1
|
Palmer T, Berks BC. The twin-arginine translocation (Tat) system. Curr Biol 2024; 34:R267-R268. [PMID: 38593766 DOI: 10.1016/j.cub.2024.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In this Quick guide, Palmer and Berks introduce the twin-arginine translocation (Tat) systems. Tats are found in a variety of microbes and microbe-derived organelles, and are known to translocate folded substrate proteins across biological membranes.
Collapse
Affiliation(s)
- Tracy Palmer
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Ben C Berks
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
2
|
Osgerby A, Overton TW. Approaches for high-throughput quantification of periplasmic recombinant proteins. N Biotechnol 2023; 77:149-160. [PMID: 37708933 DOI: 10.1016/j.nbt.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The Gram-negative periplasm is a convenient location for the accumulation of many recombinant proteins including biopharmaceutical products. It is the site of disulphide bond formation, required by some proteins (such as antibody fragments) for correct folding and function. It also permits simpler protein release and downstream processing than cytoplasmic accumulation. As such, targeting of recombinant proteins to the E. coli periplasm is a key strategy in biologic manufacture. However, expression and translocation of each recombinant protein requires optimisation including selection of the best signal peptide and growth and production conditions. Traditional methods require separation and analysis of protein compositions of periplasmic and cytoplasmic fractions, a time- and labour-intensive method that is difficult to parallelise. Therefore, approaches for high throughput quantification of periplasmic protein accumulation offer advantages in rapid process development.
Collapse
Affiliation(s)
- Alexander Osgerby
- School of Chemical Engineering and Institute of Microbiology and Infection, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Tim W Overton
- School of Chemical Engineering and Institute of Microbiology and Infection, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
3
|
Taw MN, Li M, Kim D, Rocco MA, Waraho-Zhmayev D, DeLisa MP. Engineering a Supersecreting Strain of Escherichia coli by Directed Coevolution of the Multiprotein Tat Translocation Machinery. ACS Synth Biol 2021; 10:2947-2958. [PMID: 34757717 DOI: 10.1021/acssynbio.1c00183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Escherichia coli remains one of the preferred hosts for biotechnological protein production due to its robust growth in culture and ease of genetic manipulation. It is often desirable to export recombinant proteins into the periplasmic space for reasons related to proper disulfide bond formation, prevention of aggregation and proteolytic degradation, and ease of purification. One such system for expressing heterologous secreted proteins is the twin-arginine translocation (Tat) pathway, which has the unique advantage of delivering correctly folded proteins into the periplasm. However, transit times for proteins through the Tat translocase, comprised of the TatABC proteins, are much longer than for passage through the SecYEG pore, the translocase associated with the more widely utilized Sec pathway. To date, a high protein flux through the Tat pathway has yet to be demonstrated. To address this shortcoming, we employed a directed coevolution strategy to isolate mutant Tat translocases for their ability to deliver higher quantities of heterologous proteins into the periplasm. Three supersecreting translocases were selected that each exported a panel of recombinant proteins at levels that were significantly greater than those observed for wild-type TatABC or SecYEG translocases. Interestingly, all three of the evolved Tat translocases exhibited quality control suppression, suggesting that increased translocation flux was gained by relaxation of substrate proofreading. Overall, our discovery of more efficient translocase variants paves the way for the use of the Tat system as a powerful complement to the Sec pathway for secreted production of both commodity and high value-added proteins.
Collapse
Affiliation(s)
- May N. Taw
- Department of Microbiology, Cornell University, Ithaca, New York 14853, United States
| | - Mingji Li
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
| | - Daniel Kim
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
| | - Mark A. Rocco
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
| | - Dujduan Waraho-Zhmayev
- Biological Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Matthew P. DeLisa
- Department of Microbiology, Cornell University, Ithaca, New York 14853, United States
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
- Cornell Institute of Biotechnology, Cornell University, 130 Biotechnology Building, Ithaca, New York 14853, United States
| |
Collapse
|
4
|
Pettersson P, Patrick J, Jakob M, Jacobs M, Klösgen RB, Wennmalm S, Mäler L. Soluble TatA forms oligomers that interact with membranes: Structure and insertion studies of a versatile protein transporter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183529. [PMID: 33279512 DOI: 10.1016/j.bbamem.2020.183529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 01/24/2023]
Abstract
The twin-arginine translocase (Tat) mediates the transport of already-folded proteins across membranes in bacteria, plants and archaea. TatA is a small, dynamic subunit of the Tat-system that is believed to be the active component during target protein translocation. TatA is foremost characterized as a bitopic membrane protein, but has also been found to partition into a soluble, oligomeric structure of yet unknown function. To elucidate the interplay between the membrane-bound and soluble forms we have investigated the oligomers formed by Arabidopsis thaliana TatA. We used several biophysical techniques to study the oligomeric structure in solution, the conversion that takes place upon interaction with membrane models of different compositions, and the effect on bilayer integrity upon insertion. Our results demonstrate that in solution TatA oligomerizes into large objects with a high degree of ordered structure. Upon interaction with lipids, conformational changes take place and TatA disintegrates into lower order oligomers. The insertion of TatA into lipid bilayers causes a temporary leakage of small molecules across the bilayer. The disruptive effect on the membrane is dependent on the liposome's negative surface charge density, with more leakage observed for purely zwitterionic bilayers. Overall, our findings indicate that A. thaliana TatA forms oligomers in solution that insert into bilayers, a process that involves reorganization of the protein oligomer.
Collapse
Affiliation(s)
- Pontus Pettersson
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Joan Patrick
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Mario Jakob
- Institut für Biologie, Institutsbereich Pflanzenphysiologie, Martin-Luther University, DE-06120 Halle-Wittenberg, Germany
| | - Malte Jacobs
- Institut für Biologie, Institutsbereich Pflanzenphysiologie, Martin-Luther University, DE-06120 Halle-Wittenberg, Germany
| | - Ralf Bernd Klösgen
- Institut für Biologie, Institutsbereich Pflanzenphysiologie, Martin-Luther University, DE-06120 Halle-Wittenberg, Germany
| | - Stefan Wennmalm
- Department of Applied Physics, Biophysics Group, Science for Life Laboratory, Royal Institute of Technology, Solna SE-171 65, Sweden
| | - Lena Mäler
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
5
|
Zinecker S, Jakob M, Klösgen RB. Functional reconstitution of TatB into the thylakoidal Tat translocase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118606. [PMID: 31733260 DOI: 10.1016/j.bbamcr.2019.118606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
We have established an experimental system for the functional analysis of thylakoidal TatB, a component of the membrane-integral TatBC receptor complex of the thylakoidal Twin-arginine protein transport (Tat) machinery. For this purpose, the intrinsic TatB activity of isolated pea thylakoids was inhibited by affinity-purified antibodies and substituted by supplementing the assays with TatB protein either obtained by in vitro translation or purified after heterologous expression in E. coli. Tat transport activity of such reconstituted thylakoids, which was analysed with the authentic Tat substrate pOEC16, reached routinely 20-25% of the activity of mock-treated thylakoid vesicles analysed in parallel. In contrast, supplementation of the assays with the purified antigen comprising all but the N-terminal transmembrane helix of thylakoidal TatB did not result in Tat transport reconstitution which confirms that transport relies strictly on the activity of the TatB protein added and is not due to restoration of the intrinsic TatB activity by antibody release. Unexpectedly, even a mutated TatB protein (TatB,E10C) assumed to be incapable of assembling into the TatBC receptor complex showed low but considerable transport reconstitution underlining the sensitivity of the approach and its suitability for further functional analyses of protein variants. Finally, quantification of TatB demand suggests that TatA and TatB are required in approximately equimolar amounts to achieve Tat-dependent thylakoid transport.
Collapse
Affiliation(s)
- Sarah Zinecker
- Institute of Biology - Plant Physiology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle/Saale, Germany
| | - Mario Jakob
- Institute of Biology - Plant Physiology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle/Saale, Germany
| | - Ralf Bernd Klösgen
- Institute of Biology - Plant Physiology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle/Saale, Germany.
| |
Collapse
|
6
|
Fröbel J, Blümmel AS, Drepper F, Warscheid B, Müller M. Surface-exposed domains of TatB involved in the structural and functional assembly of the Tat translocase in Escherichia coli. J Biol Chem 2019; 294:13902-13914. [PMID: 31341014 DOI: 10.1074/jbc.ra119.009298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/10/2019] [Indexed: 11/06/2022] Open
Abstract
Twin-arginine-dependent translocases transport folded proteins across bacterial, archaeal, and chloroplast membranes. Upon substrate binding, they assemble from hexahelical TatC and single-spanning TatA and TatB membrane proteins. Although structural and functional details of individual Tat subunits have been reported previously, the sequence and dynamics of Tat translocase assembly remain to be determined. Employing the zero-space cross-linker N,N'-dicyclohexylcarbodiimide (DCCD) in combination with LC-MS/MS, we identified as yet unknown intra- and intermolecular contact sites of TatB and TatC. In addition to their established intramembrane binding sites, both proteins were thus found to contact each other through the soluble N terminus of TatC and the interhelical linker region around the conserved glutamyl residue Glu49 of TatB from Escherichia coli Functional analyses suggested that by interacting with the TatC N terminus, TatB improves the formation of a proficient substrate recognition site of TatC. The Glu49 region of TatB was found also to contact distinct downstream sites of a neighboring TatB molecule and to thereby mediate oligomerization of TatB within the TatBC receptor complex. Finally, we show that global DCCD-mediated cross-linking of TatB and TatC in membrane vesicles or, alternatively, creating covalently linked TatC oligomers prevents TatA from occupying a position close to the TatBC-bound substrate. Collectively, our results are consistent with a circular arrangement of the TatB and TatC units within the TatBC receptor complex and with TatA entering the interior TatBC-binding cavity through lateral gates between TatBC protomers.
Collapse
Affiliation(s)
- Julia Fröbel
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Anne-Sophie Blümmel
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Friedel Drepper
- Institute of Biology II, Biochemistry-Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- Institute of Biology II, Biochemistry-Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Matthias Müller
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
7
|
Abstract
The twin-arginine protein translocation (Tat) system has been characterized in bacteria, archaea and the chloroplast thylakoidal membrane. This system is distinct from other protein transport systems with respect to two key features. Firstly, it accepts cargo proteins with an N-terminal signal peptide that carries the canonical twin-arginine motif, which is essential for transport. Second, the Tat system only accepts and translocates fully folded cargo proteins across the respective membrane. Here, we review the core essential features of folded protein transport via the bacterial Tat system, using the three-component TatABC system of Escherichia coli and the two-component TatAC systems of Bacillus subtilis as the main examples. In particular, we address features of twin-arginine signal peptides, the essential Tat components and how they assemble into different complexes, mechanistic features and energetics of Tat-dependent protein translocation, cytoplasmic chaperoning of Tat cargo proteins, and the remarkable proofreading capabilities of the Tat system. In doing so, we present the current state of our understanding of Tat-dependent protein translocation across biological membranes, which may serve as a lead for future investigations.
Collapse
Affiliation(s)
- Kelly M. Frain
- The School of Biosciences, University of Kent, Canterbury, CT2 7NZ UK
| | - Colin Robinson
- The School of Biosciences, University of Kent, Canterbury, CT2 7NZ UK
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen (UMCG), Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
8
|
Abstract
The Tat pathway for protein translocation across bacterial membranes stands out for its selective handling of fully folded cargo proteins. In this review, we provide a comprehensive summary of our current understanding of the different known Tat components, their assembly into different complexes, and their specific roles in the protein translocation process. In particular, this overview focuses on the Gram-negative bacterium Escherichia coli and the Gram-positive bacterium Bacillus subtilis. Using these organisms as examples, we discuss structural features of Tat complexes alongside mechanistic models that allow for the Tat pathway's unique protein proofreading and transport capabilities. Finally, we highlight recent advances in exploiting the Tat pathway for biotechnological benefit, the production of high-value pharmaceutical proteins.
Collapse
Affiliation(s)
- Kelly M Frain
- The School of Biosciences, University of Kent, Canterbury CT2 7NZ, United Kingdom
| | - Jan Maarten van Dijl
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, The Netherlands
| | - Colin Robinson
- The School of Biosciences, University of Kent, Canterbury CT2 7NZ, United Kingdom
| |
Collapse
|
9
|
Tat-exported peptidoglycan amidase-dependent cell division contributes to Salmonella Typhimurium fitness in the inflamed gut. PLoS Pathog 2018; 14:e1007391. [PMID: 30379938 PMCID: PMC6231687 DOI: 10.1371/journal.ppat.1007391] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/12/2018] [Accepted: 10/07/2018] [Indexed: 12/11/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Tm) is a cause of food poisoning accompanied with gut inflammation. Although mucosal inflammation is generally thought to be protective against bacterial infection, S. Tm exploits the inflammation to compete with commensal microbiota, thereby growing up to high densities in the gut lumen and colonizing the gut continuously at high levels. However, the molecular mechanisms underlying the beneficial effect of gut inflammation on S. Tm competitive growth are poorly understood. Notably, the twin-arginine translocation (Tat) system, which enables the transport of folded proteins outside bacterial cytoplasm, is well conserved among many bacterial pathogens, with Tat substrates including virulence factors and virulence-associated proteins. Here, we show that Tat and Tat-exported peptidoglycan amidase, AmiA- and AmiC-dependent cell division contributes to S. Tm competitive fitness advantage in the inflamed gut. S. Tm tatC or amiA amiC mutants feature a gut colonization defect, wherein they display a chain form of cells. The chains are attributable to a cell division defect of these mutants and occur in inflamed but not in normal gut. We demonstrate that attenuated resistance to bile acids confers the colonization defect on the S. Tm amiA amiC mutant. In particular, S. Tm cell chains are highly sensitive to bile acids as compared to single or paired cells. Furthermore, we show that growth media containing high concentrations of NaCl and sublethal concentrations of antimicrobial peptides induce the S. Tm amiA amiC mutant chain form, suggesting that gut luminal conditions such as high osmolarity and the presence of antimicrobial peptides impose AmiA- and AmiC-dependent cell division on S. Tm. Together, our data indicate that Tat and the Tat-exported amidases, AmiA and AmiC, are required for S. Tm luminal fitness in the inflamed gut, suggesting that these proteins might comprise effective targets for novel antibacterial agents against infectious diarrhea. For proteins residing outside the bacterial cytoplasm, transport is an essential step for adequate function. The twin-arginine translocation (Tat) system enables the transport of folded proteins across the cytoplasmic membrane in prokaryotes. It has recently become clear that this system plays a pivotal role in the detrimental effects of many bacterial pathogens, suggesting Tat as a novel therapeutic target against their infection. In particular, the bacterial enteropathogen Salmonella Typhimurium causes foodborne diarrhea by colonizing the gut interior space. Here, we describe that the S. Typhimurium Tat system contributes to intestinal infection by facilitating colonization of the gut by this pathogen. We also identify that two Tat-exported enzymes, peptidoglycan amidase AmiA and AmiC, are responsible for the Tat-dependent colonization. S. Typhimurium strains having nonfunctional Tat systems or lacking these enzymes undergo filamentous growth in the gut interior owing to defective cell division. Notably, this chain form of S. Typhimurium cells is highly sensitive to bile acids, rendering it less competitive with native bacteria in the gut. The data presented here suggest that the Tat system and associated amidases may comprise promising therapeutic targets for Salmonella diarrhea, and that controlling bacterial shape might be new strategy for regulating intestinal enteropathogen infection.
Collapse
|
10
|
Pettersson P, Ye W, Jakob M, Tannert F, Klösgen RB, Mäler L. Structure and dynamics of plant TatA in micelles and lipid bilayers studied by solution NMR. FEBS J 2018; 285:1886-1906. [PMID: 29654717 DOI: 10.1111/febs.14452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 03/09/2018] [Accepted: 03/27/2018] [Indexed: 12/21/2022]
Abstract
The twin-arginine translocase (Tat) transports folded proteins across the cytoplasmic membrane of prokaryotes and the thylakoid membrane of plant chloroplasts. In Gram-negative bacteria and chloroplasts, the translocon consists of three subunits, TatA, TatB, and TatC, of which TatA is responsible for the actual membrane translocation of the substrate. Herein we report on the structure, dynamics, and lipid interactions of a fully functional C-terminally truncated 'core TatA' from Arabidopsis thaliana using solution-state NMR. Our results show that TatA consists of a short N-terminal transmembrane helix (TMH), a short connecting linker (hinge) and a long region with propensity to form an amphiphilic helix (APH). The dynamics of TatA were characterized using 15 N relaxation NMR in combination with model-free analysis. The TMH has order parameters characteristic of a well-structured helix, the hinge is somewhat less rigid, while the APH has lower order parameters indicating structural flexibility. The TMH is short with a surprisingly low protection from solvent, and only the first part of the APH is protected to some extent. In order to uncover possible differences in TatA's structure and dynamics in detergent compared to in a lipid bilayer, fast-tumbling bicelles and large unilamellar vesicles were used. Results indicate that the helicity of TatA increases in both the TMH and APH in the presence of lipids, and that the N-terminal part of the TMH is significantly more rigid. The results indicate that plant TatA has a significant structural plasticity and a capability to adapt to local environments.
Collapse
Affiliation(s)
- Pontus Pettersson
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Weihua Ye
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Mario Jakob
- Institut für Biologie, Institutsbereich Pflanzenphysiologie, Martin-Luther University, Halle, Germany
| | - Franzisca Tannert
- Institut für Biologie, Institutsbereich Pflanzenphysiologie, Martin-Luther University, Halle, Germany
| | - Ralf Bernd Klösgen
- Institut für Biologie, Institutsbereich Pflanzenphysiologie, Martin-Luther University, Halle, Germany
| | - Lena Mäler
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| |
Collapse
|
11
|
Wojnowska M, Gault J, Yong SC, Robinson CV, Berks BC. Precursor-Receptor Interactions in the Twin Arginine Protein Transport Pathway Probed with a New Receptor Complex Preparation. Biochemistry 2018; 57:1663-1671. [PMID: 29460615 PMCID: PMC5852461 DOI: 10.1021/acs.biochem.8b00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The twin arginine translocation (Tat) system moves folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of plant chloroplasts. Signal peptide-bearing substrates of the Tat pathway (precursor proteins) are recognized at the membrane by the TatBC receptor complex. The only established preparation of the TatBC complex uses the detergent digitonin, rendering it unsuitable for biophysical analysis. Here we show that the detergent glyco-diosgenin (GDN) can be used in place of digitonin to isolate homogeneous TatBC complexes that bind precursor proteins with physiological specificity. We use this new preparation to quantitatively characterize TatBC-precursor interactions in a fully defined system. Additionally, we show that the GDN-solubilized TatBC complex co-purifies with substantial quantities of phospholipids.
Collapse
Affiliation(s)
- Marta Wojnowska
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , United Kingdom
| | - Joseph Gault
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QZ , United Kingdom
| | - Shee Chien Yong
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , United Kingdom
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QZ , United Kingdom
| | - Ben C Berks
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , United Kingdom
| |
Collapse
|
12
|
Abstract
TatA is an essential and structurally conserved component of all known Twin-arginine transport (Tat) machineries which are able to catalyse membrane transport of fully folded proteins. Here we have investigated if bacterial TatA, or chimeric pea/E. coli TatA derivatives, are capable of replacing thylakoidal TatA in function. While authentic E. coli TatA does not show any transport activity in thylakoid transport experiments, TatA chimeras comprising the transmembrane helix (TMH) of pea TatA are fully active. For minimal catalytic activity it is even sufficient to replace three residues within TMH of E. coli TatA by the corresponding pea residues. Almost any further substitution within TMH gradually raises transport activity in the thylakoid system, while functional characterization of the same set of TatA derivatives in E. coli yields essentially inverse catalytic activities. Closer inspection of the substituted residues suggests that the two transport systems have deviating demands with regard to the hydrophobicity of the transmembrane helix.
Collapse
|
13
|
TatA complexes exhibit a marked change in organisation in response to expression of the TatBC complex. Biochem J 2017; 474:1495-1508. [PMID: 28280110 PMCID: PMC5396077 DOI: 10.1042/bcj20160952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 02/19/2017] [Accepted: 03/07/2017] [Indexed: 11/24/2022]
Abstract
The twin-arginine translocation (Tat) system is an integral membrane protein complex that accomplishes the remarkable feat of transporting large, fully folded polypeptides across the inner membrane of bacteria, into the periplasm. In Escherichia coli, Tat comprises three membrane proteins: TatA, TatB and TatC. How these proteins arrange themselves in the inner membrane to permit passage of Tat substrates, whilst maintaining membrane integrity, is still poorly understood. TatA is the most abundant component of this complex and facilitates assembly of the transport mechanism. We have utilised immunogold labelling in combination with array tomography to gain insight into the localisation and distribution of the TatA protein in E. coli cells. We show that TatA exhibits a uniform distribution throughout the inner membrane of E. coli and that altering the expression of TatBC shows a previously uncharacterised distribution of TatA in the inner membrane. Array tomography was used to provide our first insight into this altered distribution of TatA in three-dimensional space, revealing that this protein forms linear clusters in the inner membrane of E. coli upon increased expression of TatBC. This is the first indication that TatA organisation in the inner membrane alters in response to changes in Tat subunit stoichiometry.
Collapse
|
14
|
Jones AS, Austerberry JI, Dajani R, Warwicker J, Curtis R, Derrick JP, Robinson C. Proofreading of substrate structure by the Twin-Arginine Translocase is highly dependent on substrate conformational flexibility but surprisingly tolerant of surface charge and hydrophobicity changes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:3116-3124. [PMID: 27619192 DOI: 10.1016/j.bbamcr.2016.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/29/2016] [Accepted: 09/07/2016] [Indexed: 11/25/2022]
Abstract
The Tat system transports folded proteins across the bacterial plasma membrane, and in Escherichia coli preferentially transports correctly-folded proteins. Little is known of the mechanism by which Tat proofreads a substrate's conformational state, and in this study we have addressed this question using a heterologous single-chain variable fragment (scFv) with a defined structure. We introduced mutations to surface residues while leaving the folded structure intact, and also tested the importance of conformational flexibility. We show that while the scFv is stably folded and active in the reduced form, formation of the 2 intra-domain disulphide bonds enhances Tat-dependent export 10-fold, indicating Tat senses the conformational flexibility and preferentially exports the more rigid structure. We further show that a 26-residue unstructured tail at the C-terminus blocks export, suggesting that even this short sequence can be sensed by the proofreading system. In contrast, the Tat system can tolerate significant changes in charge or hydrophobicity on the scFv surface; substitution of uncharged residues by up to 3 Lys-Glu pairs has little effect, as has the introduction of up to 5 Lys or Glu residues in a confined domain, or the introduction of a patch of 4 to 6 Leu residues in a hydrophilic region. We propose that the proofreading system has evolved to sense conformational flexibility and detect even very transiently-exposed internal regions, or the presence of unfolded peptide sections. In contrast, it tolerates major changes in surface charge or hydrophobicity.
Collapse
Affiliation(s)
- Alexander S Jones
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - James I Austerberry
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Rana Dajani
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Jim Warwicker
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Robin Curtis
- School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Jeremy P Derrick
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Colin Robinson
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom.
| |
Collapse
|
15
|
Stolle P, Hou B, Brüser T. The Tat Substrate CueO Is Transported in an Incomplete Folding State. J Biol Chem 2016; 291:13520-8. [PMID: 27129241 DOI: 10.1074/jbc.m116.729103] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, cytoplasmic copper ions are toxic to cells even at the lowest concentrations. As a defense strategy, the cuprous oxidase CueO is secreted into the periplasm to oxidize the more membrane-permeable and toxic Cu(I) before it can enter the cytoplasm. CueO itself is a multicopper oxidase that requires copper for activity. Because it is transported by the twin-arginine translocation (Tat) pathway, which transports folded proteins, a requirement for cofactor assembly before translocation has been discussed. Here we show that CueO is transported as an apo-protein. Periplasmic CueO was readily activated by the addition of copper ions in vitro or under copper stress conditions in vivo Cytoplasmic CueO did not contain copper, even under copper stress conditions. In vitro Tat transport proved that the cofactor assembly was not required for functional Tat transport of CueO. Due to the post-translocational activation of CueO, this enzyme contributes to copper resistance not only by its cuprous oxidase activity but also by chelation of copper ions before they can enter the cytoplasm. Apo-CueO was indistinguishable from holo-CueO in terms of secondary structural elements. Importantly, the binding of copper to apo-CueO greatly stabilized the protein, indicating a transformation from an open or flexible domain arrangement with accessible copper sites to a closed structure with deeply buried copper ions. CueO is thus the first example for a natural Tat substrate of such incomplete folding state. The Tat system may need to transport flexibly folded proteins in any case when cofactor assembly or quaternary structure formation occurs after transport.
Collapse
Affiliation(s)
- Patrick Stolle
- From the Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Bo Hou
- From the Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Thomas Brüser
- From the Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| |
Collapse
|
16
|
Affiliation(s)
- Ben C. Berks
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom;
| |
Collapse
|
17
|
Cline K. Mechanistic Aspects of Folded Protein Transport by the Twin Arginine Translocase (Tat). J Biol Chem 2015; 290:16530-8. [PMID: 25975269 DOI: 10.1074/jbc.r114.626820] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The twin arginine translocase (Tat) transports folded proteins of widely varying size across ionically tight membranes with only 2-3 components of machinery and the proton motive force. Tat operates by a cycle in which the receptor complex combines with the pore-forming component to assemble a new translocase for each substrate. Recent data on component and substrate organization in the receptor complex and on the structure of the pore complex inform models for translocase assembly and translocation. A translocation mechanism involving local transient bilayer rupture is discussed.
Collapse
Affiliation(s)
- Kenneth Cline
- From the Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
18
|
Taubert J, Brüser T. Twin-arginine translocation-arresting protein regions contact TatA and TatB. Biol Chem 2015; 395:827-36. [PMID: 25003386 DOI: 10.1515/hsz-2014-0170] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/10/2014] [Indexed: 11/15/2022]
Abstract
Tat systems translocate folded proteins across biological membranes of prokaryotes and plant plastids. TatBC complexes recognize N-terminal Tat signal peptides that contain a sequence motif with two conserved arginines (RR-motif), and transport takes place after a recruitment of TatA. Unfolded Tat substrate domains lower translocation efficiency and too long linkers lead to translocation arrest. To identify the components that interact with transported proteins during their passage through the translocon, we used a Tat substrate that arrests translocation at a long unfolded linker region, and we chose in vivo site-directed photo cross-linking to specifically detect the interactions of this linker region. For comparison, we included the interactions of the signal peptide and of the folded domain at the C-terminus of this construct. The data show that the linker contacts only two, structurally similar Tat components, namely TatA and TatB. These contacts depend on the recognition of the Tat-specific signal peptide. Only when membrane translocation of the globular domain was allowed--i.e., in the absence of the linker--we observed the same TatAB-contacts also to the globular domain. The data thus suggest that mature protein domains are translocated through a TatAB environment.
Collapse
|
19
|
Schlesier R, Bernd Klösgen R. C-terminal truncation of a Tat passenger protein affects its membrane translocation by interfering with receptor binding. Biol Chem 2015; 396:349-57. [PMID: 25562604 DOI: 10.1515/hsz-2014-0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/19/2014] [Indexed: 11/15/2022]
Abstract
During thylakoid transport of the chimeric model twin-arginine translocation (Tat) substrate 16/23, two consecutive translocation intermediates with different membrane topology are observed. The early translocation intermediate Ti-1 is bound to the membrane such that almost half of the protein is protected against proteolysis and it was concluded that not only the signal peptide but also part of the passenger protein participates in membrane binding. However, topology studies using a membrane-impermeable thiol-reactive reagent show that most of the passenger remains accessible from the stromal side in Ti-1 conformation. Establishment of such Ti-1 topology at the membrane apparently requires the fully folded passenger protein, as it was not observed with 16/23 truncation derivatives lacking the C-terminal 20, 40, 60, or 88 residues. Thylakoid transport of these mutants, which depends on a fully functional Tat machinery, is progressively reduced with increasing size of the truncated passenger polypeptide. The same holds true also for the interaction with the thylakoidal TatBC complexes, suggesting that in this case receptor binding, which is apparently impaired by extended unfolded or malfolded passenger polypeptides, is the rate-limiting step of Tat-dependent membrane transport.
Collapse
|
20
|
Waraho-Zhmayev D, Meksiriporn B, Portnoff AD, DeLisa MP. Optimizing recombinant antibodies for intracellular function using hitchhiker-mediated survival selection. Protein Eng Des Sel 2014; 27:351-8. [PMID: 25225416 DOI: 10.1093/protein/gzu038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The 'hitchhiker' mechanism of the bacterial twin-arginine translocation pathway has previously been adapted as a genetic selection for detecting pairwise protein interactions in the cytoplasm of living Escherichia coli cells. Here, we extended this method, called FLI-TRAP, for rapid isolation of intracellular antibodies (intrabodies) in the single-chain Fv format that possess superior traits simply by demanding bacterial growth on high concentrations of antibiotic. Following just a single round of survival-based enrichment using FLI-TRAP, variants of an intrabody against the dimerization domain of the yeast Gcn4p transcription factor were isolated having significantly greater intracellular stability that translated to yield enhancements of >10-fold. Likewise, an intrabody specific for the non-amyloid component region of α-synuclein was isolated that has ~8-fold improved antigen-binding affinity. Collectively, our results illustrate the potential of the FLI-TRAP method for intracellular stabilization and affinity maturation of intrabodies, all without the need for purification or immobilization of the antigen.
Collapse
Affiliation(s)
- Dujduan Waraho-Zhmayev
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, 126 Pracha-utid Road, Bangmod, Toongkru, Bangkok 10140, Thailand
| | | | - Alyse D Portnoff
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Matthew P DeLisa
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
21
|
Nayak CR, Brown AI, Rutenberg AD. Protein translocation without specific quality control in a computational model of the Tat system. Phys Biol 2014; 11:056005. [PMID: 25154305 DOI: 10.1088/1478-3975/11/5/056005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The twin-arginine translocation (Tat) system transports folded proteins of various sizes across both bacterial and plant thylakoid membranes. The membrane-associated TatA protein is an essential component of the Tat translocon, and a broad distribution of different sized TatA-clusters is observed in bacterial membranes. We assume that the size dynamics of TatA clusters are affected by substrate binding, unbinding, and translocation to associated TatBC clusters, where clusters with bound translocation substrates favour growth and those without associated substrates favour shrinkage. With a stochastic model of substrate binding and cluster dynamics, we numerically determine the TatA cluster size distribution. We include a proportion of targeted but non-translocatable (NT) substrates, with the simplifying hypothesis that the substrate translocatability does not directly affect cluster dynamical rate constants or substrate binding or unbinding rates. This amounts to a translocation model without specific quality control. Nevertheless, NT substrates will remain associated with TatA clusters until unbound and so will affect cluster sizes and translocation rates. We find that the number of larger TatA clusters depends on the NT fraction f. The translocation rate can be optimized by tuning the rate of spontaneous substrate unbinding, [Formula: see text]. We present an analytically solvable three-state model of substrate translocation without cluster size dynamics that follows our computed translocation rates, and that is consistent with in vitro Tat-translocation data in the presence of NT substrates.
Collapse
Affiliation(s)
- Chitra R Nayak
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada
| | | | | |
Collapse
|
22
|
Solution structure of the TatB component of the twin-arginine translocation system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1881-8. [PMID: 24699374 DOI: 10.1016/j.bbamem.2014.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/05/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
The twin-arginine protein transport (Tat) system translocates fully folded proteins across lipid membranes. In Escherichia coli, the Tat system comprises three essential components: TatA, TatB and TatC. The protein translocation process is proposed to initiate by signal peptide recognition and substrate binding to the TatBC complex. Upon formation of the TatBC-substrate protein complex, the TatA subunits are recruited and form the protein translocation pore. Experimental evidences suggest that TatB forms a tight complex with TatC at 1:1 molar ratio and the TatBC complex contains multiple copies of both proteins. Cross-linking experiments demonstrate that TatB functions in tetrameric units and interacts with both TatC and substrate proteins. However, structural information of the TatB protein is still lacking, and its functional mechanism remains elusive. Herein, we report the solution structure of TatB in DPC micelles determined by Nuclear Magnetic Resonance (NMR) spectroscopy. Overall, the structure shows an extended 'L-shape' conformation comprising four helices: a transmembrane helix (TMH) α1, an amphipathic helix (APH) α2, and two solvent exposed helices α3 and α4. The packing of TMH and APH is relatively rigid, whereas helices α3 and α4 display notably higher mobility. The observed floppiness of helices α3 and α4 allows TatB to sample a large conformational space, thus providing high structural plasticity to interact with substrate proteins of different sizes and shapes.
Collapse
|
23
|
Dittmar J, Schlesier R, Klösgen RB. Tat transport of a Sec passenger leads to both completely translocated as well as membrane-arrested passenger proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:446-53. [PMID: 24321767 DOI: 10.1016/j.bbamcr.2013.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/26/2013] [Accepted: 11/29/2013] [Indexed: 11/26/2022]
Abstract
We have studied the membrane transport of the chimeric precursor protein 16/33, which is composed of the Tat(1)-specific transport signal of OEC16 and the Sec passenger protein OEC33, both subunits of the oxygen-evolving system associated with photosystem II. Protein transport experiments performed with isolated pea thylakoids show that the 16/33 chimera is transported in a strictly Tat-dependent manner into the thylakoid vesicles yielding mature OEC33 (mOEC33) in two different topologies. One fraction accumulates in the thylakoid lumen and is thus resistant to externally added protease. A second fraction is arrested during transport in an N-in/C-out topology within the membrane. Chase experiments demonstrate that this membrane-arrested mOEC33 moiety does not represent a translocation intermediate but instead an alternative end product of the transport process. Transport arrest of mOEC33, which is embedded in the membrane with a mildly hydrophobic protein segment, requires more than 26 additional and predominantly hydrophilic residues C-terminal of the membrane-embedded segment. Furthermore, it is stimulated by mutations which potentially affect the conformation of mOEC33 suggesting that at least partial folding of the passenger protein is required for complete membrane translocation.
Collapse
Affiliation(s)
- Julia Dittmar
- Institute of Biology-Plant Physiology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120 Halle/Saale, Germany
| | - René Schlesier
- Institute of Biology-Plant Physiology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120 Halle/Saale, Germany
| | - Ralf Bernd Klösgen
- Institute of Biology-Plant Physiology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120 Halle/Saale, Germany.
| |
Collapse
|
24
|
Zhu H, Ren X, Wang J, Song Z, Shi M, Qiao J, Tian X, Liu J, Chen L, Zhang W. Integrated OMICS guided engineering of biofuel butanol-tolerance in photosynthetic Synechocystis sp. PCC 6803. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:106. [PMID: 23883549 PMCID: PMC3726282 DOI: 10.1186/1754-6834-6-106] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 07/23/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND Photosynthetic cyanobacteria have been recently proposed as a 'microbial factory' to produce butanol due to their capability to utilize solar energy and CO2 as the sole energy and carbon sources, respectively. However, to improve the productivity, one key issue needed to be addressed is the low tolerance of the photosynthetic hosts to butanol. RESULTS In this study, we first applied a quantitative transcriptomics approach with a next-generation RNA sequencing technology to identify gene targets relevant to butanol tolerance in a model cyanobacterium Synechocystis sp. PCC 6803. The results showed that 278 genes were induced by the butanol exposure at all three sampling points through the growth time course. Genes encoding heat-shock proteins, oxidative stress related proteins, transporters and proteins involved in common stress responses, were induced by butanol exposure. We then applied GC-MS based metabolomics analysis to determine the metabolic changes associated with the butanol exposure. The results showed that 46 out of 73 chemically classified metabolites were differentially regulated by butanol treatment. Notably, 3-phosphoglycerate, glycine, serine and urea related to general stress responses were elevated in butanol-treated cells. To validate the potential targets, we constructed gene knockout mutants for three selected gene targets. The comparative phenotypic analysis confirmed that these genes were involved in the butanol tolerance. CONCLUSION The integrated OMICS analysis provided a comprehensive view of the complicated molecular mechanisms employed by Synechocystis sp. PCC 6803 against butanol stress, and allowed identification of a series of potential gene candidates for tolerance engineering in cyanobacterium Synechocystis sp. PCC 6803.
Collapse
Affiliation(s)
- Hongji Zhu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, P.R. China
| | - Xiaoyue Ren
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, P.R. China
| | - Jiangxin Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, P.R. China
| | - Zhongdi Song
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, P.R. China
| | - Mengliang Shi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, P.R. China
| | - Jianjun Qiao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, P.R. China
| | - Xiaoxu Tian
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, P.R. China
| | - Jie Liu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, P.R. China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, P.R. China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, P.R. China
| |
Collapse
|
25
|
Kudva R, Denks K, Kuhn P, Vogt A, Müller M, Koch HG. Protein translocation across the inner membrane of Gram-negative bacteria: the Sec and Tat dependent protein transport pathways. Res Microbiol 2013; 164:505-34. [DOI: 10.1016/j.resmic.2013.03.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/11/2013] [Indexed: 11/28/2022]
|
26
|
Ramasamy S, Abrol R, Suloway CJ, Clemons WM. The glove-like structure of the conserved membrane protein TatC provides insight into signal sequence recognition in twin-arginine translocation. Structure 2013; 21:777-88. [PMID: 23583035 PMCID: PMC3653977 DOI: 10.1016/j.str.2013.03.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/14/2013] [Accepted: 03/07/2013] [Indexed: 11/23/2022]
Abstract
In bacteria, two signal-sequence-dependent secretion pathways translocate proteins across the cytoplasmic membrane. Although the mechanism of the ubiquitous general secretory pathway is becoming well understood, that of the twin-arginine translocation pathway, responsible for translocation of folded proteins across the bilayer, is more mysterious. TatC, the largest and most conserved of three integral membrane components, provides the initial binding site of the signal sequence prior to pore assembly. Here, we present two crystal structures of TatC from the thermophilic bacteria Aquifex aeolicus at 4.0 Å and 6.8 Å resolution. The membrane architecture of TatC includes a glove-shaped structure with a lipid-exposed pocket predicted by molecular dynamics to distort the membrane. Correlating the biochemical literature to these results suggests that the signal sequence binds in this pocket, leading to structural changes that facilitate higher order assemblies.
Collapse
Affiliation(s)
| | - Ravinder Abrol
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christian J.M. Suloway
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - William M. Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
27
|
Enough is enough: TatA demand during Tat-dependent protein transport. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:957-65. [DOI: 10.1016/j.bbamcr.2013.01.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/23/2013] [Accepted: 01/25/2013] [Indexed: 10/27/2022]
|
28
|
Whitaker N, Bageshwar U, Musser SM. Effect of cargo size and shape on the transport efficiency of the bacterial Tat translocase. FEBS Lett 2013; 587:912-6. [PMID: 23422074 DOI: 10.1016/j.febslet.2013.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/05/2013] [Accepted: 02/07/2013] [Indexed: 11/29/2022]
Abstract
The Tat machinery translocates fully-folded and oligomeric substrates. The passage of large, bulky cargos across an ion-tight membrane suggests the need to match pore and cargo size, and therefore that Tat transport efficiency may depend on both cargo size and shape. A series of cargos of different sizes and shapes were generated using the natural Tat substrate pre-SufI as a base. Four (of 17) cargos transported with significant (>20% of wild-type) efficiencies. These results indicate that cargo size and shape significantly influence Tat transportability.
Collapse
Affiliation(s)
- Neal Whitaker
- Department of Molecular and Cellular Medicine, College of Medicine, The Texas A&M Health Science Center, 1114 TAMU, College Station, TX 77843, USA
| | | | | |
Collapse
|
29
|
Ma X, Cline K. Mapping the signal peptide binding and oligomer contact sites of the core subunit of the pea twin arginine protein translocase. THE PLANT CELL 2013; 25:999-1015. [PMID: 23512851 PMCID: PMC3634702 DOI: 10.1105/tpc.112.107409] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/08/2013] [Accepted: 02/19/2013] [Indexed: 05/17/2023]
Abstract
Twin arginine translocation (Tat) systems of thylakoid and bacterial membranes transport folded proteins using the proton gradient as the sole energy source. Tat substrates have hydrophobic signal peptides with an essential twin arginine (RR) recognition motif. The multispanning cpTatC plays a central role in Tat operation: It binds the signal peptide, directs translocase assembly, and may facilitate translocation. An in vitro assay with pea (Pisum sativum) chloroplasts was developed to conduct mutagenesis and analysis of cpTatC functions. Ala scanning mutagenesis identified mutants defective in substrate binding and receptor complex assembly. Mutations in the N terminus (S1) and first stromal loop (S2) caused specific defects in signal peptide recognition. Cys matching between substrate and imported cpTatC confirmed that S1 and S2 directly and specifically bind the RR proximal region of the signal peptide. Mutations in four lumen-proximal regions of cpTatC were defective in receptor complex assembly. Copurification and Cys matching analyses suggest that several of the lumen proximal regions may be important for cpTatC-cpTatC interactions. Surprisingly, RR binding domains of adjacent cpTatCs directed strong cpTatC-cpTatC cross-linking. This suggests clustering of binding sites on the multivalent receptor complex and explains the ability of Tat to transport cross-linked multimers. Transport of substrate proteins cross-linked to the signal peptide binding site tentatively identified mutants impaired in the translocation step.
Collapse
Affiliation(s)
- Xianyue Ma
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611
| | - Kenneth Cline
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
30
|
Waraho-Zhmayev D, Gkogka L, Yu TY, DeLisa MP. A microbial sensor for discovering structural probes of protein misfolding and aggregation. Prion 2013; 7:151-6. [PMID: 23357829 DOI: 10.4161/pri.23328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In all cell types, protein homeostasis, or "proteostasis," is maintained by sophisticated quality control networks that regulate protein synthesis, folding, trafficking, aggregation, disaggregation, and degradation. In one notable example, Escherichia coli employ a proteostasis system that determines whether substrates of the twin-arginine translocation (Tat) pathway are correctly folded and thus suitable for transport across the tightly sealed cytoplasmic membrane. Herein, we review growing evidence that the Tat translocase itself discriminates folded proteins from those that are misfolded and/or aggregated, preferentially exporting only the former. Genetic suppressors that inactivate this mechanism have recently been isolated and provide direct evidence for the participation of the Tat translocase in structural proofreading of its protein substrates. We also discuss how this discriminatory "folding sensor" has been exploited for the discovery of structural probes (e.g., sequence mutations, pharmacologic chaperones, intracellular antibodies) that modulate the folding and solubility of virtually any protein-of-interest, including those associated with aggregation diseases (e.g., α-synuclein, amyloid-β protein). Taken together, these studies highlight the utility of engineered bacteria for rapidly and inexpensively uncovering potent anti-aggregation factors.
Collapse
|
31
|
Rollauer SE, Tarry MJ, Graham JE, Jääskeläinen M, Jäger F, Johnson S, Krehenbrink M, Liu SM, Lukey MJ, Marcoux J, McDowell MA, Rodriguez F, Roversi P, Stansfeld PJ, Robinson CV, Sansom MSP, Palmer T, Högbom M, Berks BC, Lea SM. Structure of the TatC core of the twin-arginine protein transport system. Nature 2012; 492:210-4. [PMID: 23201679 PMCID: PMC3573685 DOI: 10.1038/nature11683] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/18/2012] [Indexed: 12/12/2022]
Abstract
The twin-arginine translocation (Tat) pathway is one of two general protein transport systems found in the prokaryotic cytoplasmic membrane and is conserved in the thylakoid membrane of plant chloroplasts. The defining, and highly unusual, property of the Tat pathway is that it transports folded proteins, a task that must be achieved without allowing appreciable ion leakage across the membrane. The integral membrane TatC protein is the central component of the Tat pathway. TatC captures substrate proteins by binding their signal peptides. TatC then recruits TatA family proteins to form the active translocation complex. Here we report the crystal structure of TatC from the hyperthermophilic bacterium Aquifex aeolicus. This structure provides a molecular description of the core of the Tat translocation system and a framework for understanding the unique Tat transport mechanism.
Collapse
Affiliation(s)
- Sarah E Rollauer
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tian X, Chen L, Wang J, Qiao J, Zhang W. Quantitative proteomics reveals dynamic responses of Synechocystis sp. PCC 6803 to next-generation biofuel butanol. J Proteomics 2012; 78:326-45. [PMID: 23079071 DOI: 10.1016/j.jprot.2012.10.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 10/01/2012] [Accepted: 10/04/2012] [Indexed: 01/04/2023]
Abstract
Butanol is a promising biofuel, and recent metabolic engineering efforts have demonstrated the use of photosynthetic cyanobacterial hosts for its production. However, cyanobacteria have very low tolerance to butanol, limiting the economic viability of butanol production from these renewable producing systems. The existing knowledge of molecular mechanism involved in butanol tolerance in cyanobacteria is very limited. To build a foundation necessary to engineer robust butanol-producing cyanobacterial hosts, in this study, the responses of Synechocystis PCC 6803 to butanol were investigated using a quantitative proteomics approach with iTRAQ - LC-MS/MS technologies. The resulting high-quality dataset consisted of 25,347 peptides corresponding to 1452 unique proteins, a coverage of approximately 40% of the predicted proteins in Synechocystis. Comparative quantification of protein abundances led to the identification of 303 differentially regulated proteins by butanol. Annotation and GO term enrichment analysis showed that multiple biological processes were regulated, suggesting that Synechocystis probably employed multiple and synergistic resistance mechanisms in dealing with butanol stress. Notably, the analysis revealed the induction of heat-shock protein and transporters, along with modification of cell membrane and envelope were the major protection mechanisms against butanol. A conceptual cellular model of Synechocystis PCC 6803 responses to butanol stress was constructed to illustrate the putative molecular mechanisms employed to defend against butanol stress.
Collapse
Affiliation(s)
- Xiaoxu Tian
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
| | | | | | | | | |
Collapse
|
33
|
Twin-arginine translocase mutations that suppress folding quality control and permit export of misfolded substrate proteins. Proc Natl Acad Sci U S A 2012; 109:13392-7. [PMID: 22847444 DOI: 10.1073/pnas.1210140109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacterial twin-arginine translocation (Tat) pathway facilitates the transport of correctly folded proteins across the tightly sealed cytoplasmic membrane. Here, we report the isolation and characterization of suppressor mutations in the Tat translocase that allow export of misfolded proteins, which form structures that are not normally tolerated by the wild-type translocase. Selection of suppressors was enabled by a genetic assay that effectively linked in vivo folding and stability of a test protein with Tat export efficiency of a selectable marker protein, namely TEM-1 β-lactamase. By using a test protein named α(3)B-a designed three-helix-bundle protein that forms collapsed, stable molten globules but lacks a uniquely folded structure-translocase mutants that rescued export of this protein were readily identified. Each mutant translocase still efficiently exported folded substrate proteins, indicating that the substrate specificity of suppressors was relaxed but not strictly altered. A subset of the suppressors could also export other misfolded proteins, such as the aggregation-prone α(3)A protein and reduced alkaline phosphatase. Importantly, the isolation of genetic suppressors that inactivate the Tat quality-control mechanism provides direct evidence for the participation of the Tat translocase in structural proofreading of substrate proteins and reveals epitopes in the translocase that are important for this process.
Collapse
|
34
|
Celedon JM, Cline K. Intra-plastid protein trafficking: how plant cells adapted prokaryotic mechanisms to the eukaryotic condition. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:341-51. [PMID: 22750312 DOI: 10.1016/j.bbamcr.2012.06.028] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/11/2012] [Accepted: 06/20/2012] [Indexed: 12/14/2022]
Abstract
Protein trafficking and localization in plastids involve a complex interplay between ancient (prokaryotic) and novel (eukaryotic) translocases and targeting machineries. During evolution, ancient systems acquired new functions and novel translocation machineries were developed to facilitate the correct localization of nuclear encoded proteins targeted to the chloroplast. Because of its post-translational nature, targeting and integration of membrane proteins posed the biggest challenge to the organelle to avoid aggregation in the aqueous compartments. Soluble proteins faced a different kind of problem since some had to be transported across three membranes to reach their destination. Early studies suggested that chloroplasts addressed these issues by adapting ancient-prokaryotic machineries and integrating them with novel-eukaryotic systems, a process called 'conservative sorting'. In the last decade, detailed biochemical, genetic, and structural studies have unraveled the mechanisms of protein targeting and localization in chloroplasts, suggesting a highly integrated scheme where ancient and novel systems collaborate at different stages of the process. In this review we focus on the differences and similarities between chloroplast ancestral translocases and their prokaryotic relatives to highlight known modifications that adapted them to the eukaryotic situation. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Jose M Celedon
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
35
|
Palmer T, Berks BC. The twin-arginine translocation (Tat) protein export pathway. Nat Rev Microbiol 2012; 10:483-96. [PMID: 22683878 DOI: 10.1038/nrmicro2814] [Citation(s) in RCA: 373] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The twin-arginine translocation (Tat) protein export system is present in the cytoplasmic membranes of most bacteria and archaea and has the highly unusual property of transporting fully folded proteins. The system must therefore provide a transmembrane pathway that is large enough to allow the passage of structured macromolecular substrates of different sizes but that maintains the impermeability of the membrane to ions. In the Gram-negative bacterium Escherichia coli, this complex task can be achieved by using only three small membrane proteins: TatA, TatB and TatC. In this Review, we summarize recent advances in our understanding of how this remarkable machine operates.
Collapse
Affiliation(s)
- Tracy Palmer
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | | |
Collapse
|
36
|
Mehner D, Osadnik H, Lünsdorf H, Brüser T. The Tat system for membrane translocation of folded proteins recruits the membrane-stabilizing Psp machinery in Escherichia coli. J Biol Chem 2012; 287:27834-42. [PMID: 22689583 DOI: 10.1074/jbc.m112.374983] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tat systems transport folded proteins across energized membranes of bacteria, archaea, and plant plastids. In Escherichia coli, TatBC complexes recognize the transported proteins, and TatA complexes are recruited to facilitate transport. We achieved an abstraction of TatA from membranes without use of detergents and observed a co-purification of PspA, a membrane-stress response protein. The N-terminal transmembrane domain of TatA was required for the interaction. Electron microscopy displayed TatA complexes in direct contact with PspA. PspB and PspC were important for the TatA-PspA contact. The activator protein PspF was not involved in the PspA-TatA interaction, demonstrating that basal levels of PspA already interact with TatA. Elevated TatA levels caused membrane stress that induced a strictly PspBC- and PspF-dependent up-regulation of PspA. TatA complexes were found to destabilize membranes under these conditions. At native TatA levels, PspA deficiency clearly affected anaerobic TMAO respiratory growth, suggesting that energetic costs for transport of large Tat substrates such as TMAO reductase can become growth limiting in the absence of PspA. The physiological role of PspA recruitment to TatA may therefore be the control of membrane stress at active translocons.
Collapse
Affiliation(s)
- Denise Mehner
- Institute of Microbiology, Leibniz University Hannover, Schneiderberg 50, D-30167 Hannover, Germany
| | | | | | | |
Collapse
|
37
|
Fröbel J, Rose P, Müller M. Twin-arginine-dependent translocation of folded proteins. Philos Trans R Soc Lond B Biol Sci 2012; 367:1029-46. [PMID: 22411976 PMCID: PMC3297433 DOI: 10.1098/rstb.2011.0202] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Twin-arginine translocation (Tat) denotes a protein transport pathway in bacteria, archaea and plant chloroplasts, which is specific for precursor proteins harbouring a characteristic twin-arginine pair in their signal sequences. Many Tat substrates receive cofactors and fold prior to translocation. For a subset of them, proofreading chaperones coordinate maturation and membrane-targeting. Tat translocases comprise two kinds of membrane proteins, a hexahelical TatC-type protein and one or two members of the single-spanning TatA protein family, called TatA and TatB. TatC- and TatA-type proteins form homo- and hetero-oligomeric complexes. The subunits of TatABC translocases are predominantly recovered from two separate complexes, a TatBC complex that might contain some TatA, and a homomeric TatA complex. TatB and TatC coordinately recognize twin-arginine signal peptides and accommodate them in membrane-embedded binding pockets. Advanced binding of the signal sequence to the Tat translocase requires the proton-motive force (PMF) across the membranes and might involve a first recruitment of TatA. When targeted in this manner, folded twin-arginine precursors induce homo-oligomerization of TatB and TatA. Ultimately, this leads to the formation of a transmembrane protein conduit that possibly consists of a pore-like TatA structure. The translocation step again is dependent on the PMF.
Collapse
Affiliation(s)
- Julia Fröbel
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzle-Strasse 1, 79104 Freiburg, Germany
| | - Patrick Rose
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzle-Strasse 1, 79104 Freiburg, Germany
| | - Matthias Müller
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, 79104 Freiburg, Germany
| |
Collapse
|
38
|
Zoufaly S, Fröbel J, Rose P, Flecken T, Maurer C, Moser M, Müller M. Mapping precursor-binding site on TatC subunit of twin arginine-specific protein translocase by site-specific photo cross-linking. J Biol Chem 2012; 287:13430-41. [PMID: 22362773 DOI: 10.1074/jbc.m112.343798] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A number of secreted precursor proteins of bacteria, archaea, and plant chloroplasts stand out by a conserved twin arginine-containing sequence motif in their signal peptides. Many of these precursor proteins are secreted in a completely folded conformation by specific twin arginine translocation (Tat) machineries. Tat machineries are high molecular mass complexes consisting of two types of membrane proteins, a hexahelical TatC protein, and usually one or two single-spanning membrane proteins, called TatA and TatB. TatC has previously been shown to be involved in the recognition of twin arginine signal peptides. We have performed an extensive site-specific cross-linking analysis of the Escherichia coli TatC protein under resting and translocating conditions. This strategy allowed us to map the recognition site for twin arginine signal peptides to the cytosolic N-terminal region and first cytosolic loop of TatC. In addition, discrete contact sites between TatC, TatB, and TatA were revealed. We discuss a tentative model of how a twin arginine signal sequence might be accommodated in the Tat translocase.
Collapse
Affiliation(s)
- Stefan Zoufaly
- Institute of Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), University of Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Waraho D, DeLisa MP. Identifying and optimizing intracellular protein-protein interactions using bacterial genetic selection. Methods Mol Biol 2012; 813:125-143. [PMID: 22083739 DOI: 10.1007/978-1-61779-412-4_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protein-protein interactions are crucial for the vast majority of biological processes. To fully understand these processes therefore requires methods for identifying protein interactions within the complex cellular environment. To isolate interacting proteins, we have developed a simple and reliable genetic selection by exploiting the inbuilt "hitchhiker" mechanism of the Escherichia coli twin-arginine translocation (Tat) pathway. This method is based on the unique ability of the Tat system to efficiently co-localize noncovalent complexes of two folded polypeptides to the periplasmic space of E. coli. The genetic selection is comprised of two engineered fusion proteins: an N-terminal Tat signal peptide fused to the protein of interest, and the known or putative partner protein fused to mature TEM-1 β-lactamase. The efficiency with which co-localized β-lactamase chimeras are exported in the periplasm, and thus confer ampicillin resistance to cells, is directly linked to the relative binding affinity of the protein-ligand system. Thus, ampicillin resistance can be used as a convenient readout for identifying and optimizing protein interactions in E. coli. Furthermore, because Tat substrates must be correctly folded for export, our method favors the identification of soluble, non-aggregating, protease-resistant protein pairs. Overall, we anticipate that this new selection tool will be useful for discovering and engineering protein drugs, protein complexes for structural biology, factors that inhibit PPIs, and components for synthetic biology.
Collapse
Affiliation(s)
- Dujduan Waraho
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
40
|
Karlsson AJ, Lim HK, Xu H, Rocco MA, Bratkowski MA, Ke A, DeLisa MP. Engineering antibody fitness and function using membrane-anchored display of correctly folded proteins. J Mol Biol 2011; 416:94-107. [PMID: 22197376 DOI: 10.1016/j.jmb.2011.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/06/2011] [Accepted: 12/09/2011] [Indexed: 10/14/2022]
Abstract
A hallmark of the bacterial twin-arginine translocation (Tat) pathway is its ability to export folded proteins. Here, we discovered that overexpressed Tat substrate proteins form two distinct, long-lived translocation intermediates that are readily detected by immunolabeling methods. Formation of the early translocation intermediate Ti-1, which exposes the N- and C-termini to the cytoplasm, did not require an intact Tat translocase, a functional Tat signal peptide, or a correctly folded substrate. In contrast, formation of the later translocation intermediate, Ti-2, which exhibits a bitopic topology with the N-terminus in the cytoplasm and C-terminus in the periplasm, was much more particular, requiring an intact translocase, a functional signal peptide, and a correctly folded substrate protein. The ability to directly detect Ti-2 intermediates was subsequently exploited for a new protein engineering technology called MAD-TRAP (membrane-anchored display for Tat-based recognition of associating proteins). Through the use of just two rounds of mutagenesis and screening with MAD-TRAP, the intracellular folding and antigen-binding activity of a human single-chain antibody fragment were simultaneously improved. This approach has several advantages for library screening, including the unique involvement of the Tat folding quality control mechanism that ensures only native-like proteins are displayed, thus eliminating poorly folded sequences from the screening process.
Collapse
Affiliation(s)
- Amy J Karlsson
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Hou B, Brüser T. The Tat-dependent protein translocation pathway. Biomol Concepts 2011; 2:507-23. [DOI: 10.1515/bmc.2011.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/05/2011] [Indexed: 11/15/2022] Open
Abstract
AbstractThe twin-arginine translocation (Tat) pathway is found in bacteria, archaea, and plant chloroplasts, where it is dedicated to the transmembrane transport of fully folded proteins. These proteins contain N-terminal signal peptides with a specific Tat-system binding motif that is recognized by the transport machinery. In contrast to other protein transport systems, the Tat system consists of multiple copies of only two or three usually small (∼8–30 kDa) membrane proteins that oligomerize to two large complexes that transiently interact during translocation. Only one of these complexes includes a polytopic membrane protein, TatC. The other complex consists of TatA. Tat systems of plants, proteobacteria, and several other phyla contain a third component, TatB. TatB is evolutionarily and structurally related to TatA and usually forms tight complexes with TatC. Minimal two-component Tat systems lacking TatB are found in many bacterial and archaeal phyla. They consist of a ‘bifunctional’ TatA that also covers TatB functionalities, and a TatC. Recent insights into the structure and interactions of the Tat proteins have various important implications.
Collapse
Affiliation(s)
- Bo Hou
- Institute of Microbiology, Leibniz University Hannover, Schneiderberg 50, D-30167 Hannover, Germany
| | - Thomas Brüser
- Institute of Microbiology, Leibniz University Hannover, Schneiderberg 50, D-30167 Hannover, Germany
| |
Collapse
|
42
|
Fröbel J, Rose P, Müller M. Early contacts between substrate proteins and TatA translocase component in twin-arginine translocation. J Biol Chem 2011; 286:43679-43689. [PMID: 22041896 DOI: 10.1074/jbc.m111.292565] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Twin-arginine translocation (Tat) is a unique protein transport pathway in bacteria, archaea, and plastids. It mediates the transmembrane transport of fully folded proteins, which harbor a consensus twin-arginine motif in their signal sequences. In Gram-negative bacteria and plant chloroplasts, three membrane proteins, named TatA, TatB, and TatC, are required to enable Tat translocation. Available data suggest that TatA assembles into oligomeric pore-like structures that might function as the protein conduit across the lipid bilayer. Using site-specific photo-cross-linking, we have investigated the molecular environment of TatA under resting and translocating conditions. We find that monomeric TatA is an early interacting partner of functionally targeted Tat substrates. This interaction with TatA likely precedes translocation of Tat substrates and is influenced by the proton-motive force. It strictly depends on the presence of TatB and TatC, the latter of which is shown to make contacts with the transmembrane helix of TatA.
Collapse
Affiliation(s)
- Julia Fröbel
- Institute of Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Patrick Rose
- Institute of Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Matthias Müller
- Institute of Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
43
|
Abstract
The protein complexes in the thylakoid membrane are composed of subunits derived from both the nuclear and chloroplast genomes. While less is known about the mechanisms of delivery of the plastid-encoded subunits, the targeting mechanisms of the nuclear-encoded subunits have been more experimentally tractable. We have described in this chapter the methods used in our laboratory for investigations of the import of nuclear-encoded proteins across the chloroplast envelope membranes, and for their further delivery into or across the thylakoid membrane by one of the four distinct pathways.
Collapse
Affiliation(s)
- Shari M Lo
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | | |
Collapse
|
44
|
Robinson C, Matos CFRO, Beck D, Ren C, Lawrence J, Vasisht N, Mendel S. Transport and proofreading of proteins by the twin-arginine translocation (Tat) system in bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:876-84. [PMID: 21126506 DOI: 10.1016/j.bbamem.2010.11.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 11/12/2010] [Accepted: 11/14/2010] [Indexed: 12/01/2022]
Abstract
The twin-arginine translocation (Tat) system operates in plant thylakoid membranes and the plasma membranes of most free-living bacteria. In bacteria, it is responsible for the export of a number of proteins to the periplasm, outer membrane or growth medium, selecting substrates by virtue of cleavable N-terminal signal peptides that contain a key twin-arginine motif together with other determinants. Its most notable attribute is its ability to transport large folded proteins (even oligomeric proteins) across the tightly sealed plasma membrane. In Gram-negative bacteria, TatABC subunits appear to carry out all of the essential translocation functions in the form of two distinct complexes at steady state: a TatABC substrate-binding complex and separate TatA complex. Several studies favour a model in which these complexes transiently coalesce to generate the full translocase. Most Gram-positive organisms possess an even simpler "minimalist" Tat system which lacks a TatB component and contains, instead, a bifunctional TatA component. These Tat systems may involve the operation of a TatAC complex together with a separate TatA complex, although a radically different model for TatAC-type systems has also been proposed. While bacterial Tat systems appear to require the presence of only a few proteins for the actual translocation event, there is increasing evidence for the operation of ancillary components that carry out sophisticated "proofreading" activities. These activities ensure that redox proteins are only exported after full assembly of the cofactor, thereby avoiding the futile export of apo-forms. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
Affiliation(s)
- Colin Robinson
- School of Life Sciences, University of Warwick, Coventry CV47AL, UK.
| | | | | | | | | | | | | |
Collapse
|
45
|
Maurer C, Panahandeh S, Jungkamp AC, Moser M, Müller M. TatB functions as an oligomeric binding site for folded Tat precursor proteins. Mol Biol Cell 2010; 21:4151-61. [PMID: 20926683 PMCID: PMC2993744 DOI: 10.1091/mbc.e10-07-0585] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The TatABC subunits of the twin-arginine translocation machinery allow transport of folded proteins by an unknown mechanism. Here we show that the entire surfaces of folded Tat substrates contact TatB via both of its predicted helices. Our data suggest that TatB forms an oligomeric binding site that transiently accommodates folded Tat precursors. Twin-arginine-containing signal sequences mediate the transmembrane transport of folded proteins. The cognate twin-arginine translocation (Tat) machinery of Escherichia coli consists of the membrane proteins TatA, TatB, and TatC. Whereas Tat signal peptides are recognized by TatB and TatC, little is known about molecular contacts of the mature, folded part of Tat precursor proteins. We have placed a photo-cross-linker into Tat substrates at sites predicted to be either surface-exposed or hidden in the core of the folded proteins. On targeting of these variants to the Tat machinery of membrane vesicles, all surface-exposed sites were found in close proximity to TatB. Correspondingly, incorporation of the cross-linker into TatB revealed multiple precursor-binding sites in the predicted transmembrane and amphipathic helices of TatB. Large adducts indicative of TatB oligomers contacting one precursor molecule were also obtained. Cross-linking of Tat substrates to TatB required an intact twin-arginine signal peptide and disappeared upon transmembrane translocation. Our collective data are consistent with TatB forming an oligomeric binding site that transiently accommodates folded Tat precursors.
Collapse
Affiliation(s)
- Carlo Maurer
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
46
|
Abstract
Proteins that reside partially or completely outside the bacterial cytoplasm require specialized pathways to facilitate their localization. Globular proteins that function in the periplasm must be translocated across the hydrophobic barrier of the inner membrane. While the Sec pathway transports proteins in a predominantly unfolded conformation, the Tat pathway exports folded protein substrates. Protein transport by the Tat machinery is powered solely by the transmembrane proton gradient, and there is no requirement for nucleotide triphosphate hydrolysis. Proteins are targeted to the Tat machinery by N-terminal signal peptides that contain a consensus twin arginine motif. In Escherichia coli and Salmonella there are approximately thirty proteins with twin arginine signal peptides that are transported by the Tat pathway. The majority of these bind complex redox cofactors such as iron sulfur clusters or the molybdopterin cofactor. Here we describe what is known about Tat substrates in E. coli and Salmonella, the function and mechanism of Tat protein export, and how the cofactor insertion step is coordinated to ensure that only correctly assembled substrates are targeted to the Tat machinery.
Collapse
|
47
|
Fan E, Jakob M, Klösgen RB. One signal is enough: Stepwise transport of two distinct passenger proteins by the Tat pathway across the thylakoid membrane. Biochem Biophys Res Commun 2010; 398:438-43. [DOI: 10.1016/j.bbrc.2010.06.095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 06/24/2010] [Indexed: 11/25/2022]
|
48
|
Ma X, Cline K. Multiple precursor proteins bind individual Tat receptor complexes and are collectively transported. EMBO J 2010; 29:1477-88. [PMID: 20339348 PMCID: PMC2876949 DOI: 10.1038/emboj.2010.44] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 03/03/2010] [Indexed: 11/09/2022] Open
Abstract
The thylakoid twin arginine protein translocation (Tat) system is thought to have a multivalent receptor complex with each cpTatC-Hcf106 pair constituting a signal peptide-binding unit. Conceptual models suggest that translocation of individual precursor proteins occurs upon assembly of a Tha4 oligomer with a precursor-occupied cpTatC-Hcf106. However, results reported here reveal that multiple precursor proteins bound to a single receptor complex can be transported together. Precursor proteins that contain one or two cysteine residues readily formed intermolecular disulphide bonds upon binding to the receptor complex, resulting in dimeric and tetrameric precursor proteins. Three lines of evidence indicate that all members of precursor oligomers were specifically bound to a receptor unit. Blue native-polyacrylamide gel electrophoresis analysis showed that oligomers were present on individual receptor complexes rather than bridging two or more receptor complexes. Upon energizing the membrane, the dimeric and tetrameric precursors were transported across the membrane with efficiencies comparable with that of monomeric precursors. These results imply a novel aspect of Tat systems, whereby multiple precursor-binding sites can act in concert to transport an interlinked oligo-precursor protein.
Collapse
Affiliation(s)
- Xianyue Ma
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, USA
| | - Kenneth Cline
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
49
|
Lim HK, Mansell TJ, Linderman SW, Fisher AC, Dyson MR, DeLisa MP. Mining mammalian genomes for folding competent proteins using Tat-dependent genetic selection in Escherichia coli. Protein Sci 2010; 18:2537-49. [PMID: 19830686 DOI: 10.1002/pro.262] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recombinant expression of eukaryotic proteins in Escherichia coli is often limited by poor folding and solubility. To address this problem, we employed a recently developed genetic selection for protein folding and solubility based on the bacterial twin-arginine translocation (Tat) pathway to rapidly identify properly folded recombinant proteins or soluble protein domains of mammalian origin. The coding sequences for 29 different mammalian polypeptides were cloned as sandwich fusions between an N-terminal Tat export signal and a C-terminal selectable marker, namely beta-lactamase. Hence, expression of the selectable marker and survival on selective media was linked to Tat export of the target mammalian protein. Since the folding quality control feature of the Tat pathway prevents export of misfolded proteins, only correctly folded fusion proteins reached the periplasm and conferred cell survival. In general, the ability to confer growth was found to relate closely to the solubility profile and molecular weight of the protein, although other features such as number of contiguous hydrophobic amino acids and cysteine content may also be important. These results highlight the capacity of Tat selection to reveal the folding potential of mammalian proteins and protein domains without the need for structural or functional information about the target protein.
Collapse
Affiliation(s)
- Hyung-Kwon Lim
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
50
|
Kostecki JS, Li H, Turner RJ, DeLisa MP. Visualizing interactions along the Escherichia coli twin-arginine translocation pathway using protein fragment complementation. PLoS One 2010; 5:e9225. [PMID: 20169075 PMCID: PMC2821923 DOI: 10.1371/journal.pone.0009225] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Accepted: 01/18/2010] [Indexed: 11/23/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway is well known for its ability to export fully folded substrate proteins out of the cytoplasm of gram-negative and gram-positive bacteria. Studies of this mechanism in Escherichia coli have identified numerous transient protein-protein interactions that guide export-competent proteins through the Tat pathway. To visualize these interactions, we have adapted bimolecular fluorescence complementation (BiFC) to detect protein-protein interactions along the Tat pathway of living cells. Fragments of the yellow fluorescent protein (YFP) were fused to soluble and transmembrane factors that participate in the translocation process including Tat substrates, Tat-specific proofreading chaperones and the integral membrane proteins TatABC that form the translocase. Fluorescence analysis of these YFP chimeras revealed a wide range of interactions such as the one between the Tat substrate dimethyl sulfoxide reductase (DmsA) and its dedicated proofreading chaperone DmsD. In addition, BiFC analysis illuminated homo- and hetero-oligomeric complexes of the TatA, TatB and TatC integral membrane proteins that were consistent with the current model of translocase assembly. In the case of TatBC assemblies, we provide the first evidence that these complexes are co-localized at the cell poles. Finally, we used this BiFC approach to capture interactions between the putative Tat receptor complex formed by TatBC and the DmsA substrate or its dedicated chaperone DmsD. Our results demonstrate that BiFC is a powerful approach for studying cytoplasmic and inner membrane interactions underlying bacterial secretory pathways.
Collapse
Affiliation(s)
- Jan S. Kostecki
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - Haiming Li
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Raymond J. Turner
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Matthew P. DeLisa
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|