1
|
Wang Y, Bi HY, Chen HG, Zheng PF, Zhou YL, Li JT. Metagenomics Reveals Dominant Unusual Sulfur Oxidizers Inhabiting Active Hydrothermal Chimneys From the Southwest Indian Ridge. Front Microbiol 2022; 13:861795. [PMID: 35694283 PMCID: PMC9174799 DOI: 10.3389/fmicb.2022.861795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/12/2022] [Indexed: 11/25/2022] Open
Abstract
The deep-sea hydrothermal vents (DSHVs) in the Southwest Indian Ridge (SWIR) are formed by specific geological settings. However, the community structure and ecological function of the microbial inhabitants on the sulfide chimneys of active hydrothermal vents remain largely unknown. In this study, our analyses of 16S rRNA gene amplicons and 16S rRNA metagenomic reads showed the dominance of sulfur-oxidizing Ectothiorhodospiraceae, Thiomicrorhabdus, Sulfurimonas, and Sulfurovum on the wall of two active hydrothermal chimneys. Compared with the inactive hydrothermal sediments of SWIR, the active hydrothermal chimneys lacked sulfur-reducing bacteria. The metabolic potentials of the retrieved 82 metagenome-assembled genomes (MAGs) suggest that sulfur oxidation might be conducted by Thiohalomonadales (classified as Ectothiorhodospiraceae based on 16S rRNA gene amplicons), Sulfurovaceae, Hyphomicrobiaceae, Thiotrichaceae, Thiomicrospiraceae, and Rhodobacteraceae. For CO2 fixation, the Calvin-Benson-Bassham and reductive TCA pathways were employed by these bacteria. In Thiohalomonadales MAGs, we revealed putative phytochrome, carotenoid precursor, and squalene synthesis pathways, indicating a possible capacity of Thiohalomonadales in adaptation to dynamics redox conditions and the utilization of red light from the hot hydrothermal chimneys for photolithotrophic growth. This study, therefore, reveals unique microbiomes and their genomic features in the active hydrothermal chimneys of SWIR, which casts light on ecosystem establishment and development in hydrothermal fields and the deep biosphere.
Collapse
Affiliation(s)
- Yong Wang
- Institute for Marine Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Hong-Yu Bi
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Hua-Guan Chen
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng-Fei Zheng
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Ying-Li Zhou
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiang-Tao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Chen H, Li D, Cai Y, Wu LF, Song T. Bacteriophytochrome from Magnetospirillum magneticum affects phototactic behavior in response to light. FEMS Microbiol Lett 2020; 367:5895327. [PMID: 32821904 DOI: 10.1093/femsle/fnaa142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/19/2020] [Indexed: 01/03/2023] Open
Abstract
Phytochromes are a class of photoreceptors found in plants and in some fungi, cyanobacteria, and photoautotrophic and heterotrophic bacteria. Although phytochromes have been structurally characterized in some bacteria, their biological and ecological roles in magnetotactic bacteria remain unexplored. Here, we describe the biochemical characterization of recombinant bacteriophytochrome (BphP) from magnetotactic bacteria Magnetospirillum magneticum AMB-1 (MmBphP). The recombinant MmBphP displays all the characteristic features, including the property of binding to biliverdin (BV), of a genuine phytochrome. Site-directed mutagenesis identified that cysteine-14 is important for chromophore covalent binding and photoreversibility. Arginine-240 and histidine-246 play key roles in binding to BV. The N-terminal photosensory core domain of MmBphP lacking the C-terminus found in other phytochromes is sufficient to exhibit the characteristic red/far-red-light-induced fast photoreversibility of phytochromes. Moreover, our results showed MmBphP is involved in the phototactic response, suggesting its conservative role as a stress protectant. This finding provided us a better understanding of the physiological function of this group of photoreceptors and photoresponse of magnetotactic bacteria.
Collapse
Affiliation(s)
- Haitao Chen
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.,France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100190, China
| | - Dandan Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yao Cai
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Long-Fei Wu
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS, F-13402 Marseille, France.,LCB, Aix Marseille University, CNRS, F-13402 Marseille, France
| | - Tao Song
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.,France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Rockwell NC, Lagarias JC. Phytochrome evolution in 3D: deletion, duplication, and diversification. THE NEW PHYTOLOGIST 2020; 225:2283-2300. [PMID: 31595505 PMCID: PMC7028483 DOI: 10.1111/nph.16240] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/17/2019] [Indexed: 05/09/2023]
Abstract
Canonical plant phytochromes are master regulators of photomorphogenesis and the shade avoidance response. They are also part of a widespread superfamily of photoreceptors with diverse spectral and biochemical properties. Plant phytochromes belong to a clade including other phytochromes from glaucophyte, prasinophyte, and streptophyte algae (all members of the Archaeplastida) and those from cryptophyte algae. This is consistent with recent analyses supporting the existence of an AC (Archaeplastida + Cryptista) clade. AC phytochromes have been proposed to arise from ancestral cyanobacterial genes via endosymbiotic gene transfer (EGT), but most recent studies instead support multiple horizontal gene transfer (HGT) events to generate extant eukaryotic phytochromes. In principle, this scenario would be compared to the emerging understanding of early events in eukaryotic evolution to generate a coherent picture. Unfortunately, there is currently a major discrepancy between the evolution of phytochromes and the evolution of eukaryotes; phytochrome evolution is thus not a solved problem. We therefore examine phytochrome evolution in a broader context. Within this context, we can identify three important themes in phytochrome evolution: deletion, duplication, and diversification. These themes drive phytochrome evolution as organisms evolve in response to environmental challenges.
Collapse
|
4
|
Abstract
The purple nonsulfur bacterium Rhodopseudomonas palustris is a model for understanding how a phototrophic organism adapts to changes in light intensity because it produces different light-harvesting (LH) complexes under high light (LH2) and low light intensities (LH3 and LH4). Outside of this change in the composition of the photosystem, little is understood about how R. palustris senses and responds to low light intensity. On the basis of the results of transcription analysis of 17 R. palustris strains grown in low light, we found that R. palustris strains downregulate many genes involved in iron transport and homeostasis. The only operon upregulated in the majority of R. palustris exposed to low light intensity was pucBAd, which encodes LH4. In previous work, pucBAd expression was shown to be modulated in response to light quality by bacteriophytochromes that are part of a low-light signal transduction system. Here we found that this signal transduction system also includes a redox-sensitive protein, LhfE, and that its redox sensitivity is required for LH4 synthesis in response to low light. Our results suggest that R. palustris upregulates its LH4 system when the cellular redox state is relatively oxidized. Consistent with this, we found that LH4 synthesis was upregulated under high light intensity when R. palustris was grown semiaerobically or under nitrogen-fixing conditions. Thus, changes in the LH4 system in R. palustris are not dependent on light intensity per se but rather on cellular redox changes that occur as a consequence of changes in light intensity.IMPORTANCE An essential aspect of the physiology of phototrophic bacteria is their ability to adjust the amount and composition of their light-harvesting apparatus in response to changing environmental conditions. The phototrophic purple bacterium R. palustris adapts its photosystem to a range of light intensities by altering the amount and composition of its peripheral LH complexes. Here we found that R. palustris regulates its LH4 complex in response to the cellular redox state rather than in response to light intensity per se Relatively oxidizing conditions, including low light, semiaerobic growth, and growth under nitrogen-fixing conditions, all stimulated a signal transduction system to activate LH4 expression. By understanding how LH composition is regulated in R. palustris, we will gain insight into how and why a photosynthetic organism senses and adapts its photosystem to multiple environmental cues.
Collapse
|
5
|
Serdyuk OP, Smolygina LD, Khristin MS. Membrane-Bound Bacteriophytochrome-Like Complex of Phototrophic Purple Non-Sulfur Bacterium Rhodopseudomonas palustris. DOKL BIOCHEM BIOPHYS 2018; 482:284-287. [PMID: 30397894 DOI: 10.1134/s1607672918050149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Indexed: 11/23/2022]
Abstract
A pigment-protein complex of yellow color with absorption maxima at 682 and 776 nm, characteristic for bacteriophytochromes, was isolated from the photosynthetic membranes of the purple bacterium Rhodopseudomonas palustris. Zinc-induced fluorescence of the complex indicated the presence of the biliverdin chromophore covalently bound to the protein. The parameters of low-temperature fluorescence (λ excitation at 680 nm, λ emission at 695 nm) indicated the ability of the complex to undergo photoconversion. These data, as well as the kinetics of accumulation of the red (Pr)-form on far red light, allowed the complex to be classified as a bacteriophytochrome-like complex with its localization in the photosynthetic membranes of Rps. palustris.
Collapse
Affiliation(s)
- O P Serdyuk
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow oblast, 142290, Russia.
| | - L D Smolygina
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow oblast, 142290, Russia
| | - M S Khristin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow oblast, 142290, Russia
| |
Collapse
|
6
|
Fushimi K, Rockwell NC, Enomoto G, Ni-Ni-Win, Martin SS, Gan F, Bryant DA, Ikeuchi M, Lagarias JC, Narikawa R. Cyanobacteriochrome Photoreceptors Lacking the Canonical Cys Residue. Biochemistry 2016; 55:6981-6995. [PMID: 27935696 DOI: 10.1021/acs.biochem.6b00940] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors that sense near-ultraviolet to far-red light. Like the distantly related phytochromes, all CBCRs reported to date have a conserved Cys residue (the "canonical Cys" or "first Cys") that forms a thioether linkage to C31 of the linear tetrapyrrole (bilin) chromophore. Detection of ultraviolet, violet, and blue light is performed by at least three subfamilies of two-Cys CBCRs that require both the first Cys and a second Cys that forms a second covalent linkage to C10 of the bilin. In the well-characterized DXCF subfamily, the second Cys is part of a conserved Asp-Xaa-Cys-Phe motif. We here report novel CBCRs lacking the first Cys but retaining the DXCF Cys as part of a conserved Asp-Xaa-Cys-Ile-Pro (DXCIP) motif. Phylogenetic analysis demonstrates that DXCIP CBCRs are a sister to a lineage of DXCF CBCR domains from phototaxis sensors. Three such DXCIP CBCR domains (cce_4193g1, Cyan8802_2776g1, and JSC1_24240) were characterized after recombinant expression in Escherichia coli engineered to produce phycocyanobilin. All three covalently bound bilin and showed unidirectional photoconversion in response to green light. Spectra of acid-denatured proteins in the dark-adapted state do not correspond to those of known bilins. One DXCIP CBCR, cce_4193g1, exhibited very rapid dark reversion consistent with a function as a power sensor. However, Cyan8802_2776g1 exhibited slower dark reversion and would not have such a function. The full-length cce_4193 protein also possesses a DXCF CBCR GAF domain (cce_4193g2) with a covalently bound phycoviolobilin chromophore and a blue/green photocycle. Our studies indicate that CBCRs need not contain the canonical Cys residue to function as photochromic light sensors and that phototaxis proteins containing DXCIP CBCRs may potentially perceive both light quality and light intensity.
Collapse
Affiliation(s)
- Keiji Fushimi
- Department of Biological Science, Faculty of Science, Shizuoka University , Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California , Davis California 95616, United States
| | - Gen Enomoto
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, University of Tokyo , Komaba, Meguro, Tokyo 153-8902, Japan
| | - Ni-Ni-Win
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, University of Tokyo , Komaba, Meguro, Tokyo 153-8902, Japan
| | - Shelley S Martin
- Department of Molecular and Cellular Biology, University of California , Davis California 95616, United States
| | - Fei Gan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802 United States
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802 United States.,Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717 United States
| | - Masahiko Ikeuchi
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, University of Tokyo , Komaba, Meguro, Tokyo 153-8902, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012 Japan
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California , Davis California 95616, United States
| | - Rei Narikawa
- Department of Biological Science, Faculty of Science, Shizuoka University , Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
7
|
Clades of Photosynthetic Bacteria Belonging to the Genus Rhodopseudomonas Show Marked Diversity in Light-Harvesting Antenna Complex Gene Composition and Expression. mSystems 2015; 1:mSystems00006-15. [PMID: 27822511 PMCID: PMC5069747 DOI: 10.1128/msystems.00006-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/23/2015] [Indexed: 12/20/2022] Open
Abstract
Rhodopseudomonas palustris is a phototrophic purple nonsulfur bacterium that adapts its photosystem to allow growth at a range of light intensities. It does this by adjusting the amount and composition of peripheral light-harvesting (LH) antenna complexes that it synthesizes. Rhodopseudomonas strains are notable for containing numerous sets of light-harvesting genes. We determined the diversity of LH complexes and their transcript levels during growth under high and low light intensities in 20 sequenced genomes of strains related to the species Rhodopseudomonas palustris. The data obtained are a resource for investigators with interests as wide-ranging as the biophysics of photosynthesis, the ecology of phototrophic bacteria, and the use of photosynthetic bacteria for biotechnology applications. Many photosynthetic bacteria have peripheral light-harvesting (LH) antenna complexes that increase the efficiency of light energy capture. The purple nonsulfur photosynthetic bacterium Rhodopseudomonas palustris produces different types of LH complexes under high light intensities (LH2 complex) and low light intensities (LH3 and LH4 complexes). There are multiple pucBA operons that encode the α and β peptides that make up these complexes. However, low-resolution structures, amino acid similarities between the complexes, and a lack of transcription analysis have made it difficult to determine the contributions of different pucBA operons to the composition and function of different LH complexes. It was also unclear how much diversity of LH complexes exists in R. palustris and affiliated strains. To address this, we undertook an integrative genomics approach using 20 sequenced strains. Gene content analysis revealed that even closely related strains have differences in their pucBA gene content. Transcriptome analyses of the strains grown under high light and low light revealed that the patterns of expression of the pucBA operons varied among strains grown under the same conditions. We also found that one set of LH2 complex proteins compensated for the lack of an LH4 complex under low light intensities but not under extremely low light intensities, indicating that there is functional redundancy between some of the LH complexes under certain light intensities. The variation observed in LH gene composition and expression in Rhodopseudomonas strains likely reflects how they have evolved to adapt to light conditions in specific soil and water microenvironments. IMPORTANCERhodopseudomonas palustris is a phototrophic purple nonsulfur bacterium that adapts its photosystem to allow growth at a range of light intensities. It does this by adjusting the amount and composition of peripheral light-harvesting (LH) antenna complexes that it synthesizes. Rhodopseudomonas strains are notable for containing numerous sets of light-harvesting genes. We determined the diversity of LH complexes and their transcript levels during growth under high and low light intensities in 20 sequenced genomes of strains related to the species Rhodopseudomonas palustris. The data obtained are a resource for investigators with interests as wide-ranging as the biophysics of photosynthesis, the ecology of phototrophic bacteria, and the use of photosynthetic bacteria for biotechnology applications.
Collapse
|
8
|
Burgie ES, Vierstra RD. Phytochromes: an atomic perspective on photoactivation and signaling. THE PLANT CELL 2014; 26:4568-83. [PMID: 25480369 PMCID: PMC4311201 DOI: 10.1105/tpc.114.131623] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/10/2014] [Accepted: 11/14/2014] [Indexed: 05/19/2023]
Abstract
The superfamily of phytochrome (Phy) photoreceptors regulates a wide array of light responses in plants and microorganisms through their unique ability to reversibly switch between stable dark-adapted and photoactivated end states. Whereas the downstream signaling cascades and biological consequences have been described, the initial events that underpin photochemistry of the coupled bilin chromophore and the ensuing conformational changes needed to propagate the light signal are only now being understood. Especially informative has been the rapidly expanding collection of 3D models developed by x-ray crystallographic, NMR, and single-particle electron microscopic methods from a remarkably diverse array of bacterial Phys. These structures have revealed how the modular architecture of these dimeric photoreceptors engages the buried chromophore through distinctive knot, hairpin, and helical spine features. When collectively viewed, these 3D structures reveal complex structural alterations whereby photoisomerization of the bilin drives nanometer-scale movements within the Phy dimer through bilin sliding, hairpin reconfiguration, and spine deformation that ultimately impinge upon the paired signal output domains. When integrated with the recently described structure of the photosensory module from Arabidopsis thaliana PhyB, new opportunities emerge for the rational redesign of plant Phys with novel photochemistries and signaling properties potentially beneficial to agriculture and their exploitation as optogenetic reagents.
Collapse
Affiliation(s)
- E Sethe Burgie
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Richard D Vierstra
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
9
|
Apo-bacteriophytochromes modulate bacterial photosynthesis in response to low light. Proc Natl Acad Sci U S A 2013; 111:E237-44. [PMID: 24379368 DOI: 10.1073/pnas.1322410111] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophytochromes (BphPs) are light-sensing regulatory proteins encoded by photosynthetic and nonphotosynthetic bacteria. This protein class has been characterized structurally, but its biological activities remain relatively unexplored. Two BphPs in the anoxygenic photosynthetic bacterium Rhodopseudomonas palustris, designated regulatory proteins RpBphP2 and RpBphP3, are configured as light-regulated histidine kinases, which initiate a signal transduction system that controls expression of genes for the low light harvesting 4 (LH4) antenna complex. In vitro, RpBphP2 and RpBphP3 respond to light quality by reversible photoconversion, a property that requires the light-absorbing chromophore biliverdin. In vivo, RpBphP2 and RpBphP3 are both required for the expression of the LH4 antenna complex under anaerobic conditions, but biliverdin requires oxygen for its synthesis by heme oxygenase. On further investigation, we found that the apo-bacteriophytochrome forms of RpBphP2 and RpBphP3 are necessary and sufficient to control LH4 expression in response to light intensity in conjunction with other signal transduction proteins. One possibility is that the system senses a reduced quinone pool generated when light energy is absorbed by bacteriochlorophyll. The biliverdin-bound forms of the BphPs have the additional property of being able to fine-tune LH4 expression in response to light quality. These observations support the concept that some bacteriophytochromes can function with or without a chromophore and may be involved in regulating physiological processes not directly related to light sensing.
Collapse
|
10
|
Kotecha A, Georgiou T, Papiz MZ. Evolution of low-light adapted peripheral light-harvesting complexes in strains of Rhodopseudomonas palustris. PHOTOSYNTHESIS RESEARCH 2013; 114:155-164. [PMID: 23250567 DOI: 10.1007/s11120-012-9791-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/11/2012] [Indexed: 06/01/2023]
Abstract
Purple bacteria have peripheral light-harvesting (PLH) complexes adapted to high-light (LH2) and low-light (LH3, LH4) growth conditions. The latter two have only been fully characterised in Rhodopseudomonas acidophila 7050 and Rhodopseudomonas palustris CGA009, respectively. It is known that LH4 complexes are expressed under the control of two light sensing bacteriophytochromes (BphPs). Recent genomic sequencing of a number of Rps. palustris strains has provided extensive information on PLH genes. We show that both LH3 and LH4 complexes are present in Rps. palustris and have evolved in the same operon controlled by the two adjacent BphPs. Two rare marker genes indicate that a gene cluster CL2, containing LH2 genes and the BphP RpBphP4, was internally transferred within the genome to form a new operon CL1. In CL1, RpBphP4 underwent gene duplication to RpBphP2 and RpBphP3, which evolved to sense light intensity rather than spectral red/far-red intensity ratio. We show that a second LH2 complex was acquired in CL1 belonging to a different PLH clade and these two PLH complexes co-evolved together into LH3 or LH4 complexes. The near-infrared spectra provide additional support for our conclusions on the evolution of PLH complexes based on genomic data.
Collapse
Affiliation(s)
- Abhay Kotecha
- STFC Daresbury Science and Innovation Campus, Warrington WA4 4AD, UK.
| | | | | |
Collapse
|
11
|
Trevors JT. Origin of life: hypothesized roles of high-energy electrical discharges, infrared radiation, thermosynthesis and pre-photosynthesis. Theory Biosci 2012; 131:225-9. [PMID: 22718039 DOI: 10.1007/s12064-012-0157-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/05/2012] [Indexed: 11/25/2022]
Abstract
The hypothesis is proposed that during the organization of pre-biotic bacterial cell(s), high-energy electrical discharges, infrared radiation (IR), thermosynthesis and possibly pre-photosynthesis were central to the origin of life. High-energy electrical discharges generated some simple organic molecules available for the origin of life. Infrared radiation, both incoming to the Earth and generated on the cooling Earth with day/night and warming/cooling cycles, was a component of heat engine thermosynthesis before enzymes and the genetic code were present. Eventually, a primitive forerunner of photosynthesis and the capability to capture visible light emerged. In addition, the dual particle-wave nature of light is discussed from the perspective that life requires light acting both as a wave and particle.
Collapse
Affiliation(s)
- J T Trevors
- Laboratory of Microbiology, School of Environmental Sciences, University of Guelph, 50 Stone Road, E., Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
12
|
Depauw FA, Rogato A, Ribera d'Alcalá M, Falciatore A. Exploring the molecular basis of responses to light in marine diatoms. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1575-91. [PMID: 22328904 DOI: 10.1093/jxb/ers005] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Light is an essential source of energy for life on Earth and is one of the most important signals that organisms use to obtain information from the surrounding environment, on land and in the oceans. Prominent marine microalgae, such as diatoms, display a suite of sophisticated responses (physiological, biochemical, and behavioural) to optimize their photosynthesis and growth under changing light conditions. However, the molecular mechanisms controlling diatom responses to light are still largely unknown. Recent progress in marine diatom genomics and genetics, combined with well-established (eco) physiological and biophysical approaches, now offers novel opportunities to address these issues. This review provides a description of the molecular components identified in diatom genomes that are involved in light perception and acclimation mechanisms. How the initial functional characterizations of specific light regulators provide the basis to investigate the conservation or diversification of light-mediated processes in diatoms is also discussed. Hypotheses on the role of the identified factors in determining the growth, distribution, and adaptation of diatoms in different marine environments are reported.
Collapse
Affiliation(s)
- Frauke Angelique Depauw
- Université Pierre et Marie Curie, Paris 06, Centre National de la Recherche Scientifique, UMR7238, Laboratoire de Génomique des Microorganismes, 75006 Paris, France
| | | | | | | |
Collapse
|
13
|
Meyer TE, Kyndt JA, Memmi S, Moser T, Colón-Acevedo B, Devreese B, Van Beeumen JJ. The growing family of photoactive yellow proteins and their presumed functional roles. Photochem Photobiol Sci 2012; 11:1495-514. [DOI: 10.1039/c2pp25090j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Vierstra RD, Zhang J. Phytochrome signaling: solving the Gordian knot with microbial relatives. TRENDS IN PLANT SCIENCE 2011; 16:417-426. [PMID: 21719341 DOI: 10.1016/j.tplants.2011.05.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/23/2011] [Accepted: 05/25/2011] [Indexed: 05/28/2023]
Abstract
Phytochromes encompass a diverse collection of biliproteins that regulate numerous photoresponses in plants and microorganisms. Whereas the plant versions have proven experimentally intractable for structural studies, the microbial forms have recently provided important insights into how these photoreceptors work at the atomic level. Here, we review the current understanding of these microbial phytochromes, which shows that they have a modular dimeric architecture that propagates light-driven rotation of the bilin to distal contacts between adjacent signal output domains. Surprising features underpinning this signaling include: a deeply buried chromophore; a knot and hairpin loop that stabilizes the photosensing domain; and an extended helical spine that translates conformational changes in the photosensing domain to the output domain. Conservation within the superfamily both in modular construction and sequence strongly suggests that higher plant phytochromes work similarly as light-regulated toggle switches.
Collapse
Affiliation(s)
- Richard D Vierstra
- Department of Genetics, 425-G Henry Mall, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | |
Collapse
|
15
|
Abstract
Phytochromes are environmental sensors, historically thought of as red/far-red photoreceptors in plants. Their photoperception occurs through a covalently linked tetrapyrrole chromophore, which undergoes a light-dependent conformational change propagated through the protein to a variable output domain. The phytochrome composition is modular, typically consisting of a PAS-GAF-PHY architecture for the N-terminal photosensory core. A collection of three-dimensional structures has uncovered key features, including an unusual figure-of-eight knot, an extension reaching from the PHY domain to the chromophore-binding GAF domain, and a centrally located, long α-helix hypothesized to be crucial for intramolecular signaling. Continuing identification of phytochromes in microbial systems has expanded the assigned sensory abilities of this family out of the red and into the yellow, green, blue, and violet portions of the spectrum. Furthermore, phytochromes acting not as photoreceptors but as redox sensors have been recognized. In addition, architectures other than PAS-GAF-PHY are known, thus revealing phytochromes to be a varied group of sensory receptors evolved to utilize their modular design to perceive a signal and respond accordingly. This review focuses on the structures of bacterial phytochromes and implications for signal transmission. We also discuss the small but growing set of bacterial phytochromes for which a physiological function has been ascertained.
Collapse
Affiliation(s)
- Michele E Auldridge
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
16
|
Abstract
Phytochromes are biliprotein photoreceptors that are found in plants, bacteria, and fungi. Prototypical phytochromes have a Pr ground state that absorbs in the red spectral range and is converted by light into the Pfr form, which absorbs longer-wavelength, far-red light. Recently, some bacterial phytochromes have been described that undergo dark conversion of Pr to Pfr and thus have a Pfr ground state. We show here that such so-called bathy phytochromes are widely distributed among bacteria that belong to the order Rhizobiales. We measured in vivo spectral properties and the direction of dark conversion for species which have either one or two phytochrome genes. Agrobacterium tumefaciens C58 contains one bathy phytochrome and a second phytochrome which undergoes dark conversion of Pfr to Pr in vivo. The related species Agrobacterium vitis S4 contains also one bathy phytochrome and another phytochrome with novel spectral properties. Rhizobium leguminosarum 3841, Rhizobium etli CIAT652, and Azorhizobium caulinodans ORS571 contain a single phytochrome of the bathy type, whereas Xanthobacter autotrophicus Py2 contains a single phytochrome with dark conversion of Pfr to Pr. We propose that bathy phytochromes are adaptations to the light regime in the soil. Most bacterial phytochromes are light-regulated histidine kinases, some of which have a C-terminal response regulator subunit on the same protein. According to our phylogenetic studies, the group of phytochromes with this domain arrangement has evolved from a bathy phytochrome progenitor.
Collapse
|
17
|
Moulisová V, Luer L, Hoseinkhani S, Brotosudarmo THP, Collins AM, Lanzani G, Blankenship RE, Cogdell RJ. Low light adaptation: energy transfer processes in different types of light harvesting complexes from Rhodopseudomonas palustris. Biophys J 2010; 97:3019-28. [PMID: 19948132 DOI: 10.1016/j.bpj.2009.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/09/2009] [Accepted: 09/10/2009] [Indexed: 10/20/2022] Open
Abstract
Energy transfer processes in photosynthetic light harvesting 2 (LH2) complexes isolated from purple bacterium Rhodopseudomonas palustris grown at different light intensities were studied by ground state and transient absorption spectroscopy. The decomposition of ground state absorption spectra shows contributions from B800 and B850 bacteriochlorophyll (BChl) a rings, the latter component splitting into a low energy and a high energy band in samples grown under low light (LL) conditions. A spectral analysis reveals strong inhomogeneity of the B850 excitons in the LL samples that is well reproduced by an exponential-type distribution. Transient spectra show a bleach of both the low energy and high energy bands, together with the respective blue-shifted exciton-to-biexciton transitions. The different spectral evolutions were analyzed by a global fitting procedure. Energy transfer from B800 to B850 occurs in a mono-exponential process and the rate of this process is only slightly reduced in LL compared to high light samples. In LL samples, spectral relaxation of the B850 exciton follows strongly nonexponential kinetics that can be described by a reduction of the bleach of the high energy excitonic component and a red-shift of the low energetic one. We explain these spectral changes by picosecond exciton relaxation caused by a small coupling parameter of the excitonic splitting of the BChl a molecules to the surrounding bath. The splitting of exciton energy into two excitonic bands in LL complex is most probably caused by heterogenous composition of LH2 apoproteins that gives some of the BChls in the B850 ring B820-like site energies, and causes a disorder in LH2 structure.
Collapse
Affiliation(s)
- Vladimíra Moulisová
- Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Giraud E, Lavergne J, Verméglio A. Characterization of Bacteriophytochromes from Photosynthetic Bacteria. Methods Enzymol 2010; 471:135-59. [DOI: 10.1016/s0076-6879(10)71009-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Puthiyaveetil S, Allen JF. Chloroplast two-component systems: evolution of the link between photosynthesis and gene expression. Proc Biol Sci 2009; 276:2133-45. [PMID: 19324807 PMCID: PMC2677595 DOI: 10.1098/rspb.2008.1426] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 01/15/2009] [Indexed: 11/12/2022] Open
Abstract
Two-component signal transduction, consisting of sensor kinases and response regulators, is the predominant signalling mechanism in bacteria. This signalling system originated in prokaryotes and has spread throughout the eukaryotic domain of life through endosymbiotic, lateral gene transfer from the bacterial ancestors and early evolutionary precursors of eukaryotic, cytoplasmic, bioenergetic organelles-chloroplasts and mitochondria. Until recently, it was thought that two-component systems inherited from an ancestral cyanobacterial symbiont are no longer present in chloroplasts. Recent research now shows that two-component systems have survived in chloroplasts as products of both chloroplast and nuclear genes. Comparative genomic analysis of photosynthetic eukaryotes shows a lineage-specific distribution of chloroplast two-component systems. The components and the systems they comprise have homologues in extant cyanobacterial lineages, indicating their ancient cyanobacterial origin. Sequence and functional characteristics of chloroplast two-component systems point to their fundamental role in linking photosynthesis with gene expression. We propose that two-component systems provide a coupling between photosynthesis and gene expression that serves to retain genes in chloroplasts, thus providing the basis of cytoplasmic, non-Mendelian inheritance of plastid-associated characters. We discuss the role of this coupling in the chronobiology of cells and in the dialogue between nuclear and cytoplasmic genetic systems.
Collapse
Affiliation(s)
| | - John F. Allen
- School of Biological and Chemical Sciences, Queen Mary, University of LondonMile End Road, London E1 4NS, UK
| |
Collapse
|
20
|
Krell T, Busch A, Lacal J, Silva-Jiménez H, Ramos JL. The enigma of cytosolic two-component systems: a hypothesis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:171-176. [PMID: 23765790 DOI: 10.1111/j.1758-2229.2009.00020.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
One-component systems (OCSs) and cytosolic two-component regulatory systems (TCSs) appear to share the same biological function, which consists in the transcriptional control in response to the cellular concentration of signal molecules. However, cytosolic TCSs as compared with OCSs represent a genetic and metabolic burden to the cell: the genetic information encoding a TCS is significantly larger than that of an OCS, two or more proteins instead of one need to be synthesized for a TCS and operation of the latter system requires the expense of ATP which is not the case for most OCSs. The evolutionary advantages of cytosolic TCSs over OCSs are thus not obvious. We hypothesize here that the increased capacity of cytosolic TCSs to respond to multiple signals is a major advantage over OCSs. Different mechanisms for the incorporation of additional signals into the regulatory circuit are discussed. The inclusion of several signals into the definition of the final regulatory response is proposed to result in a better adaptation of the host to given environmental conditions.
Collapse
Affiliation(s)
- Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda, 1, 18008 Granada, Spain
| | | | | | | | | |
Collapse
|
21
|
Jaubert M, Hannibal L, Fardoux J, Giraud E, Verméglio A. Identification of novel genes putatively involved in the photosystem synthesis of Bradyrhizobium sp. ORS 278. PHOTOSYNTHESIS RESEARCH 2009; 100:97-105. [PMID: 19452262 DOI: 10.1007/s11120-009-9433-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 05/04/2009] [Indexed: 05/27/2023]
Abstract
In aerobic anoxygenic phototrophs, oxygen is required for both the formation of the photosynthetic apparatus and an efficient cyclic electron transfer. Mutants of Bradyrhizobium sp. ORS278 affected in photosystem synthesis were selected by a bacteriochlorophyll fluorescence-based screening. Out of the 9,600 mutants of a random Tn5 insertion library, 50 clones, corresponding to insertions in 28 different genes, present a difference in fluorescence intensity compared to the WT. Besides enzymes and regulators known to be involved in photosystem synthesis, 14 novel components of the photosynthesis control are identified. Among them, two genes, hsIU and hsIV, encode components of a protein degradation complex, probably linked to the renewal of photosystem, an important issue in Bradyrhizobia which have to deal with harmful reactive oxygen species. The presence of homologs in non-photosynthetic bacteria for most of the regulatory genes identified during study suggests that they could be global regulators, as the RegA-RegB system.
Collapse
Affiliation(s)
- Marianne Jaubert
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, AGRO-M, INRA, UM2. TA A-82/J, Campus de Baillarguet, 34398, Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
22
|
Abstract
The phytochrome protein superfamily reveals a diversity of mechanisms of action. Proteins of the phytochrome superfamily of red/far-red light receptors have a variety of biological roles in plants, algae, bacteria and fungi and demonstrate a diversity of spectral sensitivities and output signaling mechanisms. Over the past few years the first three-dimensional structures of phytochrome light-sensing domains from bacteria have been determined.
Collapse
|
23
|
Giraud E, Verméglio A. Bacteriophytochromes in anoxygenic photosynthetic bacteria. PHOTOSYNTHESIS RESEARCH 2008; 97:141-153. [PMID: 18612842 DOI: 10.1007/s11120-008-9323-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 06/16/2008] [Indexed: 05/26/2023]
Abstract
Since the first discovery of a bacteriophytochrome in Rhodospirillum centenum, numerous bacteriophytochromes have been identified and characterized in other anoxygenic photosynthetic bacteria. This review is focused on the biochemical and biophysical properties of bacteriophytochromes with a special emphasis on their roles in the synthesis of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Eric Giraud
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, AGRO-M, INRA, UM2, TA A-82/J, Campus de Baillarguet, 34398, Montpellier Cedex 5, France
| | | |
Collapse
|
24
|
Control of peripheral light-harvesting complex synthesis by a bacteriophytochrome in the aerobic photosynthetic bacterium Bradyrhizobium strain BTAi1. J Bacteriol 2008; 190:5824-31. [PMID: 18606738 DOI: 10.1128/jb.00524-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recent sequence analysis of the photosynthetic and plant-symbiotic Bradyrhizobium sp. strain BTAi1 revealed the unexpected presence of a pucBA operon encoding the apoproteins of peripheral light-harvesting (LH) complexes. This pucBA operon is found close to a bacteriophytochrome gene (BphP3(B BTAi1)) and a two-component transcriptional regulator gene (TF(BTAi1) gene). In this study, we show that BphP3(B BTAi1) acts as a bona fide bacteriophytochrome and controls, according to light conditions, the expression of the pucBA operon found in its vicinity. This light regulatory pathway is very similar to the one previously described for chromo-BphP4(Rp) in Rhodopseudomonas palustris and conducts the synthesis of a peripheral LH complex. This LH complex presents a single absorption band at low temperature, centered at 803 nm. Fluorescence emission analysis of intact cells indicates that this peripheral LH complex does not act as an efficient light antenna. One putative function of this LH complex could be to evacuate excess light energy in order to protect Bradyrhizobium strain BTAi1, an aerobic anoxygenic photosynthetic bacterium, against photooxidative damage during photosynthesis.
Collapse
|
25
|
Photoregulation in prokaryotes. Curr Opin Microbiol 2008; 11:168-78. [PMID: 18400553 DOI: 10.1016/j.mib.2008.02.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 02/06/2008] [Accepted: 02/11/2008] [Indexed: 11/20/2022]
Abstract
The spectroscopic identification of sensory rhodopsin I by Bogomolni and Spudich in 1982 provided a molecular link between the light environment and phototaxis in Halobacterium salinarum, and thus laid the foundation for the study of signal transducing photosensors in prokaryotes. In recent years, a number of new prokaryotic photosensory receptors have been discovered across a broad range of taxa, including dozens in chemotrophic species. Among these photoreceptors are new classes of rhodopsins, BLUF-domain proteins, bacteriophytochromes, cryptochromes, and LOV-family photosensors. Genetic and biochemical analyses of these receptors have demonstrated that they can regulate processes ranging from photosynthetic pigment biosynthesis to virulence.
Collapse
|
26
|
Kojadinovic M, Laugraud A, Vuillet L, Fardoux J, Hannibal L, Adriano JM, Bouyer P, Giraud E, Verméglio A. Dual role for a bacteriophytochrome in the bioenergetic control of Rhodopsdeudomonas palustris: Enhancement of photosystem synthesis and limitation of respiration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:163-72. [DOI: 10.1016/j.bbabio.2007.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 08/30/2007] [Accepted: 09/04/2007] [Indexed: 10/22/2022]
|
27
|
Losi A, Gärtner W. Bacterial bilin- and flavin-binding photoreceptors. Photochem Photobiol Sci 2008; 7:1168-78. [DOI: 10.1039/b802472c] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|