1
|
Zhu C, Yuan T, Krishnan J. Targeting cardiomyocyte cell cycle regulation in heart failure. Basic Res Cardiol 2024; 119:349-369. [PMID: 38683371 PMCID: PMC11142990 DOI: 10.1007/s00395-024-01049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024]
Abstract
Heart failure continues to be a significant global health concern, causing substantial morbidity and mortality. The limited ability of the adult heart to regenerate has posed challenges in finding effective treatments for cardiac pathologies. While various medications and surgical interventions have been used to improve cardiac function, they are not able to address the extensive loss of functioning cardiomyocytes that occurs during cardiac injury. As a result, there is growing interest in understanding how the cell cycle is regulated and exploring the potential for stimulating cardiomyocyte proliferation as a means of promoting heart regeneration. This review aims to provide an overview of current knowledge on cell cycle regulation and mechanisms underlying cardiomyocyte proliferation in cases of heart failure, while also highlighting established and novel therapeutic strategies targeting this area for treatment purposes.
Collapse
Affiliation(s)
- Chaonan Zhu
- Department of Medicine III, Cardiology/Angiology/Nephrology, Goethe University Hospital, 60590, Frankfurt am Main, Germany
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt am Main, Germany
| | - Ting Yuan
- Department of Medicine III, Cardiology/Angiology/Nephrology, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt am Main, Germany.
- German Center for Cardiovascular Research, Partner Site Rhein-Main, 60590, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
| | - Jaya Krishnan
- Department of Medicine III, Cardiology/Angiology/Nephrology, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt am Main, Germany.
- German Center for Cardiovascular Research, Partner Site Rhein-Main, 60590, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Bournaka S, Badra-Fajardo N, Arbi M, Taraviras S, Lygerou Z. The cell cycle revisited: DNA replication past S phase preserves genome integrity. Semin Cancer Biol 2024; 99:45-55. [PMID: 38346544 DOI: 10.1016/j.semcancer.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Accurate and complete DNA duplication is critical for maintaining genome integrity. Multiple mechanisms regulate when and where DNA replication takes place, to ensure that the entire genome is duplicated once and only once per cell cycle. Although the bulk of the genome is copied during the S phase of the cell cycle, increasing evidence suggests that parts of the genome are replicated in G2 or mitosis, in a last attempt to secure that daughter cells inherit an accurate copy of parental DNA. Remaining unreplicated gaps may be passed down to progeny and replicated in the next G1 or S phase. These findings challenge the long-established view that genome duplication occurs strictly during the S phase, bridging DNA replication to DNA repair and providing novel therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Spyridoula Bournaka
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece
| | - Nibal Badra-Fajardo
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece
| | - Marina Arbi
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras 26504, Greece
| | - Zoi Lygerou
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece.
| |
Collapse
|
3
|
Roh S, Lee T, Cheong DY, Kim Y, Oh S, Lee G. Direct observation of surface charge and stiffness of human metaphase chromosomes. NANOSCALE ADVANCES 2023; 5:368-377. [PMID: 36756276 PMCID: PMC9846444 DOI: 10.1039/d2na00620k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/17/2022] [Indexed: 06/18/2023]
Abstract
Metaphase chromosomes in which both polynucleotides and proteins are condensed with hierarchies are closely related to life phenomena such as cell division, cancer development, and cellular senescence. Nevertheless, their nature is rarely revealed, owing to their structural complexity and technical limitations in analytical methods. In this study, we used surface potential and nanomechanics mapping technology based on atomic force microscopy to measure the surface charge and intrinsic stiffness of metaphase chromosomes. We found that extra materials covering the chromosomes after the extraction process were positively charged. With the covering materials, the chromosomes were positively charged (ca. 44.9 ± 16.48 mV) and showed uniform stiffness (ca. 6.23 ± 1.98 MPa). In contrast, after getting rid of the extra materials through treatment with RNase and protease, the chromosomes were strongly negatively charged (ca. -197.4 ± 77.87 mV) and showed relatively non-uniform and augmented stiffness (ca. 36.87 ± 17.56 MPa). The results suggested undulating but compact coordination of condensed chromosomes. Additionally, excessive treatment with RNase and protease could destroy the chromosomal structure, providing an exceptional opportunity for multiscale stiffness mapping of polynucleotides, nucleosomes, chromatin fibers, and chromosomes in a single image. Our approach offers a new horizon in terms of an analytical technique for studying chromosome-related diseases.
Collapse
Affiliation(s)
- Seokbeom Roh
- Department of Biotechnology and Bioinformatics, Korea University Sejong 30019 Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University Sejong 30019 Korea
| | - Taeha Lee
- Department of Biotechnology and Bioinformatics, Korea University Sejong 30019 Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University Sejong 30019 Korea
| | - Da Yeon Cheong
- Department of Biotechnology and Bioinformatics, Korea University Sejong 30019 Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University Sejong 30019 Korea
| | - Yeonjin Kim
- Department of Biotechnology and Bioinformatics, Korea University Sejong 30019 Korea
| | - Soohwan Oh
- College of Pharmacy, Korea University Sejong 30019 Korea
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University Sejong 30019 Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University Sejong 30019 Korea
| |
Collapse
|
4
|
Connolly C, Takahashi S, Miura H, Hiratani I, Gilbert N, Donaldson AD, Hiraga SI. SAF-A promotes origin licensing and replication fork progression to ensure robust DNA replication. J Cell Sci 2022; 135:jcs258991. [PMID: 34888666 DOI: 10.1242/jcs.258991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
The organisation of chromatin is closely intertwined with biological activities of chromosome domains, including transcription and DNA replication status. Scaffold-attachment factor A (SAF-A), also known as heterogeneous nuclear ribonucleoprotein U (HNRNPU), contributes to the formation of open chromatin structure. Here, we demonstrate that SAF-A promotes the normal progression of DNA replication and enables resumption of replication after inhibition. We report that cells depleted of SAF-A show reduced origin licensing in G1 phase and, consequently, reduced origin activation frequency in S phase. Replication forks also progress less consistently in cells depleted of SAF-A, contributing to reduced DNA synthesis rate. Single-cell replication timing analysis revealed two distinct effects of SAF-A depletion: first, the boundaries between early- and late-replicating domains become more blurred; and second, SAF-A depletion causes replication timing changes that tend to bring regions of discordant domain compartmentalisation and replication timing into concordance. Associated with these defects, SAF-A-depleted cells show elevated formation of phosphorylated histone H2AX (γ-H2AX) and tend to enter quiescence. Overall, we find that SAF-A protein promotes robust DNA replication to ensure continuing cell proliferation.
Collapse
Affiliation(s)
- Caitlin Connolly
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Saori Takahashi
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Hisashi Miura
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Ichiro Hiratani
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Nick Gilbert
- MRC Human Genetics Unit, The University of Edinburgh, Crewe Rd, Edinburgh EH4 2XU, UK
| | - Anne D Donaldson
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Shin-Ichiro Hiraga
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
5
|
Glinkowska M, Waldminghaus T, Riber L. Editorial: Bacterial Chromosomes Under Changing Environmental Conditions. Front Microbiol 2021; 12:633466. [PMID: 33776964 PMCID: PMC7991073 DOI: 10.3389/fmicb.2021.633466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/18/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Monika Glinkowska
- Department of Bacterial Molecular Genetics, University of Gdansk, Gdańsk, Poland
| | - Torsten Waldminghaus
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany.,Centre for Synthetic Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Leise Riber
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Bittmann J, Grigaitis R, Galanti L, Amarell S, Wilfling F, Matos J, Pfander B. An advanced cell cycle tag toolbox reveals principles underlying temporal control of structure-selective nucleases. eLife 2020; 9:e52459. [PMID: 32352375 PMCID: PMC7220381 DOI: 10.7554/elife.52459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/29/2020] [Indexed: 12/26/2022] Open
Abstract
Cell cycle tags allow to restrict target protein expression to specific cell cycle phases. Here, we present an advanced toolbox of cell cycle tag constructs in budding yeast with defined and compatible peak expression that allow comparison of protein functionality at different cell cycle phases. We apply this technology to the question of how and when Mus81-Mms4 and Yen1 nucleases act on DNA replication or recombination structures. Restriction of Mus81-Mms4 to M phase but not S phase allows a wildtype response to various forms of replication perturbation and DNA damage in S phase, suggesting it acts as a post-replicative resolvase. Moreover, we use cell cycle tags to reinstall cell cycle control to a deregulated version of Yen1, showing that its premature activation interferes with the response to perturbed replication. Curbing resolvase activity and establishing a hierarchy of resolution mechanisms are therefore the principal reasons underlying resolvase cell cycle regulation.
Collapse
Affiliation(s)
- Julia Bittmann
- Max Planck Institute of Biochemistry, DNA Replication and Genome IntegrityMartinsriedGermany
| | - Rokas Grigaitis
- Institute of Biochemistry, Eidgenössische Technische Hochschule, ZürichZürichSwitzerland
| | - Lorenzo Galanti
- Max Planck Institute of Biochemistry, DNA Replication and Genome IntegrityMartinsriedGermany
| | - Silas Amarell
- Max Planck Institute of Biochemistry, DNA Replication and Genome IntegrityMartinsriedGermany
| | - Florian Wilfling
- Max Planck Institute of Biochemistry, Molecular Cell BiologyMartinsriedGermany
| | - Joao Matos
- Institute of Biochemistry, Eidgenössische Technische Hochschule, ZürichZürichSwitzerland
| | - Boris Pfander
- Max Planck Institute of Biochemistry, DNA Replication and Genome IntegrityMartinsriedGermany
| |
Collapse
|
7
|
Hsu RYC, Lin YC, Redon C, Sun Q, Singh DK, Wang Y, Aggarwal V, Mitra J, Matur A, Moriarity B, Ha T, Aladjem MI, Prasanth KV, Prasanth SG. ORCA/LRWD1 Regulates Homologous Recombination at ALT-Telomeres by Modulating Heterochromatin Organization. iScience 2020; 23:101038. [PMID: 32344376 PMCID: PMC7186530 DOI: 10.1016/j.isci.2020.101038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 12/23/2022] Open
Abstract
Telomeres are maintained by telomerase or in a subset of cancer cells by a homologous recombination (HR)-based mechanism, Alternative Lengthening of Telomeres (ALT). The mechanisms regulating telomere-homeostasis in ALT cells remain unclear. We report that a replication initiator protein, Origin Recognition Complex-Associated (ORCA/LRWD1), by localizing at the ALT-telomeres, modulates HR activity. ORCA's localization to the ALT-telomeres is facilitated by its interaction to SUMOylated shelterin components. The loss of ORCA in ALT-positive cells elevates the levels of two mediators of HR, RPA and RAD51, and consistent with this, we observe increased ALT-associated promyelocytic leukemia body formation and telomere sister chromatid exchange. ORCA binds to RPA and modulates the association of RPA to telomeres. Finally, the loss of ORCA causes global chromatin decondensation, including at the telomeres. Our results demonstrate that ORCA acts as an inhibitor of HR by modulating RPA binding to ssDNA and inducing chromatin compaction.
Collapse
Affiliation(s)
- Rosaline Y C Hsu
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801, USA
| | - Yo-Chuen Lin
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801, USA
| | - Christophe Redon
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda MD 20892, USA
| | - Qinyu Sun
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801, USA
| | - Deepak K Singh
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801, USA
| | - Yating Wang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801, USA
| | - Vasudha Aggarwal
- Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jaba Mitra
- Materials Engineering Department, UIUC, Urbana, IL 61801, USA
| | - Abhijith Matur
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801, USA
| | | | - Taekjip Ha
- Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda MD 20892, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801, USA; Cancer Center at Illinois, UIUC, Urbana, IL 61801, USA
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801, USA; Cancer Center at Illinois, UIUC, Urbana, IL 61801, USA.
| |
Collapse
|
8
|
Zhang J, Jiang J, Zhao L, Zhang J, Shen N, Li S, Guo L, Su C, Jiang R, Zhu W. Survival prediction of high-grade glioma patients with diffusion kurtosis imaging. Am J Transl Res 2019; 11:3680-3688. [PMID: 31312379 PMCID: PMC6614625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/25/2019] [Indexed: 06/10/2023]
Abstract
PURPOSE To evaluate the prognostic value of diffusion kurtosis imaging (DKI) for survival prediction of patients with high-grade glioma (HGG). MATERIALS AND METHODS DKI was performed for fifty-eight patients with pathologically proven HGG by using a 3-T scanner. The mean kurtosis (MK), mean diffusivity (MD) and fractional anisotropy (FA) values in the solid part of the tumor were measured and normalized. Univariate Cox regression analysis was used to evaluate the association between overall survival (OS) and sex, age, Karnofsky performance status (KPS), tumor grade, Ki-67 labeling index (LI), extent of resection, use of chemoradiotherapy, MK, MD, and FA. Multivariate Cox regression analysis including sex, age, KPS, extent of resection, use of chemoradiotherapy, MK, MD, and FA was subsequently performed. Spearman's correlation coefficient for OS and the area under receiver operating characteristic curve (AUC) for predicting 2-year survival were calculated for each DKI parameter and further compared. RESULTS In univariate Cox regression analyses, OS was significantly associated with the tumor grade, Ki-67 LI, extent of resection, use of chemoradiotherapy, MK, and MD (P < 0.05 for all). Multivariate Cox regression analyses indicated that MK, MD (hazard ratio = 1.582 and 0.828, respectively, for each 0.1 increase in the normalized value), extent of resection and use of chemoradiotherapy were independent predictors of OS. The absolute value of the correlation coefficient for OS and AUC for predicting 2-year survival by MK (rho = -0.565, AUC = 0.841) were higher than those by MD (rho = 0.492, AUC = 0.772), but the difference was not significant. CONCLUSION DKI is a promising tool to predict the survival of HGG patients. MK and MD are independent predictors. MK is potentially better associated with OS than MD, which may lead to a more accurate evaluation of HGG patient survival.
Collapse
Affiliation(s)
- Ju Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
| | - Jingjing Jiang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
| | - Lingyun Zhao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
| | - Jiaxuan Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
| | - Nanxi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
| | - Shihui Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
| | - Linying Guo
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
| | - Changliang Su
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
| | - Rifeng Jiang
- Department of Radiology, Fujian Medical University Union HospitalFuzhou 350001, Fujian, P. R. China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
| |
Collapse
|
9
|
Wei L, Zhao X. Roles of SUMO in Replication Initiation, Progression, and Termination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:371-393. [PMID: 29357067 PMCID: PMC6643980 DOI: 10.1007/978-981-10-6955-0_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Accurate genome duplication during cell division is essential for life. This process is accomplished by the close collaboration between replication factors and many additional proteins that provide assistant roles. Replication factors establish the replication machineries capable of copying billions of nucleotides, while regulatory proteins help to achieve accuracy and efficiency of replication. Among regulatory proteins, protein modification enzymes can bestow fast and reversible changes to many targets, leading to coordinated effects on replication. Recent studies have begun to elucidate how one type of protein modification, sumoylation, can modify replication proteins and regulate genome duplication through multiple mechanisms. This chapter summarizes these new findings, and how they can integrate with the known regulatory circuitries of replication. As this area of research is still at its infancy, many outstanding questions remain to be explored, and we discuss these issues in light of the new advances.
Collapse
Affiliation(s)
- Lei Wei
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
10
|
Griffin NI, Sharma G, Zhao X, Mirza S, Srivastava S, Dave BJ, Aleskandarany M, Rakha E, Mohibi S, Band H, Band V. ADA3 regulates normal and tumor mammary epithelial cell proliferation through c-MYC. Breast Cancer Res 2016; 18:113. [PMID: 27852327 PMCID: PMC5112670 DOI: 10.1186/s13058-016-0770-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/13/2016] [Indexed: 02/06/2023] Open
Abstract
Background We have established the critical role of ADA3 as a coactivator of estrogen receptor (ER), as well as its role in cell cycle progression. Furthermore, we showed that ADA3 is predominantly nuclear in mammary epithelium, and in ER+, but is cytoplasmic in ER- breast cancers, the latter correlating with poor survival. However, the role of nuclear ADA3 in human mammary epithelial cells (hMECs), and in ER+ breast cancer cells, as well as the importance of ADA3 expression in relation to patient prognosis and survival in ER+ breast cancer have remained uncharacterized. Methods We overexpressed ADA3 in hMECs or in ER+ breast cancer cells and assessed the effect on cell proliferation. The expression of ADA3 was analyzed then correlated with the expression of various prognostic markers, as well as survival of breast cancer patients. Results Overexpression of ADA3 in ER- hMECs as well as in ER+ breast cancer cell lines enhanced cell proliferation. These cells showed increased cyclin B and c-MYC, decreased p27 and increased SKP2 levels. This was accompanied by increased mRNA levels of early response genes c-FOS, EGR1, and c-MYC. Analysis of breast cancer tissue specimens showed a significant correlation of ADA3 nuclear expression with c-MYC expression. Furthermore, nuclear ADA3 and c-MYC expression together showed significant correlation with tumor grade, mitosis, pleomorphism, NPI, ER/PR status, Ki67 and p27 expression. Importantly, within ER+ cases, expression of nuclear ADA3 and c-MYC also significantly correlated with Ki67 and p27 expression. Univariate Kaplan Meier analysis of four groups in the whole, as well as the ER+ patients showed that c-MYC and ADA3 combinatorial phenotypes showed significantly different breast cancer specific survival with c-MYC-high and ADA3-Low subgroup had the worst outcome. Using multivariate analyses within the whole cohort and the ER+ subgroups, the significant association of ADA3 and c-MYC expression with patients’ outcome was independent of tumor grade, stage and size, and ER status. Conclusion ADA3 overexpression enhances cell proliferation that is associated with increased expression of c-MYC. Expression patterns with respect to ADA3/c-MYC can divide patients into four significantly different subgroups, with c-MYC High and ADA3 Low status independently predicting poor survival in patients. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0770-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicolas I Griffin
- Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gayatri Sharma
- Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xiangshan Zhao
- Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sameer Mirza
- Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shashank Srivastava
- Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bhavana J Dave
- Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA.,Departments of Human Genetics Laboratories, Munroe Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA.,Departments of Pathology & Microbiology, College of Medicine, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mohammed Aleskandarany
- School of Molecular Medical Sciences and Cellular Pathology, University of Nottingham and Nottingham University Hospital, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, USA
| | - Emad Rakha
- School of Molecular Medical Sciences and Cellular Pathology, University of Nottingham and Nottingham University Hospital, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, USA
| | - Shakur Mohibi
- Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Hamid Band
- Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA.,Departments of Pathology & Microbiology, College of Medicine, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Vimla Band
- Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA. .,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
11
|
Diffusion kurtosis imaging can efficiently assess the glioma grade and cellular proliferation. Oncotarget 2016; 6:42380-93. [PMID: 26544514 PMCID: PMC4747234 DOI: 10.18632/oncotarget.5675] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/22/2015] [Indexed: 01/02/2023] Open
Abstract
Conventional diffusion imaging techniques are not sufficiently accurate for evaluating glioma grade and cellular proliferation, which are critical for guiding glioma treatment. Diffusion kurtosis imaging (DKI), an advanced non-Gaussian diffusion imaging technique, has shown potential in grading glioma; however, its applications in this tumor have not been fully elucidated. In this study, DKI and diffusion weighted imaging (DWI) were performed on 74 consecutive patients with histopathologically confirmed glioma. The kurtosis and conventional diffusion metric values of the tumor were semi-automatically obtained. The relationships of these metrics with the glioma grade and Ki-67 expression were evaluated. The diagnostic efficiency of these metrics in grading was further compared. It was demonstrated that compared with the conventional diffusion metrics, the kurtosis metrics were more promising imaging markers in distinguishing high-grade from low-grade gliomas and distinguishing among grade II, III and IV gliomas; the kurtosis metrics also showed great potential in the prediction of Ki-67 expression. To our best knowledge, we are the first to reveal the ability of DKI to assess the cellular proliferation of gliomas, and to employ the semi-automatic method for the accurate measurement of gliomas. These results could have a significant impact on the diagnosis and subsequent therapy of glioma.
Collapse
|
12
|
Nagai M, Ushimaru T. Cdh1 is an antagonist of the spindle assembly checkpoint. Cell Signal 2014; 26:2217-22. [PMID: 25025567 DOI: 10.1016/j.cellsig.2014.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/08/2014] [Indexed: 10/25/2022]
Abstract
The spindle assembly checkpoint (SAC) monitors unsatisfied connections of microtubules to kinetochores and prevents anaphase onset by inhibition of the ubiquitin ligase E3 anaphase-promoting complex or cyclosome (APC/C) in association with the activator Cdc20. Another APC/C activator, Cdh1, exists permanently throughout the cell cycle but it becomes active from telophase to G1. Here, we show that Cdh1 is partially active and mediates securin degradation even in SAC-active metaphase cells. Additionally, Cdh1 mediates Cdc20 degradation in metaphase, promoting formation of the APC/C-Cdh1. These results indicate that Cdh1 opposes the SAC and promotes anaphase transition.
Collapse
Affiliation(s)
- Masayoshi Nagai
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan
| | - Takashi Ushimaru
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| |
Collapse
|
13
|
Civelekoglu-Scholey G, Cimini D. Modelling chromosome dynamics in mitosis: a historical perspective on models of metaphase and anaphase in eukaryotic cells. Interface Focus 2014; 4:20130073. [PMID: 24904736 DOI: 10.1098/rsfs.2013.0073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mitosis is the process by which the genome is segregated to form two identical daughter cells during cell division. The process of cell division is essential to the maintenance of every form of life. However, a detailed quantitative understanding of mitosis has been difficult owing to the complexity of the process. Indeed, it has been long recognized that, because of the complexity of the molecules involved, their dynamics and their properties, the mitotic events that mediate the segregation of the genome into daughter nuclei cannot be fully understood without the contribution of mathematical/quantitative modelling. Here, we provide an overview of mitosis and describe the dynamic and mechanical properties of the mitotic apparatus. We then discuss several quantitative models that emerged in the past decades and made an impact on our understanding of specific aspects of mitosis, including the motility of the chromosomes within the mitotic spindle during metaphase and anaphase, the maintenance of spindle length during metaphase and the switch to spindle elongation that occurs during anaphase.
Collapse
Affiliation(s)
- Gul Civelekoglu-Scholey
- Department of Molecular and Cellular Biology , University of California , Davis, CA 95616 , USA
| | - Daniela Cimini
- Department of Biological Sciences and Virginia Bioinformatics Institute , Virginia Tech , Blacksburg, VA 24061 , USA
| |
Collapse
|
14
|
Abstract
Evolutionary selection for optimal genome preservation, replication, and expression should yield similar chromosome organizations in any type of cells. And yet, the chromosome organization is surprisingly different between eukaryotes and prokaryotes. The nuclear versus cytoplasmic accommodation of genetic material accounts for the distinct eukaryotic and prokaryotic modes of genome evolution, but it falls short of explaining the differences in the chromosome organization. I propose that the two distinct ways to organize chromosomes are driven by the differences between the global-consecutive chromosome cycle of eukaryotes and the local-concurrent chromosome cycle of prokaryotes. Specifically, progressive chromosome segregation in prokaryotes demands a single duplicon per chromosome, while other "precarious" features of the prokaryotic chromosomes can be viewed as compensations for this severe restriction.
Collapse
|
15
|
Abstract
In both eukaryotes and prokaryotes, chromosomal DNA undergoes replication, condensation-decondensation and segregation, sequentially, in some fixed order. Other conditions, like sister-chromatid cohesion (SCC), may span several chromosomal events. One set of these chromosomal transactions within a single cell cycle constitutes the 'chromosome cycle'. For many years it was generally assumed that the prokaryotic chromosome cycle follows major phases of the eukaryotic one: -replication-condensation-segregation-(cell division)-decondensation-, with SCC of unspecified length. Eventually it became evident that, in contrast to the strictly consecutive chromosome cycle of eukaryotes, all stages of the prokaryotic chromosome cycle run concurrently. Thus, prokaryotes practice 'progressive' chromosome segregation separated from replication by a brief SCC, and all three transactions move along the chromosome at the same fast rate. In other words, in addition to replication forks, there are 'segregation forks' in prokaryotic chromosomes. Moreover, the bulk of prokaryotic DNA outside the replication-segregation transition stays compacted. I consider possible origins of this concurrent replication-segregation and outline the 'nucleoid administration' system that organizes the dynamic part of the prokaryotic chromosome cycle.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
16
|
Sanbhnani S, Yeong FM. CHFR: a key checkpoint component implicated in a wide range of cancers. Cell Mol Life Sci 2012; 69:1669-87. [PMID: 22159584 PMCID: PMC11114665 DOI: 10.1007/s00018-011-0892-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 11/13/2011] [Accepted: 11/16/2011] [Indexed: 02/06/2023]
Abstract
CHFR (Checkpoint with Forkhead-associated and RING finger domains) has been implicated in a checkpoint regulating entry into mitosis. However, the details underlying its roles and regulation are unclear due to conflicting lines of evidence supporting different notions of its functions. We provide here an overview of how CHFR is thought to contribute towards regulating mitotic entry and present possible explanations for contradictory observations published on the functions and regulation of CHFR. Furthermore, we survey key data showing correlations between promoter hypermethylation or down-regulation of CHFR and cancers, with a view on the likely reasons why different extents of correlations have been reported. Lastly, we explore the possibilities of exploiting CHFR promoter hypermethylation status in diagnostics and therapeutics for cancer patients. With keen interest currently focused on the association between hypermethylation of CHFR and cancers, details of how CHFR functions require further study to reveal how its absence might possibly contribute to tumorigenesis.
Collapse
Affiliation(s)
- Sheru Sanbhnani
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore
| | | |
Collapse
|
17
|
Williams GH, Stoeber K. The cell cycle and cancer. J Pathol 2011; 226:352-64. [PMID: 21990031 DOI: 10.1002/path.3022] [Citation(s) in RCA: 489] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/30/2011] [Accepted: 10/01/2011] [Indexed: 12/25/2022]
Abstract
Deregulation of the cell cycle underlies the aberrant cell proliferation that characterizes cancer and loss of cell cycle checkpoint control promotes genetic instability. During the past two decades, cancer genetics has shown that hyperactivating mutations in growth signalling networks, coupled to loss of function of tumour suppressor proteins, drives oncogenic proliferation. Gene expression profiling of these complex and redundant mitogenic pathways to identify prognostic and predictive signatures and their therapeutic targeting has, however, proved challenging. The cell cycle machinery, which acts as an integration point for information transduced through upstream signalling networks, represents an alternative target for diagnostic and therapeutic interventions. Analysis of the DNA replication initiation machinery and mitotic engine proteins in human tissues is now leading to the identification of novel biomarkers for cancer detection and prognostication, and is providing target validation for cell cycle-directed therapies.
Collapse
Affiliation(s)
- Gareth H Williams
- Department of Pathology and Cancer Institute, University College London, UK.
| | | |
Collapse
|
18
|
Perna D, Fagà G, Verrecchia A, Gorski MM, Barozzi I, Narang V, Khng J, Lim KC, Sung WK, Sanges R, Stupka E, Oskarsson T, Trumpp A, Wei CL, Müller H, Amati B. Genome-wide mapping of Myc binding and gene regulation in serum-stimulated fibroblasts. Oncogene 2011; 31:1695-709. [PMID: 21860422 PMCID: PMC3324106 DOI: 10.1038/onc.2011.359] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The transition from quiescence to proliferation is a key regulatory step that can be induced by serum stimulation in cultured fibroblasts. The transcription factor Myc is directly induced by serum mitogens and drives a secondary gene expression program that remains largely unknown. Using mRNA profiling, we identify close to 300 Myc-dependent serum response (MDSR) genes, which are induced by serum in a Myc-dependent manner in mouse fibroblasts. Mapping of genomic Myc-binding sites by ChIP-seq technology revealed that most MDSR genes were directly targeted by Myc, but represented a minor fraction (5.5%) of all Myc-bound promoters (which were 22.4% of all promoters). Other target loci were either induced by serum in a Myc-independent manner, were not significantly regulated or were negatively regulated. MDSR gene products were involved in a variety of processes, including nucleotide biosynthesis, ribosome biogenesis, DNA replication and RNA control. Of the 29 MDSR genes targeted by RNA interference, three showed a requirement for cell-cycle entry upon serum stimulation and 11 for long-term proliferation and/or survival. Hence, proper coordination of key regulatory and biosynthetic pathways following mitogenic stimulation relies upon the concerted regulation of multiple Myc-dependent genes.
Collapse
Affiliation(s)
- D Perna
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Alfieri R, Bartocci E, Merelli E, Milanesi L. Modeling the cell cycle: From deterministic models to hybrid systems. Biosystems 2011; 105:34-40. [DOI: 10.1016/j.biosystems.2011.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 03/03/2011] [Accepted: 03/05/2011] [Indexed: 10/18/2022]
|
20
|
Chen YC, Weinreich M. Dbf4 regulates the Cdc5 Polo-like kinase through a distinct non-canonical binding interaction. J Biol Chem 2010; 285:41244-54. [PMID: 21036905 DOI: 10.1074/jbc.m110.155242] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cdc7-Dbf4 is a conserved, two-subunit kinase required for initiating eukaryotic DNA replication. Recent studies have shown that Cdc7-Dbf4 also regulates the mitotic exit network (MEN) and monopolar homolog orientation in meiosis I (Matos, J., Lipp, J. J., Bogdanova, A., Guillot, S., Okaz, E., Junqueira, M., Shevchenko, A., and Zachariae, W. (2008) Cell 135, 662-678 and Miller, C. T., Gabrielse, C., Chen, Y. C., and Weinreich, M. (2009) PLoS Genet. 5, e1000498). Both activities likely involve a Cdc7-Dbf4 interaction with Cdc5, the single Polo-like kinase in budding yeast. We previously showed that Dbf4 binds the Cdc5 polo-box domain (PBD) via an ∼40-residue N-terminal sequence, which lacks a PBD consensus binding site (S(pS/pT)(P/X)), and that Dbf4 inhibits Cdc5 function during mitosis. Here we identify a non-consensus PBD binding site within Dbf4 and demonstrate that the PBD-Dbf4 interaction occurs via a distinct PBD surface from that used to bind phosphoproteins. Genetic and biochemical analysis of multiple dbf4 mutants indicate that Dbf4 inhibits Cdc5 function through direct binding. Surprisingly, mutation of invariant Cdc5 residues required for binding phosphorylated substrates has little effect on yeast viability or growth rate. Instead, cdc5 mutants defective for binding phosphoproteins exhibit enhanced resistance to microtubule disruption and an increased rate of spindle elongation. This study, therefore, details the molecular nature of a new type of PBD binding and reveals that Cdc5 targeting to phosphorylated substrates likely regulates spindle dynamics.
Collapse
Affiliation(s)
- Ying-Chou Chen
- Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | | |
Collapse
|
21
|
Roy Choudhury D, Small C, Wang Y, Mueller PR, Rebel VI, Griswold MD, McCarrey JR. Microarray-based analysis of cell-cycle gene expression during spermatogenesis in the mouse. Biol Reprod 2010; 83:663-75. [PMID: 20631398 DOI: 10.1095/biolreprod.110.084889] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mammalian spermatogenesis is a continuum of cellular differentiation in a lineage that features three principal stages: 1) a mitotically active stage in spermatogonia, 2) a meiotic stage in spermatocytes, and 3) a postreplicative stage in spermatids. We used a microarray-based approach to identify changes in expression of cell-cycle genes that distinguish 1) mitotic type A spermatogonia from meiotic pachytene spermatocytes and 2) pachytene spermatocytes from postreplicative round spermatids. We detected expression of 550 genes related to cell-cycle function in one or more of these cell types. Although a majority of these genes were expressed during all three stages of spermatogenesis, we observed dramatic changes in levels of individual transcripts between mitotic spermatogonia and meiotic spermatocytes and between meiotic spermatocytes and postreplicative spermatids. Our results suggest that distinct cell-cycle gene regulatory networks or subnetworks are associated with each phase of the cell cycle in each spermatogenic cell type. In addition, we observed expression of different members of certain cell-cycle gene families in each of the three spermatogenic cell types investigated. Finally, we report expression of 221 cell-cycle genes that have not previously been annotated as part of the cell cycle network expressed during spermatogenesis, including eight novel genes that appear to be testis-specific.
Collapse
|
22
|
Rothmund-Thomson syndrome helicase, RECQ4: on the crossroad between DNA replication and repair. DNA Repair (Amst) 2010; 9:325-30. [PMID: 20096650 DOI: 10.1016/j.dnarep.2010.01.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
RECQ proteins are conserved DNA helicases in both prokaryotes and eukaryotes. The importance of the RECQ family helicases in human health is demonstrated by their roles as cancer suppressors that are vital for preserving genome integrity. Mutations in one of the RECQ family proteins, RECQ4, not only result in developmental abnormalities and cancer predispositions, but are also linked to premature aging. Therefore, defining the function and regulation of the RECQ4 protein is fundamental to our understanding of both the aging process and cancer pathogenesis. This review will summarize the clinical effect of RECQ4 in human health, and discuss the recent progress and debate in defining the complex molecular function of RECQ4 in DNA metabolism.
Collapse
|
23
|
Abstract
Maintenance of genomic stability is needed for cells to survive many rounds of division throughout their lifetime. Key to the proper inheritance of intact genome is the tight temporal and spatial coordination of cell cycle events. Moreover, checkpoints are present that function to monitor the proper execution of cell cycle processes. For instance, the DNA damage and spindle assembly checkpoints ensure genomic integrity by delaying cell cycle progression in the presence of DNA or spindle damage, respectively. A checkpoint that has recently been gaining attention is the antephase checkpoint that acts to prevent cells from entering mitosis in response to a range of stress agents. We review here what is known about the pathway that monitors the status of the cells at the brink of entry into mitosis when cells are exposed to insults that threaten the proper inheritance of chromosomes. We highlight issues which are unresolved in terms of our understanding of the antephase checkpoint and provide some perspectives on what lies ahead in the understanding of how the checkpoint functions.
Collapse
|
24
|
Abstract
Correct regulation of the replication licensing system ensures that chromosomal DNA is precisely duplicated in each cell division cycle. Licensing proteins are inappropriately expressed at an early stage of tumorigenesis in a wide variety of cancers. Here we discuss evidence that misregulation of replication licensing is a consequence of oncogene-induced cell proliferation. This misregulation can cause either under- or over-replication of chromosomal DNA, and could explain the genetic instability commonly seen in cancer cells.
Collapse
Affiliation(s)
- J Julian Blow
- Wellcome Trust Centre for Gene Regulation & Expression, University of Dundee, DD1 5EH, UK.
| | | |
Collapse
|
25
|
Abstract
In the budding yeast Saccharomyces cerevisiae, microtubule-organizing centers called spindle pole bodies (SPBs) are embedded in the nuclear envelope, which remains intact throughout the cell cycle (closed mitosis). Kinetochores are tethered to SPBs by microtubules during most of the cell cycle, including G1 and M phases; however, it has been a topic of debate whether microtubule interaction is constantly maintained or transiently disrupted during chromosome duplication. Here, we show that centromeres are detached from microtubules for 1-2 min and displaced away from a spindle pole in early S phase. These detachment and displacement events are caused by centromere DNA replication, which results in disassembly of kinetochores. Soon afterward, kinetochores are reassembled, leading to their recapture by microtubules. We also show how kinetochores are subsequently transported poleward by microtubules. Our study gives new insights into kinetochore-microtubule interaction and kinetochore duplication during S phase in a closed mitosis.
Collapse
|
26
|
Zhu W, Ukomadu C, Jha S, Senga T, Dhar SK, Wohlschlegel JA, Nutt LK, Kornbluth S, Dutta A. Mcm10 and And-1/CTF4 recruit DNA polymerase alpha to chromatin for initiation of DNA replication. Genes Dev 2007; 21:2288-99. [PMID: 17761813 PMCID: PMC1973143 DOI: 10.1101/gad.1585607] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The MCM2-7 helicase complex is loaded on DNA replication origins during the G1 phase of the cell cycle to license the origins for replication in S phase. How the initiator primase-polymerase complex, DNA polymerase alpha (pol alpha), is brought to the origins is still unclear. We show that And-1/Ctf4 (Chromosome transmission fidelity 4) interacts with Mcm10, which associates with MCM2-7, and with the p180 subunit of DNA pol alpha. And-1 is essential for DNA synthesis and the stability of p180 in mammalian cells. In Xenopus egg extracts And-1 is loaded on the chromatin after Mcm10, concurrently with DNA pol alpha, and is required for efficient DNA synthesis. Mcm10 is required for chromatin loading of And-1 and an antibody that disrupts the Mcm10-And-1 interaction interferes with the loading of And-1 and of pol alpha, inhibiting DNA synthesis. And-1/Ctf4 is therefore a new replication initiation factor that brings together the MCM2-7 helicase and the DNA pol alpha-primase complex, analogous to the linker between helicase and primase or helicase and polymerase that is seen in the bacterial replication machinery. The discovery also adds to the connection between replication initiation and sister chromatid cohesion.
Collapse
Affiliation(s)
- Wenge Zhu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Chinweike Ukomadu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Sudhakar Jha
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Takeshi Senga
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Suman K. Dhar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - James A. Wohlschlegel
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Leta K. Nutt
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Sally Kornbluth
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Corresponding author.E-MAIL ; FAX (434) 924-5069
| |
Collapse
|
27
|
Staiber W. Asymmetric distribution of mitochondria and of spindle microtubules in opposite directions in differential mitosis of germ line cells in Acricotopus. Cell Tissue Res 2007; 329:197-203. [PMID: 17372767 DOI: 10.1007/s00441-007-0400-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 02/05/2007] [Indexed: 01/12/2023]
Abstract
Additional chromosomes present only in the germ line are a specific feature of the Orthocladiinae, a subfamily of the Chironomidae. During the complex chromosome cycle in the orthocladiid Acricotopus lucidus, about half of the germ-line-limited chromosomes (Ks) are eliminated in the first division of the primary germ cells. Following normal gonial mitoses, the reduction in the number of Ks is compensated for, in the last mitosis prior to meiosis, by a monopolar movement of the unseparated Ks, while the somatic chromosomes (Ss) segregate equally. This differential mitosis produces daughter cells with different chromosome constitutions and diverse developmental fates. A preferential segregation of mitochondria occurs to one pole associated with an asymmetric formation of the mitotic spindle. This has been detected in living gonial cells in both sexes by using MitoTracker probes and fluorochrome-labelled paclitaxel (taxol). In males, the resulting unequal partitioning of mitochondria to the daughter cells is equalised by the transport of mitochondria through a permanent cytoplasmic bridge from the aberrant spermatocyte to the primary spermatocyte. This asymmetry in the distribution and in the segregation of cytoplasmic components in differential gonial mitosis in Acricotopus may be involved in the process of cell-fate determination.
Collapse
Affiliation(s)
- Wolfgang Staiber
- Institute of Genetics, University of Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany.
| |
Collapse
|
28
|
Madgwick S, Hansen DV, Levasseur M, Jackson PK, Jones KT. Mouse Emi2 is required to enter meiosis II by reestablishing cyclin B1 during interkinesis. ACTA ACUST UNITED AC 2006; 174:791-801. [PMID: 16966421 PMCID: PMC2064334 DOI: 10.1083/jcb.200604140] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During interkinesis, a metaphase II (MetII) spindle is built immediately after the completion of meiosis I. Oocytes then remain MetII arrested until fertilization. In mouse, we find that early mitotic inhibitor 2 (Emi2), which is an anaphase-promoting complex inhibitor, is involved in both the establishment and the maintenance of MetII arrest. In MetII oocytes, Emi2 needs to be degraded for oocytes to exit meiosis, and such degradation, as visualized by fluorescent protein tagging, occurred tens of minutes ahead of cyclin B1. Emi2 antisense morpholino knockdown during oocyte maturation did not affect polar body (PB) extrusion. However, in interkinesis the central spindle microtubules from meiosis I persisted for a short time, and a MetII spindle failed to assemble. The chromatin in the oocyte quickly decondensed and a nucleus formed. All of these effects were caused by the essential role of Emi2 in stabilizing cyclin B1 after the first PB extrusion because in Emi2 knockdown oocytes a MetII spindle was recovered by Emi2 rescue or by expression of nondegradable cyclin B1 after meiosis I.
Collapse
Affiliation(s)
- Suzanne Madgwick
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle NE2 4HH, England, UK.
| | | | | | | | | |
Collapse
|
29
|
Venkova-Canova T, Srivastava P, Chattoraj DK. Transcriptional inactivation of a regulatory site for replication of Vibrio cholerae chromosome II. Proc Natl Acad Sci U S A 2006; 103:12051-6. [PMID: 16873545 PMCID: PMC1567695 DOI: 10.1073/pnas.0605120103] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacterium Vibrio cholerae has two chromosomes. The origin of replication of chromosome I is similar to that of Escherichia coli. The origin-containing region of chromosome II (oriCII) resembles replicons of plasmids such as P1, except for the presence of an additional gene, rctA [Egan, E. S. & Waldor, M. K. (2003) Cell 114, 521-530]. The oriCII region that includes the initiator gene, rctB, can function as a plasmid in E. coli. Here we show that RctB suffices for the oriCII-based plasmid replication, and rctA in cis or trans reduces the plasmid copy number, thereby serving as a negative regulator. The inhibitory activity could be overcome by increasing the concentration of RctB, suggesting that rctA titrates the initiator. Purified RctB bound to a DNA fragment carrying rctA, confirming that the two can interact. Although rctA apparently works as a titrating site, it is nonetheless transcribed. We find that the transcription attenuates the inhibitory activity of the gene, presumably by interfering with RctB binding. RctB, in turn, repressed the rctA promoter and, thereby, could control its own titration by modulating the transcription of rctA. This control circuit appears to be a putative novel mechanism for homeostasis of initiator availability.
Collapse
Affiliation(s)
- Tatiana Venkova-Canova
- Laboratory of Biochemistry, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4260
| | - Preeti Srivastava
- Laboratory of Biochemistry, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4260
| | - Dhruba K. Chattoraj
- Laboratory of Biochemistry, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4260
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
30
|
Kitamura E, Blow JJ, Tanaka TU. Live-cell imaging reveals replication of individual replicons in eukaryotic replication factories. Cell 2006; 125:1297-308. [PMID: 16814716 PMCID: PMC3019746 DOI: 10.1016/j.cell.2006.04.041] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 03/14/2006] [Accepted: 04/13/2006] [Indexed: 11/25/2022]
Abstract
Faithful DNA replication ensures genetic integrity in eukaryotic cells, but it is still obscure how replication is organized in space and time within the nucleus. Using timelapse microscopy, we have developed a new assay to analyze the dynamics of DNA replication both spatially and temporally in individual Saccharomyces cerevisiae cells. This allowed us to visualize replication factories, nuclear foci consisting of replication proteins where the bulk of DNA synthesis occurs. We show that the formation of replication factories is a consequence of DNA replication itself. Our analyses of replication at specific DNA sequences support a long-standing hypothesis that sister replication forks generated from the same origin stay associated with each other within a replication factory while the entire replicon is replicated. This assay system allows replication to be studied at extremely high temporal resolution in individual cells, thereby opening a window into how replication dynamics vary from cell to cell.
Collapse
Affiliation(s)
- Etsushi Kitamura
- School of Life Sciences, University of Dundee, Wellcome Trust Biocentre, Dow Street, Dundee, UK
| | | | | |
Collapse
|
31
|
Abstract
Initiation of DNA replication is a highly regulated process in all organisms. Proteins that are required to recruit DNA polymerase - initiator proteins - are often used to regulate the timing or frequency of initiation in the cell cycle by limiting either their own synthesis or availability. Studies of the Escherichia coli chromosome and of bacterial plasmids with iterated initiator binding sites (iterons) have revealed that, in addition to initiator limitation, replication origin inactivation is used to prevent replication that is untimely or excessive. Our recent studies of plasmid P1 revealed that this additional mode of control becomes a requirement when initiator availability is limited only by autoregulation. Thus, although initiator limitation appears to be a well-conserved and central mode of replication control, optimal replication might require additional control mechanisms. This review gives examples of how the multiple mechanisms can act synergistically, antagonistically or be partially redundant to guarantee low frequency events. The lessons learned are likely to help understand many other regulatory systems in the bacterial cell.
Collapse
Affiliation(s)
- Johan Paulsson
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
32
|
Berger R. [Human cytogenetics. From 1956 to 2006]. ACTA ACUST UNITED AC 2006; 55:1-12. [PMID: 16697121 DOI: 10.1016/j.patbio.2006.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 04/05/2006] [Indexed: 01/24/2023]
Abstract
The correct enumeration of human chromosomes, only established in 1956, has marked the starting point of the modern cytogenetics. The introduction of banding techniques, then of in situ hybridization techniques, and now of genomic microarray technology allowed a dramatic development of cytogenetics of which the main applications to basic and medical research are evoked in this review.
Collapse
Affiliation(s)
- R Berger
- Hôpital Necker-Enfants-Malades, EMI 0210 Inserm, 149, rue de Sèvres, 75743 Paris cedex 15, France.
| |
Collapse
|
33
|
Staudt N, Fellert S, Chung HR, Jäckle H, Vorbrüggen G. Mutations of the Drosophila zinc finger-encoding gene vielfältig impair mitotic cell divisions and cause improper chromosome segregation. Mol Biol Cell 2006; 17:2356-65. [PMID: 16525017 PMCID: PMC1446075 DOI: 10.1091/mbc.e05-11-1056] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We describe the molecular characterization and function of vielfältig (vfl), a X-chromosomal gene that encodes a nuclear protein with six Krüppel-like C2H2 zinc finger motifs. vfl transcripts are maternally contributed and ubiquitously distributed in eggs and preblastoderm embryos, excluding the germline precursor cells. Zygotically, vfl is expressed strongly in the developing nervous system, the brain, and in other mitotically active tissues. Vfl protein shows dynamic subcellular patterns during the cell cycle. In interphase nuclei, Vfl is associated with chromatin, whereas during mitosis, Vfl separates from chromatin and becomes distributed in a granular pattern in the nucleoplasm. Functional gain-of-function and lack-of-function studies show that vfl activity is necessary for normal mitotic cell divisions. Loss of vfl activity disrupts the pattern of mitotic waves in preblastoderm embryos, elicits asynchronous DNA replication, and causes improper chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Nicole Staudt
- Max-Planck-Institut für biophysikalische Chemie, Abteilung Molekulare Entwicklungsbiologie, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|