1
|
Stuckenschneider L, Graumann PL. Localization and Single Molecule Dynamics of Bacillus subtilis Penicillin-Binding Proteins Depend on Substrate Availability and Are Affected by Stress Conditions. Cells 2025; 14:429. [PMID: 40136678 PMCID: PMC11940910 DOI: 10.3390/cells14060429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
We have used single molecule tracking to investigate dynamics of four penicillin-binding proteins (PBPs) in Bacillus subtilis to shed light on their possible modes of action. We show that Pbp2a, Pbp3, Pbp4, and Pbp4a, when expressed at very low levels, show at least two distinct states of mobility: a state of slow motion, likely representing molecules involved in cell wall synthesis, and a mode of fast motion, likely representing freely diffusing molecules. Except for Pbp4, all other PBPs showed about 50% molecules in the slow mobility state, suggesting that roughly half of all molecules are engaged in a substrate-bound mode. We observed similar coefficients for the slow mobility state for Pbp4 and Pbp4a on the one hand, and for Pbp2a and Pbp3 on the other hand, indicating possible joint activities, respectively. Upon induction of osmotic stress, Pbp2a and Pbp4a changed from a pattern of localization mostly at the lateral cell membrane to also include localization at the septum, revealing that sites of preferred positioning for these two PBPs can be modified during stress conditions. While Pbp3 became more dynamic after induction of osmotic stress, Pbp4 became more static, showing that PBPs reacted markedly differently to envelope stress conditions. The data suggest that PBPs could take over functions in cell wall synthesis during different stress conditions, increasing the resilience of cell wall homeostasis in different environmental conditions. All PBPs lost their respective localization pattern after the addition of vancomycin or penicillin G, indicating that patterns largely depend on substrate availability. Our findings show that PBPs rapidly alter between non-targeted motion through the cell membrane and capture at sites of active cell wall synthesis, most likely guided by complex formation with other cell wall synthesis enzymes.
Collapse
Affiliation(s)
- Lisa Stuckenschneider
- SYNMIKRO, Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße, 35043 Marburg, Germany;
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Peter L. Graumann
- SYNMIKRO, Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße, 35043 Marburg, Germany;
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| |
Collapse
|
2
|
Dersch S, Graumann PL. Adaptation of Bacillus subtilis MreB Filaments to Osmotic Stress Depends on Influx of Potassium Ions. Microorganisms 2024; 12:1309. [PMID: 39065078 PMCID: PMC11279060 DOI: 10.3390/microorganisms12071309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The circumferential motion of MreB filaments plays a key role in cell shape maintenance in many bacteria. It has recently been shown that filament formation of MreB filaments in Bacillus subtilis is influenced by stress conditions. In response to osmotic upshift, MreB molecules were released from filaments, as seen by an increase in freely diffusive molecules, and the peptidoglycan synthesis pattern became less organized, concomitant with slowed-down cell extension. In this study, biotic and abiotic factors were analysed with respect to a possible function in the adaptation of MreB filaments to stress conditions. We show that parallel to MreB, its interactor RodZ becomes more diffusive following osmotic stress, but the remodeling of MreB filaments is not affected by a lack of RodZ. Conversely, mutant strains that prevent efficient potassium influx into cells following osmotic shock show a failure to disassemble MreB filaments, accompanied by less perturbed cell wall extension than is observed in wild type cells. Because potassium ions are known to negatively affect MreB polymerization in vitro, our data indicate that polymer disassembly is directly mediated by the physical consequences of the osmotic stress response. The lack of an early potassium influx response strongly decreases cell survival following stress application, suggesting that the disassembly of MreB filaments may ensure slowed-down cell wall extension to allow for efficient adaptation to new osmotic conditions.
Collapse
Affiliation(s)
| | - Peter L. Graumann
- Centre for Synthetic Microbiology (SYNMIKRO), Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany;
| |
Collapse
|
3
|
Lee J, Cox JV, Ouellette SP. The Unique N-Terminal Domain of Chlamydial Bactofilin Mediates Its Membrane Localization and Ring-Forming Properties. J Bacteriol 2023; 205:e0009223. [PMID: 37191556 PMCID: PMC10294636 DOI: 10.1128/jb.00092-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/01/2023] [Indexed: 05/17/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen. In evolving to the intracellular niche, Chlamydia has reduced its genome size compared to other bacteria and, as a consequence, has a number of unique features. For example, Chlamydia engages the actin-like protein MreB, rather than the tubulin-like protein FtsZ, to direct peptidoglycan (PG) synthesis exclusively at the septum of cells undergoing polarized cell division. Interestingly, Chlamydia possesses another cytoskeletal element-a bactofilin ortholog, BacA. Recently, we reported BacA is a cell size-determining protein that forms dynamic membrane-associated ring structures in Chlamydia that have not been observed in other bacteria with bactofilins. Chlamydial BacA possesses a unique N-terminal domain, and we hypothesized this domain imparts the membrane-binding and ring-forming properties of BacA. We show that different truncations of the N terminus result in distinct phenotypes: removal of the first 50 amino acids (ΔN50) results in large ring structures at the membrane whereas removal of the first 81 amino acids (ΔN81) results in an inability to form filaments and rings and a loss of membrane association. Overexpression of the ΔN50 isoform altered cell size, similar to loss of BacA, suggesting that the dynamic properties of BacA are essential for the regulation of cell size. We further show that the region from amino acid 51 to 81 imparts membrane association as appending it to green fluorescent protein (GFP) resulted in the relocalization of GFP from the cytosol to the membrane. Overall, our findings suggest two important functions for the unique N-terminal domain of BacA and help explain its role as a cell size determinant. IMPORTANCE Bacteria use a variety of filament-forming cytoskeletal proteins to regulate and control various aspects of their physiology. For example, the tubulin-like FtsZ recruits division proteins to the septum whereas the actin-like MreB recruits peptidoglycan (PG) synthases to generate the cell wall in rod-shaped bacteria. Recently, a third class of cytoskeletal protein has been identified in bacteria-bactofilins. These proteins have been primarily linked to spatially localized PG synthesis. Interestingly, Chlamydia, an obligate intracellular bacterium, does not have PG in its cell wall and yet possesses a bactofilin ortholog. In this study, we characterize a unique N-terminal domain of chlamydial bactofilin and show that this domain controls two important functions that affect cell size: its ring-forming and membrane-associating properties.
Collapse
Affiliation(s)
- Junghoon Lee
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - John V. Cox
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Scot P. Ouellette
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
4
|
Stülke J, Grüppen A, Bramkamp M, Pelzer S. Bacillus subtilis, a Swiss Army Knife in Science and Biotechnology. J Bacteriol 2023; 205:e0010223. [PMID: 37140386 PMCID: PMC10210981 DOI: 10.1128/jb.00102-23] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Next to Escherichia coli, Bacillus subtilis is the most studied and best understood organism that also serves as a model for many important pathogens. Due to its ability to form heat-resistant spores that can germinate even after very long periods of time, B. subtilis has attracted much scientific interest. Another feature of B. subtilis is its genetic competence, a developmental state in which B. subtilis actively takes up exogenous DNA. This makes B. subtilis amenable to genetic manipulation and investigation. The bacterium was one of the first with a fully sequenced genome, and it has been subject to a wide variety of genome- and proteome-wide studies that give important insights into many aspects of the biology of B. subtilis. Due to its ability to secrete large amounts of proteins and to produce a wide range of commercially interesting compounds, B. subtilis has become a major workhorse in biotechnology. Here, we review the development of important aspects of the research on B. subtilis with a specific focus on its cell biology and biotechnological and practical applications from vitamin production to concrete healing. The intriguing complexity of the developmental programs of B. subtilis, paired with the availability of sophisticated tools for genetic manipulation, positions it at the leading edge for discovering new biological concepts and deepening our understanding of the organization of bacterial cells.
Collapse
Affiliation(s)
- Jörg Stülke
- Department of General Microbiology, Institute for Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | | | - Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | | |
Collapse
|
5
|
Single molecule dynamics of DNA receptor ComEA, membrane permease ComEC and taken up DNA in competent Bacillus subtilis cells. J Bacteriol 2021; 204:e0057221. [PMID: 34928178 DOI: 10.1128/jb.00572-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In competent Gram-negative and Gram-positive bacteria, double stranded DNA is taken up through the outer cell membrane and/or the cell wall, and is bound by ComEA, which in Bacillus subtilis is a membrane protein. DNA is converted to single stranded DNA, and transported through the cell membrane via ComEC. We show that in Bacillus subtilis, the C-terminus of ComEC, thought to act as a nuclease, is not only important for DNA uptake, as judged from a loss of transformability, but also for the localization of ComEC to the cell pole and its mobility within the cell membrane. Using single molecule tracking, we show that only 13% of ComEC molecules are statically localised at the pole, while 87% move throughout the cell membrane. These experiments suggest that recruitment of ComEC to the cell pole is mediated by a diffusion/capture mechanism. Mutation of a conserved aspartate residue in the C-terminus, likely affecting metal binding, strongly impairs transformation efficiency, suggesting that this periplasmic domain of ComEC could indeed serve a catalytic function as nuclease. By tracking fluorescently labeled DNA, we show that taken up DNA has a similar mobility as a protein, in spite of being a large polymer. DNA dynamics are similar within the periplasm as those of ComEA, suggesting that most taken up molecules are bound to ComEA. We show that DNA can be highly mobile within the periplasm, indicating that this subcellular space can act as reservoir for taken up DNA, before its entry into the cytosol. Importance Bacteria can take up DNA from the environment and incorporate it into their chromosome, termed "natural competence" that can result in the uptake of novel genetic information. We show that fluorescently labelled DNA moves within the periplasm of competent Bacillus subtilis cells, with similar dynamics as DNA receptor ComEA. This indicates that DNA can accumulate in the periplasm, likely bound by ComEA, and thus can be stored before uptake at the cell pole, via integral membrane DNA permease ComEC. Assembly of the latter assembles at the cell pole likely occurs by a diffusion-capture mechanism. DNA uptake into cells thus takes a detour through the entire periplasm, and involves a high degree of free diffusion along and within the cell membrane.
Collapse
|
6
|
Sattler L, Graumann PL. Real-Time Messenger RNA Dynamics in Bacillus subtilis. Front Microbiol 2021; 12:760857. [PMID: 34867890 PMCID: PMC8637298 DOI: 10.3389/fmicb.2021.760857] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Messenger RNA molecules have been localized to different positions in cells and have been followed by time-lapse microscopy. We have used MS2-mVenus-labeled mRNA and single-particle tracking to obtain information on the dynamics of single-mRNA molecules in real time. Using single-molecule tracking, we show that several mRNA molecules visualized via two MS2-binding sites and MS2-mVenus expressed in Bacillus subtilis cells show free diffusion through the entire cell and constrained motion predominantly close to the cell membrane and at the polar regions of the cells. Because constrained motion of mRNAs likely reflects molecules complexed with ribosomes, our data support the idea that translation occurs at sites surrounding the nucleoids. Squared displacement analyses show the existence of at least two distinct populations of molecules with different diffusion constants or possibly of three populations, for example, freely mobile mRNAs, mRNAs in transition complexes, or in complex with polysomes. Diffusion constants between differently sized mRNAs did not differ dramatically and were much lower than that of cytosolic proteins. These data agree with the large size of mRNA molecules and suggest that, within the viscous cytoplasm, size variations do not translate into mobility differences. However, at observed diffusion constants, mRNA molecules would be able to reach all positions within cells in a frame of seconds. We did not observe strong differences in the location of confined motion for mRNAs encoding mostly soluble or membrane proteins, indicating that there is no strong bias for localization of membrane protein-encoding transcripts for the cell membrane.
Collapse
Affiliation(s)
- Laura Sattler
- Centre for Synthetic Microbiology (SYNMIKRO) and Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Peter L Graumann
- Centre for Synthetic Microbiology (SYNMIKRO) and Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
7
|
Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020; 84:e00008-20. [PMID: 33115939 PMCID: PMC7599038 DOI: 10.1128/mmbr.00008-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.
Collapse
Affiliation(s)
- Alexander Cambré
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| |
Collapse
|
8
|
Sharma K, Sultana T, Dahms TES, Dillon JAR. CcpN: a moonlighting protein regulating catabolite repression of gluconeogenic genes in Bacillus subtilis also affects cell length and interacts with DivIVA. Can J Microbiol 2020; 66:723-732. [PMID: 32762636 DOI: 10.1139/cjm-2020-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CcpN is a transcriptional repressor in Bacillus subtilis that binds to the promoter region of gapB and pckA, downregulating their expression in the presence of glucose. CcpN also represses sr1, which encodes a small noncoding regulatory RNA that suppresses the arginine biosynthesis gene cluster. CcpN has homologues in other Gram-positive bacteria, including Enterococcus faecalis. We report the interaction of CcpN with DivIVA of B. subtilis as determined using bacterial two-hybrid and glutathione S-transferase pull-down assays. Insertional inactivation of CcpN leads to cell elongation and formation of straight chains of cells. These findings suggest that CcpN is a moonlighting protein involved in both gluconeogenesis and cell elongation.
Collapse
Affiliation(s)
- Kusum Sharma
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.,Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N 5E3, Canada
| | - Taranum Sultana
- Department of Chemistry and Biochemistry, 3737 Wascana Parkway, University of Regina, Regina, SK S4S 0A2, Canada
| | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, 3737 Wascana Parkway, University of Regina, Regina, SK S4S 0A2, Canada
| | - Jo-Anne R Dillon
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.,Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N 5E3, Canada
| |
Collapse
|
9
|
Awuni E. Status of Targeting MreB for the Development of Antibiotics. Front Chem 2020; 7:884. [PMID: 31998684 PMCID: PMC6965359 DOI: 10.3389/fchem.2019.00884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
Although many prospective antibiotic targets are known, bacterial infections and resistance to antibiotics remain a threat to public health partly because the druggable potentials of most of these targets have yet to be fully tapped for the development of a new generation of therapeutics. The prokaryotic actin homolog MreB is one of the important antibiotic targets that are yet to be significantly exploited. MreB is a bacterial cytoskeleton protein that has been widely studied and is associated with the determination of rod shape as well as important subcellular processes including cell division, chromosome segregation, cell wall morphogenesis, and cell polarity. Notwithstanding that MreB is vital and conserved in most rod-shaped bacteria, no approved antibiotics targeting it are presently available. Here, the status of targeting MreB for the development of antibiotics is concisely summarized. Expressly, the known therapeutic targets and inhibitors of MreB are presented, and the way forward in the search for a new generation of potent inhibitors of MreB briefly discussed.
Collapse
Affiliation(s)
- Elvis Awuni
- Department of Biochemistry, School of Biological Sciences, CANS, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
10
|
|
11
|
Abstract
The construction of the bacterial cell envelope is a fundamental topic, as it confers its integrity to bacteria and is consequently the target of numerous antibiotics. MreB is an essential protein suspected to regulate the cell wall synthetic machineries. Despite two decades of study, its localization remains the subject of controversies, its description ranging from helical filaments spanning the entire cell to small discrete entities. The true structure of these filaments is important because it impacts the model describing how the machineries building the cell wall are associated, how they are coordinated at the scale of the entire cell, and how MreB mediates this regulation. Our results shed light on this debate, revealing the size of native filaments in B. subtilis during growth. They argue against models where MreB filament size directly affects the speed of synthesis of the cell wall and where MreB would coordinate distant machineries along the side wall. The actin-like MreB protein is a key player of the machinery controlling the elongation and maintenance of the cell shape of most rod-shaped bacteria. This protein is known to be highly dynamic, moving along the short axis of cells, presumably reflecting the movement of cell wall synthetic machineries during the enzymatic assembly of the peptidoglycan mesh. The ability of MreB proteins to form polymers is not debated, but their structure, length, and conditions of establishment have remained unclear and the subject of conflicting reports. Here we analyze various strains of Bacillus subtilis, the model for Gram-positive bacteria, and we show that MreB forms subdiffraction-limited, less than 200 nm-long nanofilaments on average during active growth, while micron-long filaments are a consequence of artificial overaccumulation of the protein. Our results also show the absence of impact of the size of the filaments on their speed, orientation, and other dynamic properties conferring a large tolerance to B. subtilis toward the levels and consequently the lengths of MreB polymers. Our data indicate that the density of mobile filaments remains constant in various strains regardless of their MreB levels, suggesting that another factor determines this constant.
Collapse
|
12
|
Dik DA, Fisher JF, Mobashery S. Cell-Wall Recycling of the Gram-Negative Bacteria and the Nexus to Antibiotic Resistance. Chem Rev 2018; 118:5952-5984. [PMID: 29847102 PMCID: PMC6855303 DOI: 10.1021/acs.chemrev.8b00277] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The importance of the cell wall to the viability of the bacterium is underscored by the breadth of antibiotic structures that act by blocking key enzymes that are tasked with cell-wall creation, preservation, and regulation. The interplay between cell-wall integrity, and the summoning forth of resistance mechanisms to deactivate cell-wall-targeting antibiotics, involves exquisite orchestration among cell-wall synthesis and remodeling and the detection of and response to the antibiotics through modulation of gene regulation by specific effectors. Given the profound importance of antibiotics to the practice of medicine, the assertion that understanding this interplay is among the most fundamentally important questions in bacterial physiology is credible. The enigmatic regulation of the expression of the AmpC β-lactamase, a clinically significant and highly regulated resistance response of certain Gram-negative bacteria to the β-lactam antibiotics, is the exemplar of this challenge. This review gives a current perspective to this compelling, and still not fully solved, 35-year enigma.
Collapse
Affiliation(s)
- David A. Dik
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jed F. Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
13
|
Fu G, Bandaria JN, Le Gall AV, Fan X, Yildiz A, Mignot T, Zusman DR, Nan B. MotAB-like machinery drives the movement of MreB filaments during bacterial gliding motility. Proc Natl Acad Sci U S A 2018; 115:2484-2489. [PMID: 29463706 PMCID: PMC5877941 DOI: 10.1073/pnas.1716441115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MreB is a bacterial actin that is important for cell shape and cell wall biosynthesis in many bacterial species. MreB also plays crucial roles in Myxococcus xanthus gliding motility, but the underlying mechanism remains unknown. Here we tracked the dynamics of single MreB particles in M. xanthus using single-particle tracking photoactivated localization microscopy. We found that a subpopulation of MreB particles moves rapidly along helical trajectories, similar to the movements of the MotAB-like gliding motors. The rapid MreB motion was stalled in the mutants that carried truncated gliding motors. Remarkably, M. xanthus MreB moves one to two orders of magnitude faster than its homologs that move along with the cell wall synthesis machinery in Bacillus subtilis and Escherichia coli, and this rapid movement was not affected by the inhibitors of cell wall biosynthesis. Our results show that in M. xanthus, MreB provides a scaffold for the gliding motors while the gliding machinery drives the movement of MreB filaments, analogous to the interdependent movements of myosin motors and actin in eukaryotic cells.
Collapse
Affiliation(s)
- Guo Fu
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Jigar N Bandaria
- Department of Physics, University of California, Berkeley, CA 94720
| | - Anne Valérie Le Gall
- Laboratoire de Chimie Bactérienne, UMR7283, Institut de Microbiologie de la Méditerranée, CNRS-Aix Marseille University, 13009 Marseille, France
| | - Xue Fan
- Department of Statistics, Texas A&M University, College Station, TX 77843
| | - Ahmet Yildiz
- Department of Physics, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, UMR7283, Institut de Microbiologie de la Méditerranée, CNRS-Aix Marseille University, 13009 Marseille, France
| | - David R Zusman
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Beiyan Nan
- Department of Biology, Texas A&M University, College Station, TX 77843;
| |
Collapse
|
14
|
Hussain S, Wivagg CN, Szwedziak P, Wong F, Schaefer K, Izoré T, Renner LD, Holmes MJ, Sun Y, Bisson-Filho AW, Walker S, Amir A, Löwe J, Garner EC. MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis. eLife 2018; 7:32471. [PMID: 29469806 PMCID: PMC5854468 DOI: 10.7554/elife.32471] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/21/2018] [Indexed: 12/26/2022] Open
Abstract
MreB is essential for rod shape in many bacteria. Membrane-associated MreB filaments move around the rod circumference, helping to insert cell wall in the radial direction to reinforce rod shape. To understand how oriented MreB motion arises, we altered the shape of Bacillus subtilis. MreB motion is isotropic in round cells, and orientation is restored when rod shape is externally imposed. Stationary filaments orient within protoplasts, and purified MreB tubulates liposomes in vitro, orienting within tubes. Together, this demonstrates MreB orients along the greatest principal membrane curvature, a conclusion supported with biophysical modeling. We observed that spherical cells regenerate into rods in a local, self-reinforcing manner: rapidly propagating rods emerge from small bulges, exhibiting oriented MreB motion. We propose that the coupling of MreB filament alignment to shape-reinforcing peptidoglycan synthesis creates a locally-acting, self-organizing mechanism allowing the rapid establishment and stable maintenance of emergent rod shape. Many bacteria are surrounded by both a cell membrane and a cell wall – a rigid outer covering made of sugars and short protein chains. The cell wall often determines which of a variety of shapes – such as rods or spheres – the bacteria grow into. One protein required to form the rod shape is called MreB. This protein forms filaments that bind to the bacteria’s cell membrane and associate with the enzymes that build the cell wall. Together, these filament-enzyme complexes rotate around the cell to build and reinforce the cell wall in a hoop-like manner. But how do the MreB filaments know how to move around the circumference of the rod, instead of moving in any other direction? Using a technique called total internal reflection microscopy to study how MreB filaments move across bacteria cells, Hussain, Wivagg et al. show that the filaments sense the shape of a bacterium by orienting along the direction of greatest curvature. As a result, the filaments in rod-shaped cells orient and move around the rod, while in spherical bacteria they move in all directions. However, spherical bacteria can regenerate into rods from small surface ‘bulges’. The MreB filaments in the bulges move in an oriented way, helping them to generate the rod shape. Hussain, Wivagg et al. also found that forcing cells that lack a cell wall into a rod shape caused the MreB filaments bound to the cell membrane to orient and circle around the rod. This shows that the organization of the filaments is sufficient to shape the cell wall. In the future, determining what factors control the activity of the MreB filaments and the enzymes they associate with might reveal new targets for antibiotics that disrupt the cell wall and so kill the bacteria. This will require higher resolution microscopes to be used to examine the cell wall in more detail. The activity of all the proteins involved in building cell walls will also need to be extensively characterized.
Collapse
Affiliation(s)
- Saman Hussain
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Carl N Wivagg
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Piotr Szwedziak
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Felix Wong
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, United States
| | - Kaitlin Schaefer
- Department of Microbiology and Immunology, Harvard University, Cambridge, United States
| | - Thierry Izoré
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Lars D Renner
- Leibniz Institute of Polymer Research, Dresden, Germany
| | - Matthew J Holmes
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Yingjie Sun
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | | | - Suzanne Walker
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Ariel Amir
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, United States
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| |
Collapse
|
15
|
van Teeseling MCF, de Pedro MA, Cava F. Determinants of Bacterial Morphology: From Fundamentals to Possibilities for Antimicrobial Targeting. Front Microbiol 2017; 8:1264. [PMID: 28740487 PMCID: PMC5502672 DOI: 10.3389/fmicb.2017.01264] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/23/2017] [Indexed: 12/11/2022] Open
Abstract
Bacterial morphology is extremely diverse. Specific shapes are the consequence of adaptive pressures optimizing bacterial fitness. Shape affects critical biological functions, including nutrient acquisition, motility, dispersion, stress resistance and interactions with other organisms. Although the characteristic shape of a bacterial species remains unchanged for vast numbers of generations, periodical variations occur throughout the cell (division) and life cycles, and these variations can be influenced by environmental conditions. Bacterial morphology is ultimately dictated by the net-like peptidoglycan (PG) sacculus. The species-specific shape of the PG sacculus at any time in the cell cycle is the product of multiple determinants. Some morphological determinants act as a cytoskeleton to guide biosynthetic complexes spatiotemporally, whereas others modify the PG sacculus after biosynthesis. Accumulating evidence supports critical roles of morphogenetic processes in bacteria-host interactions, including pathogenesis. Here, we review the molecular determinants underlying morphology, discuss the evidence linking bacterial morphology to niche adaptation and pathogenesis, and examine the potential of morphological determinants as antimicrobial targets.
Collapse
Affiliation(s)
- Muriel C F van Teeseling
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden
| | - Miguel A de Pedro
- Centro de Biología Molecular "Severo Ochoa" - Consejo Superior de Investigaciones Científicas, Universidad Autónoma de MadridMadrid, Spain
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden
| |
Collapse
|
16
|
Abstract
Bacillus subtilis is the best described member of the Gram positive bacteria. It is a typical rod shaped bacterium and grows by elongation in its long axis, before dividing at mid cell to generate two similar daughter cells. B. subtilis is a particularly interesting model for cell cycle studies because it also carries out a modified, asymmetrical division during endospore formation, which can be simply induced by starvation. Cell growth occurs strictly by elongation of the rod, which maintains a constant diameter at all growth rates. This process involves expansion of the cell wall, requiring intercalation of new peptidoglycan and teichoic acid material, as well as controlled hydrolysis of existing wall material. Actin-like MreB proteins are the key spatial regulators that orchestrate the plethora of enzymes needed for cell elongation, many of which are thought to assemble into functional complexes called elongasomes. Cell division requires a switch in the orientation of cell wall synthesis and is organised by a tubulin-like protein FtsZ. FtsZ forms a ring-like structure at the site of impending division, which is specified by a range of mainly negative regulators. There it recruits a set of dedicated division proteins to form a structure called the divisome, which brings about the process of division. During sporulation, both the positioning and fine structure of the division septum are altered, and again, several dedicated proteins that contribute specifically to this process have been identified. This chapter summarises our current understanding of elongation and division in B. subtilis, with particular emphasis on the cytoskeletal proteins MreB and FtsZ, and highlights where the major gaps in our understanding remain.
Collapse
|
17
|
Laddomada F, Miyachiro MM, Dessen A. Structural Insights into Protein-Protein Interactions Involved in Bacterial Cell Wall Biogenesis. Antibiotics (Basel) 2016; 5:antibiotics5020014. [PMID: 27136593 PMCID: PMC4929429 DOI: 10.3390/antibiotics5020014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 03/15/2016] [Accepted: 04/09/2016] [Indexed: 12/30/2022] Open
Abstract
The bacterial cell wall is essential for survival, and proteins that participate in its biosynthesis have been the targets of antibiotic development efforts for decades. The biosynthesis of its main component, the peptidoglycan, involves the coordinated action of proteins that are involved in multi-member complexes which are essential for cell division (the “divisome”) and/or cell wall elongation (the “elongasome”), in the case of rod-shaped cells. Our knowledge regarding these interactions has greatly benefitted from the visualization of different aspects of the bacterial cell wall and its cytoskeleton by cryoelectron microscopy and tomography, as well as genetic and biochemical screens that have complemented information from high resolution crystal structures of protein complexes involved in divisome or elongasome formation. This review summarizes structural and functional aspects of protein complexes involved in the cytoplasmic and membrane-related steps of peptidoglycan biosynthesis, with a particular focus on protein-protein interactions whereby disruption could lead to the development of novel antibacterial strategies.
Collapse
Affiliation(s)
- Federica Laddomada
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Grenoble F-38044, France.
- Centre National de la Recherche Scientifique (CNRS), IBS, Grenoble F-38044, France.
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), IBS, Grenoble F-38044, France.
| | - Mayara M Miyachiro
- Brazilian National Laboratory for Biosciences (LNBio), CNPEM, Campinas, São Paulo 13083-100, Brazil.
| | - Andréa Dessen
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Grenoble F-38044, France.
- Centre National de la Recherche Scientifique (CNRS), IBS, Grenoble F-38044, France.
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), IBS, Grenoble F-38044, France.
- Brazilian National Laboratory for Biosciences (LNBio), CNPEM, Campinas, São Paulo 13083-100, Brazil.
| |
Collapse
|
18
|
Abstract
Understanding mechanisms of bacterial sacculus growth is challenging due to the time and length scales involved. Enzymes three orders of magnitude smaller than the sacculus somehow coordinate and regulate their processes to double the length of the sacculus while preserving its shape and integrity, all over a period of tens of minutes to hours. Decades of effort using techniques ranging from biochemical analysis to microscopy have produced vast amounts of data on the structural and chemical properties of the cell wall, remodeling enzymes and regulatory proteins. The overall mechanism of cell wall synthesis, however, remains elusive. To approach this problem differently, we have developed a coarse-grained simulation method in which, for the first time to our knowledge, the activities of individual enzymes involved are modeled explicitly. We have already used this method to explore many potential molecular mechanisms governing cell wall synthesis, and anticipate applying the same method to other, related questions of bacterial morphogenesis. In this chapter, we present the details of our method, from coarse-graining the cell wall and modeling enzymatic activities to characterizing shape and visualizing sacculus growth.
Collapse
|
19
|
Abstract
Traditionally eukaryotes exclusive cytoskeleton has been found in bacteria and other prokaryotes. FtsZ, MreB and CreS are bacterial counterpart of eukaryotic tubulin, actin filaments and intermediate filaments, respectively. FtsZ can assemble to a Z-ring at the cell division site, regulate bacterial cell division; MreB can form helical structure, and involve in maintaining cell shape, regulating chromosome segregation; CreS, found in Caulobacter crescentus (C. crescentus), can form curve or helical filaments in intracellular membrane. CreS is crucial for cell morphology maintenance. There are also some prokaryotic unique cytoskeleton components playing crucial roles in cell division, chromosome segregation and cell morphology. The cytoskeleton components of Mycobacterium tuberculosis (M. tuberculosis), together with their dynamics during exposure to antibiotics are summarized in this article to provide insights into the unique organization of this formidable pathogen and druggable targets for new antibiotics.
Collapse
Affiliation(s)
- Huan Wang
- a Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University , Chongqing , China
| | - Longxiang Xie
- a Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University , Chongqing , China
| | - Hongping Luo
- a Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University , Chongqing , China
| | - Jianping Xie
- a Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University , Chongqing , China
| |
Collapse
|
20
|
Coarse-grained simulations of bacterial cell wall growth reveal that local coordination alone can be sufficient to maintain rod shape. Proc Natl Acad Sci U S A 2015; 112:E3689-98. [PMID: 26130803 DOI: 10.1073/pnas.1504281112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteria are surrounded by a peptidoglycan (PG) cell wall that must be remodeled to allow cell growth. While many structural details and properties of PG and the individual enzymes involved are known, how the process is coordinated to maintain cell integrity and rod shape is not understood. We have developed a coarse-grained method to simulate how individual transglycosylases, transpeptidases, and endopeptidases could introduce new material into an existing unilayer PG network. We find that a simple model with no enzyme coordination fails to maintain cell wall integrity and rod shape. We then iteratively analyze failure modes and explore different mechanistic hypotheses about how each problem might be overcome by the macromolecules involved. In contrast to a current theory, which posits that long MreB filaments are needed to coordinate PG insertion sites, we find that local coordination of enzyme activities in individual complexes can be sufficient to maintain cell integrity and rod shape. We also present possible molecular explanations for the existence of monofunctional transpeptidases and glycosidases (glycoside hydrolases), trimeric peptide crosslinks, cell twisting during growth, and synthesis of new strands in pairs.
Collapse
|
21
|
MreB-Dependent Inhibition of Cell Elongation during the Escape from Competence in Bacillus subtilis. PLoS Genet 2015; 11:e1005299. [PMID: 26091431 PMCID: PMC4474612 DOI: 10.1371/journal.pgen.1005299] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/26/2015] [Indexed: 02/02/2023] Open
Abstract
During bacterial exponential growth, the morphogenetic actin-like MreB proteins form membrane-associated assemblies that move processively following trajectories perpendicular to the long axis of the cell. Such MreB structures are thought to scaffold and restrict the movement of peptidoglycan synthesizing machineries, thereby coordinating sidewall elongation. In Bacillus subtilis, this function is performed by the redundant action of three MreB isoforms, namely MreB, Mbl and MreBH. mreB and mbl are highly transcribed from vegetative promoters. We have found that their expression is maximal at the end of exponential phase, and rapidly decreases to a low basal level upon entering stationary phase. However, in cells developing genetic competence, a stationary phase physiological adaptation, expression of mreB was specifically reactivated by the central competence regulator ComK. In competent cells, MreB was found in complex with several competence proteins by in vitro pull-down assays. In addition, it co-localized with the polar clusters formed by the late competence peripheral protein ComGA, in a ComGA-dependent manner. ComGA has been shown to be essential for the inhibition of cell elongation characteristic of cells escaping the competence state. We show here that the pathway controlling this elongation inhibition also involves MreB. Our findings suggest that ComGA sequesters MreB to prevent cell elongation and therefore the escape from competence. In bacterial cells, like in their eukaryotic counterparts, precise spatiotemporal localization of proteins is critical for their cellular function. This study shows that the expression and the localization of the bacterial actin-like MreB protein are growth phase-dependent. During exponential growth, we previously showed that MreB, together with other morphogenetic factors, forms discrete assemblies that move in a directed manner along peripheral tracks. Here, we demonstrate that in cells that develop genetic competence during stationary phase, transcription of mreB is specifically activated and MreB relocalizes to the cell poles. Our findings suggest a model in which MreB sequestration by the late competence protein ComGA prevents cell elongation during the escape from competence.
Collapse
|
22
|
Eun YJ, Kapoor M, Hussain S, Garner EC. Bacterial Filament Systems: Toward Understanding Their Emergent Behavior and Cellular Functions. J Biol Chem 2015; 290:17181-9. [PMID: 25957405 DOI: 10.1074/jbc.r115.637876] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteria use homologs of eukaryotic cytoskeletal filaments to conduct many different tasks, controlling cell shape, division, and DNA segregation. These filaments, combined with factors that regulate their polymerization, create emergent self-organizing machines. Here, we summarize the current understanding of the assembly of these polymers and their spatial regulation by accessory factors, framing them in the context of being dynamical systems. We highlight how comparing the in vivo dynamics of the filaments with those measured in vitro has provided insight into the regulation, emergent behavior, and cellular functions of these polymeric systems.
Collapse
Affiliation(s)
- Ye-Jin Eun
- From the Molecular and Cellular Biology Department and Faculty of Arts and Sciences (FAS) Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Mrinal Kapoor
- From the Molecular and Cellular Biology Department and Faculty of Arts and Sciences (FAS) Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Saman Hussain
- From the Molecular and Cellular Biology Department and Faculty of Arts and Sciences (FAS) Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Ethan C Garner
- From the Molecular and Cellular Biology Department and Faculty of Arts and Sciences (FAS) Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
23
|
Ladwig N, Franz-Wachtel M, Hezel F, Soufi B, Macek B, Wohlleben W, Muth G. Control of Morphological Differentiation of Streptomyces coelicolor A3(2) by Phosphorylation of MreC and PBP2. PLoS One 2015; 10:e0125425. [PMID: 25927987 PMCID: PMC4416010 DOI: 10.1371/journal.pone.0125425] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/23/2015] [Indexed: 12/14/2022] Open
Abstract
During morphological differentiation of Streptomyces coelicolor A3(2), the sporogenic aerial hyphae are transformed into a chain of more than fifty spores in a highly coordinated manner. Synthesis of the thickened spore envelope is directed by the Streptomyces spore wall synthesizing complex SSSC which resembles the elongasome of rod-shaped bacteria. The SSSC includes the eukaryotic type serine/threonine protein kinase (eSTPK) PkaI, encoded within a cluster of five independently transcribed eSTPK genes (SCO4775-4779). To understand the role of PkaI in spore wall synthesis, we screened a S. coelicolor genomic library for PkaI interaction partners by bacterial two-hybrid analyses and identified several proteins with a documented role in sporulation. We inactivated pkaI and deleted the complete SCO4775-4779 cluster. Deletion of pkaI alone delayed sporulation and produced some aberrant spores. The five-fold mutant NLΔ4775-4779 had a more severe defect and produced 18% aberrant spores affected in the integrity of the spore envelope. Moreover, overbalancing phosphorylation activity by expressing a second copy of any of these kinases caused a similar defect. Following co-expression of pkaI with either mreC or pbp2 in E. coli, phosphorylation of MreC and PBP2 was demonstrated and multiple phosphosites were identified by LC-MS/MS. Our data suggest that elaborate protein phosphorylation controls activity of the SSSC to ensure proper sporulation by suppressing premature cross-wall synthesis.
Collapse
Affiliation(s)
- Nils Ladwig
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Mirita Franz-Wachtel
- Proteome Center Tuebingen, Interfakultaeres Institut für Zellbiologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 15,72076 Tübingen, Germany
| | - Felix Hezel
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Boumediene Soufi
- Proteome Center Tuebingen, Interfakultaeres Institut für Zellbiologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 15,72076 Tübingen, Germany
| | - Boris Macek
- Proteome Center Tuebingen, Interfakultaeres Institut für Zellbiologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 15,72076 Tübingen, Germany
| | - Wolfgang Wohlleben
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Günther Muth
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| |
Collapse
|
24
|
Translation elongation factor EF-Tu modulates filament formation of actin-like MreB protein in vitro. J Mol Biol 2015; 427:1715-27. [PMID: 25676310 DOI: 10.1016/j.jmb.2015.01.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/02/2015] [Accepted: 01/27/2015] [Indexed: 11/20/2022]
Abstract
EF-Tu has been shown to interact with actin-like protein MreB and to affect its localization in Escherichia coli and in Bacillus subtilis cells. We have purified YFP-MreB in an active form, which forms filaments on glass slides in vitro and was active in dynamic light-scattering assays, polymerizing in milliseconds after addition of magnesium. Purified EF-Tu enhanced the amount of MreB filaments, as seen by sedimentation assays, the speed of filament formation and the length of MreB filaments in vitro. EF-Tu had the strongest impact on MreB filaments in a 1:1 ratio, and EF-Tu co-sedimented with MreB filaments, revealing a stoichiometric interaction between both proteins. This was supported by cross-linking assays where 1:1 species were well detectable. When expressed in E. coli cells, B. subtilis MreB formed filaments and induced the formation of co-localizing B. subtilis EF-Tu structures, indicating that MreB can direct the positioning of EF-Tu structures in a heterologous cell system. Fluorescence recovery after photobleaching analysis showed that MreB filaments have a higher turnover in B. subtilis cells than in E. coli cells, indicating different filament kinetics in homologous or heterologous cell systems. The data show that MreB can direct the localization of EF-Tu in vivo, which in turn positively affects the formation and dynamics of MreB filaments. Thus, EF-Tu is a modulator of the activity of a bacterial actin-like protein.
Collapse
|
25
|
Abstract
Work over the past decade has highlighted the pivotal role of the actin-like MreB family of proteins in the determination and maintenance of rod cell shape in bacteria. Early images of MreB localization revealed long helical filaments, which were suggestive of a direct role in governing cell wall architecture. However, several more recent, higher-resolution studies have questioned the existence or importance of the helical structures. In this Opinion article, I navigate a path through these conflicting reports, revive the helix model and summarize the key questions that remain to be answered.
Collapse
Affiliation(s)
- Jeff Errington
- Centre for Bacterial Cell Biology, Medical Faculty, Newcastle University, Richardson Road, Newcastle-upon-Tyne NE2 4AX, UK
| |
Collapse
|
26
|
Schirner K, Eun YJ, Dion M, Luo Y, Helmann JD, Garner EC, Walker S. Lipid-linked cell wall precursors regulate membrane association of bacterial actin MreB. Nat Chem Biol 2015; 11:38-45. [PMID: 25402772 PMCID: PMC4270829 DOI: 10.1038/nchembio.1689] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/11/2014] [Indexed: 12/14/2022]
Abstract
The bacterial actin homolog MreB, which is crucial for rod shape determination, forms filaments that rotate around the cell width on the inner surface of the cytoplasmic membrane. What determines filament association with the membranes or with other cell wall elongation proteins is not known. Using specific chemical and genetic perturbations while following MreB filament motion, we find that MreB membrane association is an actively regulated process that depends on the presence of lipid-linked peptidoglycan precursors. When precursors are depleted, MreB filaments disassemble into the cytoplasm, and peptidoglycan synthesis becomes disorganized. In cells that lack wall teichoic acids but continue to make peptidoglycan, dynamic MreB filaments are observed, although their presence is not sufficient to establish a rod shape. We propose that the cell regulates MreB filament association with the membrane, allowing rapid and reversible inactivation of cell wall enzyme complexes in response to the inhibition of cell wall synthesis.
Collapse
Affiliation(s)
- Kathrin Schirner
- Department of Microbiology and Immunobiology, Harvard Medical School,
Boston, MA 02115, USA
| | - Ye-Jin Eun
- Department of Molecular and Cellular Biology, Harvard University, Cambridge,
MA 02138, USA
| | - Mike Dion
- Department of Molecular and Cellular Biology, Harvard University, Cambridge,
MA 02138, USA
| | - Yun Luo
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Ethan C. Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge,
MA 02138, USA
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School,
Boston, MA 02115, USA
| |
Collapse
|
27
|
Sigle S, Ladwig N, Wohlleben W, Muth G. Synthesis of the spore envelope in the developmental life cycle of Streptomyces coelicolor. Int J Med Microbiol 2014; 305:183-9. [PMID: 25595023 DOI: 10.1016/j.ijmm.2014.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Members of the family of Streptomycetaceae, the main producer of antibiotics and other secondary metabolites, are Gram-positive multi-cellular soil bacteria with a complex life cycle. By apical tip extension Streptomyces coelicolor forms a multiply branching vegetative mycelium penetrating the substrate. Upon nutrient limitation, a hydrophobic aerial mycelium is erected, which eventually develops into a regular chain of spores that are able to survive detrimental environmental conditions. Morphological differentiation involves a switch in the peptidoglycan synthesizing machinery. Whereas apical tip extension is directed by the so-called polarisome, sporulation septation and synthesis of the thickened spore wall involves a multi-protein complex, which resembles the elongasome of rod-shaped bacteria. The Streptomyces spore wall synthesizing complex (SSSC) does not only direct synthesis of the peptidoglycan layer but is also involved in the incorporation of anionic spore wall glycopolymers, which contribute to the resistance of spores. The SSSC also contains eukaryotic type serine/threonine kinases which might control its activity by protein-phosphorylation.
Collapse
Affiliation(s)
- Steffen Sigle
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Nils Ladwig
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Wolfgang Wohlleben
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Guenther Muth
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany.
| |
Collapse
|
28
|
Olshausen PV, Defeu Soufo HJ, Wicker K, Heintzmann R, Graumann PL, Rohrbach A. Superresolution imaging of dynamic MreB filaments in B. subtilis--a multiple-motor-driven transport? Biophys J 2014; 105:1171-81. [PMID: 24010660 DOI: 10.1016/j.bpj.2013.07.038] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 07/12/2013] [Accepted: 07/26/2013] [Indexed: 12/31/2022] Open
Abstract
The cytoskeletal protein MreB is an essential component of the bacterial cell-shape generation system. Using a superresolution variant of total internal reflection microscopy with structured illumination, as well as three-dimensional stacks of deconvolved epifluorescence microscopy, we found that inside living Bacillus subtilis cells, MreB forms filamentous structures of variable lengths, typically not longer than 1 μm. These filaments move along their orientation and mainly perpendicular to the long bacterial axis, revealing a maximal velocity at an intermediate length and a decreasing velocity with increasing filament length. Filaments move along straight trajectories but can reverse or alter their direction of propagation. Based on our measurements, we provide a mechanistic model that is consistent with all observations. In this model, MreB filaments mechanically couple several motors that putatively synthesize the cell wall, whereas the filaments' traces mirror the trajectories of the motors. On the basis of our mechanistic model, we developed a mathematical model that can explain the nonlinear velocity length dependence. We deduce that the coupling of cell wall synthesis motors determines the MreB filament transport velocity, and the filament mechanically controls a concerted synthesis of parallel peptidoglycan strands to improve cell wall stability.
Collapse
Affiliation(s)
- Philipp V Olshausen
- Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering-IMTEK, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Ursell TS, Nguyen J, Monds RD, Colavin A, Billings G, Ouzounov N, Gitai Z, Shaevitz JW, Huang KC. Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization. Proc Natl Acad Sci U S A 2014; 111:E1025-34. [PMID: 24550515 PMCID: PMC3964057 DOI: 10.1073/pnas.1317174111] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells typically maintain characteristic shapes, but the mechanisms of self-organization for robust morphological maintenance remain unclear in most systems. Precise regulation of rod-like shape in Escherichia coli cells requires the MreB actin-like cytoskeleton, but the mechanism by which MreB maintains rod-like shape is unknown. Here, we use time-lapse and 3D imaging coupled with computational analysis to map the growth, geometry, and cytoskeletal organization of single bacterial cells at subcellular resolution. Our results demonstrate that feedback between cell geometry and MreB localization maintains rod-like cell shape by targeting cell wall growth to regions of negative cell wall curvature. Pulse-chase labeling indicates that growth is heterogeneous and correlates spatially and temporally with MreB localization, whereas MreB inhibition results in more homogeneous growth, including growth in polar regions previously thought to be inert. Biophysical simulations establish that curvature feedback on the localization of cell wall growth is an effective mechanism for cell straightening and suggest that surface deformations caused by cell wall insertion could direct circumferential motion of MreB. Our work shows that MreB orchestrates persistent, heterogeneous growth at the subcellular scale, enabling robust, uniform growth at the cellular scale without requiring global organization.
Collapse
Affiliation(s)
- Tristan S. Ursell
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Jeffrey Nguyen
- Department of Physics, Princeton University, Princeton, NJ 08544
| | - Russell D. Monds
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | | | | | - Nikolay Ouzounov
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Joshua W. Shaevitz
- Department of Physics, Princeton University, Princeton, NJ 08544
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544; and
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Biophysics Program, Stanford University, Stanford, CA 94305
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
30
|
Abstract
For many years, bacteria were considered rather simple organisms, but the dogmatic notion that subcellular organization is a eukaryotic trait has been overthrown for more than a decade. The discovery of homologues of the eukaryotic cytoskeletal proteins actin, tubulin, and intermediate filaments in bacteria has been instrumental in changing this view. Over the past few years, we have gained an incredible level of insight into the diverse family of bacterial actins and their molecular workings. Here we review the functional, biochemical, and structural features of the most well-studied bacterial actins.
Collapse
Affiliation(s)
- Ertan Ozyamak
- Department of Plant and Microbial Biology, University of California , Berkeley, California 94720, United States
| | | | | |
Collapse
|
31
|
Domínguez-Cuevas P, Porcelli I, Daniel RA, Errington J. Differentiated roles for MreB-actin isologues and autolytic enzymes in Bacillus subtilis morphogenesis. Mol Microbiol 2013; 89:1084-98. [PMID: 23869552 PMCID: PMC3817527 DOI: 10.1111/mmi.12335] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2013] [Indexed: 12/20/2022]
Abstract
Cell morphogenesis in most bacteria is governed by spatiotemporal growth regulation of the peptidoglycan cell wall layer. Much is known about peptidoglycan synthesis but regulation of its turnover by hydrolytic enzymes is much less well understood. Bacillus subtilis has a multitude of such enzymes. Two of the best characterized are CwlO and LytE: cells lacking both enzymes have a lethal block in cell elongation. Here we show that activity of CwlO is regulated by an ABC transporter, FtsEX, which is required for cell elongation, unlike cell division as in Escherichia coli. Actin-like MreB proteins are thought to play a key role in orchestrating cell wall morphogenesis. B. subtilis has three MreB isologues with partially differentiated functions. We now show that the three MreB isologues have differential roles in regulation of the CwlO and LytE systems and that autolysins control different aspects of cell morphogenesis. The results add major autolytic activities to the growing list of functions controlled by MreB isologues in bacteria and provide new insights into the different specialized functions of essential cell wall autolysins.
Collapse
Affiliation(s)
- Patricia Domínguez-Cuevas
- Centre for Bacterial Cell Biology, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | | | | | | |
Collapse
|
32
|
Reimold C, Defeu Soufo HJ, Dempwolff F, Graumann PL. Motion of variable-length MreB filaments at the bacterial cell membrane influences cell morphology. Mol Biol Cell 2013; 24:2340-9. [PMID: 23783036 PMCID: PMC3727927 DOI: 10.1091/mbc.e12-10-0728] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 06/04/2013] [Accepted: 06/07/2013] [Indexed: 01/09/2023] Open
Abstract
The maintenance of rod-cell shape in many bacteria depends on actin-like MreB proteins and several membrane proteins that interact with MreB. Using superresolution microscopy, we show that at 50-nm resolution, Bacillus subtilis MreB forms filamentous structures of length up to 3.4 μm underneath the cell membrane, which run at angles diverging up to 40° relative to the cell circumference. MreB from Escherichia coli forms at least 1.4-μm-long filaments. MreB filaments move along various tracks with a maximal speed of 85 nm/s, and the loss of ATPase activity leads to the formation of extended and static filaments. Suboptimal growth conditions lead to formation of patch-like structures rather than extended filaments. Coexpression of wild-type MreB with MreB mutated in the subunit interface leads to formation of shorter MreB filaments and a strong effect on cell shape, revealing a link between filament length and cell morphology. Thus MreB has an extended-filament architecture with the potential to position membrane proteins over long distances, whose localization in turn may affect the shape of the cell wall.
Collapse
Affiliation(s)
- Christian Reimold
- Mikrobiologie, Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | | | - Felix Dempwolff
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, 35043 Marburg, Germany
| | - Peter L. Graumann
- Mikrobiologie, Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, 35043 Marburg, Germany
| |
Collapse
|
33
|
Muchová K, Chromiková Z, Barák I. Control of Bacillus subtilis cell shape by RodZ. Environ Microbiol 2013; 15:3259-71. [PMID: 23879732 DOI: 10.1111/1462-2920.12200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 06/18/2013] [Accepted: 06/21/2013] [Indexed: 01/10/2023]
Abstract
The bacterial cell wall ensures the structural integrity of the cell and is the main determinant of cell shape. In Bacillus subtilis, three cytoskeletal proteins, MreB, MreBH and Mbl, are thought to play a crucial role in maintaining the rod cell shape. These proteins are thought to be linked with the transmembrane proteins MreC, MreD and RodA, the peptidoglycan hydrolases, and the penicillin-binding proteins that are essential for peptidoglycan elongation. Recently, a well-conserved membrane protein RodZ was discovered in most Gram-negative and Gram-positive bacteria. This protein seems to be an additional member of the elongation complex. Here, we examine the role of RodZ in B. subtilis cells. Our results indicate that RodZ is an essential protein and that downregulation of RodZ expression causes the formation of shorter and rounder cells. We also found a direct interaction between RodZ and the cytoskeletal and morphogenetic proteins MreB, MreBH, Mbl and MreD. Taken together, we demonstrated that RodZ is an important part of the cell shape determining network in B. subtilis.
Collapse
Affiliation(s)
- Katarína Muchová
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | |
Collapse
|
34
|
Abstract
During the course of evolution, viruses have learned to take advantage of the natural resources of their hosts for their own benefit. Due to their small dimension and limited size of genomes, bacteriophages have optimized the exploitation of bacterial host factors to increase the efficiency of DNA replication and hence to produce vast progeny. The Bacillus subtilis phage φ29 genome consists of a linear double-stranded DNA molecule that is duplicated by means of a protein-primed mode of DNA replication. Its genome has been shown to be topologically constrained at the size of the bacterial nucleoid and, as to avoid generation of positive supercoiling ahead of the replication forks, the bacterial DNA gyrase is used by the phage. In addition, the B. subtilis actin-like MreB cytoskeleton plays a crucial role in the organization of φ29 DNA replication machinery in peripheral helix-like structures. Thus, in the absence of an intact MreB cytoskeleton, φ29 DNA replication is severely impaired. Importantly, MreB interacts directly with the phage membrane protein p16.7, responsible for attaching φ29 DNA at the cell membrane. Moreover, the φ29-encoded protein p56 inhibits host uracil-DNA glycosylase activity and has been proposed to be a defense mechanism developed by the phage to prevent the action of the base excision repair pathway if uracil residues arise in replicative intermediates. All of them constitute incoming examples on how viruses have profited from the cellular machinery of their hosts.
Collapse
|
35
|
Huang KC, Ehrhardt DW, Shaevitz JW. The molecular origins of chiral growth in walled cells. Curr Opin Microbiol 2012. [PMID: 23194654 DOI: 10.1016/j.mib.2012.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cells from all kingdoms of life adopt a dizzying array of fascinating shapes that support cellular function. Amoeboid and spherical shapes represent perhaps the simplest of geometries that may minimize the level of growth control required for survival. Slightly more complex are rod-shaped cells, from microscopic bacteria to macroscopic plants, which require additional mechanisms to define a cell's longitudinal axis, width, and length. Recent evidence suggests that many rod-shaped, walled cells achieve elongated growth through chiral insertion of cell-wall material that may be coupled to a twisting of the cell body. Inspired by these observations, biophysical mechanisms for twisting growth have been proposed that link the mechanics of intracellular proteins to cell shape maintenance. In this review, we highlight experimental and theoretical work that connects molecular-scale organization and structure with the cellular-scale phenomena of rod-shaped growth.
Collapse
|
36
|
|
37
|
Govindarajan S, Nevo-Dinur K, Amster-Choder O. Compartmentalization and spatiotemporal organization of macromolecules in bacteria. FEMS Microbiol Rev 2012; 36:1005-22. [DOI: 10.1111/j.1574-6976.2012.00348.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 12/18/2022] Open
|
38
|
Nevo-Dinur K, Govindarajan S, Amster-Choder O. Subcellular localization of RNA and proteins in prokaryotes. Trends Genet 2012; 28:314-22. [DOI: 10.1016/j.tig.2012.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 03/15/2012] [Accepted: 03/19/2012] [Indexed: 10/28/2022]
|
39
|
Souza WD. Prokaryotic cells: structural organisation of the cytoskeleton and organelles. Mem Inst Oswaldo Cruz 2012; 107:283-93. [DOI: 10.1590/s0074-02762012000300001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 02/23/2012] [Indexed: 11/22/2022] Open
Affiliation(s)
- Wanderley de Souza
- Universidade Federal do Rio de Janeiro, Brasil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brasil; Instituto Nacional de Metrologia, Brasil
| |
Collapse
|
40
|
Abstract
The bacterial actin-like protein MreB is thought to form a continuous helical polymer at the membrane to confer rod shape. Two new studies now show that MreB forms discrete dynamic patches that travel circumferentially.
Collapse
|
41
|
Dempwolff F, Reimold C, Reth M, Graumann PL. Bacillus subtilis MreB orthologs self-organize into filamentous structures underneath the cell membrane in a heterologous cell system. PLoS One 2011; 6:e27035. [PMID: 22069484 PMCID: PMC3206058 DOI: 10.1371/journal.pone.0027035] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 10/09/2011] [Indexed: 11/25/2022] Open
Abstract
Actin-like bacterial cytoskeletal element MreB has been shown to be essential for the maintenance of rod cell shape in many bacteria. MreB forms rapidly remodelling helical filaments underneath the cell membrane in Bacillus subtilis and in other bacterial cells, and co-localizes with its two paralogs, Mbl and MreBH. We show that MreB localizes as dynamic bundles of filaments underneath the cell membrane in Drosophila S2 Schneider cells, which become highly stable when the ATPase motif in MreB is modified. In agreement with ATP-dependent filament formation, the depletion of ATP in the cells lead to rapid dissociation of MreB filaments. Extended induction of MreB resulted in the formation of membrane protrusions, showing that like actin, MreB can exert force against the cell membrane. Mbl also formed membrane associated filaments, while MreBH formed filaments within the cytosol. When co-expressed, MreB, Mbl and MreBH built up mixed filaments underneath the cell membrane. Membrane protein RodZ localized to endosomes in S2 cells, but localized to the cell membrane when co-expressed with Mbl, showing that bacterial MreB/Mbl structures can recruit a protein to the cell membrane. Thus, MreB paralogs form a self-organizing and dynamic filamentous scaffold underneath the membrane that is able to recruit other proteins to the cell surface.
Collapse
Affiliation(s)
- Felix Dempwolff
- Mikrobiologie, Fakultät für Biologie, Universität Freiburg, Freiburg, Germany
| | - Christian Reimold
- Mikrobiologie, Fakultät für Biologie, Universität Freiburg, Freiburg, Germany
| | - Michael Reth
- Immunbiologie, Fakultät für Biologie, Universität Freiburg, Freiburg, Germany
- Bioss, Universität Freiburg, Freiburg, Germany
| | - Peter L. Graumann
- Mikrobiologie, Fakultät für Biologie, Universität Freiburg, Freiburg, Germany
- Bioss, Universität Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
42
|
Muchová K, Wilkinson AJ, Barák I. Changes of lipid domains in Bacillus subtilis cells with disrupted cell wall peptidoglycan. FEMS Microbiol Lett 2011; 325:92-8. [PMID: 22092867 PMCID: PMC3433793 DOI: 10.1111/j.1574-6968.2011.02417.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/07/2011] [Accepted: 09/09/2011] [Indexed: 12/12/2022] Open
Abstract
The cell wall is responsible for cell integrity and the maintenance of cell shape in bacteria. The Gram-positive bacterial cell wall consists of a thick peptidoglycan layer located on the outside of the cytoplasmic membrane. Bacterial cell membranes, like eukaryotic cell membranes, are known to contain domains of specific lipid and protein composition. Recently, using the membrane-binding fluorescent dye FM4-64, helix-like lipid structures extending along the long axis of the cell and consisting of negatively charged phospholipids were detected in the rod-shaped bacterium Bacillus subtilis. It was also shown that the cardiolipin-specific dye, nonyl acridine orange (NAO), is preferentially distributed at the cell poles and in the septal regions in both Escherichia coli and B. subtilis. These results suggest that phosphatidylglycerol is the principal component of the observed spiral domains in B. subtilis. Here, using the fluorescent dyes FM4-64 and NAO, we examined whether these lipid domains are linked to the presence of cell wall peptidoglycan. We show that in protoplasted cells, devoid of the peptidoglycan layer, helix-like lipid structures are not preserved. Specific lipid domains are also missing in cells depleted of MurG, an enzyme involved in peptidoglycan synthesis, indicating a link between lipid domain formation and peptidoglycan synthesis.
Collapse
Affiliation(s)
- Katarína Muchová
- Slovak Academy of Sciences, Institute of Molecular Biology, Bratislava, Slovakia
| | | | | |
Collapse
|
43
|
The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc Natl Acad Sci U S A 2011; 108:15822-7. [PMID: 21903929 DOI: 10.1073/pnas.1108999108] [Citation(s) in RCA: 308] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial cells possess multiple cytoskeletal proteins involved in a wide range of cellular processes. These cytoskeletal proteins are dynamic, but the driving forces and cellular functions of these dynamics remain poorly understood. Eukaryotic cytoskeletal dynamics are often driven by motor proteins, but in bacteria no motors that drive cytoskeletal motion have been identified to date. Here, we quantitatively study the dynamics of the Escherichia coli actin homolog MreB, which is essential for the maintenance of rod-like cell shape in bacteria. We find that MreB rotates around the long axis of the cell in a persistent manner. Whereas previous studies have suggested that MreB dynamics are driven by its own polymerization, we show that MreB rotation does not depend on its own polymerization but rather requires the assembly of the peptidoglycan cell wall. The cell-wall synthesis machinery thus either constitutes a novel type of extracellular motor that exerts force on cytoplasmic MreB, or is indirectly required for an as-yet-unidentified motor. Biophysical simulations suggest that one function of MreB rotation is to ensure a uniform distribution of new peptidoglycan insertion sites, a necessary condition to maintain rod shape during growth. These findings both broaden the view of cytoskeletal motors and deepen our understanding of the physical basis of bacterial morphogenesis.
Collapse
|
44
|
Management of cytoskeleton architecture by molecular chaperones and immunophilins. Cell Signal 2011; 23:1907-20. [PMID: 21864675 DOI: 10.1016/j.cellsig.2011.07.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/22/2011] [Accepted: 07/26/2011] [Indexed: 11/20/2022]
Abstract
Cytoskeletal structure is continually remodeled to accommodate normal cell growth and to respond to pathophysiological cues. As a consequence, several cytoskeleton-interacting proteins become involved in a variety of cellular processes such as cell growth and division, cell movement, vesicle transportation, cellular organelle location and function, localization and distribution of membrane receptors, and cell-cell communication. Molecular chaperones and immunophilins are counted among the most important proteins that interact closely with the cytoskeleton network, in particular with microtubules and microtubule-associated factors. In several situations, heat-shock proteins and immunophilins work together as a functionally active heterocomplex, although both types of proteins also show independent actions. In circumstances where homeostasis is affected by environmental stresses or due to genetic alterations, chaperone proteins help to stabilize the system. Molecular chaperones facilitate the assembly, disassembly and/or folding/refolding of cytoskeletal proteins, so they prevent aberrant protein aggregation. Nonetheless, the roles of heat-shock proteins and immunophilins are not only limited to solve abnormal situations, but they also have an active participation during the normal differentiation process of the cell and are key factors for many structural and functional rearrangements during this course of action. Cytoskeleton modifications leading to altered localization of nuclear factors may result in loss- or gain-of-function of such factors, which affects the cell cycle and cell development. Therefore, cytoskeletal components are attractive therapeutic targets, particularly microtubules, to prevent pathological situations such as rapidly dividing tumor cells or to favor the process of cell differentiation in other cases. In this review we will address some classical and novel aspects of key regulatory functions of heat-shock proteins and immunophilins as housekeeping factors of the cytoskeletal network.
Collapse
|
45
|
Dominguez-Escobar J, Chastanet A, Crevenna AH, Fromion V, Wedlich-Soldner R, Carballido-Lopez R. Processive Movement of MreB-Associated Cell Wall Biosynthetic Complexes in Bacteria. Science 2011; 333:225-8. [DOI: 10.1126/science.1203466] [Citation(s) in RCA: 410] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Swulius MT, Chen S, Jane Ding H, Li Z, Briegel A, Pilhofer M, Tocheva EI, Lybarger SR, Johnson TL, Sandkvist M, Jensen GJ. Long helical filaments are not seen encircling cells in electron cryotomograms of rod-shaped bacteria. Biochem Biophys Res Commun 2011; 407:650-5. [PMID: 21419100 DOI: 10.1016/j.bbrc.2011.03.062] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 03/14/2011] [Indexed: 11/18/2022]
Abstract
How rod-shaped bacteria form and maintain their shape is an important question in bacterial cell biology. Results from fluorescent light microscopy have led many to believe that the actin homolog MreB and a number of other proteins form long helical filaments along the inner membrane of the cell. Here we show using electron cryotomography of six different rod-shaped bacterial species, at macromolecular resolution, that no long (> 80 nm) helical filaments exist near or along either surface of the inner membrane. We also use correlated cryo-fluorescent light microscopy (cryo-fLM) and electron cryo-tomography (ECT) to identify cytoplasmic bundles of MreB, showing that MreB filaments are detectable by ECT. In light of these results, the structure and function of MreB must be reconsidered: instead of acting as a large, rigid scaffold that localizes cell-wall synthetic machinery, moving MreB complexes may apply tension to growing peptidoglycan strands to ensure their orderly, linear insertion.
Collapse
Affiliation(s)
- Matthew T Swulius
- Division of Biology, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
The MreB-like protein Mbl of Streptomyces coelicolor A3(2) depends on MreB for proper localization and contributes to spore wall synthesis. J Bacteriol 2011; 193:1533-42. [PMID: 21257777 DOI: 10.1128/jb.01100-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most bacteria with a rod-shaped morphology contain an actin-like cytoskeleton consisting of MreB polymers, which form helical spirals underneath the cytoplasmic membrane to direct peptidoglycan synthesis for the elongation of the cell wall. In contrast, MreB of Streptomyces coelicolor is not required for vegetative growth but has a role in sporulation. Besides MreB, S. coelicolor encodes two further MreB-like proteins, Mbl and SCO6166, whose function is unknown. Whereas MreB and Mbl are highly similar, SCO6166 is shorter, lacking the subdomains IB and IIB of actin-like proteins. Here, we showed that MreB and Mbl are not functionally redundant but cooperate in spore wall synthesis. Expression analysis by semiquantitative reverse transcription-PCR revealed distinct expression patterns. mreB and mbl are induced predominantly during morphological differentiation. In contrast, sco6166 is strongly expressed during vegetative growth but switched off during sporulation. All genes could be deleted without affecting viability. Even a ΔmreB Δmbl double mutant was viable. Δsco6166 had a wild-type phenotype. ΔmreB, Δmbl, and ΔmreB Δmbl produced swollen, prematurely germinating spores that were sensitive to various kinds of stress, suggesting a defect in spore wall integrity. During aerial mycelium formation, an Mbl-mCherry fusion protein colocalized with an MreB-enhanced green fluorescent protein (MreB-eGFP) fusion protein at the sporulation septa. Whereas MreB-eGFP localized properly in the Δmbl mutant, Mbl-mCherry localization depended on the presence of a functional MreB protein. Our results revealed that MreB and Mbl cooperate in the synthesis of the thickened spore wall, while SCO6166 has a nonessential function during vegetative growth.
Collapse
|
48
|
Kleinschnitz EM, Heichlinger A, Schirner K, Winkler J, Latus A, Maldener I, Wohlleben W, Muth G. Proteins encoded by the mre gene cluster in Streptomyces coelicolor A3(2) cooperate in spore wall synthesis. Mol Microbiol 2011; 79:1367-79. [PMID: 21244527 DOI: 10.1111/j.1365-2958.2010.07529.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is still an open question how an intracellular cytoskeleton directs the synthesis of the peptidoglycan exoskeleton. In contrast to MreB of rod-shaped bacteria, which is essential for lateral cell wall synthesis, MreB of Streptomyces coelicolor has a role in sporulation. To study the function of the S. coelicolor mre gene cluster consisting of mreB, mreC, mreD, pbp2 and sfr, we generated non-polar replacement mutants. The individual mutants were viable and growth of substrate mycelium was not affected. However, all mutants produced enlarged spores, which frequently germinated prematurely and were sensitive to heat, high osmolarity and cell wall damaging agents. Protein-protein interaction assays by bacterial two-hybrid analyses indicated that the S. coelicolor Mre proteins form a spore wall synthesizing complex, which closely resembles the lateral wall synthesizing complex of rod-shaped bacteria. Screening of a genomic library identified several novel putative components of this complex. One of them (sco2097) was deleted. The Δsco2097 mutant formed sensitive spores with an aberrant morphology, demonstrating that SCO2097 is a new player in cell morphogenesis of Streptomyces. Our results suggest that all Mre proteins cooperate with the newly identified proteins in the synthesis of the thickened spore wall required to resist detrimental environmental conditions.
Collapse
Affiliation(s)
- Eva-Maria Kleinschnitz
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Deutschland
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Bacteria, like eukaryotes, employ cytoskeletal elements to perform many functions, including cell morphogenesis, cell division, DNA partitioning, and cell motility. They not only possess counterparts of eukaryotic actin, tubulin, and intermediate filament proteins, but they also have cytoskeletal elements of their own. Unlike the rigid sequence and structural conservation often observed for eukaryotic cytoskeletal proteins, the bacterial counterparts can display considerable diversity in sequence and function across species. Their wide range of function highlights the flexibility of core cytoskeletal protein motifs, such that one type of cytoskeletal element can perform various functions, and one function can be performed by different types of cytoskeletal elements.
Collapse
Affiliation(s)
- Matthew T Cabeen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
50
|
The Long Journey: Actin on the Road to Pro- and Eukaryotic Cells. Rev Physiol Biochem Pharmacol 2011; 161:67-85. [DOI: 10.1007/112_2011_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|