFs also participate in various cellular activities including stress responses, cell growth, cell death and cell migration through dynamic interactions with various non-structure proteins. Here we report the identification of Pirh2, a RING-H2-type ubiquitin E3 ligase, as a novel binding partner of the cytoplasmic IF proteins keratin 8/18 (K8/18). Phosphorylation of either Pirh2 or K8/18 affects their association. Although Pirh2 was not found to influence the stability of K8/18, it displayed an unexpected role in regulating the organization of the network of K8/18 keratin filaments. Disruption of Pirh2-K8/K18 interaction by either UV irradiation or knockdown with Pirh2 or K18 led to the aggregation of K8/18 keratin filaments. It further induced mitochondrial redistribution, and this process is likely through a microtubule-mediated pathway. The abnormal localization of mitochondria in Pirh2-knockdown cells may partially account for its increased cell sensitivity to UV-induced apoptosis, probably through enhancing the release of pro-apoptotic proteins, such as cytochrome c and Smac/DIABLO to the cytosol. Overall, our data reveal the novel role of the Pirh2-K8/18 complex in governing the distribution of mitochondria.
Collapse
Affiliation(s)
- S Duan
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
38
|
Abe K, Hattori T, Isobe T, Kitagawa K, Oda T, Uchida C, Kitagawa M. Pirh2 interacts with and ubiquitylates signal recognition particle receptor beta subunit. ACTA ACUST UNITED AC 2008; 29:53-60. [PMID: 18344599 DOI: 10.2220/biomedres.29.53] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pirh2 is a RING finger type ubiquitin ligase which ubiquitylates various proteins including p53, p27(Kip1), HDAC1, and epsilon-COP. In this study, we identified signal recognition particle receptor beta subunit (SRbeta), an integral membrane protein of the endoplasmic reticulum (ER), as a novel Pirh2-interacting protein by yeast two-hybrid screening. We confirmed that Pirh2 interacted with SRbeta in mammalian cells. An immunofluorescent staining revealed that Pirh2 colocalized with SRbeta in the ER. Pirh2 poly-ubiquitylated SRbeta in an intact RING finger domain-dependent manner in vivo and in vitro. Unexpectedly, different from other Pirh2 substrates, neither overexpression of Pirh2 nor depletion of cellular Pirh2 affected SRbeta protein stability. Pirh2 preferentially utilized lysine residues 6 and 29 of the ubiquitin to mediate the formation of polyubiquitin chains on SRbeta. These results suggest that Pirh2 may regulate SRbeta function by mediating poly-ubiquitylation of SRbeta without affecting the stability of SRbeta protein per se.
Collapse
Affiliation(s)
- Kenji Abe
- Department of Biochemistry 1, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | | | | | | | | | | | | |
Collapse
|