1
|
Kachaev ZM, Ghassah M, Musabirov AA, Shaposhnikov AV, Toropygin IY, Ulianova YA, Stepanov NG, Chmykhalo VK, Shidlovskii YV. The Enhanced activation of innate immunity in Drosophila S2 cells by Micrococcus luteus VKM Ac-2230 is mediated by Relish. J Invertebr Pathol 2025; 211:108315. [PMID: 40089097 DOI: 10.1016/j.jip.2025.108315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
The canonical model of immune response activation in Drosophila suggests that the IMD pathway is activated by Gram-negative (Gram (-)) bacteria, while the Toll pathway is activated by both Gram-positive bacteria (Gram (+)) and fungi. However, the mechanisms by which these pathogens promote cross-activation of these pathways remain controversial. In addition, the mechanisms of cross-activation in S2 cell culture remain unstudied. In this study, we investigated the role of two Gram (+) bacteria (Micrococcus luteus and Bacillus subtilis) and fungal spores (Metarhizium anisopliae) in activating the IMD pathway in S2 cell cultures. Cells were treated with Escherichia coli as a control to ensure the specificity of IMD pathway activation. Our results demonstrated a significant involvement of M. luteus in the activation of the IMD pathway in S2 cell cultures. This is evidenced by the marked activation of IMD pathway-dependent genes, as well as the proteolytic cleavage of the Relish protein, which serves as a key transcription factor for this pathway. We also observed a strong recruitment of Relish to the promoters of antimicrobial peptide (AMP) genes, along with a partial recruitment to the genes encoding peptidoglycan recognition proteins (PGRPs). Furthermore, RNA interference targeting Relish resulted in a significant reduction in the transcription levels of all AMP genes and most PGRPs. Similarly, we analyzed the contributions of B. subtilis and M. anisopliae to the cross-activation of the IMD pathway. Our data indicate that both B. subtilis and M. anisopliae also activate the IMD pathway, albeit to a lesser extent compared to M. luteus. At the same time, fungal spores exhibited minimal influence on the activation of the IMD pathway when compared to Gram (+) bacteria. Thus, we have investigated in detail the mechanisms of cross-activation of the immune response in S2 cell culture, suggesting that Relish may play a critical role in inducing a humoral immune response in Drosophila S2 cells, primarily against M. luteus and to a lesser extent against B. subtilis and M. anisopliae.
Collapse
Affiliation(s)
- Zaur M Kachaev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia.
| | - Mona Ghassah
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
| | - Anton A Musabirov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexander V Shaposhnikov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ilya Y Toropygin
- Center of Common Use "Human Proteome", V.I. Orekhovich Research Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Yulia A Ulianova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Nikita G Stepanov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| | - Victor K Chmykhalo
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Yulii V Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
2
|
Yao X, Lin L, Ye Z, Huo M, Jin P, Ma F. NF-κB/Relish readjusts miR-100 expression and recovers immune homeostasis in Drosophila melanogaster. INSECT SCIENCE 2024. [PMID: 39688880 DOI: 10.1111/1744-7917.13484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 12/18/2024]
Abstract
The regulation and maintenance of immune homeostasis are essential for animal survival, but the molecular mechanisms are not fully understood. Here, we used the model organism Drosophila melanogaster to uncover a potential mechanism by which the nuclear factor-κB transcription factor Relish and miR-100 cooperatively regulate innate immune homeostasis. We first demonstrated in vitro and in vivo that miR-100 can negatively regulate the immune responses of the Imd pathway by inhibiting the expression of TAK1-associated binding protein 2 (Tab2) gene. Second, we found that Relish, an important transcription factor in the Drosophila Imd pathway, could not only modulate the expressions of antimicrobial peptides (AMPs) to promote immune responses, but also bind to the promoter region of miR-100 and activate its transcription to inhibit immune responses. Third, the dynamic expression of genes profiling indicated that the Relish/miR-100/Tab2 regulatory axis could contribute to innate immune homeostasis in Drosophila. Together, our findings reveal the dual role of Relish in immune regulation, that is, Relish promotes the expression of AMPs to resist pathogen infection in the early immune response, while in the late immune stages, Relish readjusts the expression of miR-100 to negatively control immune responses to avoid excessive immunity thus maintaining immunohomeostasis. Meanwhile, our study provides a new perspective for further understanding the complex regulatory mechanism of immune homeostasis in animals.
Collapse
Affiliation(s)
- Xiaolong Yao
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Lu Lin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Zifeng Ye
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Miaomiao Huo
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| |
Collapse
|
3
|
Wang X, Qu Q, Li Z, Lu S, Ferrandon D, Xi L. An unusual Toll/MyD88-mediated Drosophila host defence against Talaromyces marneffei. Fly (Austin) 2024; 18:2398300. [PMID: 39239739 PMCID: PMC11382710 DOI: 10.1080/19336934.2024.2398300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
Talaromycosis, caused by Talaromyces marneffei (T. marneffei, formerly known as Penicillium marneffei), is an opportunistic invasive mycosis endemic in tropical and subtropical areas of Asia with high mortality rate. Despite various infection models established to study the immunological interaction between T. marneffei and the host, the pathogenicity of this fungus is not yet fully understood. So far, Drosophila melanogaster, a well-established genetic model organism to study innate immunity, has not been used in related research on T. marneffei. In this study, we provide the initial characterization of a systemic infection model of T. marneffei in the D. melanogaster host. Survival curves and fungal loads were tested as well as Toll pathway activation was quantified by RT-qPCR of several antimicrobial peptide (AMP) genes including Drosomycin, Metchnikowin, and Bomanin Short 1. We discovered that whereas most wild-type flies were able to overcome the infection, MyD88 or Toll mutant flies failed to prevent fungal dissemination and proliferation and ultimately succumbed to this challenge. Unexpectedly, the induction of classical Toll pathway activation readouts, Drosomycin and Bomanin Short 1, by live or killed T. marneffei was quite limited in wild-type flies, suggesting that the fungus largely escapes detection by the systemic immune system. This unusual situation of a poor systemic activation of the Toll pathway and a strong susceptibility phenotype of MyD88/Toll might be accounted for by a requirement for this host defence in only specific tissues, a hypothesis that remains to be rigorously tested.
Collapse
Affiliation(s)
- Xiaoyue Wang
- Dermatology hospital, Southern Medical University, Guangzhou, China
| | - Qinglin Qu
- Dermatology hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Laboratory, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, China
| | - Zi Li
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Sha Lu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dominique Ferrandon
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, UPR 9022 du CNRS, Strasbourg, France
| | - Liyan Xi
- Dermatology hospital, Southern Medical University, Guangzhou, China
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Asgari D, Purvis T, Pickens V, Saski C, Meisel RP, Nayduch D. Expression of defensin genes across house fly ( Musca domestica) life history gives insight into immune system subfunctionalization. Genome 2024; 67:316-326. [PMID: 38722238 DOI: 10.1139/gen-2024-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2024]
Abstract
Animals encounter diverse microbial communities throughout their lifetime, which exert varying selection pressures. Antimicrobial peptides (AMPs), which lyse or inhibit microbial growth, are a first line of defense against some of these microbes. Here we examine how developmental variation in microbial exposure has affected the evolution of expression and amino acid sequences of Defensins (an ancient class of AMPs) in the house fly (Musca domestica). The house fly is a well-suited model for this work because it trophically associates with varying microbial communities throughout its life history and its genome contains expanded families of AMPs, including Defensins. We identified two subsets of house fly Defensins: one expressed in larvae or pupae, and the other expressed in adults. The amino acid sequences of these two Defensin subsets form distinct monophyletic clades, and they are located in separate gene clusters in the genome. The adult-expressed Defensins evolve faster than larval/pupal Defensins, consistent with different selection pressures across developmental stages. Our results therefore suggest that varied microbial communities encountered across life history can shape the evolutionary trajectories of immune genes.
Collapse
Affiliation(s)
- Danial Asgari
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Tanya Purvis
- Arthropod-Borne Animal Diseases Research Unit, United States Department of Agriculture, Agricultural Research Service, Manhattan, KS 66502, USA
| | - Victoria Pickens
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Christopher Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Dana Nayduch
- Arthropod-Borne Animal Diseases Research Unit, United States Department of Agriculture, Agricultural Research Service, Manhattan, KS 66502, USA
| |
Collapse
|
5
|
Zhou H, Liu L, Pang Y, Xu Y, Wu J, Ma F, Jin P, Zhou X. Relish-mediated C2H2 zinc finger protein IMZF restores Drosophila immune homeostasis via inhibiting the transcription of Imd/Tak1. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 170:104138. [PMID: 38762126 DOI: 10.1016/j.ibmb.2024.104138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/26/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
The dysregulation of intensity and duration in innate immunity can result in detrimental effects on the body, emphasizing the crucial need for precise regulation. However, the intricate and accurate nature of innate immunity implies the existence of numerous undiscovered innate immunomodulators, particularly transcription factors. In this study, we have identified a Drosophila C2H2 zinc finger protein CG18262, named Immune-mediated Zinc Finger protein (IMZF), capable of suppressing immune responses of Imd pathway. Mechanistically, IMZF serves as a transcription factor that represses the expression of Imd and Tak1. Intriguingly, our findings also reveal that Relish, an NF-κB transcription factor, positively regulates the expression of IMZF, consequently inhibiting the activation of Imd and Tak1 to prevent an exaggerated immune response. Additionally, we have elucidated the pivotal role played by the Relish-IMZF-Imd/Tak1 axis in restoring immune homeostasis of Drosophila Imd pathway. In summary, our findings not only unveil a novel C2H2 zinc finger immunoregulatory transcription factor, IMZF, along with its specific mechanism of immune regulation, but also shed light on the dual functionality of Relish in different stages of the immune response by modulating distinct effectors. This discovery provides new insights and enlightenment into the complex regulation of Drosophila innate immunity.
Collapse
Affiliation(s)
- Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Li Liu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Yujia Pang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Yina Xu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Jing Wu
- Department of Psychology, College of Victoria College, University of Toronto, Toronto, ON, M5R 0A3, Canada
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Xue Zhou
- School of Chemistry and Biological Engineering, Nanjing Normal University Taizhou College, Taizhou, 225300, China.
| |
Collapse
|
6
|
Nakano S, Kashio S, Nishimura K, Takeishi A, Kosakamoto H, Obata F, Kuranaga E, Chihara T, Yamauchi Y, Isobe T, Miura M. Damage sensing mediated by serine proteases Hayan and Persephone for Toll pathway activation in apoptosis-deficient flies. PLoS Genet 2023; 19:e1010761. [PMID: 37319131 DOI: 10.1371/journal.pgen.1010761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
The mechanisms by which the innate immune system senses damage have been extensively explored in multicellular organisms. In Drosophila, various types of tissue damage, including epidermal injury, tumor formation, cell competition, and apoptosis deficiency, induce sterile activation of the Toll pathway, a process that requires the use of extracellular serine protease (SP) cascades. Upon infection, the SP Spätzle (Spz)-processing enzyme (SPE) cleaves and activates the Toll ligand Spz downstream of two paralogous SPs, Hayan and Persephone (Psh). However, upon tissue damage, it is not fully understood which SPs establish Spz activation cascades nor what damage-associated molecules can activate SPs. In this study, using newly generated uncleavable spz mutant flies, we revealed that Spz cleavage is required for the sterile activation of the Toll pathway, which is induced by apoptosis-deficient damage of wing epidermal cells in adult Drosophila. Proteomic analysis of hemolymph, followed by experiments with Drosophila Schneider 2 (S2) cells, revealed that among hemolymph SPs, both SPE and Melanization Protease 1 (MP1) have high capacities to cleave Spz. Additionally, in S2 cells, MP1 acts downstream of Hayan and Psh in a similar manner to SPE. Using genetic analysis, we found that the upstream SPs Hayan and Psh contributes to the sterile activation of the Toll pathway. While SPE/MP1 double mutants show more impairment of Toll activation upon infection than SPE single mutants, Toll activation is not eliminated in these apoptosis-deficient flies. This suggests that Hayan and Psh sense necrotic damage, inducing Spz cleavage by SPs other than SPE and MP1. Furthermore, hydrogen peroxide, a representative damage-associated molecule, activates the Psh-Spz cascade in S2 cells overexpressing Psh. Considering that reactive oxygen species (ROS) were detected in apoptosis-deficient wings, our findings highlight the importance of ROS as signaling molecules that induce the activation of SPs such as Psh in response to damage.
Collapse
Affiliation(s)
- Shotaro Nakano
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Soshiro Kashio
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kei Nishimura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Asuka Takeishi
- Neural Circuit of Multisensory Integration RIKEN Hakubi Research Team, RIKEN Center for Brain Science, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Hina Kosakamoto
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Fumiaki Obata
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Erina Kuranaga
- Laboratory of Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takahiro Chihara
- Program of Biomedical Science and Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima Japan
| | - Yoshio Yamauchi
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Won C, Nam K, Ko D, Kang B, Lee IS. NSD Overexpression in the Fat Body Increases Antimicrobial Peptide Production by the Immune Deficiency Pathway in Drosophila. Int J Mol Sci 2023; 24:ijms24098443. [PMID: 37176149 PMCID: PMC10179514 DOI: 10.3390/ijms24098443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Nuclear receptor-binding SET domain-containing protein 1 (NSD1) inactivation in tumor cells contributes to an immune-cold phenotype, indicating its potential association with immune disturbances. Drosophila NSD is a homolog of the human NSD1. Thus, in this study, we investigated the effect of NSD overexpression in the fat body, the central organ involved in Drosophila immune responses. Upon ectopic expression of NSD in the fat body, the mRNA levels of antimicrobial peptides increased. Using reporter constructs containing deletions of various NF-κB sites in the Attacin-A (AttA) promoter, we found that transcriptional activation by NSD is mainly mediated via the IMD pathway by activating Relish. Since the IMD pathway is required to resist Gram-negative bacterial infections, we further examined the effect of fat body-specific NSD overexpression on Drosophila immune defenses. Upon oral ingestion of Gram-negative Pseudomonas entomophila, the survival rate of the NSD-overexpressing larvae was higher than that of the wild type, suggesting a positive role of NSD in immune responses. Taken together, these results suggest the association of NSD with the IMD pathway and is thus expected to contribute to the elucidation of the molecular mechanisms of immune malfunction in various NSD1-associated human diseases.
Collapse
Affiliation(s)
- Chihyun Won
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyungju Nam
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Donghee Ko
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Byungjun Kang
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Im-Soon Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
8
|
Chung HL, Ye Q, Park YJ, Zuo Z, Mok JW, Kanca O, Tattikota SG, Lu S, Perrimon N, Lee HK, Bellen HJ. Very-long-chain fatty acids induce glial-derived sphingosine-1-phosphate synthesis, secretion, and neuroinflammation. Cell Metab 2023; 35:855-874.e5. [PMID: 37084732 PMCID: PMC10160010 DOI: 10.1016/j.cmet.2023.03.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/10/2023] [Accepted: 03/29/2023] [Indexed: 04/23/2023]
Abstract
VLCFAs (very-long-chain fatty acids) are the most abundant fatty acids in myelin. Hence, during demyelination or aging, glia are exposed to higher levels of VLCFA than normal. We report that glia convert these VLCFA into sphingosine-1-phosphate (S1P) via a glial-specific S1P pathway. Excess S1P causes neuroinflammation, NF-κB activation, and macrophage infiltration into the CNS. Suppressing the function of S1P in fly glia or neurons, or administration of Fingolimod, an S1P receptor antagonist, strongly attenuates the phenotypes caused by excess VLCFAs. In contrast, elevating the VLCFA levels in glia and immune cells exacerbates these phenotypes. Elevated VLCFA and S1P are also toxic in vertebrates based on a mouse model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). Indeed, reducing VLCFA with bezafibrate ameliorates the phenotypes. Moreover, simultaneous use of bezafibrate and fingolimod synergizes to improve EAE, suggesting that lowering VLCFA and S1P is a treatment avenue for MS.
Collapse
Affiliation(s)
- Hyung-Lok Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Qi Ye
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ye-Jin Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jung-Wan Mok
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | | | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Nobert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute and Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Hyun Kyoung Lee
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Huang J, Lou Y, Liu J, Bulet P, Cai C, Ma K, Jiao R, Hoffmann JA, Liégeois S, Li Z, Ferrandon D. A Toll pathway effector protects Drosophila specifically from distinct toxins secreted by a fungus or a bacterium. Proc Natl Acad Sci U S A 2023; 120:e2205140120. [PMID: 36917667 PMCID: PMC10041126 DOI: 10.1073/pnas.2205140120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/09/2023] [Indexed: 03/16/2023] Open
Abstract
The Drosophila systemic immune response against many Gram-positive bacteria and fungi is mediated by the Toll pathway. How Toll-regulated effectors actually fulfill this role remains poorly understood as the known Toll-regulated antimicrobial peptide (AMP) genes are active only against filamentous fungi and not against Gram-positive bacteria or yeasts. Besides AMPs, two families of peptides secreted in response to infectious stimuli that activate the Toll pathway have been identified, namely Bomanins and peptides derived from a polyprotein precursor known as Baramicin A (BaraA). Unexpectedly, the deletion of a cluster of 10 Bomanins phenocopies the Toll mutant phenotype of susceptibility to infections. Here, we demonstrate that BaraA is required specifically in the host defense against Enterococcus faecalis and against the entomopathogenic fungus Metarhizium robertsii, albeit the fungal burden is not altered in BaraA mutants. BaraA protects the fly from the action of distinct toxins secreted by these Gram-positive and fungal pathogens, respectively, Enterocin V and Destruxin A. The injection of Destruxin A leads to the rapid paralysis of flies, whether wild type (WT) or mutant. However, a larger fraction of wild-type than BaraA flies recovers from paralysis within 5 to 10 h. BaraAs' function in protecting the host from the deleterious action of Destruxin is required in glial cells, highlighting a resilience role for the Toll pathway in the nervous system against microbial virulence factors. Thus, in complement to the current paradigm, innate immunity can cope effectively with the effects of toxins secreted by pathogens through the secretion of dedicated peptides, independently of xenobiotics detoxification pathways.
Collapse
Affiliation(s)
- Jianqiong Huang
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
| | - Yanyan Lou
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
| | - Jiyong Liu
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
| | - Philippe Bulet
- Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U1209, CNRS, UMR 5309, 38000Grenoble, France
- Platform BioPark Archamps, 74160Archamps, France
| | - Chuping Cai
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
- Université de Strasbourg, Faculté des Sciences de la Vie, 67000Strasbourg, France
- Modèles Insectes d'Immunité Innée, Unité Propre de Recherche 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084Strasbourg, France
| | - Kaiyu Ma
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
| | - Renjie Jiao
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
| | - Jules A. Hoffmann
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
- Université de Strasbourg, Faculté des Sciences de la Vie, 67000Strasbourg, France
- Modèles Insectes d'Immunité Innée, Unité Propre de Recherche 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084Strasbourg, France
- Université de Strasbourg Institute for Advanced Study, 67000Strasbourg, France
| | - Samuel Liégeois
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
- Université de Strasbourg, Faculté des Sciences de la Vie, 67000Strasbourg, France
- Modèles Insectes d'Immunité Innée, Unité Propre de Recherche 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084Strasbourg, France
| | - Zi Li
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
| | - Dominique Ferrandon
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
- Université de Strasbourg, Faculté des Sciences de la Vie, 67000Strasbourg, France
- Modèles Insectes d'Immunité Innée, Unité Propre de Recherche 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084Strasbourg, France
| |
Collapse
|
10
|
Asgari D, Saski CA, Meisel RP, Nayduch D. Constitutively-expressed and induced immune effectors in the house fly (Musca domestica) and the transcription factors that may regulate them. INSECT MOLECULAR BIOLOGY 2022; 31:782-797. [PMID: 35875866 DOI: 10.1111/imb.12804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Insects possess both infection-induced and constitutively expressed innate immune defences. Some effectors, such as lysozymes and antimicrobial peptides (AMPs), are constitutively expressed in flies, but expression patterns vary across tissues and species. The house fly (Musca domestica L.) has an impressive immune repertoire, with more effector genes than any other flies. We used RNA-seq to explore both constitutive and induced expression of immune effectors in flies. House flies were fed either Pseudomonas aeruginosa or Escherichia coli, or sterile control broth, and gene expression in the gut and carcass was analysed 4 h post-feeding. Flies fed either bacterium did not induce AMP expression, but some lysozyme and AMP genes were constitutively expressed. Prior transcriptome data from flies injected with bacteria also were analysed, and these constitutively expressed genes differed from those induced by bacterial injection. Binding sites for the transcription factor Myc were enriched upstream of constitutively expressed AMP genes, while upstream regions of induced AMPs were enriched for NF-κB binding sites resembling those of the Imd-responsive transcription factor Relish. Therefore, we identified at least two expression repertoires for AMPs in the house fly: constitutively expressed genes that may be regulated by Myc, and induced AMPs likely regulated by Relish.
Collapse
Affiliation(s)
- Danial Asgari
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Christopher A Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, South Carolina, USA
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Dana Nayduch
- Arthropod-Borne Animal Diseases Research Unit, United States Department of Agriculture, Agricultural Research Service, Manhattan, Kansas, USA
| |
Collapse
|
11
|
Zhou H, Wu S, Liu L, Liu X, Lan S, Jiang J, Yang W, Jin P, Xia X, Ma F. Drosophila Relish-mediated miR-317 expression facilitates immune homeostasis restoration via inhibiting PGRP-LC. Eur J Immunol 2022; 52:1934-1945. [PMID: 36155909 DOI: 10.1002/eji.202250034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 12/13/2022]
Abstract
Innate immunity is the first and essential line for resisting pathogens, and the immune intensity and duration need to be strictly regulated to balance excessive or insufficient immune response. MicroRNAs (miRNAs) are crucial regulators of immune response in Drosophila, yet how immune-related miRNAs are regulated remains poorly understood. Herein, we elucidated that the involvement of miR-317 in NF-κB transcription factor Relish mediated Drosophila Imd pathway in response to Gram-negative (G-) bacteria stimulation. Remarkably, the dynamic expression profiling for immune response indicated that Relish simultaneously enhances the expression of the effector antimicrobial peptide Dpt as well as miR-317 post-infection. Upregulation of miR-317 could further down-regulate the expression of PGRP-LC, thereby forming a feedback in Drosophila Imd pathway to prevent over-activation and restore immune homeostasis. Taken together, our study not only uncovers a novel Relish/miR-317/PGRP-LC regulatory axis to attenuate Drosophila Imd immune response and facilitate immune homeostasis restoration, but also provides vital insights into the complex mechanisms of animal innate immune regulation.
Collapse
Affiliation(s)
- Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, P. R. China.,Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210002, China
| | - Shanshan Wu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Li Liu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Xiaoqi Liu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Siyu Lan
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Jiajun Jiang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Wan Yang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Xinyi Xia
- Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210002, China
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| |
Collapse
|
12
|
Ding SD, Leitão AB, Day JP, Arunkumar R, Phillips M, Zhou SO, Jiggins FM. Trans-regulatory changes underpin the evolution of the Drosophila immune response. PLoS Genet 2022; 18:e1010453. [PMID: 36342922 PMCID: PMC9671443 DOI: 10.1371/journal.pgen.1010453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/17/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
When an animal is infected, the expression of a large suite of genes is changed, resulting in an immune response that can defend the host. Despite much evidence that the sequence of proteins in the immune system can evolve rapidly, the evolution of gene expression is comparatively poorly understood. We therefore investigated the transcriptional response to parasitoid wasp infection in Drosophila simulans and D. sechellia. Although these species are closely related, there has been a large scale divergence in the expression of immune-responsive genes in their two main immune tissues, the fat body and hemocytes. Many genes, including those encoding molecules that directly kill pathogens, have cis regulatory changes, frequently resulting in large differences in their expression in the two species. However, these changes in cis regulation overwhelmingly affected gene expression in immune-challenged and uninfected animals alike. Divergence in the response to infection was controlled in trans. We argue that altering trans-regulatory factors, such as signalling pathways or immune modulators, may allow natural selection to alter the expression of large numbers of immune-responsive genes in a coordinated fashion.
Collapse
Affiliation(s)
| | - Alexandre B. Leitão
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Champalimaud Foundation, Lisbon, Portugal
| | - Jonathan P. Day
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Ramesh Arunkumar
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Morgan Phillips
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Shuyu Olivia Zhou
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Francis M. Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Zhou H, Wu S, Liu L, Li R, Jin P, Li S. Drosophila Relish Activating lncRNA-CR33942 Transcription Facilitates Antimicrobial Peptide Expression in Imd Innate Immune Response. Front Immunol 2022; 13:905899. [PMID: 35720331 PMCID: PMC9201911 DOI: 10.3389/fimmu.2022.905899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/02/2022] [Indexed: 12/29/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are an emerging class of regulators that play crucial roles in regulating the strength and duration of innate immunity. However, little is known about the regulation of Drosophila innate immunity-related lncRNAs. In this study, we first revealed that overexpression of lncRNA-CR33942 could strengthen the expression of the Imd pathway antimicrobial peptide (AMP) genes Diptericin (Dpt) and Attacin-A (AttA) after infection, and vice versa. Secondly, RNA-seq analysis of lncRNA-CR33942-overexpressing flies post Gram-negative bacteria infection confirmed that lncRNA-CR33942 positively regulated the Drosophila immune deficiency (Imd) pathway. Mechanistically, we found that lncRNA-CR33942 interacts and enhances the binding of NF-κB transcription factor Relish to Dpt and AttA promoters, thereby facilitating Dpt and AttA expression. Relish could also directly promote lncRNA-CR33942 transcription by binding to its promoter. Finally, rescue experiments and dynamic expression profiling post-infection demonstrated the vital role of the Relish/lncRNA-CR33942/AMP regulatory axis in enhancing Imd pathway and maintaining immune homeostasis. Our study elucidates novel mechanistic insights into the role of lncRNA-CR33942 in activating Drosophila Imd pathway and the complex regulatory interaction during the innate immune response of animals.
Collapse
Affiliation(s)
- Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Shanshan Wu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Li Liu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Ruimin Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Shengjie Li
- Jiangsu Provincial Key Construction Laboratory of Special Biomass Byproduct Resource Utilization, School of Food Science, Nanjing Xiaozhuang University, Nanjing, China
| |
Collapse
|
14
|
Zhou H, Li S, Pan W, Wu S, Ma F, Jin P. Interaction of lncRNA-CR33942 with Dif/Dorsal Facilitates Antimicrobial Peptide Transcriptions and Enhances Drosophila Toll Immune Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1978-1988. [PMID: 35379744 DOI: 10.4049/jimmunol.2100658] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/02/2022] [Indexed: 01/08/2023]
Abstract
The Drosophila Toll signaling pathway mainly responds to Gram-positive (G+) bacteria or fungal infection, which is highly conserved with mammalian TLR signaling pathway. Although many positive and negative regulators involved in the immune response of the Toll pathway have been identified in Drosophila, the roles of long noncoding RNAs (lncRNAs) in Drosophila Toll immune responses are poorly understood to date. In this study, our results demonstrate that lncRNA-CR33942 is mainly expressed in the nucleus and upregulated after Micrococcus luteus infection. Especially, lncRNA-CR33942 not only modulates differential expressions of multiple antimicrobial peptide genes but also affects the Drosophila survival rate during response to G+ bacterial infection based on the transiently overexpressing and the knockdown lncRNA-CR33942 assays in vivo. Mechanically, lncRNA-CR33942 interacts with the NF-κB transcription factors Dorsal-related immunity factor/Dorsal to promote the transcriptions of antimicrobial peptides drosomycin and metchnikowin, thus enhancing Drosophila Toll immune responses. Taken together, this study identifies lncRNA-CR33942 as a positive regulator of Drosophila innate immune response to G+ bacterial infection to facilitate Toll signaling via interacting with Dorsal-related immunity factor/Dorsal. It would be helpful to reveal the roles of lncRNAs in Toll immune response in Drosophila and provide insights into animal innate immunity.
Collapse
Affiliation(s)
- Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China; and
| | - Shengjie Li
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China; and.,Jiangsu Provincial Key Construction Laboratory of Special Biomass Byproduct Resource Utilization, School of Food Science, Nanjing Xiaozhuang University, Nanjing, People's Republic of China
| | - Wanwan Pan
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China; and
| | - Shanshan Wu
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China; and
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China; and
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China; and
| |
Collapse
|
15
|
Zhou H, Li S, Wu S, Jin P, Ma F. LncRNA-CR11538 Decoys Dif/Dorsal to Reduce Antimicrobial Peptide Products for Restoring Drosophila Toll Immunity Homeostasis. Int J Mol Sci 2021; 22:ijms221810117. [PMID: 34576280 PMCID: PMC8468853 DOI: 10.3390/ijms221810117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 11/29/2022] Open
Abstract
Avoiding excessive or insufficient immune responses and maintaining homeostasis are critical for animal survival. Although many positive or negative modulators involved in immune responses have been identified, little has been reported to date concerning whether the long non-coding RNA (lncRNA) can regulate Drosophila immunity response. In this study, we firstly discover that the overexpression of lncRNA-CR11538 can inhibit the expressions of antimicrobial peptides Drosomycin (Drs) and Metchnikowin (Mtk) in vivo, thereby suppressing the Toll signaling pathway. Secondly, our results demonstrate that lncRNA-CR11538 can interact with transcription factors Dif/Dorsal in the nucleus based on both subcellular localization and RIP analyses. Thirdly, our findings reveal that lncRNA-CR11538 can decoy Dif/Dorsal away from the promoters of Drs and Mtk to repress their transcriptions by ChIP-qPCR and dual luciferase report experiments. Fourthly, the dynamic expression changes of Drs, Dif, Dorsal and lncRNA-CR11538 in wild-type flies (w1118) at different time points after M. luteus stimulation disclose that lncRNA-CR11538 can help Drosophila restore immune homeostasis in the later period of immune response. Overall, our study reveals a novel mechanism by which lncRNA-CR11538 serves as a Dif/Dorsal decoy to downregulate antimicrobial peptide expressions for restoring Drosophila Toll immunity homeostasis, and provides a new insight into further studying the complex regulatory mechanism of animal innate immunity.
Collapse
Affiliation(s)
- Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (S.L.); (S.W.); (F.M.)
| | - Shengjie Li
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (S.L.); (S.W.); (F.M.)
- Jiangsu Provincial Key Construction Laboratory of Special Biomass Byproduct Resource Utilization, School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Shanshan Wu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (S.L.); (S.W.); (F.M.)
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (S.L.); (S.W.); (F.M.)
- Correspondence: ; Tel.: +86-25-85891050
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (S.L.); (S.W.); (F.M.)
| |
Collapse
|
16
|
The Drosophila Baramicin polypeptide gene protects against fungal infection. PLoS Pathog 2021; 17:e1009846. [PMID: 34432851 PMCID: PMC8423362 DOI: 10.1371/journal.ppat.1009846] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/07/2021] [Accepted: 07/28/2021] [Indexed: 11/19/2022] Open
Abstract
The fruit fly Drosophila melanogaster combats microbial infection by producing a battery of effector peptides that are secreted into the haemolymph. Technical difficulties prevented the investigation of these short effector genes until the recent advent of the CRISPR/CAS era. As a consequence, many putative immune effectors remain to be formally described, and exactly how each of these effectors contribute to survival is not well characterized. Here we describe a novel Drosophila antifungal peptide gene that we name Baramicin A. We show that BaraA encodes a precursor protein cleaved into multiple peptides via furin cleavage sites. BaraA is strongly immune-induced in the fat body downstream of the Toll pathway, but also exhibits expression in other tissues. Importantly, we show that flies lacking BaraA are viable but susceptible to the entomopathogenic fungus Beauveria bassiana. Consistent with BaraA being directly antimicrobial, overexpression of BaraA promotes resistance to fungi and the IM10-like peptides produced by BaraA synergistically inhibit growth of fungi in vitro when combined with a membrane-disrupting antifungal. Surprisingly, BaraA mutant males but not females display an erect wing phenotype upon infection. Here, we characterize a new antifungal immune effector downstream of Toll signalling, and show it is a key contributor to the Drosophila antimicrobial response.
Collapse
|
17
|
Ramirez-Corona BA, Fruth S, Ofoegbu O, Wunderlich Z. The mode of expression divergence in Drosophila fat body is infection-specific. Genome Res 2021; 31:1024-1034. [PMID: 33858842 PMCID: PMC8168590 DOI: 10.1101/gr.269597.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Transcription is controlled by interactions of cis-acting DNA elements with diffusible trans-acting factors. Changes in cis or trans factors can drive expression divergence within and between species, and their relative prevalence can reveal the evolutionary history and pressures that drive expression variation. Previous work delineating the mode of expression divergence in animals has largely used whole-body expression measurements in one condition. Because cis-acting elements often drive expression in a subset of cell types or conditions, these measurements may not capture the complete contribution of cis-acting changes. Here, we quantify the mode of expression divergence in the Drosophila fat body, the primary immune organ, in several conditions, using two geographically distinct lines of D. melanogaster and their F1 hybrids. We measured expression in the absence of infection and in infections with Gram-negative S. marcescens or Gram-positive E. faecalis bacteria, which trigger the two primary signaling pathways in the Drosophila innate immune response. The mode of expression divergence strongly depends on the condition, with trans-acting effects dominating in response to Gram-negative infection and cis-acting effects dominating in Gram-positive and preinfection conditions. Expression divergence in several receptor proteins may underlie the infection-specific trans effects. Before infection, when the fat body has a metabolic role, there are many compensatory effects, changes in cis and trans that counteract each other to maintain expression levels. This work shows that within a single tissue, the mode of expression divergence varies between conditions and suggests that these differences reflect the diverse evolutionary histories of host-pathogen interactions.
Collapse
Affiliation(s)
- Bryan A Ramirez-Corona
- Department of Developmental and Cell Biology, University of California, Irvine, California 92697, USA
| | - Stephanie Fruth
- Department of Developmental and Cell Biology, University of California, Irvine, California 92697, USA
| | - Oluchi Ofoegbu
- Department of Developmental and Cell Biology, University of California, Irvine, California 92697, USA
| | - Zeba Wunderlich
- Department of Developmental and Cell Biology, University of California, Irvine, California 92697, USA
| |
Collapse
|
18
|
Gao M, Mei X, Li C, Yu P, Shen D, Zhao Q. Genetic analysis and transcriptome analysis of the mini mutant of the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 107:e21774. [PMID: 33690914 DOI: 10.1002/arch.21774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/09/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
The expression levels of some intrinsic genes, protease activity, and regulation of signaling pathways were distinct during different growth and development stages in the silkworm, Bombyx mori. The silkworm mutant mini was discovered from the normal silkworm strain S8V, and the body-size of the mini mutant was smaller than the wild-type from the second-instar and the difference became more significant in the following stages. In this study, genetic analysis of mini mutant showed that mini mutant was controlled by a single recessive gene, manifested as homozygous lethal. Then, the transcriptome analysis of the mini mutant indicated that 2944 differentially expressed genes (DEGs) were identified from the silkworm in the 48 h of the second-instar, of which 1638 genes in the mini mutants were upregulated and 1306 genes were downregulated. These DEGs were mainly distributed in the biological process, cellular component, and molecular function. The functional annotation based on the KEGG database showed that these genes were mainly clustered in metabolic pathways, fatty acid metabolism pathways, ribosome biogenesis in eukaryotes, and so on. Further analysis indicated that some genes involved in the growth and metabolism including enzyme genes, juvenile hormone, and ecdysone exhibited different transcriptional levels. These results provided new experimental evidence regarding the mechanism of the underlying formation of mini mutants.
Collapse
Affiliation(s)
- Mengjie Gao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Xinglin Mei
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Cong Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Pengcheng Yu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Dongxu Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Qiaoling Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
19
|
Huang C, Xu R, Liégeois S, Chen D, Li Z, Ferrandon D. Differential Requirements for Mediator Complex Subunits in Drosophila melanogaster Host Defense Against Fungal and Bacterial Pathogens. Front Immunol 2021; 11:478958. [PMID: 33746938 PMCID: PMC7977287 DOI: 10.3389/fimmu.2020.478958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/29/2020] [Indexed: 01/08/2023] Open
Abstract
The humoral immune response to bacterial or fungal infections in Drosophila relies largely on a transcriptional response mediated by the Toll and Immune deficiency NF-κB pathways. Antimicrobial peptides are potent effectors of these pathways and allow the organism to attack invading pathogens. Dorsal-related Immune Factor (DIF), a transcription factor regulated by the Toll pathway, is required in the host defense against fungal and some Gram-positive bacterial infections. The Mediator complex is involved in the initiation of transcription of most RNA polymerase B (PolB)-dependent genes by forming a functional bridge between transcription factors bound to enhancer regions and the gene promoter region and then recruiting the PolB pre-initiation complex. Mediator is formed by several modules that each comprises several subunits. The Med17 subunit of the head module of Mediator has been shown to be required for the expression of Drosomycin, which encodes a potent antifungal peptide, by binding to DIF. Thus, Mediator is expected to mediate the host defense against pathogens controlled by the Toll pathway-dependent innate immune response. Here, we first focus on the Med31 subunit of the middle module of Mediator and find that it is required in host defense against Aspergillus fumigatus, Enterococcus faecalis, and injected but not topically-applied Metarhizium robertsii. Thus, host defense against M. robertsii requires Dif but not necessarily Med31 in the two distinct infection models. The induction of some Toll-pathway-dependent genes is decreased after a challenge of Med31 RNAi-silenced flies with either A. fumigatus or E. faecalis, while these flies exhibit normal phagocytosis and melanization. We have further tested most Mediator subunits using RNAi by monitoring their survival after challenges to several other microbial infections known to be fought off through DIF. We report that the host defense against specific pathogens involves a distinct set of Mediator subunits with only one subunit for C. glabrata or Erwinia carotovora carotovora, at least one for M. robertsii or a somewhat extended repertoire for A. fumigatus (at least eight subunits) and E. faecalis (eight subunits), with two subunits, Med6 and Med11 being required only against A. fumigatus. Med31 but not Med17 is required in fighting off injected M. robertsii conidia. Thus, the involvement of Mediator in Drosophila innate immunity is more complex than expected.
Collapse
Affiliation(s)
- Chuqin Huang
- Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
| | - Rui Xu
- Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, UPR 9022 du CNRS, Strasbourg, France
| | - Samuel Liégeois
- Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, UPR 9022 du CNRS, Strasbourg, France
| | - Di Chen
- Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
| | - Zi Li
- Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
| | - Dominique Ferrandon
- Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, UPR 9022 du CNRS, Strasbourg, France
| |
Collapse
|
20
|
Xiao B, Fu Q, Niu S, Zhu P, He J, Li C. Penaeidins restrict white spot syndrome virus infection by antagonizing the envelope proteins to block viral entry. Emerg Microbes Infect 2020; 9:390-412. [PMID: 32397950 PMCID: PMC7048182 DOI: 10.1080/22221751.2020.1729068] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Emerging studies have indicated that some penaeidins restrict virus infection; however, the mechanism(s) involved are poorly understood. In the present study, we uncovered that penaeidins are a novel family of antiviral effectors against white spot syndrome virus (WSSV), which antagonize the envelope proteins to block viral entry. We found that the expression levels of four identified penaeidins from Litopenaeus vannamei, including BigPEN, PEN2, PEN3, and PEN4, were significantly induced in hemocytes during the early stage of WSSV infection. Knockdown of each penaeidin in vivo via RNA interference resulted in elevated viral loads and rendered shrimp more susceptible to WSSV, while the survival rate was rescued via the injection of recombinant penaeidins. All penaeidins, except PEN4, were shown to interact with several envelope proteins of WSSV, and all four penaeidins were observed to be located on the outer surface of the WSSV virion. Co-incubation of each recombinant penaeidin with WSSV inhibited virion internalization into hemocytes. More importantly, we found that PEN2 competitively bound to the envelope protein VP24 to release it from polymeric immunoglobulin receptor (pIgR), the cellular receptor required for WSSV infection. Moreover, we also demonstrated that BigPEN was able to bind to VP28 of WSSV, which disrupted the interaction between VP28 and Rab7 – the Rab GTPase that contributes to viral entry by binding with VP28. Taken together, our results demonstrated that penaeidins interact with the envelope proteins of WSSV to block multiple viral infection processes, thereby protecting the host against WSSV.
Collapse
Affiliation(s)
- Bang Xiao
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China.,State Key Laboratory of Biocontrol/ School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| | - Qihui Fu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China.,State Key Laboratory of Biocontrol/ School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| | - Shengwen Niu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China.,State Key Laboratory of Biocontrol/ School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| | - Peng Zhu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gluf University, Qinzhou, P. R. People's Republic of China
| | - Jianguo He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China.,State Key Laboratory of Biocontrol/ School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| | - Chaozheng Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China.,State Key Laboratory of Biocontrol/ School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| |
Collapse
|
21
|
Wu M, Wang P, Gao M, Shen D, Zhao Q. Transcriptome analysis of the eggs of the silkworm pale red egg (rep-1) mutant at 36 hours after oviposition. PLoS One 2020; 15:e0237242. [PMID: 32764803 PMCID: PMC7413551 DOI: 10.1371/journal.pone.0237242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/22/2020] [Indexed: 12/04/2022] Open
Abstract
The egg stage is one of the most critical periods in the life history of silkworms, during which physiological processes such as sex determination, tissue organ formation and differentiation, diapause and pigmentation occur. In addition, egg color gradually emerges around 36h after oviposition. The red egg mutant rep-1, which was recently discovered in the C1(H) wild-type, C1(H) exhibits a brown egg color. In this study, the transcriptome of the eggs was analyzed 36h after oviposition. Between the rep-1 mutant and the C1(H) wild-type, 800 differentially expressed genes (DEGs) were identified, including 325 up-regulated genes and 475 down-regulated genes. These DEGs were mainly involved in biological processes (metabolic process, cellular process, biological regulation and regulation of biological process and localization), cellular components (membrane, membrane part, cell, cell part and organelle) and molecular functions (binding, catalytic activity, transporter activity, structural molecule activity and molecular transducer activity). The pathway enrichment of these DEGs was performed based on the KEGG database, and the results indicated that these DEGs were mainly involved in pathways in the following categories: metabolic pathways, longevity-regulating pathway-multiple species, protein processing in endoplasmic reticulum, peroxisome, carbon metabolism and purine metabolism. Further analysis showed that a large number of silkworm growth- and development-related genes and ommochrome synthesis- and metabolism-related genes were differentially expressed, most of which were up-regulated in the mutant. Our research findings provide new experimental evidence for research on ommochrome pigmentation and lay the foundation for further research on the mechanism of the rep-1 mutant.
Collapse
Affiliation(s)
- Meina Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Pingyang Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
- Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Guangxi, Nanning, China
| | - Mengjie Gao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Dongxu Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Qiaoling Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
- * E-mail:
| |
Collapse
|
22
|
Sun C, Liu B, Zhou Q, Xiong Z, Shan F, Zhang H. Response of Macrobrachium rosenbergii to Vegetable Oils Replacing Dietary Fish Oil: Insights From Antioxidant Defense. Front Physiol 2020; 11:218. [PMID: 32231592 PMCID: PMC7082322 DOI: 10.3389/fphys.2020.00218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 02/25/2020] [Indexed: 11/27/2022] Open
Abstract
The study was conducted to evaluate the effects of fish oil replacement by vegetable oils on growth performance, histology, and antioxidant capacity of Macrobrachium rosenbergii. Three isonitrogenous and isoenergetic diets were formulated with different lipid sources included. DFO diet contained 6% fish oil, whereas DSO and DRO diets included 6% soybean oil and rapeseed oil (RO) as alternatives for fish oil, respectively. Prawns were fed thrice daily for 8 weeks. The results showed that prawns in DFO group showed significantly lower final weight, weight gain ratio, and specific growth rate (SGR), but higher feed intake and feed coefficient ratio than those in DSO and DRO groups. In hepatocellular ultrastructure, malformed and atrophic nucleus and higher apoptosis ratio were observed in DFO group. In addition, levels of haemolymph proinflammatory cytokines, activities of anti-superoxide anion, inducible-type NO-synthase (iNOS) and content of nitric oxide, and hepatopancreas NF-κB signal pathway gene expression in DFO group increased markedly compared to those of DSO and DRO groups. The results suggested that vegetable oils, such as soybean oil and RO might be the better lipid sources in diets for Macrobrachium rosenbergii than fish oil, it may be attributed to modified oxidative status induced by NF-κB-NO signal pathway.
Collapse
Affiliation(s)
- Cunxin Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Bo Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Qunlan Zhou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Zhe Xiong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Fan Shan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Huimin Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| |
Collapse
|
23
|
Lin SJH, Fulzele A, Cohen LB, Bennett EJ, Wasserman SA. Bombardier Enables Delivery of Short-Form Bomanins in the Drosophila Toll Response. Front Immunol 2020; 10:3040. [PMID: 31998316 PMCID: PMC6965162 DOI: 10.3389/fimmu.2019.03040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/11/2019] [Indexed: 01/17/2023] Open
Abstract
Toll mediates a robust and effective innate immune response across vertebrates and invertebrates. In Drosophila melanogaster, activation of Toll by systemic infection drives the accumulation of a rich repertoire of immune effectors in hemolymph, including the recently characterized Bomanins, as well as the classical antimicrobial peptides (AMPs). Here we report the functional characterization of a Toll-induced hemolymph protein encoded by the bombardier (CG18067) gene. Using the CRISPR/Cas9 system to generate a precise deletion of the bombardier transcriptional unit, we found that Bombardier is required for Toll-mediated defense against fungi and Gram-positive bacteria. Assaying cell-free hemolymph, we found that the Bomanin-dependent candidacidal activity is also dependent on Bombardier, but is independent of the antifungal AMPs Drosomycin and Metchnikowin. Using mass spectrometry, we demonstrated that deletion of bombardier results in the specific absence of short-form Bomanins from hemolymph. In addition, flies lacking Bombardier exhibited a defect in pathogen tolerance that we trace to an aberrant condition triggered by Toll activation. These results lead us to a model in which the presence of Bombardier in wild-type flies enables the proper folding, secretion, or intermolecular associations of short-form Bomanins, and the absence of Bombardier disrupts one or more of these steps, resulting in defects in both immune resistance and tolerance.
Collapse
Affiliation(s)
- Samuel J H Lin
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
| | - Amit Fulzele
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
| | - Lianne B Cohen
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
| | - Eric J Bennett
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
| | - Steven A Wasserman
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
24
|
Regulation of the expression of nine antimicrobial peptide genes by TmIMD confers resistance against Gram-negative bacteria. Sci Rep 2019; 9:10138. [PMID: 31300668 PMCID: PMC6626034 DOI: 10.1038/s41598-019-46222-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/31/2019] [Indexed: 12/23/2022] Open
Abstract
Immune deficiency (IMD) is a death domain-containing protein that is essential for the IMD/NF-κB humoral and epithelial immune responses to Gram-negative bacteria and viruses in insects. In the immune signaling cascade, IMD is recruited together with FADD and the caspase DREDD after the mobilization of PGRP receptors. Activated IMD regulates the expression of effector antimicrobial peptides (AMP) that protect against invading microorganisms. To date, most studies of the IMD pathway, and the IMD gene in particular, have been restricted to Drosophila; few similar studies have been conducted in other model insects. Herein, we cloned and functionally characterized an IMD homolog from the mealworm beetle Tenebrio molitor (TmIMD) and studied its role in host survival in the context of pathogenic infections. Phylogenetic analysis revealed the conserved caspase cleavage site and inhibitor of apoptosis (IAP)-binding motif (IBM). TmIMD expression was high in the hemocytes and Malpighian tubules of Tenebrio late-instar larvae and adults. At 3 and 6 hours’ post-infection with Escherichia coli, Staphylococcus aureus, or Candida albicans, TmIMD expression significantly increased compared with mock-infected controls. Knockdown of the TmIMD transcript by RNAi significantly reduced host resistance to the Gram-negative bacterium E. coli and fungus C. albicans in a survival assay. Strikingly, the expression of nine T. molitor AMPs (TmTenecin1, TmTenecin2, TmTenecin4, TmDefensin2, TmColeoptericin1, TmColeoptericin2, TmAttacin1a, TmAttacin1b, and TmAttacin2) showed significant downregulation in TmIMD knockdown larvae challenged with E. coli. These results suggest that TmIMD is required to confer humoral immunity against the Gram-negative bacteria, E. coli by inducing the expression of critical transcripts that encode AMPs.
Collapse
|
25
|
Chowdhury M, Zhang J, Xu XX, He Z, Lu Y, Liu XS, Wang YF, Yu XQ. An in vitro study of NF-κB factors cooperatively in regulation of Drosophila melanogaster antimicrobial peptide genes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 95:50-58. [PMID: 30735676 DOI: 10.1016/j.dci.2019.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
An important innate immune response in Drosophila melanogaster is the production of antimicrobial peptides (AMPs). Expression of AMP genes is mediated by the Toll and immune deficiency (IMD) pathways via NF-κB transcription factors Dorsal, DIF and Relish. Dorsal and DIF act downstream of the Toll pathway, whereas Relish acts in the IMD pathway. Dorsal and DIF are held inactive in the cytoplasm by the IκB protein Cactus, while Relish contains an IκB-like inhibitory domain at the C-terminus. NF-κB factors normally form homodimers and heterodimers to regulate gene expression, but formation of heterodimers between Relish and DIF or Dorsal and the specificity and activity of the three NF-κB homodimers and heterodimers are not well understood. In this study, we compared the activity of Rel homology domains (RHDs) of Dorsal, DIF and Relish in activation of Drosophila AMP gene promoters, demonstrated that Relish-RHD (Rel-RHD) interacted with both Dorsal-RHD and DIF-RHD, Relish-N interacted with DIF and Dorsal, and overexpression of individual RHD and co-expression of any two RHDs activated the activity of AMP gene promoters to various levels, suggesting formation of homodimers and heterodimers among Dorsal, DIF and Relish. Rel-RHD homodimers were stronger activators than heterodimers of Rel-RHD with either DIF-RHD or Dorsal-RHD, while DIF-RHD-Dorsal-RHD heterodimers were stronger activators than either DIF-RHD or Dorsal-RHD homodimers in activation of AMP gene promoters. We also identified the nucleotides at the 6th and 8th positions of the 3' half-sites of the κB motifs that are important for the specificity and activity of NF-κB transcription factors.
Collapse
Affiliation(s)
- Munmun Chowdhury
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri - Kansas City, Kansas City, MO, 64110, USA
| | - Jie Zhang
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri - Kansas City, Kansas City, MO, 64110, USA
| | - Xiao-Xia Xu
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri - Kansas City, Kansas City, MO, 64110, USA; College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhen He
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri - Kansas City, Kansas City, MO, 64110, USA; School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yuzhen Lu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xu-Sheng Liu
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yu-Feng Wang
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xiao-Qiang Yu
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri - Kansas City, Kansas City, MO, 64110, USA; School of Life Sciences, Central China Normal University, Wuhan, 430079, China; Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
26
|
Molaei M, Vandehoef C, Karpac J. NF-κB Shapes Metabolic Adaptation by Attenuating Foxo-Mediated Lipolysis in Drosophila. Dev Cell 2019; 49:802-810.e6. [PMID: 31080057 DOI: 10.1016/j.devcel.2019.04.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/24/2019] [Accepted: 04/06/2019] [Indexed: 12/22/2022]
Abstract
Metabolic and innate immune signaling pathways have co-evolved to elicit coordinated responses. However, dissecting the integration of these ancient signaling mechanisms remains a challenge. Using Drosophila, we uncovered a role for the innate immune transcription factor nuclear factor κB (NF-κB)/Relish in governing lipid metabolism during metabolic adaptation to fasting. We found that Relish is required to restrain fasting-induced lipolysis, and thus conserve cellular triglyceride levels during metabolic adaptation, through specific repression of ATGL/Brummer lipase gene expression in adipose (fat body). Fasting-induced changes in Brummer expression and, consequently, triglyceride metabolism are adjusted by Relish-dependent attenuation of Foxo transcriptional activation function, a critical metabolic transcription factor. Relish limits Foxo function by influencing fasting-dependent histone deacetylation and subsequent chromatin modifications within the Bmm locus. These results highlight that the antagonism of Relish and Foxo functions are crucial in the regulation of lipid metabolism during metabolic adaptation, which may further influence the coordination of innate immune-metabolic responses.
Collapse
Affiliation(s)
- Maral Molaei
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA; Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Crissie Vandehoef
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Jason Karpac
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA; Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA.
| |
Collapse
|
27
|
Lindsay SA, Lin SJH, Wasserman SA. Short-Form Bomanins Mediate Humoral Immunity in Drosophila. J Innate Immun 2018; 10:306-314. [PMID: 29920489 DOI: 10.1159/000489831] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/06/2018] [Indexed: 11/19/2022] Open
Abstract
The Bomanins (Boms) are a family of a dozen secreted peptides that mediate the innate immune response governed by the Drosophila Toll receptor. We recently showed that deleting a cluster of 10 Bom genes blocks Toll-mediated defenses against a range of fungi and gram-positive bacteria. Here, we characterize the activity of individual Bom family members. We provide evidence that the Boms overlap in function and that a single Bom gene encoding a mature peptide of just 16 amino acids can act largely or entirely independent of other family members to provide phenotypic rescue in vivo. We further demonstrate that the Boms function in Drosophila humoral immunity, mediating the killing of the fungal pathogen Candida glabrata in an in vitro assay of cell-free hemolymph. In addition, we find that the level of antifungal activity both in vivo and in vitro is linked to the level of Bom gene expression. Although Toll dictates expression of the antimicrobial peptides (AMPs) drosomycin and metchnikowin, we find no evidence that Boms act by modifying the expression of the mature forms of these antifungal AMPs.
Collapse
|
28
|
Lindberg BG, Tang X, Dantoft W, Gohel P, Seyedoleslami Esfahani S, Lindvall JM, Engström Y. Nubbin isoform antagonism governs Drosophila intestinal immune homeostasis. PLoS Pathog 2018; 14:e1006936. [PMID: 29499056 PMCID: PMC5851638 DOI: 10.1371/journal.ppat.1006936] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/14/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
Gut immunity is regulated by intricate and dynamic mechanisms to ensure homeostasis despite a constantly changing microbial environment. Several regulatory factors have been described to participate in feedback responses to prevent aberrant immune activity. Little is, however, known about how transcriptional programs are directly tuned to efficiently adapt host gut tissues to the current microbiome. Here we show that the POU/Oct gene nubbin (nub) encodes two transcription factor isoforms, Nub-PB and Nub-PD, which antagonistically regulate immune gene expression in Drosophila. Global transcriptional profiling of adult flies overexpressing Nub-PB in immunocompetent tissues revealed that this form is a strong transcriptional activator of a large set of immune genes. Further genetic analyses showed that Nub-PB is sufficient to drive expression both independently and in conjunction with nuclear factor kappa B (NF-κB), JNK and JAK/STAT pathways. Similar overexpression of Nub-PD did, conversely, repress expression of the same targets. Strikingly, isoform co-overexpression normalized immune gene transcription, suggesting antagonistic activities. RNAi-mediated knockdown of individual nub transcripts in enterocytes confirmed antagonistic regulation by the two isoforms and that both are necessary for normal immune gene transcription in the midgut. Furthermore, enterocyte-specific Nub-PB expression levels had a strong impact on gut bacterial load as well as host lifespan. Overexpression of Nub-PB enhanced bacterial clearance of ingested Erwinia carotovora carotovora 15. Nevertheless, flies quickly succumbed to the infection, suggesting a deleterious immune response. In line with this, prolonged overexpression promoted a proinflammatory signature in the gut with induction of JNK and JAK/STAT pathways, increased apoptosis and stem cell proliferation. These findings highlight a novel regulatory mechanism of host-microbe interactions mediated by antagonistic transcription factor isoforms.
Collapse
Affiliation(s)
- Bo G. Lindberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Xiongzhuo Tang
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Widad Dantoft
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Priya Gohel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Jessica M. Lindvall
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ylva Engström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
29
|
Morris O, Liu X, Domingues C, Runchel C, Chai A, Basith S, Tenev T, Chen H, Choi S, Pennetta G, Buchon N, Meier P. Signal Integration by the IκB Protein Pickle Shapes Drosophila Innate Host Defense. Cell Host Microbe 2017; 20:283-295. [PMID: 27631699 PMCID: PMC5026699 DOI: 10.1016/j.chom.2016.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/17/2016] [Accepted: 08/12/2016] [Indexed: 12/12/2022]
Abstract
Pattern recognition receptors are activated following infection and trigger transcriptional programs important for host defense. Tight regulation of NF-κB activation is critical to avoid detrimental and misbalanced responses. We describe Pickle, a Drosophila nuclear IκB that integrates signaling inputs from both the Imd and Toll pathways by skewing the transcriptional output of the NF-κB dimer repertoire. Pickle interacts with the NF-κB protein Relish and the histone deacetylase dHDAC1, selectively repressing Relish homodimers while leaving other NF-κB dimer combinations unscathed. Pickle's ability to selectively inhibit Relish homodimer activity contributes to proper host immunity and organismal health. Although loss of pickle results in hyper-induction of Relish target genes and improved host resistance to pathogenic bacteria in the short term, chronic inactivation of pickle causes loss of immune tolerance and shortened lifespan. Pickle therefore allows balanced immune responses that protect from pathogenic microbes while permitting the establishment of beneficial commensal host-microbe relationships.
Collapse
Affiliation(s)
- Otto Morris
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| | - Xi Liu
- Department of Entomology, Cornell University, 5124 Comstock Hall, 129 Garden Avenue, Ithaca, NY 14853, USA
| | - Celia Domingues
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Christopher Runchel
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Andrea Chai
- Euan MacDonald Centre for Motor Neuron Disease Research, Centre for Integrative Physiology, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Shaherin Basith
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea; National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Tencho Tenev
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Haiyang Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| | - Giuseppa Pennetta
- Euan MacDonald Centre for Motor Neuron Disease Research, Centre for Integrative Physiology, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Nicolas Buchon
- Department of Entomology, Cornell University, 5124 Comstock Hall, 129 Garden Avenue, Ithaca, NY 14853, USA
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
30
|
Wang P, Bi S, Wu F, Xu P, Shen X, Zhao Q. Differentially expressed genes in the head of the 2nd instar pre-molting larvae of the nm2 mutant of the silkworm, Bombyx mori. PLoS One 2017; 12:e0180160. [PMID: 28727825 PMCID: PMC5519023 DOI: 10.1371/journal.pone.0180160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 06/10/2017] [Indexed: 12/20/2022] Open
Abstract
Molting is an important physiological process in the larval stage of Bombyx mori and is controlled by various hormones and peptides. The silkworm mutant that exhibits the phenotype of non-molting in the 2nd instar (nm2) is incapable of molting in the 2nd instar and dies after seven or more days. The ecdysone titer in the nm2 mutant is lower than that in the wildtype, and the mutant can be rescued by feeding with 20E and cholesterol. The results of positional cloning indicated that structural alteration of BmCPG10 is responsible for the phenotype of the nm2 mutant. To explore the possible relationship between BmCPG10 and the ecdysone titer as well as the genes affected by BmCPG10, digital gene expression (DGE) profile analysis was conducted in the nm2 mutant, with the wildtype strain C603 serving as the control. The results revealed 1727 differentially expressed genes, among which 651 genes were upregulated and 1076 were downregulated in nm2. BLASTGO analysis showed that these differentially expressed genes were involved in various biological processes, cellular components and molecular functions. KEGG analysis indicated an enrichment of these differentially expressed genes in 240 pathways, including metabolic pathways, pancreatic secretion, protein digestion and absorption, fat digestion and absorption and glycerolipid metabolism. To verify the accuracy of the DGE results, quantitative reverse transcription PCR (qRT-PCR) was performed, focusing on key genes in several related pathways, and the results were highly consistent with the DGE results. Our findings indicated significant differences in cuticular protein genes, ecdysone biosynthesis genes and ecdysone-related nuclear receptors genes, but no significant difference in juvenile hormone and chitin biosynthesis genes was detected. Our research findings lay the foundation for further research on the formation mechanism of the nm2 mutant.
Collapse
Affiliation(s)
- Pingyang Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang Jiangsu, China
| | - Simin Bi
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang Jiangsu, China
| | - Fan Wu
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Pingzhen Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang Jiangsu, China
| | - Xingjia Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang Jiangsu, China
| | - Qiaoling Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang Jiangsu, China
- * E-mail:
| |
Collapse
|
31
|
MicroRNAs That Contribute to Coordinating the Immune Response in Drosophila melanogaster. Genetics 2017; 207:163-178. [PMID: 28706002 PMCID: PMC5586370 DOI: 10.1534/genetics.116.196584] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 07/07/2017] [Indexed: 12/12/2022] Open
Abstract
Small noncoding RNAs called microRNAs (miRNAs) have emerged as post-transcriptional regulators of gene expression related to host defenses. Here, we have used Drosophila melanogaster to explore the contribution of individual or clusters of miRNAs in countering systemic Candida albicans infection. From a total of 72 tested, we identify 6 miRNA allelic mutant backgrounds that modulate the survival response to infection and the ability to control pathogen number. These mutants also exhibit dysregulation of the Toll pathway target transcripts Drosomycin (Drs) and Immune-Induced Molecule 1 (IM1). These are characteristics of defects in Toll signaling, and consistent with this, we demonstrate dependency for one of the miRNA mutants on the NF-κΒ homolog Dif. We also quantify changes in the miRNA expression profile over time in response to three pathogen types, and identify 13 mature miRNA forms affected by pathogens that stimulate Toll signaling. To complement this, we provide a genome-wide map of potential NF-κB sites in proximity to miRNA genes. Finally, we demonstrate that systemic C. albicans infection contributes to a reduction in the total amount of branch-chained amino acids, which is miRNA-regulated. Overall, our data reveal a new layer of miRNA complexity regulating the fly response to systemic fungal infection.
Collapse
|
32
|
Transcription Factor Forkhead Regulates Expression of Antimicrobial Peptides in the Tobacco Hornworm, Manduca sexta. Sci Rep 2017; 7:2688. [PMID: 28578399 PMCID: PMC5457402 DOI: 10.1038/s41598-017-02830-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/19/2017] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) play an important role in defense against microbial infections in insects. Expression of AMPs is regulated mainly by NF-κB factors Dorsal, Dif and Relish. Our previous study showed that both NF-κB and GATA-1 factors are required for activation of moricin promoter in the tobacco hornworm, Manduca sexta, and a 140-bp region in the moricin promoter contains binding sites for additional transcription factors. In this study, we identified three forkhead (Fkh)-binding sites in the 140-bp region of the moricin promoter and several Fkh-binding sites in the lysozyme promoter, and demonstrated that Fkh-binding sites are required for activation of both moricin and lysozyme promoters by Fkh factors. In addition, we found that Fkh mRNA was undetectable in Drosophila S2 cells, and M. sexta Fkh (MsFkh) interacted with Relish-Rel-homology domain (RHD) but not with Dorsal-RHD. Dual luciferase assays with moricin mutant promoters showed that co-expression of MsFkh with Relish-RHD did not have an additive effect on the activity of moricin promoter, suggesting that MsFkh and Relish regulate moricin activation independently. Our results suggest that insect AMPs can be activated by Fkh factors under non-infectious conditions, which may be important for protection of insects from microbial infection during molting and metamorphosis.
Collapse
|
33
|
Sun WW, Zhang XX, Wan WS, Wang SQ, Wen XB, Zheng HP, Zhang YL, Li SK. Tumor necrosis factor receptor-associated factor 6 (TRAF6) participates in anti-lipopolysaccharide factors (ALFs) gene expression in mud crab. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:361-376. [PMID: 27581742 DOI: 10.1016/j.dci.2016.08.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/28/2016] [Accepted: 08/28/2016] [Indexed: 06/06/2023]
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a key cytoplasm signal adaptor that mediates signals activated by tumor necrosis factor receptor (TNFR) superfamily and the Interleukin-1 receptor/Toll-like receptor (IL-1/TLR) superfamily. The full-length 2492 bp TRAF6 (Sp-TRAF6) from Scylla paramamosain contains 1800 bp of open reading frame (ORF) encoding 598 amino acids, including an N-terminal RING-type zinc finger, two TRAF-type zinc fingers and a conserved C-terminal meprin and TRAF homology (MATH) domain. Multiple alignment analysis shows that the putative amino acid sequence of Sp-TRAf6 has highest identity of 88% with Pt-TRAF6 from Portunus trituberculatus, while the similarity of Sp-TRAF6 with other crustacean sequences was 54-55%. RT-PCR analysis indicated that Sp-TRAF6 transcripts were predominantly expressed in the hepatopancreas and stomach, whereas it was barely detected in the heart and hemocytes in our study. Moreover, Sp-TRAF6 transcripts were significantly up-regulated after Vibrio parahemolyticus and LPS challenges. RNA interference assay was carried out used by siRNA to investigate the genes expression patterns regulated by Sp-TRAF6. The qRT-PCR results showed that silencing Sp-TRAF6 gene could inhibit SpALF1, SpALF2, SpALF5 and SpALF6 expression in hemocytes, while inhibit SpALF1, SpALF3, SpALF4, SpALF5 and SpALF6 expression in hepatopancreas. Taken together, the acute-phase response to immune challenges and the inhibition of SpALFs gene expression indicate that Sp-TRAF6 plays an important role in host defense against pathogen invasions via regulation of ALF gene expression in S. paramamosain.
Collapse
Affiliation(s)
- Wan-Wei Sun
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Xin-Xu Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Wei-Song Wan
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Shu-Qi Wang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Xiao-Bo Wen
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China
| | - Huai-Ping Zheng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Yue-Ling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Sheng-Kang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China.
| |
Collapse
|
34
|
Huang X, Wang W, Ren Q. Dorsal transcription factor is involved in regulating expression of crustin genes during white spot syndrome virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 63:18-26. [PMID: 27181712 DOI: 10.1016/j.dci.2016.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 06/05/2023]
Abstract
Nuclear factor-kappa B (NF-κB) pathways play important roles in innate immune responses. In this study, we identified a dorsal homolog (MrDorsal) from freshwater prawn Macrobrachium rosenbergii. The full-length cDNA of MrDorsal comprised 2533 bp with an open reading frame of 1986 bp, which encoded a peptide of 661 amino acid residues. Amino acid sequence analysis showed that MrDorsal contains a Rel homolog domain and an IPT/TIG (i.e., Ig-like, plexin, and transcription factors) domain. The signature sequence of dorsal protein FRYMCEG existed in the deduced amino acid sequence. Sequence analysis showed that MrDorsal shared high similarities with Dorsal from invertebrate species. MrDorsal was abundant in the hemocytes and gills of healthy prawns but minute levels were detected in other tissues. The expression of MrDorsal was significantly upregulated 48 h after the white spot syndrome virus (WSSV-) challenge. Knockdown of MrDorsal using double-stranded RNA could suppress the transcription of crustin genes (MrCrustin2 and MrCrustin4) in gills of prawns after 48 h of the WSSV challenge. Results indicated that MrDorsal was involved to regulate the expression of crustin genes and it might play potential important roles during WSSV infection.
Collapse
Affiliation(s)
- Xin Huang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China.
| |
Collapse
|
35
|
Ji Y, Thomas C, Tulin N, Lodhi N, Boamah E, Kolenko V, Tulin AV. Charon Mediates Immune Deficiency-Driven PARP-1-Dependent Immune Responses in Drosophila. THE JOURNAL OF IMMUNOLOGY 2016; 197:2382-9. [PMID: 27527593 DOI: 10.4049/jimmunol.1600994] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/13/2016] [Indexed: 12/17/2022]
Abstract
Regulation of NF-κB nuclear translocation and stability is central to mounting an effective innate immune response. In this article, we describe a novel molecular mechanism controlling NF-κB-dependent innate immune response. We show that a previously unknown protein, termed as Charon, functions as a regulator of antibacterial and antifungal immune defense in Drosophila Charon is an ankyrin repeat-containing protein that mediates poly(ADP-ribose) polymerase-1 (PARP-1)-dependent transcriptional responses downstream of the innate immune pathway. Our results demonstrate that Charon interacts with the NF-κB ortholog Relish inside perinuclear particles and delivers active Relish to PARP-1-bearing promoters, thus triggering NF-κB/PARP-1-dependent transcription of antimicrobial peptides. Ablating the expression of Charon prevents Relish from targeting promoters of antimicrobial genes and effectively suppresses the innate immune transcriptional response. Taken together, these results implicate Charon as an essential mediator of PARP-1-dependent transcription in the innate immune pathway. Thus, to our knowledge, our results are the first to describe the molecular mechanism regulating translocation of the NF-κB subunit from cytoplasm to chromatin.
Collapse
Affiliation(s)
- Yingbiao Ji
- Fox Chase Cancer Center, Philadelphia, PA 19111
| | | | | | - Niraj Lodhi
- Fox Chase Cancer Center, Philadelphia, PA 19111
| | | | | | | |
Collapse
|
36
|
Clifford J, Adami C. Discovery and information-theoretic characterization of transcription factor binding sites that act cooperatively. Phys Biol 2015; 12:056004. [PMID: 26331781 DOI: 10.1088/1478-3975/12/5/056004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transcription factor binding to the surface of DNA regulatory regions is one of the primary causes of regulating gene expression levels. A probabilistic approach to model protein-DNA interactions at the sequence level is through position weight matrices (PWMs) that estimate the joint probability of a DNA binding site sequence by assuming positional independence within the DNA sequence. Here we construct conditional PWMs that depend on the motif signatures in the flanking DNA sequence, by conditioning known binding site loci on the presence or absence of additional binding sites in the flanking sequence of each site's locus. Pooling known sites with similar flanking sequence patterns allows for the estimation of the conditional distribution function over the binding site sequences. We apply our model to the Dorsal transcription factor binding sites active in patterning the Dorsal-Ventral axis of Drosophila development. We find that those binding sites that cooperate with nearby Twist sites on average contain about 0.5 bits of information about the presence of Twist transcription factor binding sites in the flanking sequence. We also find that Dorsal binding site detectors conditioned on flanking sequence information make better predictions about what is a Dorsal site relative to background DNA than detection without information about flanking sequence features.
Collapse
Affiliation(s)
- Jacob Clifford
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA. BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
37
|
Li H, Chen Y, Li M, Wang S, Zuo H, Xu X, Weng S, He J, Li C. A C-type lectin (LvCTL4) from Litopenaeus vannamei is a downstream molecule of the NF-κB signaling pathway and participates in antibacterial immune response. FISH & SHELLFISH IMMUNOLOGY 2015; 43:257-263. [PMID: 25559446 DOI: 10.1016/j.fsi.2014.12.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 06/04/2023]
Abstract
C-type lectins (CTLs) play multiple roles in innate immune defense against invading pathogens in both vertebrates and invertebrates. In this study, a new C-type lectin gene from pacific white shrimp Litopenaeus vannamei (designated as LvCTL4) was cloned by rapid amplification of the cDNA ends (RACE) method. The full-length cDNA of LvCTL4 was 563 bp with open reading frame (ORF) of 471 bp encoding a polypeptide of 156 amino acids, including a putative signal sequence and a single C-type lectin-like domain (CTLD). The CTLD of 137 amino acid residues contained a mutated 'EPA' (Glu(121)-Pro(122)-Ala(123)) motif in the calcium-binding site 2 and three conserved disulfide bonds involved in structure maintenance. Tissue expression analysis showed LvCTL4 was ubiquitously distributed with high levels in gill, intestine, epithelium and hepatopancreas. The expression of LvCTL4 in gill was up-regulated in response to Vibrio parahaemolyticus challenge. RNAi knock-down of the LvCTL4 gene significantly increased mortality after V. parahaemolyticus infection. A 103 bp 5' flanking promoter sequence was obtained using the genome walking method and it contained a conserved NF-κB binding motif. Dual-Luciferase assay showed both LvDorsal and LvRelish could up regulate the promoter activity of LvCTL4. This is the first report that a shrimp C-type lectin can be regulated by both LvDorsal and LvRelish. These findings provided novel insights into the regulation of shrimp CTLs expression.
Collapse
Affiliation(s)
- Haoyang Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Yonggui Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Ming Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, PR China
| | - Sheng Wang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Hongliang Zuo
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaopeng Xu
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China.
| | - Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
38
|
Li YX, Dijkers PF. Specific Calcineurin Isoforms Are Involved in Drosophila Toll Immune Signaling. THE JOURNAL OF IMMUNOLOGY 2014; 194:168-76. [DOI: 10.4049/jimmunol.1401080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Lindberg BG, Oldenvi S, Steiner H. Medium from γ-irradiated Escherichia coli bacteria stimulates a unique immune response in Drosophila cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:392-400. [PMID: 24892816 DOI: 10.1016/j.dci.2014.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/23/2014] [Accepted: 05/26/2014] [Indexed: 06/03/2023]
Abstract
It is well known that γ-irradiated, non-dividing bacteria can elicit potent immune responses in mammals. Compared to traditional heat or chemical inactivation of microbes, γ-irradiation likely preserves metabolic activity and antigenic features to a larger extent. We have previously shown that antimicrobial peptides are induced in Drosophila by peptidoglycan fragments secreted into the medium of exponentially growing bacterial cultures. In this study, we γ-irradiated Escherichiacoli cells at a dose that halted cell division. The temporal synthesis and release of peptidoglycan fragments were followed as well as the potential of bacterial supernatants to induce immune responses in Drosophila S2 cells. We demonstrate that peptidoglycan synthesis continues for several days post irradiation and that monomeric peptidoglycan is shed into the medium. Whole transcriptome analysis revealed a strong immune response against the bacterial medium. The response to medium taken directly post irradiation shows a large overlap to that of peptidoglycan. Medium from prolonged bacterial incubation does, however, stimulate a selective set of immune genes. A shift towards a stress response was instead observed with a striking induction of several heat shock proteins. Our findings suggest that γ-irradiated bacteria release elicitors that stimulate a novel response in Drosophila.
Collapse
Affiliation(s)
- Bo G Lindberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20 C, 106 91 Stockholm, Sweden
| | - Sandra Oldenvi
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20 C, 106 91 Stockholm, Sweden
| | - Håkan Steiner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20 C, 106 91 Stockholm, Sweden.
| |
Collapse
|
40
|
Verma P, Tapadia MG. Epithelial immune response in Drosophila malpighian tubules: interplay between Diap2 and ion channels. J Cell Physiol 2014; 229:1078-95. [PMID: 24374974 DOI: 10.1002/jcp.24541] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/12/2013] [Indexed: 11/12/2022]
Abstract
Systemic immune response via the Immune deficiency pathway requires Drosophila inhibitor of apoptosis protein 2 to activate the NF-κB transcription factor Relish. Malpighian tubules (MTs), simple epithelial tissue, are the primary excretory organs, performing additional role in providing protection to Drosophila against pathogenic infections. MTs hold a strategic position in Drosophila as one of the larval tissues that are carried over to adults, unlike other larval tissues that are histolysed during pupation. In this paper we show that Diap2 is an important regulator of local epithelial immune response in MTs and depletion of Diap2 from MTs, increases susceptibility of flies to infection. In the absence of Diap2, activation and translocation of Relish to the nucleus is abolished and as a consequence the production of IMD pathway dependent AMPs are reduced. Ion channels, (Na(+)/K(+))-ATPase and V-ATPase, are important for the immune response of MTs and expression of AMPs and the IMD pathway genes are impaired on inhibition of transporters, and they restrict the translocation of Relish into the nucleus. We show that Diap2 could be regulating ion channels, as loss of Diap2 consequently reduces the expression of ion channels and affects the balance of ion concentrations which results in reduced uric acid deposition. Thus Diap2 seems to be a key regulator of epithelial immune response in MTs, perhaps by modulating ion channels.
Collapse
Affiliation(s)
- Puja Verma
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
41
|
Kuo TH, Williams JA. Increased sleep promotes survival during a bacterial infection in Drosophila. Sleep 2014; 37:1077-86, 1086A-1086D. [PMID: 24882902 DOI: 10.5665/sleep.3764] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
STUDY OBJECTIVES The relationship between sleep and immune function is not well understood at a functional or molecular level. We therefore used a genetic approach in Drosophila to manipulate sleep and evaluated effects on the ability of flies to fight bacterial infection. SETTING Laboratory. PARTICIPANTS Drosophila melanogaster. METHODS AND RESULTS We used a genetic approach to transiently alter neuronal excitability in the mushroom body, a region in the central brain that is known to regulate sleep. Flies with increased sleep for up to two days prior to a bacterial infection showed increased resistance to the infection and improved survival. These flies also had increased expression levels of a subset of anti-microbial peptide mRNA prior to infection, as well as increased NFκB activity during infection as indicated by in vivo luciferase reporter activity. In contrast, flies that experienced reduced sleep for up to two days prior to infection had no effect on survival or on NFκB activity during infection. However, flies with reduced sleep showed an altered defense mechanism, such that resistance to infection was increased, but at the expense of reduced tolerance. This effect was dependent on environmental condition. CONCLUSIONS Increasing sleep enhanced activity of an NFκB transcription factor, increased resistance to infection, and strongly promoted survival. Together, these findings support the hypothesis that sleep is beneficial to the host by maintaining a robust immune system.
Collapse
Affiliation(s)
- Tzu-Hsing Kuo
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Julie A Williams
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
42
|
Kuo TH, Williams JA. Acute sleep deprivation enhances post-infection sleep and promotes survival during bacterial infection in Drosophila. Sleep 2014; 37:859-69. [PMID: 24790264 DOI: 10.5665/sleep.3648] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
STUDY OBJECTIVES Sleep is known to increase as an acute response to infection. However, the function of this behavioral response in host defense is not well understood. To address this problem, we evaluated the effect of acute sleep deprivation on post-infection sleep and immune function in Drosophila. SETTING Laboratory. PARTICIPANTS Drosophila melanogaster. METHODS AND RESULTS Flies were subjected to sleep deprivation before (early DEP) or after (late DEP) bacterial infection. Relative to a non-deprived control, flies subjected to early DEP had enhanced sleep after infection as well as increased bacterial clearance and survival outcome. Flies subjected to late DEP experienced enhanced sleep following the deprivation period, and showed a modest improvement in survival outcome. Continuous DEP (early and late DEP) throughout infection also enhanced sleep later during infection and improved survival. However, improved survival in flies subjected to late or continuous DEP did not occur until after flies had experienced sleep. During infection, both early and late DEP enhanced NFκB transcriptional activity as measured by a luciferase reporter (κB-luc) in living flies. Early DEP also increased NFκB activity prior to infection. Flies that were deficient in expression of either the Relish or Dif NFκB transcription factors showed normal responses to early DEP. However, the effect of early DEP on post-infection sleep and survival was abolished in double mutants, which indicates that Relish and Dif have redundant roles in this process. CONCLUSIONS Acute sleep deprivation elevated NFκB-dependent activity, increased post-infection sleep, and improved survival during bacterial infection.
Collapse
Affiliation(s)
- Tzu-Hsing Kuo
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Julie A Williams
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
43
|
Lindsay SA, Wasserman SA. Conventional and non-conventional Drosophila Toll signaling. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:16-24. [PMID: 23632253 PMCID: PMC3787077 DOI: 10.1016/j.dci.2013.04.011] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/17/2013] [Accepted: 04/17/2013] [Indexed: 05/07/2023]
Abstract
The discovery of Toll in Drosophila and of the remarkable conservation in pathway composition and organization catalyzed a transformation in our understanding of innate immune recognition and response. At the center of that picture is a cascade of interactions in which specific microbial cues activate Toll receptors, which then transmit signals driving transcription factor nuclear localization and activity. Experiments gave substance to the vision of pattern recognition receptors, linked phenomena in development, gene regulation, and immunity into a coherent whole, and revealed a rich set of variations for identifying non-self and responding effectively. More recently, research in Drosophila has illuminated the positive and negative regulation of Toll activation, the organization of signaling events at and beneath membranes, the sorting of information flow, and the existence of non-conventional signaling via Toll-related receptors. Here, we provide an overview of the Toll pathway of flies and highlight these ongoing realms of research.
Collapse
Affiliation(s)
- Scott A. Lindsay
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093-0349, USA
| | - Steven A. Wasserman
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093-0349, USA
- Corresponding author. Tel: 858-822-2408.
| |
Collapse
|
44
|
Kingsolver MB, Huang Z, Hardy RW. Insect antiviral innate immunity: pathways, effectors, and connections. J Mol Biol 2013; 425:4921-36. [PMID: 24120681 DOI: 10.1016/j.jmb.2013.10.006] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/01/2013] [Accepted: 10/02/2013] [Indexed: 11/28/2022]
Abstract
Insects are infected by a wide array of viruses some of which are insect restricted and pathogenic, and some of which are transmitted by biting insects to vertebrates. The medical and economic importance of these viruses heightens the need to understand the interaction between the infecting pathogen and the insect immune system in order to develop transmission interventions. The interaction of the virus with the insect host innate immune system plays a critical role in the outcome of infection. The major mechanism of antiviral defense is the small, interfering RNA pathway that responds through the detection of virus-derived double-stranded RNA to suppress virus replication. However, other innate antimicrobial pathways such as Imd, Toll, and Jak-STAT and the autophagy pathway have also been shown to play important roles in antiviral immunity. In this review, we provide an overview of the current understanding of the main insect antiviral pathways and examine recent findings that further our understanding of the roles of these pathways in facilitating a systemic and specific response to infecting viruses.
Collapse
|
45
|
Lourenço AP, Guidugli-Lazzarini KR, Freitas FCP, Bitondi MMG, Simões ZLP. Bacterial infection activates the immune system response and dysregulates microRNA expression in honey bees. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:474-482. [PMID: 23499934 DOI: 10.1016/j.ibmb.2013.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/16/2013] [Accepted: 03/04/2013] [Indexed: 06/01/2023]
Abstract
In insects, a rapid and massive synthesis of antimicrobial peptides (AMPs) is activated through signaling pathways (Toll and Imd) to combat invading microbial pathogens. However, it is still unclear whether different types of bacteria provoke specific responses. Immune response mechanisms and the activation of specific genes were investigated by challenging Apis mellifera workers with the Gram-negative bacterium Serratia marcescens or the Gram-positive bacterium Micrococcus luteus. The immune system responded by activating most genes of the Toll and Imd pathways, particularly AMP genes. However, genes specifically regulated by M. luteus or S. marcescens were not detected, suggesting an interaction between the signaling pathways that lead to immune effectors synthesis. Despite this finding, kappaB motifs in the 5'-UTRs of selected genes suggest a pathway-specific control of AMP and transferrin-1 gene expression. Regulation by miRNAs was also investigated and revealed a number of candidates for the post-transcriptional regulation of immune genes in bees.
Collapse
Affiliation(s)
- Anete P Lourenço
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
46
|
Xu J, Grant G, Sabin LR, Gordesky-Gold B, Yasunaga A, Tudor M, Cherry S. Transcriptional pausing controls a rapid antiviral innate immune response in Drosophila. Cell Host Microbe 2013; 12:531-43. [PMID: 23084920 DOI: 10.1016/j.chom.2012.08.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/27/2012] [Accepted: 08/31/2012] [Indexed: 12/21/2022]
Abstract
Innate immune responses are characterized by precise gene expression whereby gene subsets are temporally induced to limit infection, although the mechanisms involved are incompletely understood. We show that antiviral immunity in Drosophila requires the transcriptional pausing pathway, including negative elongation factor (NELF) that pauses RNA polymerase II (Pol II) and positive elongation factor b (P-TEFb), which releases paused Pol II to produce full-length transcripts. We identify a set of genes that is rapidly transcribed upon arbovirus infection, including components of antiviral pathways (RNA silencing, autophagy, JAK/STAT, Toll, and Imd) and various Toll receptors. Many of these genes require P-TEFb for expression and exhibit pausing-associated chromatin features. Furthermore, transcriptional pausing is critical for antiviral immunity in insects because NELF and P-TEFb are required to restrict viral replication in adult flies and vector mosquito cells. Thus, transcriptional pausing primes virally induced genes to facilitate rapid gene induction and robust antiviral responses.
Collapse
Affiliation(s)
- Jie Xu
- Department of Microbiology, Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA 19146, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
An antiviral role for antimicrobial peptides during the arthropod response to alphavirus replication. J Virol 2013; 87:4272-80. [PMID: 23365449 DOI: 10.1128/jvi.03360-12] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Alphaviruses establish a persistent infection in arthropod vectors which is essential for the effective transmission of the virus to vertebrate hosts. The development of persistence in insects is not well understood, although it is thought to involve the innate immune response. Using a transgenic fly system expressing a self-replicating viral RNA genome analog, we have previously demonstrated antiviral roles of the Drosophila Imd (immune deficiency) and Jak-STAT innate immunity pathways in response to alphavirus replication. In the present study, comparative microarray analysis of flies harboring an alphavirus replicon and control green fluorescent protein flies identified 95 SINrep-sensitive genes. Furthermore, a subset of these genes is regulated by Rel or STAT transcription factors of the Imd and Jak-STAT pathways, respectively. We identified two antimicrobial peptide genes, attC and dptB, which are SINrep sensitive and regulated by STAT and Rel, respectively. SINrep flies heterozygous for attC had an increased viral RNA level, while knocking down dptB in SINrep flies resulted in impaired development. When injected with whole virus, the double-stranded RNA knockdowns of either attC or dptB showed a significant increase in virus titers. Our data demonstrate an antiviral response involving the Imd and Jak-STAT mediated expression of dptB and attC.
Collapse
|
48
|
Yokoi K, Koyama H, Ito W, Minakuchi C, Tanaka T, Miura K. Involvement of NF-κB transcription factors in antimicrobial peptide gene induction in the red flour beetle, Tribolium castaneum. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:342-351. [PMID: 22771624 DOI: 10.1016/j.dci.2012.06.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 06/22/2012] [Accepted: 06/23/2012] [Indexed: 06/01/2023]
Abstract
We previously demonstrated that Tribolium castaneum antimicrobical peptide (AMP) genes can be classified to IMD-dependent group I, Toll-dependent group III and co-dependent group II genes besides non-inducible group IV. Here, we focused on NF-κB transcription factor genes, Dif1, Dif2 and Rel, and examined their functions in AMP gene induction as well as linkages to the Toll or IMD pathway. IMD-dependent group I and Toll-dependent group III genes were revealed to be Rel- and Dif-dependent respectively through knockdown experiments, indicating that the pathway specificity of NF-κB classes found in Drosophila is also conserved in T. castaneum. The Toll-Dif and IMD-Rel pathways of T. castaneum were activated concomitantly by single microbe species, which may represent a distinctive feature of its immune responses. In addition, Rel knockdown impaired host defense against two model bacterial pathogens. Finally, potential κB motifs were searched in the regulatory regions of AMP genes, and relevance to respective NF-κB transcription factors was discussed.
Collapse
Affiliation(s)
- Kakeru Yokoi
- Applied Entomology Laboratory, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
The vast majority of research on nuclear factor κB (NF-κB) signaling in the past 25 years has focused on its roles in normal and disease-related processes in vertebrates, especially mice and humans. Recent genome and transcriptome sequencing efforts have shown that homologs of NF-κB transcription factors, inhibitor of NF-κB (IκB) proteins, and IκB kinases are present in a variety of invertebrates, including several in phyla simpler than Arthropoda, the phylum containing insects such Drosophila. Moreover, many invertebrates also contain genes encoding homologs of upstream signaling proteins in the Toll-like receptor signaling pathway, which is well-known for its downstream activation of NF-κB for innate immunity. This review describes what we now know or can infer and speculate about the evolution of the core elements of NF-κB signaling as well as the biological processes controlled by NF-κB in invertebrates. Further research on NF-κB in invertebrates is likely to uncover information about the evolutionary origins of this key human signaling pathway and may have relevance to our management of the responses of ecologically and economically important organisms to environmental and adaptive pressures.
Collapse
Affiliation(s)
- Thomas D Gilmore
- Department of Biology, Boston University, Boston, MA 02215, USA.
| | | |
Collapse
|
50
|
Rao XJ, Xu XX, Yu XQ. Manduca sexta moricin promoter elements can increase promoter activities of Drosophila melanogaster antimicrobial peptide genes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:982-92. [PMID: 22005212 PMCID: PMC3210862 DOI: 10.1016/j.ibmb.2011.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/19/2011] [Accepted: 09/30/2011] [Indexed: 05/13/2023]
Abstract
Insects produce a variety of antimicrobial peptides (AMPs). Induction of insect AMP genes is regulated by the Toll and IMD (immune deficiency) pathways via NF-κB and GATA factors. Little is known about species-specific regulation of AMP genes. In this report, we showed that activities of most Manduca sexta and Drosophila melanogaster AMP gene promoters were regulated in a species-specific manner in Drosophila (Dipteran) S2 cells and Spodoptera frugiperda (Lepidopteran) Sf9 cells. A κB-GATA element (22 bp) from M. sexta moricin (MsMoricin) promoter could significantly increase activities of Drosophila AMP gene promoters in S2 cells, and an MsMoricin promoter activating element (MPAE) (140 bp) could increase activity of drosomycin promoter specifically in Sf9 cells. However, κB and GATA factors alone were not sufficient for MsMoricin gene activation, suggesting that other co-regulators may be required to fully activate AMP genes. Our results suggest that induction of insect AMP genes may require a transcription complex composed of common nuclear factors (such as NF-κB and GATA factors) and species-related co-regulators, and it is the co-regulators that may confer species-specific regulation of AMP genes. In addition, we showed that activity of Drosophila drosomycin promoter could be activated cooperatively by the inserted exogenous κB-GATA element and the endogenous κB element. These findings revealed an approach of engineering AMP genes with enhanced activities, which may lead to broad applications.
Collapse
Affiliation(s)
| | | | - Xiao-Qiang Yu
- Send correspondence to: Xiao-Qiang Yu, PhD, Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, Telephone: (816)-235-6379, Fax: (816)-235-1503,
| |
Collapse
|