1
|
Ananthaswamy D, Funes K, Borges T, Roques S, Fassnacht N, Jamal SE, Checchi PM, Wei-sy Lee T. NuRD chromatin remodeling is required to repair exogenous DSBs in the Caenorhabditis elegans germline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613027. [PMID: 39314477 PMCID: PMC11419128 DOI: 10.1101/2024.09.14.613027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Organisms rely on coordinated networks of DNA repair pathways to protect genomes against toxic double-strand breaks (DSBs), particularly in germ cells. All repair mechanisms must successfully negotiate the local chromatin environment in order to access DNA. For example, nucleosomes can be repositioned by the highly conserved Nucleosome Remodeling and Deacetylase (NuRD) complex. In Caenorhabditis elegans, NuRD functions in the germline to repair DSBs - the loss of NuRD's ATPase subunit, LET-418/CHD4, prevents DSB resolution and therefore reduces fertility. In this study, we challenge germlines with exogenous DNA damage to better understand NuRD's role in repairing DSBs. We find that let-418 mutants are hypersensitive to cisplatin and hydroxyurea: exposure to either mutagen impedes DSB repair, generates aneuploid oocytes, and severely reduces fertility and embryonic survival. These defects resemble those seen when the Fanconi anemia (FA) DNA repair pathway is compromised, and we find that LET-418's activity is epistatic to that of the FA component FCD-2/FANCD2. We propose a model in which NuRD is recruited to the site of DNA lesions to remodel chromatin and allow access for FA pathway components. Together, these results implicate NuRD in the repair of both endogenous DSBs and exogenous DNA lesions to preserve genome integrity in developing germ cells.
Collapse
Affiliation(s)
- Deepshikha Ananthaswamy
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Dr. Lowell MA, 01854
| | - Kelin Funes
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Dr. Lowell MA, 01854
| | - Thiago Borges
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Dr. Lowell MA, 01854
| | - Scott Roques
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Dr. Lowell MA, 01854
| | - Nina Fassnacht
- Department of Biology, Marist College, 3399 North Road, Poughkeepsie, NY 12601
| | - Sereen El Jamal
- Department of Biology, Marist College, 3399 North Road, Poughkeepsie, NY 12601
| | - Paula M. Checchi
- Department of Biology, Marist College, 3399 North Road, Poughkeepsie, NY 12601
| | - Teresa Wei-sy Lee
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Dr. Lowell MA, 01854
| |
Collapse
|
2
|
Ito M, Fujita Y, Shinohara A. Positive and negative regulators of RAD51/DMC1 in homologous recombination and DNA replication. DNA Repair (Amst) 2024; 134:103613. [PMID: 38142595 DOI: 10.1016/j.dnarep.2023.103613] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
RAD51 recombinase plays a central role in homologous recombination (HR) by forming a nucleoprotein filament on single-stranded DNA (ssDNA) to catalyze homology search and strand exchange between the ssDNA and a homologous double-stranded DNA (dsDNA). The catalytic activity of RAD51 assembled on ssDNA is critical for the DNA-homology-mediated repair of DNA double-strand breaks in somatic and meiotic cells and restarting stalled replication forks during DNA replication. The RAD51-ssDNA complex also plays a structural role in protecting the regressed/reversed replication fork. Two types of regulators control RAD51 filament formation, stability, and dynamics, namely positive regulators, including mediators, and negative regulators, so-called remodelers. The appropriate balance of action by the two regulators assures genome stability. This review describes the roles of positive and negative RAD51 regulators in HR and DNA replication and its meiosis-specific homolog DMC1 in meiotic recombination. We also provide future study directions for a comprehensive understanding of RAD51/DMC1-mediated regulation in maintaining and inheriting genome integrity.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Yurika Fujita
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
3
|
Wellard SR, Skinner MW, Zhao X, Shults C, Jordan PW. PLK1 depletion alters homologous recombination and synaptonemal complex disassembly events during mammalian spermatogenesis. Mol Biol Cell 2022; 33:ar37. [PMID: 35274968 PMCID: PMC9282006 DOI: 10.1091/mbc.e21-03-0115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 11/11/2022] Open
Abstract
Homologous recombination (HR) is an essential meiotic process that contributes to the genetic variation of offspring and ensures accurate chromosome segregation. Recombination is facilitated by the formation and repair of programmed DNA double-strand breaks. These DNA breaks are repaired via recombination between maternal and paternal homologous chromosomes and a subset result in the formation of crossovers. HR and crossover formation is facilitated by synapsis of homologous chromosomes by a proteinaceous scaffold structure known as the synaptonemal complex (SC). Recent studies in yeast and worms have indicated that polo-like kinases (PLKs) regulate several events during meiosis, including DNA recombination and SC dynamics. Mammals express four active PLKs (PLK1-4), and our previous work assessing localization and kinase function in mouse spermatocytes suggested that PLK1 coordinates nuclear events during meiotic prophase. Therefore, we conditionally mutated Plk1 in early prophase spermatocytes and assessed stages of HR, crossover formation, and SC processes. Plk1 mutation resulted in increased RPA foci and reduced RAD51/DMC1 foci during zygonema, and an increase of both class I and class II crossover events. Furthermore, the disassembly of SC lateral elements was aberrant. Our results highlight the importance of PLK1 in regulating HR and SC disassembly during spermatogenesis.
Collapse
Affiliation(s)
- Stephen R. Wellard
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Marnie W. Skinner
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Xueqi Zhao
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Chris Shults
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Philip W. Jordan
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| |
Collapse
|
4
|
McGlacken-Byrne SM, Le Quesne Stabej P, Del Valle I, Ocaka L, Gagunashvili A, Crespo B, Moreno N, James C, Bacchelli C, Dattani MT, Williams HJ, Kelberman D, Achermann JC, Conway GS. ZSWIM7 Is Associated With Human Female Meiosis and Familial Primary Ovarian Insufficiency. J Clin Endocrinol Metab 2022; 107:e254-e263. [PMID: 34402903 PMCID: PMC8684494 DOI: 10.1210/clinem/dgab597] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Primary ovarian insufficiency (POI) affects 1% of women and is associated with significant medical consequences. A genetic cause for POI can be found in up to 30% of women, elucidating key roles for these genes in human ovary development. OBJECTIVE We aimed to identify the genetic mechanism underlying early-onset POI in 2 sisters from a consanguineous pedigree. METHODS Genome sequencing and variant filtering using an autosomal recessive model was performed in the 2 affected sisters and their unaffected family members. Quantitative reverse transcriptase PCR (qRT-PCR) and RNA sequencing were used to study the expression of key genes at critical stages of human fetal gonad development (Carnegie Stage 22/23, 9 weeks post conception (wpc), 11 wpc, 15/16 wpc, 19/20 wpc) and in adult tissue. RESULTS Only 1 homozygous variant cosegregating with the POI phenotype was found: a single nucleotide substitution in zinc finger SWIM-type containing 7 (ZSWIM7), NM_001042697.2: c.173C > G; resulting in predicted loss-of-function p.(Ser58*). qRT-PCR demonstrated higher expression of ZSWIM7 in the 15/16 wpc ovary compared with testis, corresponding to peak meiosis in the fetal ovary. RNA sequencing of fetal gonad samples showed that ZSWIM7 has a similar temporal expression profile in the developing ovary to other homologous recombination genes. MAIN CONCLUSIONS Disruption of ZSWIM7 is associated with POI in humans. ZSWIM7 is likely to be important for human homologous recombination; these findings expand the range of genes associated with POI in women.
Collapse
Affiliation(s)
- Sinéad M McGlacken-Byrne
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Institute for Women’s Health, University College London, London WC1N 1EH, UK
- Correspondence: Sinéad McGlacken-Byrne, Wellcome Trust Clinical Training Fellow, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK.
| | - Polona Le Quesne Stabej
- GOSgene, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Ignacio Del Valle
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Louise Ocaka
- GOSgene, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Andrey Gagunashvili
- GOSgene, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Berta Crespo
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Nadjeda Moreno
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Chela James
- GOSgene, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Chiara Bacchelli
- GOSgene, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Mehul T Dattani
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Hywel J Williams
- Division of Cancer and Genetics, Genetic and Genomic Medicine, Cardiff University, Cardiff CF14 4AY, UK
| | - Dan Kelberman
- GOSgene, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - John C Achermann
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Gerard S Conway
- Institute for Women’s Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
5
|
Mechanism of mitotic recombination: insights from C. elegans. Curr Opin Genet Dev 2021; 71:10-18. [PMID: 34186335 PMCID: PMC8683258 DOI: 10.1016/j.gde.2021.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 11/23/2022]
Abstract
Homologous recombination (HR) plays a critical role in largely error-free repair of mitotic and meiotic DNA double-strand breaks (DSBs). DSBs are one of the most deleterious DNA lesions, which are repaired by non-homologous end joining (NHEJ), homologous recombination (HR) or, if compromised, micro-homology mediated end joining (MMEJ). If left unrepaired, DSBs can lead to cell death or if repaired incorrectly can result in chromosome rearrangements that drive cancer development. Here, we describe recent advances in the field of mitotic HR made using Caenorhabditis elegans roundworm, as a model system.
Collapse
|
6
|
Marchal L, Hamsanathan S, Karthikappallil R, Han S, Shinglot H, Gurkar AU. Analysis of representative mutants for key DNA repair pathways on healthspan in Caenorhabditis elegans. Mech Ageing Dev 2021; 200:111573. [PMID: 34562508 DOI: 10.1016/j.mad.2021.111573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/26/2021] [Accepted: 09/21/2021] [Indexed: 12/30/2022]
Abstract
Although the link between DNA damage and aging is well accepted, the role of different DNA repair proteins on functional/physiological aging is not well-defined. Here, using Caenorhabditis elegans, we systematically examined the effect of three DNA repair genes involved in key genome stability pathways. We assayed multiple health proxies including molecular, functional and resilience measures to define healthspan. Loss of XPF-1/ERCC-1, a protein involved in nucleotide excision repair (NER), homologous recombination (HR) and interstrand crosslink (ICL) repair, showed the highest impairment of functional and stress resilience measures along with a shortened lifespan. brc-1 mutants, with a well-defined role in HR and ICL are short-lived and highly sensitive to acute stressors, specifically oxidative stress. In contrast, ICL mutant, fcd-2 did not impact lifespan or most healthspan measures. Our efforts also uncover that DNA repair mutants show high sensitivity to oxidative stress with age, suggesting that this measure could act as a primary proxy for healthspan. Together, these data suggest that impairment of multiple DNA repair genes can drive functional/physiological aging. Further studies to examine specific DNA repair genes in a tissue specific manner will help dissect the importance and mechanistic role of these repair systems in biological aging.
Collapse
Affiliation(s)
- Lucile Marchal
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA, 15219, USA
| | - Shruthi Hamsanathan
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA, 15219, USA
| | - Roshan Karthikappallil
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA, 15219, USA; Medical Sciences Division, University of Oxford, Oxford, UK
| | - Suhao Han
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA, 15219, USA
| | - Himaly Shinglot
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA, 15219, USA
| | - Aditi U Gurkar
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA, 15219, USA; Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Kaufmann Medical Building Suite 500, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Centre, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA.
| |
Collapse
|
7
|
Špírek M, Taylor MRG, Belan O, Boulton SJ, Krejci L. Nucleotide proofreading functions by nematode RAD51 paralogs facilitate optimal RAD51 filament function. Nat Commun 2021; 12:5545. [PMID: 34545070 PMCID: PMC8452638 DOI: 10.1038/s41467-021-25830-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/02/2021] [Indexed: 12/30/2022] Open
Abstract
The RAD51 recombinase assembles as helical nucleoprotein filaments on single-stranded DNA (ssDNA) and mediates invasion and strand exchange with homologous duplex DNA (dsDNA) during homologous recombination (HR), as well as protection and restart of stalled replication forks. Strand invasion by RAD51-ssDNA complexes depends on ATP binding. However, RAD51 can bind ssDNA in non-productive ADP-bound or nucleotide-free states, and ATP-RAD51-ssDNA complexes hydrolyse ATP over time. Here, we define unappreciated mechanisms by which the RAD51 paralog complex RFS-1/RIP-1 limits the accumulation of RAD-51-ssDNA complexes with unfavorable nucleotide content. We find RAD51 paralogs promote the turnover of ADP-bound RAD-51 from ssDNA, in striking contrast to their ability to stabilize productive ATP-bound RAD-51 nucleoprotein filaments. In addition, RFS-1/RIP-1 inhibits binding of nucleotide-free RAD-51 to ssDNA. We propose that ‘nucleotide proofreading’ activities of RAD51 paralogs co-operate to ensure the enrichment of active, ATP-bound RAD-51 filaments on ssDNA to promote HR. A RAD51 paralog complex, RFS-1/RIP-1, is shown to control ssDNA binding and dissociation by RAD-51 differentially in the presence and absence of nucleotide cofactors. These nucleotide proofreading activities drive a preferential accumulation of RAD-51-ssDNA complexes with optimal nucleotide content.
Collapse
Affiliation(s)
- Mário Špírek
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic.,Department of Biology Masaryk University, 62500, Brno, Czech Republic
| | | | - Ondrej Belan
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,National Centre for Biomolecular Research, Masaryk University, 62500, Brno, Czech Republic
| | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Lumir Krejci
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic. .,Department of Biology Masaryk University, 62500, Brno, Czech Republic. .,National Centre for Biomolecular Research, Masaryk University, 62500, Brno, Czech Republic.
| |
Collapse
|
8
|
Dello Stritto MR, Bauer B, Barraud P, Jantsch V. DNA topoisomerase 3 is required for efficient germ cell quality control. J Cell Biol 2021; 220:211935. [PMID: 33798260 PMCID: PMC8025215 DOI: 10.1083/jcb.202012057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/21/2021] [Accepted: 03/12/2021] [Indexed: 12/31/2022] Open
Abstract
An important quality control mechanism eliminates meiocytes that have experienced recombination failure during meiosis. The culling of defective oocytes in Caenorhabditis elegans meiosis resembles late oocyte elimination in female mammals. Here we show that topoisomerase 3 depletion generates DNA lesions in both germline mitotic and meiotic compartments that are less capable of triggering p53 (cep-1)–dependent apoptosis, despite the activation of DNA damage and apoptosis signaling. Elimination of nonhomologous, alternative end joining and single strand annealing repair factors (CKU-70, CKU-80, POLQ-1, and XPF-1) can alleviate the apoptosis block. Remarkably, the ability of single mutants in the other members of the Bloom helicase-topoisomerase-RMI1 complex to elicit apoptosis is not compromised, and depletion of Bloom helicase in topoisomerase 3 mutants restores an effective apoptotic response. Therefore, uncontrolled Bloom helicase activity seems to direct DNA repair toward normally not used repair pathways, and this counteracts efficient apoptosis. This implicates an as-yet undescribed requirement for topoisomerase 3 in mounting an effective apoptotic response to ensure germ cell quality control.
Collapse
Affiliation(s)
- Maria Rosaria Dello Stritto
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Bernd Bauer
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Pierre Barraud
- Expression Génétique Microbienne, UMR 8261, Centre Nationale de la Recherche Scientific, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | - Verena Jantsch
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
9
|
Single-molecule analysis reveals cooperative stimulation of Rad51 filament nucleation and growth by mediator proteins. Mol Cell 2021; 81:1058-1073.e7. [PMID: 33421363 PMCID: PMC7941204 DOI: 10.1016/j.molcel.2020.12.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/02/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022]
Abstract
Homologous recombination (HR) is an essential DNA double-strand break (DSB) repair mechanism, which is frequently inactivated in cancer. During HR, RAD51 forms nucleoprotein filaments on RPA-coated, resected DNA and catalyzes strand invasion into homologous duplex DNA. How RAD51 displaces RPA and assembles into long HR-proficient filaments remains uncertain. Here, we employed single-molecule imaging to investigate the mechanism of nematode RAD-51 filament growth in the presence of BRC-2 (BRCA2) and RAD-51 paralogs, RFS-1/RIP-1. BRC-2 nucleates RAD-51 on RPA-coated DNA, whereas RFS-1/RIP-1 acts as a "chaperone" to promote 3' to 5' filament growth via highly dynamic engagement with 5' filament ends. Inhibiting ATPase or mutation in the RFS-1 Walker box leads to RFS-1/RIP-1 retention on RAD-51 filaments and hinders growth. The rfs-1 Walker box mutants display sensitivity to DNA damage and accumulate RAD-51 complexes non-functional for HR in vivo. Our work reveals the mechanism of RAD-51 nucleation and filament growth in the presence of recombination mediators.
Collapse
|
10
|
Gartner A, Engebrecht J. DNA repair, recombination, and damage signaling. Genetics 2021; 220:6522877. [PMID: 35137093 PMCID: PMC9097270 DOI: 10.1093/genetics/iyab178] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/10/2021] [Indexed: 01/09/2023] Open
Abstract
DNA must be accurately copied and propagated from one cell division to the next, and from one generation to the next. To ensure the faithful transmission of the genome, a plethora of distinct as well as overlapping DNA repair and recombination pathways have evolved. These pathways repair a large variety of lesions, including alterations to single nucleotides and DNA single and double-strand breaks, that are generated as a consequence of normal cellular function or by external DNA damaging agents. In addition to the proteins that mediate DNA repair, checkpoint pathways have also evolved to monitor the genome and coordinate the action of various repair pathways. Checkpoints facilitate repair by mediating a transient cell cycle arrest, or through initiation of cell suicide if DNA damage has overwhelmed repair capacity. In this chapter, we describe the attributes of Caenorhabditis elegans that facilitate analyses of DNA repair, recombination, and checkpoint signaling in the context of a whole animal. We review the current knowledge of C. elegans DNA repair, recombination, and DNA damage response pathways, and their role during development, growth, and in the germ line. We also discuss how the analysis of mutational signatures in C. elegans is helping to inform cancer mutational signatures in humans.
Collapse
Affiliation(s)
- Anton Gartner
- Department for Biological Sciences, IBS Center for Genomic Integrity, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea,Corresponding author: (A.G.); (J.E.)
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA,Corresponding author: (A.G.); (J.E.)
| |
Collapse
|
11
|
Tissue-Specific DNA Repair Activity of ERCC-1/XPF-1. Cell Rep 2021; 34:108608. [PMID: 33440146 DOI: 10.1016/j.celrep.2020.108608] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 10/30/2020] [Accepted: 12/15/2020] [Indexed: 01/14/2023] Open
Abstract
Hereditary DNA repair defects affect tissues differently, suggesting that in vivo cells respond differently to DNA damage. Knowledge of the DNA damage response, however, is largely based on in vitro and cell culture studies, and it is currently unclear whether DNA repair changes depending on the cell type. Here, we use in vivo imaging of the nucleotide excision repair (NER) endonuclease ERCC-1/XPF-1 in C. elegans to demonstrate tissue-specific NER activity. In oocytes, XPF-1 functions as part of global genome NER (GG-NER) to ensure extremely rapid removal of DNA-helix-distorting lesions throughout the genome. In contrast, in post-mitotic neurons and muscles, XPF-1 participates in NER of transcribed genes only. Strikingly, muscle cells appear more resistant to the effects of DNA damage than neurons. These results suggest a tissue-specific organization of the DNA damage response and may help to better understand pleiotropic and tissue-specific consequences of accumulating DNA damage.
Collapse
|
12
|
De Magis A, Götz S, Hajikazemi M, Fekete-Szücs E, Caterino M, Juranek S, Paeschke K. Zuo1 supports G4 structure formation and directs repair toward nucleotide excision repair. Nat Commun 2020; 11:3907. [PMID: 32764578 PMCID: PMC7413387 DOI: 10.1038/s41467-020-17701-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 07/14/2020] [Indexed: 01/02/2023] Open
Abstract
Nucleic acids can fold into G-quadruplex (G4) structures that can fine-tune biological processes. Proteins are required to recognize G4 structures and coordinate their function. Here we identify Zuo1 as a novel G4-binding protein in vitro and in vivo. In vivo in the absence of Zuo1 fewer G4 structures form, cell growth slows and cells become UV sensitive. Subsequent experiments reveal that these cellular changes are due to reduced levels of G4 structures. Zuo1 function at G4 structures results in the recruitment of nucleotide excision repair (NER) factors, which has a positive effect on genome stability. Cells lacking functional NER, as well as Zuo1, accumulate G4 structures, which become accessible to translesion synthesis. Our results suggest a model in which Zuo1 supports NER function and regulates the choice of the DNA repair pathway nearby G4 structures.
Collapse
Affiliation(s)
- Alessio De Magis
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Silvia Götz
- Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
- European Research Institute for the Biology of Ageing, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Mona Hajikazemi
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Enikő Fekete-Szücs
- European Research Institute for the Biology of Ageing, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Marco Caterino
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Stefan Juranek
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
- Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
- European Research Institute for the Biology of Ageing, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
13
|
Bellelli R, Youds J, Borel V, Svendsen J, Pavicic-Kaltenbrunner V, Boulton SJ. Synthetic Lethality between DNA Polymerase Epsilon and RTEL1 in Metazoan DNA Replication. Cell Rep 2020; 31:107675. [PMID: 32460026 PMCID: PMC7262601 DOI: 10.1016/j.celrep.2020.107675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/28/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Genome stability requires coordination of DNA replication origin activation and replication fork progression. RTEL1 is a regulator of homologous recombination (HR) implicated in meiotic cross-over control and DNA repair in C. elegans. Through a genome-wide synthetic lethal screen, we uncovered an essential genetic interaction between RTEL1 and DNA polymerase (Pol) epsilon. Loss of POLE4, an accessory subunit of Pol epsilon, has no overt phenotype in worms. In contrast, the combined loss of POLE-4 and RTEL-1 results in embryonic lethality, accumulation of HR intermediates, genome instability, and cessation of DNA replication. Similarly, loss of Rtel1 in Pole4-/- mouse cells inhibits cellular proliferation, which is associated with persistent HR intermediates and incomplete DNA replication. We propose that RTEL1 facilitates genome-wide fork progression through its ability to metabolize DNA secondary structures that form during DNA replication. Loss of this function becomes incompatible with cell survival under conditions of reduced origin activation, such as Pol epsilon hypomorphy.
Collapse
Affiliation(s)
| | - Jillian Youds
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Valerie Borel
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | | | | | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK.
| |
Collapse
|
14
|
A Multimodal Genotoxic Anticancer Drug Characterized by Pharmacogenetic Analysis in Caenorhabditis elegans. Genetics 2020; 215:609-621. [PMID: 32414869 PMCID: PMC7337070 DOI: 10.1534/genetics.120.303169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/08/2020] [Indexed: 01/05/2023] Open
Abstract
New anticancer therapeutics require extensive in vivo characterization to identify endogenous and exogenous factors affecting efficacy, to measure toxicity and mutagenicity, and to determine genotypes that result in therapeutic sensitivity or resistance. We used Caenorhabditis elegans as a platform with which to characterize properties of the anticancer therapeutic CX-5461. To understand the processes that respond to CX-5461-induced damage, we generated pharmacogenetic profiles for a panel of C. elegans DNA replication and repair mutants with common DNA-damaging agents for comparison with the profile of CX-5461. We found that multiple repair pathways, including homology-directed repair, microhomology-mediated end joining, nucleotide excision repair, and translesion synthesis, were needed for CX-5461 tolerance. To determine the frequency and spectrum of CX-5461-induced mutations, we used a genetic balancer to capture CX-5461-induced mutations. We found that CX-5461 is mutagenic, resulting in both large copy number variations and a high frequency of single-nucleotide variations (SNVs), which are consistent with the pharmacogenetic profile for CX-5461. Whole-genome sequencing of CX-5461-exposed animals found that CX-5461-induced SNVs exhibited a distinct mutational signature. We also phenocopied the CX-5461 photoreactivity observed in clinical trials and demonstrated that CX-5461 generates reactive oxygen species when exposed to UVA radiation. Together, the data from C. elegans demonstrate that CX-5461 is a multimodal DNA-damaging anticancer agent.
Collapse
|
15
|
Zheleva A, Gómez-Orte E, Sáenz-Narciso B, Ezcurra B, Kassahun H, de Toro M, Miranda-Vizuete A, Schnabel R, Nilsen H, Cabello J. Reduction of mRNA export unmasks different tissue sensitivities to low mRNA levels during Caenorhabditis elegans development. PLoS Genet 2019; 15:e1008338. [PMID: 31525188 PMCID: PMC6762213 DOI: 10.1371/journal.pgen.1008338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 09/26/2019] [Accepted: 07/31/2019] [Indexed: 12/25/2022] Open
Abstract
Animal development requires the execution of specific transcriptional programs in different sets of cells to build tissues and functional organs. Transcripts are exported from the nucleus to the cytoplasm where they are translated into proteins that, ultimately, carry out the cellular functions. Here we show that in Caenorhabditis elegans, reduction of mRNA export strongly affects epithelial morphogenesis and germline proliferation while other tissues remain relatively unaffected. Epithelialization and gamete formation demand a large number of transcripts in the cytoplasm for the duration of these processes. In addition, our findings highlight the existence of a regulatory feedback mechanism that activates gene expression in response to low levels of cytoplasmic mRNA. We expand the genetic characterization of nuclear export factor NXF-1 to other members of the mRNA export pathway to model mRNA export and recycling of NXF-1 back to the nucleus. Our model explains how mutations in genes involved in general processes, such as mRNA export, may result in tissue-specific developmental phenotypes.
Collapse
Affiliation(s)
- Angelina Zheleva
- CIBIR (Center for Biomedical Research of La Rioja), Logroño, La Rioja, Spain
| | - Eva Gómez-Orte
- CIBIR (Center for Biomedical Research of La Rioja), Logroño, La Rioja, Spain
| | | | - Begoña Ezcurra
- CIBIR (Center for Biomedical Research of La Rioja), Logroño, La Rioja, Spain
| | - Henok Kassahun
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - María de Toro
- CIBIR (Center for Biomedical Research of La Rioja), Logroño, La Rioja, Spain
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Ralf Schnabel
- Institute of Genetics, Technische Universität Braunschweig, Germany
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Juan Cabello
- CIBIR (Center for Biomedical Research of La Rioja), Logroño, La Rioja, Spain
| |
Collapse
|
16
|
Abstract
DNA repair proteins have been found to localize to the centrosomes and defects in these proteins cause centrosome abnormality. Centrobin is a centriole-associated protein that is required for centriole duplication and microtubule stability. A recent study revealed that centrobin is a candidate substrate for ATM/ATR kinases. However, whether centrobin is involved in DNA damage response (DDR) remains unexplored. Here we show that centrobin is phosphorylated after UV exposure and that the phosphorylation is detected exclusively in the detergent/DNase I-resistant nuclear matrix. UV-induced phosphorylation of centrobin is largely dependent on ATR activity. Centrobin-depleted cells show impaired DNA damage-induced microtubule stabilization and increased sensitivity to UV radiation. Interestingly, depletion of centrobin leads to defective homologous recombination (HR) repair, which is reversed by expression of wild-type centrobin. Taken together, these results strongly suggest that centrobin plays an important role in DDR.
Collapse
Affiliation(s)
- Na Mi Ryu
- Department of Pharmacology, Chonnam National University Medical School , Jellanamdo , Republic of Korea
| | - Jung Min Kim
- Department of Pharmacology, Chonnam National University Medical School , Jellanamdo , Republic of Korea
| |
Collapse
|
17
|
Shu complex SWS1-SWSAP1 promotes early steps in mouse meiotic recombination. Nat Commun 2018; 9:3961. [PMID: 30305635 PMCID: PMC6180034 DOI: 10.1038/s41467-018-06384-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/24/2018] [Indexed: 12/25/2022] Open
Abstract
The DNA-damage repair pathway homologous recombination (HR) requires factors that promote the activity of strand-exchange protein RAD51 and its meiosis-specific homolog DMC1. Here we show that the Shu complex SWS1-SWSAP1, a candidate for one such HR regulator, is dispensable for mouse viability but essential for male and female fertility, promoting the assembly of RAD51 and DMC1 on early meiotic HR intermediates. Only a fraction of mutant meiocytes progress to form crossovers, which are crucial for chromosome segregation, demonstrating crossover homeostasis. Remarkably, loss of the DNA damage checkpoint kinase CHK2 rescues fertility in females without rescuing crossover numbers. Concomitant loss of the BRCA2 C terminus aggravates the meiotic defects in Swsap1 mutant spermatocytes, suggesting an overlapping role with the Shu complex during meiotic HR. These results demonstrate an essential role for SWS1-SWSAP1 in meiotic progression and emphasize the complex interplay of factors that ensure recombinase function. Homologous recombination ensures genome integrity during meiotic recombination. Here the authors reveal that factors SWS1 and SWSAP1 are critical for meiotic homologues recombination, particularly in promoting assembly of RAD51 and DMC1 on early recombination intermediates.
Collapse
|
18
|
Stalled replication forks generate a distinct mutational signature in yeast. Proc Natl Acad Sci U S A 2017; 114:9665-9670. [PMID: 28827358 DOI: 10.1073/pnas.1706640114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proliferating cells acquire genome alterations during the act of DNA replication. This leads to mutation accumulation and somatic cell mosaicism in multicellular organisms, and is also implicated as an underlying cause of aging and tumorigenesis. The molecular mechanisms of DNA replication-associated genome rearrangements are poorly understood, largely due to methodological difficulties in analyzing specific replication forks in vivo. To provide an insight into this process, we analyzed the mutagenic consequences of replication fork stalling at a single, site-specific replication barrier (the Escherichia coli Tus/Ter complex) engineered into the yeast genome. We demonstrate that transient stalling at this barrier induces a distinct pattern of genome rearrangements in the newly replicated region behind the stalled fork, which primarily consist of localized losses and duplications of DNA sequences. These genetic alterations arise through the aberrant repair of a single-stranded DNA gap, in a process that is dependent on Exo1- and Shu1-dependent homologous recombination repair (HRR). Furthermore, aberrant processing of HRR intermediates, and elevated HRR-associated mutagenesis, is detectable in a yeast model of the human cancer predisposition disorder, Bloom's syndrome. Our data reveal a mechanism by which cellular responses to stalled replication forks can actively generate genomic alterations and genetic diversity in normal proliferating cells.
Collapse
|
19
|
Xu H, Di Antonio M, McKinney S, Mathew V, Ho B, O'Neil NJ, Santos ND, Silvester J, Wei V, Garcia J, Kabeer F, Lai D, Soriano P, Banáth J, Chiu DS, Yap D, Le DD, Ye FB, Zhang A, Thu K, Soong J, Lin SC, Tsai AHC, Osako T, Algara T, Saunders DN, Wong J, Xian J, Bally MB, Brenton JD, Brown GW, Shah SP, Cescon D, Mak TW, Caldas C, Stirling PC, Hieter P, Balasubramanian S, Aparicio S. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat Commun 2017; 8:14432. [PMID: 28211448 PMCID: PMC5321743 DOI: 10.1038/ncomms14432] [Citation(s) in RCA: 385] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 12/28/2016] [Indexed: 12/29/2022] Open
Abstract
G-quadruplex DNAs form four-stranded helical structures and are proposed to play key roles in different cellular processes. Targeting G-quadruplex DNAs for cancer treatment is a very promising prospect. Here, we show that CX-5461 is a G-quadruplex stabilizer, with specific toxicity against BRCA deficiencies in cancer cells and polyclonal patient-derived xenograft models, including tumours resistant to PARP inhibition. Exposure to CX-5461, and its related drug CX-3543, blocks replication forks and induces ssDNA gaps or breaks. The BRCA and NHEJ pathways are required for the repair of CX-5461 and CX-3543-induced DNA damage and failure to do so leads to lethality. These data strengthen the concept of G4 targeting as a therapeutic approach, specifically for targeting HR and NHEJ deficient cancers and other tumours deficient for DNA damage repair. CX-5461 is now in advanced phase I clinical trial for patients with BRCA1/2 deficient tumours (Canadian trial, NCT02719977, opened May 2016).
Collapse
Affiliation(s)
- Hong Xu
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Marco Di Antonio
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Steven McKinney
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Veena Mathew
- Terry Fox Laboratory, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Brandon Ho
- Department of Biochemistry and Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario, Canada M5S 3E1
| | - Nigel J. O'Neil
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada V6T 1Z4
| | - Nancy Dos Santos
- Advanced Therapeutics, BC Cancer Agency and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Jennifer Silvester
- Campbell Family Institute for Breast Cancer Research, Princess Margret Cancer Centre, 610 University Avenue, Toronto, Canada M5G 2M9
| | - Vivien Wei
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Jessica Garcia
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Farhia Kabeer
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Daniel Lai
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Priscilla Soriano
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Judit Banáth
- Department of Integrative Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Derek S. Chiu
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Damian Yap
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Daniel D. Le
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Frank B. Ye
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada V6T 1Z4
| | - Anni Zhang
- Terry Fox Laboratory, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Kelsie Thu
- Campbell Family Institute for Breast Cancer Research, Princess Margret Cancer Centre, 610 University Avenue, Toronto, Canada M5G 2M9
| | - John Soong
- Senhwa Biosciences, Inc., 9 F, No.205-1, Section 3, Peihsin Road, Hsintien District, New Taipei City 23143, Taiwan R.O.C
| | - Shu-chuan Lin
- Senhwa Biosciences, Inc., 9 F, No.205-1, Section 3, Peihsin Road, Hsintien District, New Taipei City 23143, Taiwan R.O.C
| | - Angela Hsin Chin Tsai
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Tomo Osako
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Teresa Algara
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Darren N. Saunders
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Jason Wong
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Jian Xian
- Cancer Research UK Cambridge Research Institute and Department of Oncology, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Marcel B. Bally
- Advanced Therapeutics, BC Cancer Agency and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - James D. Brenton
- Cancer Research UK Cambridge Research Institute and Department of Oncology, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Grant W. Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario, Canada M5S 3E1
| | - Sohrab P. Shah
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - David Cescon
- Campbell Family Institute for Breast Cancer Research, Princess Margret Cancer Centre, 610 University Avenue, Toronto, Canada M5G 2M9
- Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, Toronto, Canada M5S 1A8
| | - Tak W. Mak
- Campbell Family Institute for Breast Cancer Research, Princess Margret Cancer Centre, 610 University Avenue, Toronto, Canada M5G 2M9
| | - Carlos Caldas
- Cancer Research UK Cambridge Research Institute and Department of Oncology, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Peter C. Stirling
- Terry Fox Laboratory, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Phil Hieter
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada V6T 1Z4
| | - Shankar Balasubramanian
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Samuel Aparicio
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| |
Collapse
|
20
|
Amendola PG, Zaghet N, Ramalho JJ, Vilstrup Johansen J, Boxem M, Salcini AE. JMJD-5/KDM8 regulates H3K36me2 and is required for late steps of homologous recombination and genome integrity. PLoS Genet 2017; 13:e1006632. [PMID: 28207814 PMCID: PMC5336306 DOI: 10.1371/journal.pgen.1006632] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 03/03/2017] [Accepted: 02/10/2017] [Indexed: 11/19/2022] Open
Abstract
The eukaryotic genome is organized in a three-dimensional structure called chromatin, constituted by DNA and associated proteins, the majority of which are histones. Post-translational modifications of histone proteins greatly influence chromatin structure and regulate many DNA-based biological processes. Methylation of lysine 36 of histone 3 (H3K36) is a post-translational modification functionally relevant during early steps of DNA damage repair. Here, we show that the JMJD-5 regulates H3K36 di-methylation and it is required at late stages of double strand break repair mediated by homologous recombination. Loss of jmjd-5 results in hypersensitivity to ionizing radiation and in meiotic defects, and it is associated with aberrant retention of RAD-51 at sites of double strand breaks. Analyses of jmjd-5 genetic interactions with genes required for resolving recombination intermediates (rtel-1) or promoting the resolution of RAD-51 double stranded DNA filaments (rfs-1 and helq-1) suggest that jmjd-5 prevents the formation of stalled postsynaptic recombination intermediates and favors RAD-51 removal. As these phenotypes are all recapitulated by a catalytically inactive jmjd-5 mutant, we propose a novel role for H3K36me2 regulation during late steps of homologous recombination critical to preserve genome integrity.
Collapse
Affiliation(s)
- Pier Giorgio Amendola
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Nico Zaghet
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - João J. Ramalho
- Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, CH Utrecht, The Netherlands
| | - Jens Vilstrup Johansen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Mike Boxem
- Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, CH Utrecht, The Netherlands
| | - Anna Elisabetta Salcini
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Lawrence KS, Tapley EC, Cruz VE, Li Q, Aung K, Hart KC, Schwartz TU, Starr DA, Engebrecht J. LINC complexes promote homologous recombination in part through inhibition of nonhomologous end joining. J Cell Biol 2016; 215:801-821. [PMID: 27956467 PMCID: PMC5166498 DOI: 10.1083/jcb.201604112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/03/2016] [Accepted: 10/31/2016] [Indexed: 01/23/2023] Open
Abstract
The Caenorhabditis elegans SUN domain protein, UNC-84, functions in nuclear migration and anchorage in the soma. We discovered a novel role for UNC-84 in DNA damage repair and meiotic recombination. Loss of UNC-84 leads to defects in the loading and disassembly of the recombinase RAD-51. Similar to mutations in Fanconi anemia (FA) genes, unc-84 mutants and human cells depleted of Sun-1 are sensitive to DNA cross-linking agents, and sensitivity is rescued by the inactivation of nonhomologous end joining (NHEJ). UNC-84 also recruits FA nuclease FAN-1 to the nucleoplasm, suggesting that UNC-84 both alters the extent of repair by NHEJ and promotes the processing of cross-links by FAN-1. UNC-84 interacts with the KASH protein ZYG-12 for DNA damage repair. Furthermore, the microtubule network and interaction with the nucleoskeleton are important for repair, suggesting that a functional linker of nucleoskeleton and cytoskeleton (LINC) complex is required. We propose that LINC complexes serve a conserved role in DNA repair through both the inhibition of NHEJ and the promotion of homologous recombination at sites of chromosomal breaks.
Collapse
Affiliation(s)
- Katherine S Lawrence
- Department of Molecular and Cellular Biology; Biochemistry, Molecular Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616
| | - Erin C Tapley
- Department of Molecular and Cellular Biology; Biochemistry, Molecular Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616
| | - Victor E Cruz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Qianyan Li
- Department of Molecular and Cellular Biology; Biochemistry, Molecular Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616
| | - Kayla Aung
- Department of Molecular and Cellular Biology; Biochemistry, Molecular Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616
| | - Kevin C Hart
- Department of Molecular and Cellular Biology; Biochemistry, Molecular Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616
| | - Thomas U Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Daniel A Starr
- Department of Molecular and Cellular Biology; Biochemistry, Molecular Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology; Biochemistry, Molecular Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616
| |
Collapse
|
22
|
Taylor MRG, Špírek M, Jian Ma C, Carzaniga R, Takaki T, Collinson LM, Greene EC, Krejci L, Boulton SJ. A Polar and Nucleotide-Dependent Mechanism of Action for RAD51 Paralogs in RAD51 Filament Remodeling. Mol Cell 2016; 64:926-939. [PMID: 27867009 PMCID: PMC5145814 DOI: 10.1016/j.molcel.2016.10.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/09/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022]
Abstract
Central to homologous recombination in eukaryotes is the RAD51 recombinase, which forms helical nucleoprotein filaments on single-stranded DNA (ssDNA) and catalyzes strand invasion with homologous duplex DNA. Various regulatory proteins assist this reaction including the RAD51 paralogs. We recently discovered that a RAD51 paralog complex from C. elegans, RFS-1/RIP-1, functions predominantly downstream of filament assembly by binding and remodeling RAD-51-ssDNA filaments to a conformation more proficient for strand exchange. Here, we demonstrate that RFS-1/RIP-1 acts by shutting down RAD-51 dissociation from ssDNA. Using stopped-flow experiments, we show that RFS-1/RIP-1 confers this dramatic stabilization by capping the 5' end of RAD-51-ssDNA filaments. Filament end capping propagates a stabilizing effect with a 5'→3' polarity approximately 40 nucleotides along individual filaments. Finally, we discover that filament capping and stabilization are dependent on nucleotide binding, but not hydrolysis by RFS-1/RIP-1. These data define the mechanism of RAD51 filament remodeling by RAD51 paralogs.
Collapse
Affiliation(s)
- Martin R G Taylor
- Clare Hall Laboratory, The Francis Crick Institute, South Mimms EN6 3LD, UK
| | - Mário Špírek
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, 62500 Brno, Czech Republic
| | - Chu Jian Ma
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York City, NY 10032, USA
| | - Raffaella Carzaniga
- Electron Microscopy Science Technology Platform, Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - Tohru Takaki
- Clare Hall Laboratory, The Francis Crick Institute, South Mimms EN6 3LD, UK
| | - Lucy M Collinson
- Electron Microscopy Science Technology Platform, Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - Eric C Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York City, NY 10032, USA
| | - Lumir Krejci
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, 62500 Brno, Czech Republic; National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic.
| | - Simon J Boulton
- Clare Hall Laboratory, The Francis Crick Institute, South Mimms EN6 3LD, UK.
| |
Collapse
|
23
|
Martino J, Bernstein KA. The Shu complex is a conserved regulator of homologous recombination. FEMS Yeast Res 2016; 16:fow073. [PMID: 27589940 DOI: 10.1093/femsyr/fow073] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2016] [Indexed: 02/06/2023] Open
Abstract
Homologous recombination (HR) is an error-free DNA repair mechanism that maintains genome integrity by repairing double-strand breaks (DSBs). Defects in HR lead to genomic instability and are associated with cancer predisposition. A key step in HR is the formation of Rad51 nucleoprotein filaments which are responsible for the homology search and strand invasion steps that define HR. Recently, the budding yeast Shu complex has emerged as an important regulator of Rad51 along with the other Rad51 mediators including Rad52 and the Rad51 paralogs, Rad55-Rad57. The Shu complex is a heterotetramer consisting of two novel Rad51 paralogs, Psy3 and Csm2, along with Shu1 and a SWIM domain-containing protein, Shu2. Studies done primarily in yeast have provided evidence that the Shu complex regulates HR at several types of DNA DSBs (i.e. replication-associated and meiotic DSBs) and that its role in HR is highly conserved across eukaryotic lineages. This review highlights the main findings of these studies and discusses the proposed specific roles of the Shu complex in many aspects of recombination-mediated DNA repair.
Collapse
Affiliation(s)
- Julieta Martino
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Kara A Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| |
Collapse
|
24
|
Promotion of Homologous Recombination by SWS-1 in Complex with RAD-51 Paralogs in Caenorhabditis elegans. Genetics 2016; 203:133-45. [PMID: 26936927 DOI: 10.1534/genetics.115.185827] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/19/2016] [Indexed: 11/18/2022] Open
Abstract
Homologous recombination (HR) repairs cytotoxic DNA double-strand breaks (DSBs) with high fidelity. Deficiencies in HR result in genome instability. A key early step in HR is the search for and invasion of a homologous DNA template by a single-stranded RAD-51 nucleoprotein filament. The Shu complex, composed of a SWIM domain-containing protein and its interacting RAD51 paralogs, promotes HR by regulating RAD51 filament dynamics. Despite Shu complex orthologs throughout eukaryotes, our understanding of its function has been most extensively characterized in budding yeast. Evolutionary analysis of the SWIM domain identified Caenorhabditis elegans sws-1 as a putative homolog of the yeast Shu complex member Shu2. Using a CRISPR-induced nonsense allele of sws-1, we show that sws-1 promotes HR in mitotic and meiotic nuclei. sws-1 mutants exhibit sensitivity to DSB-inducing agents and fail to form mitotic RAD-51 foci following treatment with camptothecin. Phenotypic similarities between sws-1 and the two RAD-51 paralogs rfs-1 and rip-1 suggest that they function together. Indeed, we detect direct interaction between SWS-1 and RIP-1 by yeast two-hybrid assay that is mediated by the SWIM domain in SWS-1 and the Walker B motif in RIP-1 Furthermore, RIP-1 bridges an interaction between SWS-1 and RFS-1, suggesting that RIP-1 facilitates complex formation with SWS-1 and RFS-1 We propose that SWS-1, RIP-1, and RFS-1 compose a C. elegans Shu complex. Our work provides a new model for studying Shu complex disruption in the context of a multicellular organism that has important implications as to why mutations in the human RAD51 paralogs are associated with genome instability.
Collapse
|
25
|
Federico MB, Vallerga MB, Radl A, Paviolo NS, Bocco JL, Di Giorgio M, Soria G, Gottifredi V. Chromosomal Integrity after UV Irradiation Requires FANCD2-Mediated Repair of Double Strand Breaks. PLoS Genet 2016; 12:e1005792. [PMID: 26765540 PMCID: PMC4712966 DOI: 10.1371/journal.pgen.1005792] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 12/17/2015] [Indexed: 12/29/2022] Open
Abstract
Fanconi Anemia (FA) is a rare autosomal recessive disorder characterized by hypersensitivity to inter-strand crosslinks (ICLs). FANCD2, a central factor of the FA pathway, is essential for the repair of double strand breaks (DSBs) generated during fork collapse at ICLs. While lesions different from ICLs can also trigger fork collapse, the contribution of FANCD2 to the resolution of replication-coupled DSBs generated independently from ICLs is unknown. Intriguingly, FANCD2 is readily activated after UV irradiation, a DNA-damaging agent that generates predominantly intra-strand crosslinks but not ICLs. Hence, UV irradiation is an ideal tool to explore the contribution of FANCD2 to the DNA damage response triggered by DNA lesions other than ICL repair. Here we show that, in contrast to ICL-causing agents, UV radiation compromises cell survival independently from FANCD2. In agreement, FANCD2 depletion does not increase the amount of DSBs generated during the replication of UV-damaged DNA and is dispensable for UV-induced checkpoint activation. Remarkably however, FANCD2 protects UV-dependent, replication-coupled DSBs from aberrant processing by non-homologous end joining, preventing the accumulation of micronuclei and chromatid aberrations including non-homologous chromatid exchanges. Hence, while dispensable for cell survival, FANCD2 selectively safeguards chromosomal stability after UV-triggered replication stress.
Collapse
Affiliation(s)
- María Belén Federico
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, IIBBA/ CONICET, Buenos Aires, Argentina
| | - María Belén Vallerga
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, IIBBA/ CONICET, Buenos Aires, Argentina
| | - Analía Radl
- Laboratorio de Dosimetría Biológica, Autoridad Regulatoria Nuclear, Buenos Aires, Argentina
| | - Natalia Soledad Paviolo
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, IIBBA/ CONICET, Buenos Aires, Argentina
| | - José Luis Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología/ CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Marina Di Giorgio
- Laboratorio de Dosimetría Biológica, Autoridad Regulatoria Nuclear, Buenos Aires, Argentina
| | - Gastón Soria
- Centro de Investigaciones en Bioquímica Clínica e Inmunología/ CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Vanesa Gottifredi
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, IIBBA/ CONICET, Buenos Aires, Argentina
| |
Collapse
|
26
|
Hyun M, Choi S, Stevnsner T, Ahn B. The Caenorhabditis elegans Werner syndrome protein participates in DNA damage checkpoint and DNA repair in response to CPT-induced double-strand breaks. Cell Signal 2015; 28:214-223. [PMID: 26691982 DOI: 10.1016/j.cellsig.2015.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/01/2015] [Accepted: 12/11/2015] [Indexed: 12/16/2022]
Abstract
The RecQ helicases play roles in maintenance of genomic stability in species ranging from Escherichia coli to humans and interact with proteins involved in DNA metabolic pathways such as DNA repair, recombination, and replication. Our previous studies found that the Caenorhabditis elegans WRN-1 RecQ protein (a human WRN ortholog) exhibits ATP-dependent 3'-5' helicase activity and that the WRN-1 helicase is stimulated by RPA-1 on a long forked DNA duplex. However, the role of WRN-1 in response to S-phase associated with DSBs is unclear. We found that WRN-1 is involved in the checkpoint response to DSBs after CPT, inducing cell cycle arrest, is recruited to DSBs by RPA-1 and functions upstream of ATL-1 and ATM-1 for CHK-1 phosphorylation in the S-phase checkpoint. In addition, WRN-1 and RPA-1 recruitments to the DSBs require MRE-11, suggesting that DSB processing controlled by MRE-11 is important for WRN-1 at DSBs. The repair of CPT-induced DSBs is greatly reduced in the absence of WRN-1. These observations suggest that WRN-1 functions downstream of RPA-1 and upstream of CHK-1 in the DSB checkpoint pathway and is also required for the repair of DSB.
Collapse
Affiliation(s)
- Moonjung Hyun
- Department of Life Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Seoyun Choi
- Department of Life Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Tinna Stevnsner
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Byungchan Ahn
- Department of Life Sciences, University of Ulsan, Ulsan, Republic of Korea.
| |
Collapse
|
27
|
Taylor MRG, Špírek M, Chaurasiya KR, Ward JD, Carzaniga R, Yu X, Egelman EH, Collinson LM, Rueda D, Krejci L, Boulton SJ. Rad51 Paralogs Remodel Pre-synaptic Rad51 Filaments to Stimulate Homologous Recombination. Cell 2015; 162:271-286. [PMID: 26186187 PMCID: PMC4518479 DOI: 10.1016/j.cell.2015.06.015] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/27/2015] [Accepted: 06/01/2015] [Indexed: 10/31/2022]
Abstract
Repair of DNA double strand breaks by homologous recombination (HR) is initiated by Rad51 filament nucleation on single-stranded DNA (ssDNA), which catalyzes strand exchange with homologous duplex DNA. BRCA2 and the Rad51 paralogs are tumor suppressors and critical mediators of Rad51. To gain insight into Rad51 paralog function, we investigated a heterodimeric Rad51 paralog complex, RFS-1/RIP-1, and uncovered the molecular basis by which Rad51 paralogs promote HR. Unlike BRCA2, which nucleates RAD-51-ssDNA filaments, RFS-1/RIP-1 binds and remodels pre-synaptic filaments to a stabilized, "open," and flexible conformation, in which the ssDNA is more accessible to nuclease digestion and RAD-51 dissociation rate is reduced. Walker box mutations in RFS-1, which abolish filament remodeling, fail to stimulate RAD-51 strand exchange activity, demonstrating that remodeling is essential for RFS-1/RIP-1 function. We propose that Rad51 paralogs stimulate HR by remodeling the Rad51 filament, priming it for strand exchange with the template duplex.
Collapse
Affiliation(s)
- Martin R G Taylor
- DNA Damage Response Laboratory, Clare Hall Laboratory, The Francis Crick Institute, South Mimms EN6 3LD, UK
| | - Mário Špírek
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, 62500 Brno, Czech Republic
| | - Kathy R Chaurasiya
- Section of Virology, Single Molecule Imaging Group and MRC Clinical Sciences Centre, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Jordan D Ward
- DNA Damage Response Laboratory, Clare Hall Laboratory, The Francis Crick Institute, South Mimms EN6 3LD, UK; UCSF-Mission Bay, Genentech Hall S574, San Francisco, CA 94158, USA
| | - Raffaella Carzaniga
- Electron Microscopy Science Technology Platform, Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - Xiong Yu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Lucy M Collinson
- Electron Microscopy Science Technology Platform, Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - David Rueda
- Section of Virology, Single Molecule Imaging Group and MRC Clinical Sciences Centre, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Lumir Krejci
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, 62500 Brno, Czech Republic; National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic.
| | - Simon J Boulton
- DNA Damage Response Laboratory, Clare Hall Laboratory, The Francis Crick Institute, South Mimms EN6 3LD, UK.
| |
Collapse
|
28
|
Butuči M, Williams AB, Wong MM, Kramer B, Michael WM. Zygotic Genome Activation Triggers Chromosome Damage and Checkpoint Signaling in C. elegans Primordial Germ Cells. Dev Cell 2015; 34:85-95. [PMID: 26073019 DOI: 10.1016/j.devcel.2015.04.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 03/17/2015] [Accepted: 04/24/2015] [Indexed: 01/05/2023]
Abstract
Recent findings have identified highly transcribed genes as a source of genome instability; however, the degree to which large-scale shifts in transcriptional activity cause DNA damage was not known. One example of a large-scale shift in transcriptional activity occurs during development, when maternal regulators are destroyed and zygotic genome activation (ZGA) occurs. Here, we show that ZGA triggers widespread chromosome damage in the primordial germ cells of the nematode C. elegans. We show that ZGA-induced DNA damage activates a checkpoint response, the damage is repaired by factors required for inter-sister homologous recombination, and topoisomerase II plays a role in generating the damage. These findings identify ZGA as a source of intrinsic genome instability in the germline and suggest that genome destabilization may be a general consequence of extreme shifts in cellular transcriptional load.
Collapse
Affiliation(s)
- Melina Butuči
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ashley B Williams
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Matthew M Wong
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Brendan Kramer
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - W Matthew Michael
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
29
|
Kim HM, Colaiácovo MP. DNA Damage Sensitivity Assays in Caenorhabditis elegans. Bio Protoc 2015; 5:e1487. [PMID: 26807430 PMCID: PMC4723109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023] Open
Abstract
C. elegans has served as a genetically tractable multicellular model system to examine DNA damage-induced genotoxic stress which threatens genome integrity. Importantly, the high degree of conservation shared between worms and humans offers the advantage that findings about DNA damage-induced cell cycle arrest/checkpoint response and DNA double-strand break repair in worms are applicable to human studies. Here, we describe simple DNA damage sensitivity assays to quantify the response of C. elegans to diverse types of DNA damaging agents. These assays have provided important insights into the mechanisms of function for factors such as ZTF-8 that are involved in DNA damage repair and response in the C. elegans germline. These DNA damage sensitivity assays rely on the straightforward readouts of either egg or larval lethality and involve the use of various DNA damaging agents. We use γ-irradiation (γ-IR), which produces DNA double-strand breaks (DSBs), camptothecin (CPT), which induces single-strand breaks, nitrogen mustard (HN2), which produces interstrand crosslinks (ICLs), hydroxyurea (HU), which results in replication fork arrest thus preventing DNA synthesis, and UV-C, which causes photoproducts (pyrimidine dimers). See Table 1. Comparisons between the relative sensitivity/resistance observed in, for example, mutants compared to wild type, for various DNA damaging agents allows for inferences regarding potential repair pathways being affected.
Collapse
|
30
|
Abstract
The various symptoms associated with hereditary defects in the DNA damage response (DDR), which range from developmental and neurological abnormalities and immunodeficiency to tissue-specific cancers and accelerated aging, suggest that DNA damage affects tissues differently. Mechanistic DDR studies are, however, mostly performed in vitro, in unicellular model systems or cultured cells, precluding a clear and comprehensive view of the DNA damage response of multicellular organisms. Studies performed in intact, multicellular animals models suggest that DDR can vary according to the type, proliferation and differentiation status of a cell. The nematode Caenorhabditis elegans has become an important DDR model and appears to be especially well suited to understand in vivo tissue-specific responses to DNA damage as well as the impact of DNA damage on development, reproduction and health of an entire multicellular organism. C. elegans germ cells are highly sensitive to DNA damage induction and respond via classical, evolutionary conserved DDR pathways aimed at efficient and error-free maintenance of the entire genome. Somatic tissues, however, respond differently to DNA damage and prioritize DDR mechanisms that promote growth and function. In this mini-review, we describe tissue-specific differences in DDR mechanisms that have been uncovered utilizing C. elegans as role model.
Collapse
Affiliation(s)
- Hannes Lans
- Department of Genetics, Cancer Genomics Netherlands, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
| | - Wim Vermeulen
- Department of Genetics, Cancer Genomics Netherlands, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
| |
Collapse
|
31
|
Chaib-Mezrag H, Lemaçon D, Fontaine H, Bellon M, Bai XT, Drac M, Coquelle A, Nicot C. Tax impairs DNA replication forks and increases DNA breaks in specific oncogenic genome regions. Mol Cancer 2014; 13:205. [PMID: 25185513 PMCID: PMC4168069 DOI: 10.1186/1476-4598-13-205] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/26/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Human T-cell leukemia virus type 1 (HTLV-I) is a human retrovirus associated with adult T-cell leukemia (ATL), an aggressive CD4 T-cell proliferative disease with dismal prognosis. The long latency preceding the development of the disease and the low incidence suggests that the virus itself is not sufficient for transformation and that genetic defects are required to create a permissive environment for leukemia. In fact, ATL cells are characterized by profound genetic modifications including structural and numerical chromosome alterations. RESULTS In this study we used molecular combing techniques to study the effect of the oncoprotein Tax on DNA replication. We found that replication forks have difficulties replicating complex DNA, fork progression is slower, and they pause or stall more frequently in the presence of Tax expression. Our results also show that Tax-associated replication defects are partially compensated by an increase in the firing of back-up origins. Consistent with these effects of Tax on DNA replication, an increase in double strand DNA breaks (DDSB) was seen in Tax expressing cells. Tax-mediated increases in DDSBs were associated with the ability of Tax to activate NF-kB and to stimulate intracellular nitric oxide production. We also demonstrated a reduced expression of human translesion synthesis (TLS) DNA polymerases Pol-H and Pol-K in HTLV-I-transformed T cells and ATL cells. This was associated with an increase in DNA breaks induced by Tax at specific genome regions, such as the c-Myc and the Bcl-2 major breakpoints. Consistent with the notion that the non-homologous end joining (NHEJ) pathway is hyperactive in HTLV-I-transformed cells, we found that inhibition of the NHEJ pathway induces significant killing of HTLV-I transformed cells and patient-derived leukemic ATL cells. CONCLUSION Our results suggest that, replication problems increase genetic instability in HTLV-I-transformed cells. As a result, abuse of NHEJ and a defective homologous repair (HR) DNA repair pathway can be targeted as a new therapeutic approach for the treatment of adult T-cell leukemia.
Collapse
Affiliation(s)
- Hassiba Chaib-Mezrag
- />Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160 USA
| | - Delphine Lemaçon
- />IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298 France
- />INSERM, U896, Montpellier, F-34298 France
- />Université Montpellier 1, Montpellier, F-34298 France
- />Institut régional du Cancer Montpellier, Montpellier, F-34298 France
| | - Hélène Fontaine
- />IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298 France
- />INSERM, U896, Montpellier, F-34298 France
- />Université Montpellier 1, Montpellier, F-34298 France
- />Institut régional du Cancer Montpellier, Montpellier, F-34298 France
| | - Marcia Bellon
- />Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160 USA
| | - Xue Tao Bai
- />Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160 USA
| | - Marjorie Drac
- />DNA Combing Facility, Institut de Génétique Moléculaire, CNRS UMR5535 & BioCampus Montpellier (UMS3426), 1919 route de Mende, Montpellier cedex 5, 34293 France
| | - Arnaud Coquelle
- />IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298 France
- />INSERM, U896, Montpellier, F-34298 France
- />Université Montpellier 1, Montpellier, F-34298 France
- />Institut régional du Cancer Montpellier, Montpellier, F-34298 France
| | - Christophe Nicot
- />Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160 USA
| |
Collapse
|
32
|
van Kregten M, Tijsterman M. The repair of G-quadruplex-induced DNA damage. Exp Cell Res 2014; 329:178-83. [PMID: 25193076 DOI: 10.1016/j.yexcr.2014.08.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/20/2014] [Accepted: 08/25/2014] [Indexed: 10/24/2022]
Abstract
G4 DNA motifs, which can form stable secondary structures called G-quadruplexes, are ubiquitous in eukaryotic genomes, and have been shown to cause genomic instability. Specialized helicases that unwind G-quadruplexes in vitro have been identified, and they have been shown to prevent genetic instability in vivo. In the absence of these helicases, G-quadruplexes can persist and cause replication fork stalling and collapse. Translesion synthesis (TLS) and homologous recombination (HR) have been proposed to play a role in the repair of this damage, but recently it was found in the nematode Caenorhabditis elegans that G4-induced genome alterations are generated by an error-prone repair mechanism that is dependent on the A-family polymerase Theta (Pol θ). Current data point towards a scenario where DNA replication blocked at G-quadruplexes causes DNA double strand breaks (DSBs), and where the choice of repair pathway that can act on these breaks dictates the nature of genomic alterations that are observed in various organisms.
Collapse
Affiliation(s)
- Maartje van Kregten
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
33
|
Kessler Z, Yanowitz J. Methodological considerations for mutagen exposure in C. elegans. Methods 2014; 68:441-9. [PMID: 24768858 PMCID: PMC5449201 DOI: 10.1016/j.ymeth.2014.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 11/15/2022] Open
Abstract
Maintenance of the genome requires the continual repair of DNA lesions. Exposure of nematodes to DNA damage-inducing agents is a powerful method to rapidly ascribe a role for specific genes in DNA repair and to define epistatic relationships to other repair genes which allows for the construction of repair pathways. Despite the extensive use of these agents, however, differences in dosing, timing, and handling makes it difficult to compare results across laboratories. We provide herein a consideration of the parameters that influence the results of these exposures and detailed protocols for the exposure to mutagenic inducing agents.
Collapse
Affiliation(s)
- Zebulin Kessler
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA 15213, United States
| | - Judith Yanowitz
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA 15213, United States.
| |
Collapse
|
34
|
Girard C, Crismani W, Froger N, Mazel J, Lemhemdi A, Horlow C, Mercier R. FANCM-associated proteins MHF1 and MHF2, but not the other Fanconi anemia factors, limit meiotic crossovers. Nucleic Acids Res 2014; 42:9087-95. [PMID: 25038251 PMCID: PMC4132730 DOI: 10.1093/nar/gku614] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Genetic recombination is important for generating diversity and to ensure faithful segregation of chromosomes at meiosis. However, few crossovers (COs) are formed per meiosis despite an excess of DNA double-strand break precursors. This reflects the existence of active mechanisms that limit CO formation. We previously showed that AtFANCM is a meiotic anti-CO factor. The same genetic screen now identified AtMHF2 as another player of the same anti-CO pathway. FANCM and MHF2 are both Fanconi Anemia (FA) associated proteins, prompting us to test the other FA genes conserved in Arabidopsis for a role in CO control at meiosis. This revealed that among the FA proteins tested, only FANCM and its two DNA-binding co-factors MHF1 and MHF2 limit CO formation at meiosis.
Collapse
Affiliation(s)
- Chloe Girard
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559,Saclay Plant Sciences, RD10, 78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences,RD10, 78000 Versailles, France
| | - Wayne Crismani
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559,Saclay Plant Sciences, RD10, 78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences,RD10, 78000 Versailles, France
| | - Nicole Froger
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559,Saclay Plant Sciences, RD10, 78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences,RD10, 78000 Versailles, France
| | - Julien Mazel
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559,Saclay Plant Sciences, RD10, 78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences,RD10, 78000 Versailles, France
| | - Afef Lemhemdi
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559,Saclay Plant Sciences, RD10, 78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences,RD10, 78000 Versailles, France
| | - Christine Horlow
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559,Saclay Plant Sciences, RD10, 78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences,RD10, 78000 Versailles, France
| | - Raphael Mercier
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559,Saclay Plant Sciences, RD10, 78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences,RD10, 78000 Versailles, France
| |
Collapse
|
35
|
Synthetic cytotoxicity: digenic interactions with TEL1/ATM mutations reveal sensitivity to low doses of camptothecin. Genetics 2014; 197:611-23. [PMID: 24653001 PMCID: PMC4063919 DOI: 10.1534/genetics.114.161307] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many tumors contain mutations that confer defects in the DNA-damage response and genome stability. DNA-damaging agents are powerful therapeutic tools that can differentially kill cells with an impaired DNA-damage response. The response to DNA damage is complex and composed of a network of coordinated pathways, often with a degree of redundancy. Tumor-specific somatic mutations in DNA-damage response genes could be exploited by inhibiting the function of a second gene product to increase the sensitivity of tumor cells to a sublethal concentration of a DNA-damaging therapeutic agent, resulting in a class of conditional synthetic lethality we call synthetic cytotoxicity. We used the Saccharomyces cerevisiae nonessential gene-deletion collection to screen for synthetic cytotoxic interactions with camptothecin, a topoisomerase I inhibitor, and a null mutation in TEL1, the S. cerevisiae ortholog of the mammalian tumor-suppressor gene, ATM. We found and validated 14 synthetic cytotoxic interactions that define at least five epistasis groups. One class of synthetic cytotoxic interaction was due to telomere defects. We also found that at least one synthetic cytotoxic interaction was conserved in Caenorhabditis elegans. We have demonstrated that synthetic cytotoxicity could be a useful strategy for expanding the sensitivity of certain tumors to DNA-damaging therapeutics.
Collapse
|
36
|
Loss of Caenorhabditis elegans BRCA1 promotes genome stability during replication in smc-5 mutants. Genetics 2014; 196:985-99. [PMID: 24424777 PMCID: PMC3982690 DOI: 10.1534/genetics.113.158295] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DNA damage by ultraviolet (UV) light poses a risk for mutagenesis and a potential hindrance for cell cycle progression. Cells cope with UV-induced DNA damage through two general strategies to repair the damaged nucleotides and to promote cell cycle progression in the presence of UV-damaged DNA. Defining the genetic pathways and understanding how they function together to enable effective tolerance to UV remains an important area of research. The structural maintenance of chromosomes (SMC) proteins form distinct complexes that maintain genome stability during chromosome segregation, homologous recombination, and DNA replication. Using a forward genetic screen, we identified two alleles of smc-5 that exacerbate UV sensitivity in Caenorhabditis elegans. Germ cells of smc-5-defective animals show reduced proliferation, sensitivity to perturbed replication, chromatin bridge formation, and accumulation of RAD-51 foci that indicate the activation of homologous recombination at DNA double-strand breaks. Mutations in the translesion synthesis polymerase polh-1 act synergistically with smc-5 mutations in provoking genome instability after UV-induced DNA damage. In contrast, the DNA damage accumulation and sensitivity of smc-5 mutant strains to replication impediments are suppressed by mutations in the C. elegans BRCA1/BARD1 homologs, brc-1 and brd-1. We propose that SMC-5/6 promotes replication fork stability and facilitates recombination-dependent repair when the BRC-1/BRD-1 complex initiates homologous recombination at stalled replication forks. Our data suggest that BRC-1/BRD-1 can both promote and antagonize genome stability depending on whether homologous recombination is initiated during DNA double-strand break repair or during replication stalling.
Collapse
|
37
|
Carr AM, Lambert S. Replication stress-induced genome instability: the dark side of replication maintenance by homologous recombination. J Mol Biol 2013; 425:4733-44. [PMID: 23643490 DOI: 10.1016/j.jmb.2013.04.023] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/30/2013] [Accepted: 04/22/2013] [Indexed: 12/17/2022]
Abstract
Homologous recombination (HR) is an evolutionary-conserved mechanism involved in a subtle balance between genome stability and diversity. HR is a faithful DNA repair pathway and has been largely characterized in the context of double-strand break (DSB) repair. Recently, multiple functions for the HR machinery have been identified at arrested forks. These are evident across different organisms and include replication fork-stabilization and fork-restart functions. Interestingly, a DSB appears not to be a prerequisite for HR-mediated replication maintenance. HR has the ability to rebuild a replisome at inactivated forks, but perhaps surprisingly, the resulting replisome is liable to intrastrand and interstrand switches leading to replication errors. Here, we review our current understanding of the replication maintenance function of HR. The error proneness of these pathways leads us to suggest that the origin of replication-associated genome instability should be re-evaluated.
Collapse
Affiliation(s)
- Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | | |
Collapse
|
38
|
Lans H, Lindvall JM, Thijssen K, Karambelas AE, Cupac D, Fensgård O, Jansen G, Hoeijmakers JHJ, Nilsen H, Vermeulen W. DNA damage leads to progressive replicative decline but extends the life span of long-lived mutant animals. Cell Death Differ 2013; 20:1709-18. [PMID: 24013725 PMCID: PMC3824592 DOI: 10.1038/cdd.2013.126] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/18/2013] [Accepted: 08/01/2013] [Indexed: 11/09/2022] Open
Abstract
Human-nucleotide-excision repair (NER) deficiency leads to different developmental and segmental progeroid symptoms of which the pathogenesis is only partially understood. To understand the biological impact of accumulating spontaneous DNA damage, we studied the phenotypic consequences of DNA-repair deficiency in Caenorhabditis elegans. We find that DNA damage accumulation does not decrease the adult life span of post-mitotic tissue. Surprisingly, loss of functional ERCC-1/XPF even further extends the life span of long-lived daf-2 mutants, likely through an adaptive activation of stress signaling. Contrariwise, NER deficiency leads to a striking transgenerational decline in replicative capacity and viability of proliferating cells. DNA damage accumulation induces severe, stochastic impairment of development and growth, which is most pronounced in NER mutants that are also impaired in their response to ionizing radiation and inter-strand crosslinks. These results suggest that multiple DNA-repair pathways can protect against replicative decline and indicate that there might be a direct link between the severity of symptoms and the level of DNA-repair deficiency in patients.
Collapse
Affiliation(s)
- H Lans
- Department of Genetics, Biomedical Science, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
O'Neil NJ, Martin JS, Youds JL, Ward JD, Petalcorin MIR, Rose AM, Boulton SJ. Joint molecule resolution requires the redundant activities of MUS-81 and XPF-1 during Caenorhabditis elegans meiosis. PLoS Genet 2013; 9:e1003582. [PMID: 23874209 PMCID: PMC3715453 DOI: 10.1371/journal.pgen.1003582] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 05/07/2013] [Indexed: 11/29/2022] Open
Abstract
The generation and resolution of joint molecule recombination intermediates is required to ensure bipolar chromosome segregation during meiosis. During wild type meiosis in Caenorhabditis elegans, SPO-11-generated double stranded breaks are resolved to generate a single crossover per bivalent and the remaining recombination intermediates are resolved as noncrossovers. We discovered that early recombination intermediates are limited by the C. elegans BLM ortholog, HIM-6, and in the absence of HIM-6 by the structure specific endonuclease MUS-81. In the absence of both MUS-81 and HIM-6, recombination intermediates persist, leading to chromosome breakage at diakinesis and inviable embryos. MUS-81 has an additional role in resolving late recombination intermediates in C. elegans. mus-81 mutants exhibited reduced crossover recombination frequencies suggesting that MUS-81 is required to generate a subset of meiotic crossovers. Similarly, the Mus81-related endonuclease XPF-1 is also required for a subset of meiotic crossovers. Although C. elegans gen-1 mutants have no detectable meiotic defect either alone or in combination with him-6, mus-81 or xpf-1 mutations, mus-81;xpf-1 double mutants are synthetic lethal. While mus-81;xpf-1 double mutants are proficient for the processing of early recombination intermediates, they exhibit defects in the post-pachytene chromosome reorganization and the asymmetric disassembly of the synaptonemal complex, presumably triggered by crossovers or crossover precursors. Consistent with a defect in resolving late recombination intermediates, mus-81; xpf-1 diakinetic bivalents are aberrant with fine DNA bridges visible between two distinct DAPI staining bodies. We were able to suppress the aberrant bivalent phenotype by microinjection of activated human GEN1 protein, which can cleave Holliday junctions, suggesting that the DNA bridges in mus-81; xpf-1 diakinetic oocytes are unresolved Holliday junctions. We propose that the MUS-81 and XPF-1 endonucleases act redundantly to process late recombination intermediates to form crossovers during C. elegans meiosis.
Collapse
Affiliation(s)
- Nigel J. O'Neil
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julie S. Martin
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, South Mimms, United Kingdom
| | - Jillian L. Youds
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, South Mimms, United Kingdom
| | - Jordan D. Ward
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, South Mimms, United Kingdom
| | - Mark I. R. Petalcorin
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, South Mimms, United Kingdom
| | - Anne M. Rose
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Simon J. Boulton
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, South Mimms, United Kingdom
| |
Collapse
|
40
|
Homologous recombination rescues ssDNA gaps generated by nucleotide excision repair and reduced translesion DNA synthesis in yeast G2 cells. Proc Natl Acad Sci U S A 2013; 110:E2895-904. [PMID: 23858457 DOI: 10.1073/pnas.1301676110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Repair of DNA bulky lesions often involves multiple repair pathways such as nucleotide-excision repair, translesion DNA synthesis (TLS), and homologous recombination (HR). Although there is considerable information about individual pathways, little is known about the complex interactions or extent to which damage in single strands, such as the damage generated by UV, can result in double-strand breaks (DSBs) and/or generate HR. We investigated the consequences of UV-induced lesions in nonreplicating G2 cells of budding yeast. In contrast to WT cells, there was a dramatic increase in ssDNA gaps for cells deficient in the TLS polymerases η (Rad30) and ζ (Rev3). Surprisingly, repair in TLS-deficient G2 cells required HR repair genes RAD51 and RAD52, directly revealing a redundancy of TLS and HR functions in repair of ssDNAs. Using a physical assay that detects recombination between circular sister chromatids within a few hours after UV, we show an approximate three-fold increase in recombinants in the TLS mutants over that in WT cells. The recombination, which required RAD51 and RAD52, does not appear to be caused by DSBs, because a dose of ionizing radiation producing 20 times more DSBs was much less efficient than UV in producing recombinants. Thus, in addition to revealing TLS and HR functional redundancy, we establish that UV-induced recombination in TLS mutants is not attributable to DSBs. These findings suggest that ssDNA that might originate during the repair of closely opposed lesions or of ssDNA-containing lesions or from uncoupled replication may drive recombination directly in various species, including humans.
Collapse
|
41
|
Dargahi D, Baillie D, Pio F. Bioinformatics analysis identify novel OB fold protein coding genes in C. elegans. PLoS One 2013; 8:e62204. [PMID: 23638006 PMCID: PMC3636199 DOI: 10.1371/journal.pone.0062204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 03/20/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The C. elegans genome has been extensively annotated by the WormBase consortium that uses state of the art bioinformatics pipelines, functional genomics and manual curation approaches. As a result, the identification of novel genes in silico in this model organism is becoming more challenging requiring new approaches. The Oligonucleotide-oligosaccharide binding (OB) fold is a highly divergent protein family, in which protein sequences, in spite of having the same fold, share very little sequence identity (5-25%). Therefore, evidence from sequence-based annotation may not be sufficient to identify all the members of this family. In C. elegans, the number of OB-fold proteins reported is remarkably low (n=46) compared to other evolutionary-related eukaryotes, such as yeast S. cerevisiae (n=344) or fruit fly D. melanogaster (n=84). Gene loss during evolution or differences in the level of annotation for this protein family, may explain these discrepancies. METHODOLOGY/PRINCIPAL FINDINGS This study examines the possibility that novel OB-fold coding genes exist in the worm. We developed a bioinformatics approach that uses the most sensitive sequence-sequence, sequence-profile and profile-profile similarity search methods followed by 3D-structure prediction as a filtering step to eliminate false positive candidate sequences. We have predicted 18 coding genes containing the OB-fold that have remarkably partially been characterized in C. elegans. CONCLUSIONS/SIGNIFICANCE This study raises the possibility that the annotation of highly divergent protein fold families can be improved in C. elegans. Similar strategies could be implemented for large scale analysis by the WormBase consortium when novel versions of the genome sequence of C. elegans, or other evolutionary related species are being released. This approach is of general interest to the scientific community since it can be used to annotate any genome.
Collapse
Affiliation(s)
- Daryanaz Dargahi
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, British Columbia, Canada
| | - David Baillie
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Frederic Pio
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
42
|
Lee H, Alpi AF, Park MS, Rose A, Koo HS. C. elegans ring finger protein RNF-113 is involved in interstrand DNA crosslink repair and interacts with a RAD51C homolog. PLoS One 2013; 8:e60071. [PMID: 23555887 PMCID: PMC3610817 DOI: 10.1371/journal.pone.0060071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/21/2013] [Indexed: 12/27/2022] Open
Abstract
The Fanconi anemia (FA) pathway recognizes interstrand DNA crosslinks (ICLs) and contributes to their conversion into double-strand DNA breaks, which can be repaired by homologous recombination. Seven orthologs of the 15 proteins associated with Fanconi anemia are functionally conserved in the model organism C. elegans. Here we report that RNF-113, a ubiquitin ligase, is required for RAD-51 focus formation after inducing ICLs in C. elegans. However, the formation of foci of RPA-1 or FCD-2/FANCD2 in the FA pathway was not affected by depletion of RNF-113. Nevertheless, the RPA-1 foci formed did not disappear with time in the depleted worms, implying serious defects in ICL repair. As a result, RNF-113 depletion increased embryonic lethality after ICL treatment in wild-type worms, but it did not increase the ICL-induced lethality of rfs-1/rad51C mutants. In addition, the persistence of RPA-1 foci was suppressed in doubly-deficient rnf-113;rfs-1 worms, suggesting that there is an epistatic interaction between the two genes. These results lead us to suggest that RNF-113 and RFS-1 interact to promote the displacement of RPA-1 by RAD-51 on single-stranded DNA derived from ICLs.
Collapse
Affiliation(s)
- Hyojin Lee
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Arno F. Alpi
- Scottish Institute for Cell Signaling, University of Dundee, Dundee, United Kingdom
| | - Mi So Park
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ann Rose
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Hyeon-Sook Koo
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
43
|
Johnson NM, Lemmens BBLG, Tijsterman M. A role for the malignant brain tumour (MBT) domain protein LIN-61 in DNA double-strand break repair by homologous recombination. PLoS Genet 2013; 9:e1003339. [PMID: 23505385 PMCID: PMC3591299 DOI: 10.1371/journal.pgen.1003339] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 01/08/2013] [Indexed: 11/18/2022] Open
Abstract
Malignant brain tumour (MBT) domain proteins are transcriptional repressors that function within Polycomb complexes. Some MBT genes are tumour suppressors, but how they prevent tumourigenesis is unknown. The Caenorhabditis elegans MBT protein LIN-61 is a member of the synMuvB chromatin-remodelling proteins that control vulval development. Here we report a new role for LIN-61: it protects the genome by promoting homologous recombination (HR) for the repair of DNA double-strand breaks (DSBs). lin-61 mutants manifest numerous problems associated with defective HR in germ and somatic cells but remain proficient in meiotic recombination. They are hypersensitive to ionizing radiation and interstrand crosslinks but not UV light. Using a novel reporter system that monitors repair of a defined DSB in C. elegans somatic cells, we show that LIN-61 contributes to HR. The involvement of this MBT protein in HR raises the possibility that MBT–deficient tumours may also have defective DSB repair. The genome is continually under threat from exogenous sources of DNA damage, as well as from sources that originate within the cell. DNA double-strand breaks (DSBs) are arguably the most problematic type of damage as they can cause dangerous chromosome rearrangements, which can lead to cancer, as well as mutation at the break site and/or cell death. A complex network of molecular pathways, collectively referred to as the DNA damage response (DDR), have evolved to protect the cell from these threats. We have discovered a new DDR factor, LIN-61, that promotes the repair of DSBs. This is a novel and unexpected role for LIN-61, which was previously known to act as a regulator of gene transcription during development.
Collapse
Affiliation(s)
- Nicholas M. Johnson
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Marcel Tijsterman
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
44
|
Costes A, Lambert SAE. Homologous recombination as a replication fork escort: fork-protection and recovery. Biomolecules 2012; 3:39-71. [PMID: 24970156 PMCID: PMC4030885 DOI: 10.3390/biom3010039] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 01/03/2023] Open
Abstract
Homologous recombination is a universal mechanism that allows DNA repair and ensures the efficiency of DNA replication. The substrate initiating the process of homologous recombination is a single-stranded DNA that promotes a strand exchange reaction resulting in a genetic exchange that promotes genetic diversity and DNA repair. The molecular mechanisms by which homologous recombination repairs a double-strand break have been extensively studied and are now well characterized. However, the mechanisms by which homologous recombination contribute to DNA replication in eukaryotes remains poorly understood. Studies in bacteria have identified multiple roles for the machinery of homologous recombination at replication forks. Here, we review our understanding of the molecular pathways involving the homologous recombination machinery to support the robustness of DNA replication. In addition to its role in fork-recovery and in rebuilding a functional replication fork apparatus, homologous recombination may also act as a fork-protection mechanism. We discuss that some of the fork-escort functions of homologous recombination might be achieved by loading of the recombination machinery at inactivated forks without a need for a strand exchange step; as well as the consequence of such a model for the stability of eukaryotic genomes.
Collapse
Affiliation(s)
- Audrey Costes
- Institut Curie, Centre de Recherche, CNRS, UMR3348, Centre Universitaire, Bat110, 91405, Orsay, France.
| | - Sarah A E Lambert
- Institut Curie, Centre de Recherche, CNRS, UMR3348, Centre Universitaire, Bat110, 91405, Orsay, France.
| |
Collapse
|
45
|
Aristizábal-Corrales D, Fontrodona L, Porta-de-la-Riva M, Guerra-Moreno A, Cerón J, Schwartz S. The 14-3-3 gene par-5 is required for germline development and DNA damage response in Caenorhabditis elegans. J Cell Sci 2012; 125:1716-26. [PMID: 22328524 DOI: 10.1242/jcs.094896] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
14-3-3 proteins have been extensively studied in organisms ranging from yeast to mammals and are associated with multiple roles, including fundamental processes such as the cell cycle, apoptosis and the stress response, to diseases such as cancer. In Caenorhabditis elegans, there are two 14-3-3 genes, ftt-2 and par-5. ftt-2 is expressed only in somatic lineages, whereas par-5 expression is detected in both soma and germline. During early embryonic development, par-5 is necessary to establish cell polarity. Although it is known that par-5 inactivation results in sterility, the role of this gene in germline development is poorly characterized. In the present study, we used a par-5 mutation and RNA interference to characterize par-5 functions in the germline. The lack of par-5 in germ cells caused cell cycle deregulation, the accumulation of endogenous DNA damage and genomic instability. Moreover, par-5 was required for checkpoint-induced cell cycle arrest in response to DNA-damaging agents. We propose a model in which PAR-5 regulates CDK-1 phosphorylation to prevent premature mitotic entry. This study opens a new path to investigate the mechanisms of 14-3-3 functions, which are not only essential for C. elegans development, but have also been shown to be altered in human diseases.
Collapse
Affiliation(s)
- David Aristizábal-Corrales
- Drug Delivery and Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute, Universidad Autónoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Kitao H, Nanda I, Sugino RP, Kinomura A, Yamazoe M, Arakawa H, Schmid M, Innan H, Hiom K, Takata M. FancJ/Brip1 helicase protects against genomic losses and gains in vertebrate cells. Genes Cells 2011; 16:714-27. [PMID: 21605288 DOI: 10.1111/j.1365-2443.2011.01523.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Defects in the FANCJ/BRIP1 helicase gene are associated with genome instability disorders such as familial breast cancer or Fanconi anemia (FA). Although FANCJ has an in vitro activity to resolve G-quadruplex (G4) structures, and FANCJ ortholog in C. elegans prevents G4-associated deletions during replication, how FANCJ loss affects genome integrity in higher organisms remains unclear. Here, we report that FANCJ, but not other FA genes FANCD2 or FANCC, protected against large-scale genomic deletion that occurred frequently at the rearranged immunoglobulin heavy chain (IgH) locus in chicken DT40 cell line, suggesting that FancJ protects the genome independently of the FA ubiquitination pathway. In a more unbiased approach using array-comparative genomic hybridization, we identified de novo deletions as well as amplifications in fancj cells kept in culture for 2 months. A cluster of G4 sequence motifs was found near the breakpoint of one amplified region, but G4 sequence motifs were not detected at the breakpoints of two deleted regions. These results collectively suggest that, unlike in C. elegans, actions of vertebrate FANCJ to promote genome stability may not be limited to protection against the G4-mediated gene deletions.
Collapse
Affiliation(s)
- Hiroyuki Kitao
- Laboratory of DNA Damage Signaling, Department of Late Effect Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Dobson R, Stockdale C, Lapsley C, Wilkes J, McCulloch R. Interactions among Trypanosoma brucei RAD51 paralogues in DNA repair and antigenic variation. Mol Microbiol 2011; 81:434-56. [PMID: 21615552 PMCID: PMC3170485 DOI: 10.1111/j.1365-2958.2011.07703.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2011] [Indexed: 02/06/2023]
Abstract
Homologous recombination in Trypanosoma brucei is used for moving variant surface glycoprotein (VSG) genes into expression sites during immune evasion by antigenic variation. A major route for such VSG switching is gene conversion reactions in which RAD51, a universally conserved recombinase, catalyses homology-directed strand exchange. In any eukaryote, RAD51-directed strand exchange in vivo is mediated by further factors, including RAD51-related proteins termed Rad51 paralogues. These appear to be ubiquitously conserved, although their detailed roles in recombination remain unclear. In T. brucei, four putative RAD51 paralogue genes have been identified by sequence homology. Here we show that all four RAD51 paralogues act in DNA repair, recombination and RAD51 subnuclear dynamics, though not equivalently, while mutation of only one RAD51 paralogue gene significantly impedes VSG switching. We also show that the T. brucei RAD51 paralogues interact, and that the complexes they form may explain the distinct phenotypes of the mutants as well as observed expression interdependency. Finally, we document the Rad51 paralogues that are encoded by a wide range of protists, demonstrating that the Rad51 paralogue repertoire in T. brucei is unusually large among microbial eukaryotes and that one member of the protein family corresponds with a key, conserved eukaryotic Rad51 paralogue.
Collapse
Affiliation(s)
- Rachel Dobson
- University of Glasgow, College of Medical Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, The Wellcome Trust Centre for Molecular ParasitologySir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Christopher Stockdale
- University of Glasgow, College of Medical Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, The Wellcome Trust Centre for Molecular ParasitologySir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Craig Lapsley
- University of Glasgow, College of Medical Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, The Wellcome Trust Centre for Molecular ParasitologySir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Jonathan Wilkes
- University of Glasgow, College of Medical Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, The Wellcome Trust Centre for Molecular ParasitologySir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Richard McCulloch
- University of Glasgow, College of Medical Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, The Wellcome Trust Centre for Molecular ParasitologySir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
48
|
Homologous recombination repair is essential for repair of vosaroxin-induced DNA double-strand breaks. Oncotarget 2011; 1:606-19. [PMID: 21317456 DOI: 10.18632/oncotarget.101106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Vosaroxin (formerly voreloxin) is a first-in-class anticancer quinolone derivative that intercalates DNA and inhibits topoisomerase II, inducing site-selective double-strand breaks (DSB), G2 arrest and apoptosis. Objective responses and complete remissions were observed in phase 2 studies of vosaroxin in patients with solid and hematologic malignancies, and responses were seen in patients whose cancers were resistant to anthracyclines. The quinolone-based scaffold differentiates vosaroxin from the anthracyclines and anthracenediones, broadly used DNA intercalating topoisomerase II poisons. Here we report that vosaroxin induces a cell cycle specific pattern of DNA damage and repair that is distinct from the anthracycline, doxorubicin. Both drugs stall replication and preferentially induce DNA damage in replicating cells, with damage in G2 / M > S >> G1. However, detectable replication fork collapse, as evidenced by DNA fragmentation and long tract recombination during S phase, is induced only by doxorubicin. Furthermore, vosaroxin induces less overall DNA fragmentation. Homologous recombination repair (HRR) is critical for recovery from DNA damage induced by both agents, identifying the potential to clinically exploit synthetic lethality.
Collapse
|
49
|
Lemmens BBLG, Tijsterman M. DNA double-strand break repair in Caenorhabditis elegans. Chromosoma 2011; 120:1-21. [PMID: 21052706 PMCID: PMC3028100 DOI: 10.1007/s00412-010-0296-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 10/14/2010] [Accepted: 10/15/2010] [Indexed: 10/25/2022]
Abstract
Faithful repair of DNA double-strand breaks (DSBs) is vital for animal development, as inappropriate repair can cause gross chromosomal alterations that result in cellular dysfunction, ultimately leading to cancer, or cell death. Correct processing of DSBs is not only essential for maintaining genomic integrity, but is also required in developmental programs, such as gametogenesis, in which DSBs are deliberately generated. Accordingly, DSB repair deficiencies are associated with various developmental disorders including cancer predisposition and infertility. To avoid this threat, cells are equipped with an elaborate and evolutionarily well-conserved network of DSB repair pathways. In recent years, Caenorhabditis elegans has become a successful model system in which to study DSB repair, leading to important insights in this process during animal development. This review will discuss the major contributions and recent progress in the C. elegans field to elucidate the complex networks involved in DSB repair, the impact of which extends well beyond the nematode phylum.
Collapse
Affiliation(s)
- Bennie B. L. G. Lemmens
- Department of Toxicogenetics, Leids Universitair Medisch Centrum Gebouw 2, Postzone S-4 Postbus 9600, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Marcel Tijsterman
- Department of Toxicogenetics, Leids Universitair Medisch Centrum Gebouw 2, Postzone S-4 Postbus 9600, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
50
|
Hawtin RE, Stockett DE, Wong OK, Lundin C, Helleday T, Fox JA. Homologous recombination repair is essential for repair of vosaroxin-induced DNA double-strand breaks. Oncotarget 2010; 1:606-619. [PMID: 21317456 PMCID: PMC3248135 DOI: 10.18632/oncotarget.195] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 11/22/2010] [Indexed: 11/25/2022] Open
Abstract
Vosaroxin (formerly voreloxin) is a first-in-class anticancer quinolone derivative that intercalates DNA and inhibits topoisomerase II, inducing site-selective double-strand breaks (DSB), G2 arrest and apoptosis. Objective responses and complete remissions were observed in phase 2 studies of vosaroxin in patients with solid and hematologic malignancies, and responses were seen in patients whose cancers were resistant to anthracyclines. The quinolone-based scaffold differentiates vosaroxin from the anthracyclines and anthracenediones, broadly used DNA intercalating topoisomerase II poisons. Here we report that vosaroxin induces a cell cycle specific pattern of DNA damage and repair that is distinct from the anthracycline, doxorubicin. Both drugs stall replication and preferentially induce DNA damage in replicating cells, with damage in G2 / M > S >> G1. However, detectable replication fork collapse, as evidenced by DNA fragmentation and long tract recombination during S phase, is induced only by doxorubicin. Furthermore, vosaroxin induces less overall DNA fragmentation. Homologous recombination repair (HRR) is critical for recovery from DNA damage induced by both agents, identifying the potential to clinically exploit synthetic lethality.
Collapse
Affiliation(s)
| | - David Elliot Stockett
- Sunesis Pharmaceuticals, Inc. 395 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Oi Kwan Wong
- Sunesis Pharmaceuticals, Inc. 395 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Cecilia Lundin
- Gray Institute for Radiation Oncology & Biology, University of Oxford. Old Road Campus Research Building, Roosevelt Drive. Oxford, OX3 7DQ, UK
| | - Thomas Helleday
- Gray Institute for Radiation Oncology & Biology, University of Oxford. Old Road Campus Research Building, Roosevelt Drive. Oxford, OX3 7DQ, UK
- Dept. of Genetics Microbiology and Toxicology, Stockholm University. Arrhenius Laboratory, Svante Arrhenius väg 16 E4. S-106 91 Stockholm, Sweden
| | - Judith Ann Fox
- Sunesis Pharmaceuticals, Inc. 395 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| |
Collapse
|