1
|
Liu X, Gu D, Zhang Y, Jiang Y, Xiao Z, Xu R, Qin R, Li J, Wei P. Conditional knockdown of OsMLH1 to improve plant prime editing systems without disturbing fertility in rice. Genome Biol 2024; 25:131. [PMID: 38773623 PMCID: PMC11110357 DOI: 10.1186/s13059-024-03282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/16/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND High-efficiency prime editing (PE) is desirable for precise genome manipulation. The activity of mammalian PE systems can be largely improved by inhibiting DNA mismatch repair by coexpressing a dominant-negative variant of MLH1. However, this strategy has not been widely used for PE optimization in plants, possibly because of its less conspicuous effects and inconsistent performance at different sites. RESULTS We show that direct RNAi knockdown of OsMLH1 in an ePE5c system increases the efficiency of our most recently updated PE tool by 1.30- to 2.11-fold in stably transformed rice cells, resulting in as many as 85.42% homozygous mutants in the T0 generation. The high specificity of ePE5c is revealed by whole-genome sequencing. To overcome the partial sterility induced by OsMLH1 knockdown of ePE5c, a conditional excision system is introduced to remove the RNAi module by Cre-mediated site-specific recombination. Using a simple approach of enriching excision events, we generate 100% RNAi module-free plants in the T0 generation. The increase in efficiency due to OsMLH1 knockdown is maintained in the excised plants, whose fertility is not impaired. CONCLUSIONS This study provides a safe and reliable plant PE optimization strategy for improving editing efficiency without disturbing plant development via transient MMR inhibition with an excisable RNAi module of MLH1.
Collapse
Affiliation(s)
- Xiaoshuang Liu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Dongfang Gu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Yiru Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Yingli Jiang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Zhi Xiao
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Rongfang Xu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Ruiying Qin
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Juan Li
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China.
| | - Pengcheng Wei
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
- Research Centre for Biological Breeding Technology, Advance Academy, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| |
Collapse
|
2
|
Dluzewska J, Dziegielewski W, Szymanska-Lejman M, Gazecka M, Henderson IR, Higgins JD, Ziolkowski PA. MSH2 stimulates interfering and inhibits non-interfering crossovers in response to genetic polymorphism. Nat Commun 2023; 14:6716. [PMID: 37872134 PMCID: PMC10593791 DOI: 10.1038/s41467-023-42511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Meiotic crossovers can be formed through the interfering pathway, in which one crossover prevents another from forming nearby, or by an independent non-interfering pathway. In Arabidopsis, local sequence polymorphism between homologs can stimulate interfering crossovers in a MSH2-dependent manner. To understand how MSH2 regulates crossovers formed by the two pathways, we combined Arabidopsis mutants that elevate non-interfering crossovers with msh2 mutants. We demonstrate that MSH2 blocks non-interfering crossovers at polymorphic loci, which is the opposite effect to interfering crossovers. We also observe MSH2-independent crossover inhibition at highly polymorphic sites. We measure recombination along the chromosome arms in lines differing in patterns of heterozygosity and observe a MSH2-dependent crossover increase at the boundaries between heterozygous and homozygous regions. Here, we show that MSH2 is a master regulator of meiotic DSB repair in Arabidopsis, with antagonistic effects on interfering and non-interfering crossovers, which shapes the crossover landscape in relation to interhomolog polymorphism.
Collapse
Affiliation(s)
- Julia Dluzewska
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Wojciech Dziegielewski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Maja Szymanska-Lejman
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Monika Gazecka
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
- Department of Molecular Virology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Piotr A Ziolkowski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland.
| |
Collapse
|
3
|
Katche EI, Schierholt A, Schiessl SV, He F, Lv Z, Batley J, Becker HC, Mason AS. Genetic factors inherited from both diploid parents interact to affect genome stability and fertility in resynthesized allotetraploid Brassica napus. G3 (BETHESDA, MD.) 2023; 13:jkad136. [PMID: 37313757 PMCID: PMC10411605 DOI: 10.1093/g3journal/jkad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/24/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
Established allopolyploids are known to be genomically stable and fertile. However, in contrast, most newly resynthesized allopolyploids are infertile and meiotically unstable. Identifying the genetic factors responsible for genome stability in newly formed allopolyploid is key to understanding how 2 genomes come together to form a species. One hypothesis is that established allopolyploids may have inherited specific alleles from their diploid progenitors which conferred meiotic stability. Resynthesized Brassica napus lines are often unstable and infertile, unlike B. napus cultivars. We tested this hypothesis by characterizing 41 resynthesized B. napus lines produced by crosses between 8 Brassica rapa and 8 Brassica oleracea lines for copy number variation resulting from nonhomologous recombination events and fertility. We resequenced 8 B. rapa and 5 B. oleracea parent accessions and analyzed 19 resynthesized lines for allelic variation in a list of meiosis gene homologs. SNP genotyping was performed using the Illumina Infinium Brassica 60K array for 3 individuals per line. Self-pollinated seed set and genome stability (number of copy number variants) were significantly affected by the interaction between both B. rapa and B. oleracea parental genotypes. We identified 13 putative meiosis gene candidates which were significantly associated with frequency of copy number variants and which contained putatively harmful mutations in meiosis gene haplotypes for further investigation. Our results support the hypothesis that allelic variants inherited from parental genotypes affect genome stability and fertility in resynthesized rapeseed.
Collapse
Affiliation(s)
- Elizabeth Ihien Katche
- Plant Breeding Department, University of Bonn, Bonn 53115, Germany
- Department of Plant Breeding, Justus Liebig University, Giessen 35392, Germany
| | - Antje Schierholt
- Department of Crop Sciences, Division of Plant Breeding Methodology, Georg-August University Göttingen, Göttingen 37073, Germany
| | - Sarah-Veronica Schiessl
- Department of Plant Breeding, Justus Liebig University, Giessen 35392, Germany
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main D-60325, Germany
| | - Fei He
- Plant Breeding Department, University of Bonn, Bonn 53115, Germany
| | - Zhenling Lv
- Plant Breeding Department, University of Bonn, Bonn 53115, Germany
- Department of Plant Breeding, Justus Liebig University, Giessen 35392, Germany
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Heiko C Becker
- Department of Crop Sciences, Division of Plant Breeding Methodology, Georg-August University Göttingen, Göttingen 37073, Germany
| | - Annaliese S Mason
- Plant Breeding Department, University of Bonn, Bonn 53115, Germany
- Department of Plant Breeding, Justus Liebig University, Giessen 35392, Germany
| |
Collapse
|
4
|
Yang W, Zou J, Wang J, Li N, Luo X, Jiang X, Li S. Variation in Rice Plastid Genomes in Wide Crossing Reveals Dynamic Nucleo-Cytoplasmic Interaction. Genes (Basel) 2023; 14:1411. [PMID: 37510315 PMCID: PMC10379430 DOI: 10.3390/genes14071411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Plastid genomes (plastomes) of angiosperms are well known for their relative stability in size, structure, and gene content. However, little is known about their heredity and variations in wide crossing. To such an end, the plastomes of five representative rice backcross inbred lines (BILs) developed from crosses of O. glaberrima/O. sativa were analyzed. We found that the size of all plastomes was about 134,580 bp, with a quadripartite structure that included a pair of inverted repeat (IR) regions, a small single-copy (SSC) region and a large single-copy (LSC) region. They contained 76 protein genes, 4 rRNA genes, and 30 tRNA genes. Although their size, structure, and gene content were stable, repeat-mediated recombination, gene expression, and RNA editing were extensively changed between the maternal line and the BILs. These novel discoveries demonstrate that wide crossing causes not only nuclear genomic recombination, but also plastome variation in plants, and that the plastome plays a critical role in coordinating the nuclear-cytoplasmic interaction.
Collapse
Affiliation(s)
- Weilong Yang
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518036, China
| | - Jianing Zou
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Jiajia Wang
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Nengwu Li
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Xiaoyun Luo
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Xiaofen Jiang
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| |
Collapse
|
5
|
Strelnikova SR, Komakhin RA. Control of meiotic crossing over in plant breeding. Vavilovskii Zhurnal Genet Selektsii 2023; 27:99-110. [PMID: 37063511 PMCID: PMC10090103 DOI: 10.18699/vjgb-23-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 04/18/2023] Open
Abstract
Meiotic crossing over is the main mechanism for constructing a new allelic composition of individual chromosomes and is necessary for the proper distribution of homologous chromosomes between gametes. The parameters of meiotic crossing over that have developed in the course of evolution are determined by natural selection and do not fully suit the tasks of selective breeding research. This review summarizes the results of experimental studies aimed at increasing the frequency of crossovers and redistributing their positions along chromosomes using genetic manipulations at different stages of meiotic recombination. The consequences of inactivation and/or overexpression of the SPO11 genes, the products of which generate meiotic double-strand breaks in DNA, for the redistribution of crossover positions in the genome of various organisms are discussed. The results of studies concerning the effect of inactivation or overexpression of genes encoding RecA-like recombinases on meiotic crossing over, including those in cultivated tomato (Solanum lycopersicum L.) and its interspecific hybrids, are summarized. The consequences of inactivation of key genes of the mismatch repair system are discussed. Their suppression made it possible to significantly increase the frequency of meiotic recombination between homeologues in the interspecific hybrid yeast Saccharomyces cerevisiae × S. paradoxus and between homologues in arabidopsis plants (Arabidopsis thaliana L.). Also discussed are attempts to extrapolate these results to other plant species, in which a decrease in reproductive properties and microsatellite instability in the genome have been noted. The most significant results on the meiotic recombination frequency increase upon inactivation of the FANCM, TOP3α, RECQ4, FIGL1 crossover repressor genes and upon overexpression of the HEI10 crossover enhancer gene are separately described. In some experiments, the increase of meiotic recombination frequency by almost an order of magnitude and partial redistribution of the crossover positions along chromosomes were achieved in arabidopsis while fully preserving fecundity. Similar results have been obtained for some crops.
Collapse
Affiliation(s)
- S R Strelnikova
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - R A Komakhin
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| |
Collapse
|
6
|
Emmenecker C, Mézard C, Kumar R. Repair of DNA double-strand breaks in plant meiosis: role of eukaryotic RecA recombinases and their modulators. PLANT REPRODUCTION 2023; 36:17-41. [PMID: 35641832 DOI: 10.1007/s00497-022-00443-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Homologous recombination during meiosis is crucial for the DNA double-strand breaks (DSBs) repair that promotes the balanced segregation of homologous chromosomes and enhances genetic variation. In most eukaryotes, two recombinases RAD51 and DMC1 form nucleoprotein filaments on single-stranded DNA generated at DSB sites and play a central role in the meiotic DSB repair and genome stability. These nucleoprotein filaments perform homology search and DNA strand exchange to initiate repair using homologous template-directed sequences located elsewhere in the genome. Multiple factors can regulate the assembly, stability, and disassembly of RAD51 and DMC1 nucleoprotein filaments. In this review, we summarize the current understanding of the meiotic functions of RAD51 and DMC1 and the role of their positive and negative modulators. We discuss the current models and regulators of homology searches and strand exchange conserved during plant meiosis. Manipulation of these repair factors during plant meiosis also holds a great potential to accelerate plant breeding for crop improvements and productivity.
Collapse
Affiliation(s)
- Côme Emmenecker
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
- University of Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Christine Mézard
- Institut Jean-Pierre Bourgin (IJPB), CNRS, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| | - Rajeev Kumar
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| |
Collapse
|
7
|
Ziolkowski PA. Why do plants need the ZMM crossover pathway? A snapshot of meiotic recombination from the perspective of interhomolog polymorphism. PLANT REPRODUCTION 2023; 36:43-54. [PMID: 35819509 PMCID: PMC9958190 DOI: 10.1007/s00497-022-00446-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/20/2022] [Indexed: 06/06/2023]
Abstract
At the heart of meiosis is crossover recombination, i.e., reciprocal exchange of chromosome fragments between parental genomes. Surprisingly, in most eukaryotes, including plants, several recombination pathways that can result in crossover event operate in parallel during meiosis. These pathways emerged independently in the course of evolution and perform separate functions, which directly translate into their roles in meiosis. The formation of one crossover per chromosome pair is required for proper chromosome segregation. This "obligate" crossover is ensured by the major crossover pathway in plants, and in many other eukaryotes, known as the ZMM pathway. The secondary pathways play important roles also in somatic cells and function mainly as repair mechanisms for DNA double-strand breaks (DSBs) not used for crossover formation. One of the consequences of the functional differences between ZMM and other DSB repair pathways is their distinct sensitivities to polymorphisms between homologous chromosomes. From a population genetics perspective, these differences may affect the maintenance of genetic variability. This might be of special importance when considering that a significant portion of plants uses inbreeding as a predominant reproductive strategy, which results in loss of interhomolog polymorphism. While we are still far from fully understanding the relationship between meiotic recombination pathways and genetic variation in populations, recent studies of crossovers in plants offer a new perspective.
Collapse
Affiliation(s)
- Piotr A Ziolkowski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland.
| |
Collapse
|
8
|
Bomblies K. Learning to tango with four (or more): the molecular basis of adaptation to polyploid meiosis. PLANT REPRODUCTION 2023; 36:107-124. [PMID: 36149479 PMCID: PMC9957869 DOI: 10.1007/s00497-022-00448-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/10/2022] [Indexed: 05/29/2023]
Abstract
Polyploidy, which arises from genome duplication, has occurred throughout the history of eukaryotes, though it is especially common in plants. The resulting increased size, heterozygosity, and complexity of the genome can be an evolutionary opportunity, facilitating diversification, adaptation and the evolution of functional novelty. On the other hand, when they first arise, polyploids face a number of challenges, one of the biggest being the meiotic pairing, recombination and segregation of the suddenly more than two copies of each chromosome, which can limit their fertility. Both for developing polyploidy as a crop improvement tool (which holds great promise due to the high and lasting multi-stress resilience of polyploids), as well as for our basic understanding of meiosis and plant evolution, we need to know both the specific nature of the challenges polyploids face, as well as how they can be overcome in evolution. In recent years there has been a dramatic uptick in our understanding of the molecular basis of polyploid adaptations to meiotic challenges, and that is the focus of this review.
Collapse
Affiliation(s)
- Kirsten Bomblies
- Plant Evolutionary Genetics, Institute of Plant Molecular Biology, Department of Biology, ETH Zürich, Zurich, Switzerland.
| |
Collapse
|
9
|
Szymanska-Lejman M, Dziegielewski W, Dluzewska J, Kbiri N, Bieluszewska A, Poethig RS, Ziolkowski PA. The effect of DNA polymorphisms and natural variation on crossover hotspot activity in Arabidopsis hybrids. Nat Commun 2023; 14:33. [PMID: 36596804 PMCID: PMC9810609 DOI: 10.1038/s41467-022-35722-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
In hybrid organisms, genetically divergent homologous chromosomes pair and recombine during meiosis; however, the effect of specific types of polymorphisms on crossover is poorly understood. Here, to analyze this in Arabidopsis, we develop the seed-typing method that enables the massively parallel fine-mapping of crossovers by sequencing. We show that structural variants, observed in one of the generated intervals, do not change crossover frequency unless they are located directly within crossover hotspots. Both natural and Cas9-induced deletions result in lower hotspot activity but are not compensated by increases in immediately adjacent hotspots. To examine the effect of single nucleotide polymorphisms on crossover formation, we analyze hotspot activity in mismatch detection-deficient msh2 mutants. Surprisingly, polymorphic hotspots show reduced activity in msh2. In lines where only the hotspot-containing interval is heterozygous, crossover numbers increase above those in the inbred (homozygous). We conclude that MSH2 shapes crossover distribution by stimulating hotspot activity at polymorphic regions.
Collapse
Affiliation(s)
- Maja Szymanska-Lejman
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Wojciech Dziegielewski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Julia Dluzewska
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Nadia Kbiri
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Anna Bieluszewska
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Piotr A Ziolkowski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland.
| |
Collapse
|
10
|
Wang F, Xia Z, Zou M, Zhao L, Jiang S, Zhou Y, Zhang C, Ma Y, Bao Y, Sun H, Wang W, Wang J. The autotetraploid potato genome provides insights into highly heterozygous species. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1996-2005. [PMID: 35767385 PMCID: PMC9491450 DOI: 10.1111/pbi.13883] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/24/2022] [Accepted: 06/21/2022] [Indexed: 05/19/2023]
Abstract
Potato (Solanum tuberosum L.) originated in the Andes and evolved its vegetative propagation strategy through short day-dependent tuber development. Herein, we present a high-quality, chromosome-scale reference genome sequence of a tetraploid potato cultivar. The total length of this genome assembly was 2.67 Gb, with scaffold N50 and contig N50 sizes of 46.24 and 2.19 Mb, respectively. In total, 1.69 Gb repetitive sequences were obtained through de novo annotation, and long terminal repeats were the main transposable elements. A total of 126 070 protein-coding genes were annotated, of which 125 077 (99.21%) were located on chromosomes. The 48 chromosomes were classified into four haplotypes. We annotated 31 506 homologous genes, including 5913 (18.77%) genes with four homologues, 11 103 (35.24%) with three homologues, 12 177 (38.65%) with two homologues and 2313 (7.34%) with one homologue. MLH3, MSH6/7 and RFC3, which are the genes involved in the mismatch repair pathway, were found to be significantly expanded in the tetraploid potato genome relative to the diploid potato genome. Genome-wide association analysis revealed that cytochrome P450, flavonoid synthesis, chalcone enzyme, glycosyl hydrolase and glycosyl transferase genes were significantly correlated with the flesh colours of potato tuber in 150 tetraploid potatoes. This study provides valuable insights into the highly heterozygous autotetraploid potato genome and may facilitate the development of tools for potato cultivar breeding and further studies on autotetraploid crops.
Collapse
Affiliation(s)
- Fang Wang
- Academy of Agriculture and Forestry SciencesQinghai UniversityXiningChina
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal HusbandryQinghai UniversityXiningChina
- Key Laboratory of Qinghai‐Tibet Plateau Biotechnology Ministry of EducationXiningChina
- Qinghai Provincial Key Laboratory of Potato BreedingXiningChina
| | - Zhiqiang Xia
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed LaboratorySanyaChina
- College of Tropical Crops Hainan University, Hainan UniversityHaikouChina
| | - Meiling Zou
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed LaboratorySanyaChina
- College of Tropical Crops Hainan University, Hainan UniversityHaikouChina
| | - Long Zhao
- Academy of Agriculture and Forestry SciencesQinghai UniversityXiningChina
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal HusbandryQinghai UniversityXiningChina
| | - Sirong Jiang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed LaboratorySanyaChina
- College of Tropical Crops Hainan University, Hainan UniversityHaikouChina
| | - Yun Zhou
- Academy of Agriculture and Forestry SciencesQinghai UniversityXiningChina
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal HusbandryQinghai UniversityXiningChina
- Key Laboratory of Qinghai‐Tibet Plateau Biotechnology Ministry of EducationXiningChina
- Qinghai Provincial Key Laboratory of Potato BreedingXiningChina
| | - Chenji Zhang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed LaboratorySanyaChina
- College of Tropical Crops Hainan University, Hainan UniversityHaikouChina
| | - Yongzhen Ma
- Academy of Agriculture and Forestry SciencesQinghai UniversityXiningChina
| | - Yuting Bao
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed LaboratorySanyaChina
- College of Tropical Crops Hainan University, Hainan UniversityHaikouChina
| | - Haihong Sun
- Academy of Agriculture and Forestry SciencesQinghai UniversityXiningChina
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal HusbandryQinghai UniversityXiningChina
- Key Laboratory of Qinghai‐Tibet Plateau Biotechnology Ministry of EducationXiningChina
- Qinghai Provincial Key Laboratory of Potato BreedingXiningChina
| | - Wenquan Wang
- College of Tropical Crops Hainan University, Hainan UniversityHaikouChina
| | - Jian Wang
- Academy of Agriculture and Forestry SciencesQinghai UniversityXiningChina
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal HusbandryQinghai UniversityXiningChina
- Key Laboratory of Qinghai‐Tibet Plateau Biotechnology Ministry of EducationXiningChina
- Qinghai Provincial Key Laboratory of Potato BreedingXiningChina
| |
Collapse
|
11
|
Darrier B, Colas I, Rimbert H, Choulet F, Bazile J, Sortais A, Jenczewski E, Sourdille P. Location and Identification on Chromosome 3B of Bread Wheat of Genes Affecting Chiasma Number. PLANTS (BASEL, SWITZERLAND) 2022; 11:2281. [PMID: 36079661 PMCID: PMC9460588 DOI: 10.3390/plants11172281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022]
Abstract
Understanding meiotic crossover (CO) variation in crops like bread wheat (Triticum aestivum L.) is necessary as COs are essential to create new, original and powerful combinations of genes for traits of agronomical interest. We cytogenetically characterized a set of wheat aneuploid lines missing part or all of chromosome 3B to identify the most influential regions for chiasma formation located on this chromosome. We showed that deletion of the short arm did not change the total number of chiasmata genome-wide, whereas this latter was reduced by ~35% while deleting the long arm. Contrary to what was hypothesized in a previous study, deletion of the long arm does not disturb the initiation of the synaptonemal complex (SC) in early meiotic stages. However, progression of the SC is abnormal, and we never observed its completion when the long arm is deleted. By studying six different deletion lines (missing different parts of the long arm), we revealed that at least two genes located in both the proximal (C-3BL2-0.22) and distal (3BL7-0.63-1.00) deletion bins are involved in the control of chiasmata, each deletion reducing the number of chiasmata by ~15%. We combined sequence analyses of deletion bins with RNA-Seq data derived from meiotic tissues and identified a set of genes for which at least the homoeologous copy on chromosome 3B is expressed and which are involved in DNA processing. Among these genes, eight (CAP-E1/E2, DUO1, MLH1, MPK4, MUS81, RTEL1, SYN4, ZIP4) are known to be involved in the recombination pathway.
Collapse
Affiliation(s)
- Benoit Darrier
- UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5, INRAE–Université Clermont-Auvergne, Chemin de Beaulieu, 63000 Clermont-Ferrand, France
- Syngenta, Toulouse Innovation Centre 12 Chemin de l’Hobit, 31790 Saint-Sauveur, France
| | - Isabelle Colas
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Hélène Rimbert
- UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5, INRAE–Université Clermont-Auvergne, Chemin de Beaulieu, 63000 Clermont-Ferrand, France
| | - Frédéric Choulet
- UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5, INRAE–Université Clermont-Auvergne, Chemin de Beaulieu, 63000 Clermont-Ferrand, France
| | - Jeanne Bazile
- UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5, INRAE–Université Clermont-Auvergne, Chemin de Beaulieu, 63000 Clermont-Ferrand, France
| | - Aurélien Sortais
- UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5, INRAE–Université Clermont-Auvergne, Chemin de Beaulieu, 63000 Clermont-Ferrand, France
| | - Eric Jenczewski
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Pierre Sourdille
- UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5, INRAE–Université Clermont-Auvergne, Chemin de Beaulieu, 63000 Clermont-Ferrand, France
| |
Collapse
|
12
|
Lian Q, Solier V, Walkemeier B, Durand S, Huettel B, Schneeberger K, Mercier R. The megabase-scale crossover landscape is largely independent of sequence divergence. Nat Commun 2022; 13:3828. [PMID: 35780220 PMCID: PMC9250513 DOI: 10.1038/s41467-022-31509-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Meiotic recombination frequency varies along chromosomes and strongly correlates with sequence divergence. However, the causal relationship between recombination landscapes and polymorphisms is unclear. Here, we characterize the genome-wide recombination landscape in the quasi-absence of polymorphisms, using Arabidopsis thaliana homozygous inbred lines in which a few hundred genetic markers were introduced through mutagenesis. We find that megabase-scale recombination landscapes in inbred lines are strikingly similar to the recombination landscapes in hybrids, with the notable exception of heterozygous large rearrangements where recombination is prevented locally. In addition, the megabase-scale recombination landscape can be largely explained by chromatin features. Our results show that polymorphisms are not a major determinant of the shape of the megabase-scale recombination landscape but rather favour alternative models in which recombination and chromatin shape sequence divergence across the genome. The frequency of recombination varies along chromosomes and highly correlates with sequence divergence. Here, the authors show that polymorphisms are not a major determinant of the megabase-scale recombination landscape in Arabidopsis, which is rather determined by chromatin accessibility and DNA methylation.
Collapse
Affiliation(s)
- Qichao Lian
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Victor Solier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Birgit Walkemeier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Stéphanie Durand
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Bruno Huettel
- Max Planck-Genome-centre Cologne, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Korbinian Schneeberger
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany. .,Faculty of Biology, LMU Munich, 82152, Planegg-Martinsried, Germany.
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
| |
Collapse
|
13
|
Fayos I, Frouin J, Meynard D, Vernet A, Herbert L, Guiderdoni E. Manipulation of Meiotic Recombination to Hasten Crop Improvement. BIOLOGY 2022; 11:369. [PMID: 35336743 PMCID: PMC8945028 DOI: 10.3390/biology11030369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/15/2023]
Abstract
Reciprocal (cross-overs = COs) and non-reciprocal (gene conversion) DNA exchanges between the parental chromosomes (the homologs) during meiotic recombination are, together with mutation, the drivers for the evolution and adaptation of species. In plant breeding, recombination combines alleles from genetically diverse accessions to generate new haplotypes on which selection can act. In recent years, a spectacular progress has been accomplished in the understanding of the mechanisms underlying meiotic recombination in both model and crop plants as well as in the modulation of meiotic recombination using different strategies. The latter includes the stimulation and redistribution of COs by either modifying environmental conditions (e.g., T°), harnessing particular genomic situations (e.g., triploidy in Brassicaceae), or inactivating/over-expressing meiotic genes, notably some involved in the DNA double-strand break (DSB) repair pathways. These tools could be particularly useful for shuffling diversity in pre-breeding generations. Furthermore, thanks to the site-specific properties of genome editing technologies the targeting of meiotic recombination at specific chromosomal regions nowadays appears an attainable goal. Directing COs at desired chromosomal positions would allow breaking linkage situations existing between favorable and unfavorable alleles, the so-called linkage drag, and accelerate genetic gain. This review surveys the recent achievements in the manipulation of meiotic recombination in plants that could be integrated into breeding schemes to meet the challenges of deploying crops that are more resilient to climate instability, resistant to pathogens and pests, and sparing in their input requirements.
Collapse
Affiliation(s)
- Ian Fayos
- Meiogenix, 38 rue Sevran, 75011 Paris, France; (I.F.); (L.H.)
| | - Julien Frouin
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France; (J.F.); (D.M.); (A.V.)
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Donaldo Meynard
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France; (J.F.); (D.M.); (A.V.)
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Aurore Vernet
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France; (J.F.); (D.M.); (A.V.)
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Léo Herbert
- Meiogenix, 38 rue Sevran, 75011 Paris, France; (I.F.); (L.H.)
| | - Emmanuel Guiderdoni
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France; (J.F.); (D.M.); (A.V.)
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| |
Collapse
|
14
|
Lencina F, Landau A, Prina AR. The Barley Chloroplast Mutator (cpm) Mutant: All Roads Lead to the Msh1 Gene. Int J Mol Sci 2022; 23:ijms23031814. [PMID: 35163736 PMCID: PMC8836938 DOI: 10.3390/ijms23031814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 12/10/2022] Open
Abstract
The barley chloroplast mutator (cpm) is a nuclear gene mutant that induces a wide spectrum of cytoplasmically inherited chlorophyll deficiencies. Plastome instability of cpm seedlings was determined by identification of a particular landscape of polymorphisms that suggests failures in a plastome mismatch repair (MMR) protein. In Arabidopsis, MSH genes encode proteins that are in charge of mismatch repair and have anti-recombination activity. In this work, barley homologs of these genes were identified, and their sequences were analyzed in control and cpm mutant seedlings. A substitution, leading to a premature stop codon and a truncated MSH1 protein, was identified in the Msh1 gene of cpm plants. The relationship between this mutation and the presence of chlorophyll deficiencies was established in progenies from crosses and backcrosses. These results strongly suggest that the mutation identified in the Msh1 gene of the cpm mutant is responsible for the observed plastome instabilities. Interestingly, comparison of mutant phenotypes and molecular changes induced by the barley cpm mutant with those of Arabidopsis MSH1 mutants revealed marked differences.
Collapse
|
15
|
Strelnikova SR, Krinitsina AA, Komakhin RA. Effective RNAi-Mediated Silencing of the Mismatch Repair MSH2 Gene Induces Sterility of Tomato Plants but Not an Increase in Meiotic Recombination. Genes (Basel) 2021; 12:1167. [PMID: 34440341 PMCID: PMC8394773 DOI: 10.3390/genes12081167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
In plant breeding, the ability to manipulate meiotic recombination aids in the efficient construction of new allelic compositions of chromosomes and facilitates gene transfer from wild relatives of crop plants. The DNA mismatch repair system antagonizes meiotic recombination. In this research, a trial was conducted to evaluate transgenic tomato plants carrying an RNA interference (RNAi) construct designed to inhibit the expression of the mismatch repair MSH2 gene. To drive the RNAi construct, we used either a pro-SmAMP2 promoter from Stellaria media ANTIMICROBIAL PEPTIDE2 or a Cauliflower mosaic virus 35S promoter (CaMV35S). The results of real-time PCR showed that, with a 16 h light/8 h dark photoperiod, MSH2-RNAi tomato transgenic plants exhibited MSH2 gene transcript contents ranging from 0% to 3% in the leaves, relative to untransformed controls. However, with this lighting mode, the MSH2-RNAi transgenic plants grew slowly, flowered poorly, and did not form seed sets. During cultivation with a 12 h light/12 h dark photoperiod, MSH2-RNAi transgenic plants exhibited MSH2 gene transcript contents ranging from 3% to 42%, relative to untransformed controls. Under these conditions, F1 hybrid seed sets formed for most of the MSH2-RNAi transgenic plants with the RNAi construct driven by the CaMV35S promoter, and for one transformant with the RNAi construct driven by the pro-SmAMP2 promoter. Under conditions of a 12 h light/12 h dark photoperiod, most of the F1 transgenic hybrids showed MSH2 gene transcript contents ranging from 3% to 34% and formed F2 offspring sets, which made it possible to assess the meiotic recombination frequency. We showed that the effective inhibition of MSH2 in MSH2-RNAi tomato transgenic plants is not associated with an increase in meiotic recombination compared to the control, but it stimulates the sterility of plants. It was established that the expression of the MSH2 gene in tomato plants is about 50 times higher with a 12 h light/12 h dark than with a 16 h light/8 h dark photoperiod. It is discussed that, in Solanum lycopersicum tomato plants, which are not sensitive to the day length for flowering, changing the lighting time may be a means of controlling the meiotic recombination frequency within certain limits.
Collapse
Affiliation(s)
- Svetlana R. Strelnikova
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia; (A.A.K.); (R.A.K.)
| | - Anastasiya A. Krinitsina
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia; (A.A.K.); (R.A.K.)
- Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Roman A. Komakhin
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia; (A.A.K.); (R.A.K.)
| |
Collapse
|
16
|
Verma P, Tandon R, Yadav G, Gaur V. Structural Aspects of DNA Repair and Recombination in Crop Improvement. Front Genet 2020; 11:574549. [PMID: 33024442 PMCID: PMC7516265 DOI: 10.3389/fgene.2020.574549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
The adverse effects of global climate change combined with an exponentially increasing human population have put substantial constraints on agriculture, accelerating efforts towards ensuring food security for a sustainable future. Conventional plant breeding and modern technologies have led to the creation of plants with better traits and higher productivity. Most crop improvement approaches (conventional breeding, genome modification, and gene editing) primarily rely on DNA repair and recombination (DRR). Studying plant DRR can provide insights into designing new strategies or improvising the present techniques for crop improvement. Even though plants have evolved specialized DRR mechanisms compared to other eukaryotes, most of our insights about plant-DRRs remain rooted in studies conducted in animals. DRR mechanisms in plants include direct repair, nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), non-homologous end joining (NHEJ) and homologous recombination (HR). Although each DRR pathway acts on specific DNA damage, there is crosstalk between these. Considering the importance of DRR pathways as a tool in crop improvement, this review focuses on a general description of each DRR pathway, emphasizing on the structural aspects of key DRR proteins. The review highlights the gaps in our understanding and the importance of studying plant DRR in the context of crop improvement.
Collapse
Affiliation(s)
- Prabha Verma
- National Institute of Plant Genome Research, New Delhi, India
| | - Reetika Tandon
- National Institute of Plant Genome Research, New Delhi, India
| | - Gitanjali Yadav
- National Institute of Plant Genome Research, New Delhi, India
| | - Vineet Gaur
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
17
|
Blackwell AR, Dluzewska J, Szymanska-Lejman M, Desjardins S, Tock AJ, Kbiri N, Lambing C, Lawrence EJ, Bieluszewski T, Rowan B, Higgins JD, Ziolkowski PA, Henderson IR. MSH2 shapes the meiotic crossover landscape in relation to interhomolog polymorphism in Arabidopsis. EMBO J 2020; 39:e104858. [PMID: 32935357 PMCID: PMC7604573 DOI: 10.15252/embj.2020104858] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 11/09/2022] Open
Abstract
During meiosis, DNA double-strand breaks undergo interhomolog repair to yield crossovers between homologous chromosomes. To investigate how interhomolog sequence polymorphism affects crossovers, we sequenced multiple recombinant populations of the model plant Arabidopsis thaliana. Crossovers were elevated in the diverse pericentromeric regions, showing a local preference for polymorphic regions. We provide evidence that crossover association with elevated diversity is mediated via the Class I crossover formation pathway, although very high levels of diversity suppress crossovers. Interhomolog polymorphism causes mismatches in recombining molecules, which can be detected by MutS homolog (MSH) mismatch repair protein heterodimers. Therefore, we mapped crossovers in a msh2 mutant, defective in mismatch recognition, using multiple hybrid backgrounds. Although total crossover numbers were unchanged in msh2 mutants, recombination was remodelled from the diverse pericentromeres towards the less-polymorphic sub-telomeric regions. Juxtaposition of megabase heterozygous and homozygous regions causes crossover remodelling towards the heterozygous regions in wild type Arabidopsis, but not in msh2 mutants. Immunostaining showed that MSH2 protein accumulates on meiotic chromosomes during prophase I, consistent with MSH2 regulating meiotic recombination. Our results reveal a pro-crossover role for MSH2 in regions of higher sequence diversity in A. thaliana.
Collapse
Affiliation(s)
| | - Julia Dluzewska
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Maja Szymanska-Lejman
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Stuart Desjardins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Andrew J Tock
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Nadia Kbiri
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | | | - Emma J Lawrence
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Tomasz Bieluszewski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Beth Rowan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Piotr A Ziolkowski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
Homoeologous exchanges occur through intragenic recombination generating novel transcripts and proteins in wheat and other polyploids. Proc Natl Acad Sci U S A 2020; 117:14561-14571. [PMID: 32518116 DOI: 10.1073/pnas.2003505117] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recombination between homeologous chromosomes, also known as homeologous exchange (HE), plays a significant role in shaping genome structure and gene expression in interspecific hybrids and allopolyploids of several plant species. However, the molecular mechanisms that govern HEs are not well understood. Here, we studied HE events in the progeny of a nascent allotetraploid (genome AADD) derived from two diploid progenitors of hexaploid bread wheat using cytological and whole-genome sequence analyses. In total, 37 HEs were identified and HE junctions were mapped precisely. HEs exhibit typical patterns of homologous recombination hotspots, being biased toward low-copy, subtelomeric regions of chromosome arms and showing association with known recombination hotspot motifs. But, strikingly, while homologous recombination preferentially takes place upstream and downstream of coding regions, HEs are highly enriched within gene bodies, giving rise to novel recombinant transcripts, which in turn are predicted to generate new protein fusion variants. To test whether this is a widespread phenomenon, a dataset of high-resolution HE junctions was analyzed for allopolyploid Brassica, rice, Arabidopsis suecica, banana, and peanut. Intragenic recombination and formation of chimeric genes was detected in HEs of all species and was prominent in most of them. HE thus provides a mechanism for evolutionary novelty in transcript and protein sequences in nascent allopolyploids.
Collapse
|
19
|
Wang H, Cao Q, Zhao Q, Arfan M, Liu W. Mechanisms used by DNA MMR system to cope with Cadmium-induced DNA damage in plants. CHEMOSPHERE 2020; 246:125614. [PMID: 31883478 DOI: 10.1016/j.chemosphere.2019.125614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 05/27/2023]
Abstract
Cadmium (Cd) is found widely in soil and is severely toxic for plants, causing oxidative damage in plant cells because of its heavy metal characteristics. The DNA damage response (DDR) is triggered in plants to cope with the Cd stress. The DNA mismatch repair (MMR) system known for its mismatch repair function determines DDR, as mispairs are easily generated by a translesional synthesis under Cd-induced genomic instability. Cd-induced mismatches are recognized by three heterodimeric complexes including MutSα (MSH2/MSH6), MutSβ (MSH2/MSH3), and MutSγ (MSH2/MSH7). MutLα (MLH1/PMS1), PCNA/RFC, EXO1, DNA polymerase δ and DNA ligase participate in mismatch repair in turn. Meanwhile, ATR is preferentially activated by MSH2 to trigger DDR including the regulation of the cell cycle, endoreduplication, cell death, and recruitment of other DNA repair, which enhances plant tolerance to Cd. However, plants with deficient MutS will bypass MMR-mediated DDR and release the multiple-effect MLH1 from requisition of the MMR system, which leads to weak tolerance to Cd in plants. In this review, we systematically illustrate how the plant DNA MMR system works in a Cd-induced DDR, and how MMR genes regulate plant tolerance to Cd. Additionally, we also reviewed multiple epigenetic regulation systems acting on MMR genes under stress.
Collapse
Affiliation(s)
- Hetong Wang
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Bioengineering, Shenyang University, Shenyang, 110044, PR China.
| | - Qijiang Cao
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Bioengineering, Shenyang University, Shenyang, 110044, PR China.
| | - Qiang Zhao
- Agricultural College, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Muhammad Arfan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| | - Wan Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| |
Collapse
|
20
|
Jiang M, Wu X, Song Y, Shen H, Cui H. Effects of OsMSH6 Mutations on Microsatellite Stability and Homeologous Recombination in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:220. [PMID: 32194600 PMCID: PMC7062918 DOI: 10.3389/fpls.2020.00220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/12/2020] [Indexed: 05/02/2023]
Abstract
DNA mismatch repair (MMR) system is important for maintaining DNA replication fidelity and genome stability by repairing erroneous deletions, insertions and mis-incorporation of bases. With the aim of deciphering the role of the MMR system in genome stability and recombination in rice, we investigated the function of OsMSH6 gene, an import component of the MMR system. To achieve this goal, homeologous recombination and endogenous microsatellite stability were evaluated by using rice mutants carrying a Tos17 insertion into the OsMSH6 gene. Totally 60 microsatellites were analyzed and 15 distributed on chromosome 3, 6, 8, and 10 showed instability in three OsMSH6 mutants, D6011, NF7784 and NF9010, compared with the wild type MSH6WT (the control). The disruption of OsMSH6 gene is associated with modest increases in homeologous recombination, ranging from 2.0% to 32.5% on chromosome 1, 3, 9, and 10 in the BCF2 populations of the mutant ND6011 and NF9010. Our results suggest that the OsMSH6 plays an important role in ensuring genome stability and genetic recombination, providing the first evidence for the MSH6 gene in maintaining microsatellite stability and restricting homeologous recombination in plants.
Collapse
Affiliation(s)
- Meng Jiang
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Science, Zhejiang University, Hangzhou, China
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, China
| | - Xiaojiang Wu
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Science, Zhejiang University, Hangzhou, China
| | - Yue Song
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Science, Zhejiang University, Hangzhou, China
| | - Hongzhe Shen
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Science, Zhejiang University, Hangzhou, China
| | - Hairui Cui
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Gonzalez V, Spampinato CP. The mismatch repair protein MSH6 regulates somatic recombination in Arabidopsis thaliana. DNA Repair (Amst) 2020; 87:102789. [PMID: 31945543 DOI: 10.1016/j.dnarep.2020.102789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/29/2019] [Accepted: 01/08/2020] [Indexed: 11/28/2022]
Abstract
The mismatch repair (MMR) pathway promotes genome stability by controlling the fidelity of replication and recombination. The first step of the pathway involves recognition of the mismatch by heterodimers composed of MutS homologs (MSH). Although MSH6 has been well characterized in yeasts and humans, the role of the plant protein has not been extensively studied. We first analyzed gene expression in Arabidopsis thaliana. The use of transgenic plants expressing the β-glucuronidase (GUS) reporter gene under the control of approximately 1-kb region upstream of the start codon of the AtMSH6 gene demonstrated that MSH6 is preferentially expressed in undifferentiated cells with an intense cell division rate. We then examined protein function in meiotic and somatic recombination. Suppression of AtMSH6 did not affect the rate of meiotic recombination, but increased the frequency of recombination between two homeologous repeats of a marker gene by 3-fold relative to wild-type plants. Expression of the AtMSH6 gene under the control of its own promoter in msh6 homozygous mutant plants rescued the altered somatic recombination phenotype. We conclude that MSH6 shows a functional conservation across different biological kingdoms and a functional specificity in plants.
Collapse
Affiliation(s)
- Valentina Gonzalez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Claudia P Spampinato
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
22
|
Van Vu T, Sung YW, Kim J, Doan DTH, Tran MT, Kim JY. Challenges and Perspectives in Homology-Directed Gene Targeting in Monocot Plants. RICE (NEW YORK, N.Y.) 2019; 12:95. [PMID: 31858277 PMCID: PMC6923311 DOI: 10.1186/s12284-019-0355-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/04/2019] [Indexed: 05/18/2023]
Abstract
Continuing crop domestication/redomestication and modification is a key determinant of the adaptation and fulfillment of the food requirements of an exploding global population under increasingly challenging conditions such as climate change and the reduction in arable lands. Monocotyledonous crops are not only responsible for approximately 70% of total global crop production, indicating their important roles in human life, but also the first crops to be challenged with the abovementioned hurdles; hence, monocot crops should be the first to be engineered and/or de novo domesticated/redomesticated. A long time has passed since the first green revolution; the world is again facing the challenge of feeding a predicted 9.7 billion people in 2050, since the decline in world hunger was reversed in 2015. One of the major lessons learned from the first green revolution is the importance of novel and advanced trait-carrying crop varieties that are ideally adapted to new agricultural practices. New plant breeding techniques (NPBTs), such as genome editing, could help us succeed in this mission to create novel and advanced crops. Considering the importance of NPBTs in crop genetic improvement, we attempt to summarize and discuss the latest progress with major approaches, such as site-directed mutagenesis using molecular scissors, base editors and especially homology-directed gene targeting (HGT), a very challenging but potentially highly precise genome modification approach in plants. We therefore suggest potential approaches for the improvement of practical HGT, focusing on monocots, and discuss a potential approach for the regulation of genome-edited products.
Collapse
Affiliation(s)
- Tien Van Vu
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Km 02, Pham Van Dong Road, Co Nhue 1, Bac Tu Liem, Hanoi, 11917, Vietnam
| | - Yeon Woo Sung
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Jihae Kim
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Duong Thi Hai Doan
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Mil Thi Tran
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
- Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
23
|
Hum YF, Jinks-Robertson S. Mismatch recognition and subsequent processing have distinct effects on mitotic recombination intermediates and outcomes in yeast. Nucleic Acids Res 2019; 47:4554-4568. [PMID: 30809658 PMCID: PMC6511840 DOI: 10.1093/nar/gkz126] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/12/2019] [Accepted: 02/23/2019] [Indexed: 01/25/2023] Open
Abstract
The post-replicative mismatch repair (MMR) system has anti-recombination activity that limits interactions between diverged sequences by recognizing mismatches in strand-exchange intermediates. In contrast to their equivalent roles during replication-error repair, mismatch recognition is more important for anti-recombination than subsequent mismatch processing. To obtain insight into this difference, ectopic substrates with 2% sequence divergence were used to examine mitotic recombination outcome (crossover or noncrossover; CO and NCO, respectively) and to infer molecular intermediates formed during double-strand break repair in Saccharomyces cerevisiae. Experiments were performed in an MMR-proficient strain, a strain with compromised mismatch-recognition activity (msh6Δ) and a strain that retained mismatch-recognition activity but was unable to process mismatches (mlh1Δ). While the loss of either mismatch binding or processing elevated the NCO frequency to a similar extent, CO events increased only when mismatch binding was compromised. The molecular features of NCOs, however, were altered in fundamentally different ways depending on whether mismatch binding or processing was eliminated. These data suggest a model in which mismatch recognition reverses strand-exchange intermediates prior to the initiation of end extension, while subsequent mismatch processing that is linked to end extension specifically destroys NCO intermediates that contain conflicting strand-discrimination signals for mismatch removal.
Collapse
Affiliation(s)
- Yee Fang Hum
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
24
|
Passer AR, Coelho MA, Billmyre RB, Nowrousian M, Mittelbach M, Yurkov AM, Averette AF, Cuomo CA, Sun S, Heitman J. Genetic and Genomic Analyses Reveal Boundaries between Species Closely Related to Cryptococcus Pathogens. mBio 2019; 10:e00764-19. [PMID: 31186317 PMCID: PMC6561019 DOI: 10.1128/mbio.00764-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/08/2019] [Indexed: 12/30/2022] Open
Abstract
Speciation is a central mechanism of biological diversification. While speciation is well studied in plants and animals, in comparison, relatively little is known about speciation in fungi. One fungal model is the Cryptococcus genus, which is best known for the pathogenic Cryptococcus neoformans/Cryptococcus gattii species complex that causes >200,000 new human infections annually. Elucidation of how these species evolved into important human-pathogenic species remains challenging and can be advanced by studying the most closely related nonpathogenic species, Cryptococcus amylolentus and Tsuchiyaea wingfieldii However, these species have only four known isolates, and available data were insufficient to determine species boundaries within this group. By analyzing full-length chromosome assemblies, we reappraised the phylogenetic relationships of the four available strains, confirmed the genetic separation of C. amylolentus and T. wingfieldii (now Cryptococcus wingfieldii), and revealed an additional cryptic species, for which the name Cryptococcus floricola is proposed. The genomes of the three species are ∼6% divergent and exhibit significant chromosomal rearrangements, including inversions and a reciprocal translocation that involved intercentromeric ectopic recombination, which together likely impose significant barriers to genetic exchange. Using genetic crosses, we show that while C. wingfieldii cannot interbreed with any of the other strains, C. floricola can still undergo sexual reproduction with C. amylolentus However, most of the resulting spores were inviable or sterile or showed reduced recombination during meiosis, indicating that intrinsic postzygotic barriers had been established. Our study and genomic data will foster additional studies addressing fungal speciation and transitions between nonpathogenic and pathogenic Cryptococcus lineages.IMPORTANCE The evolutionary drivers of speciation are critical to our understanding of how new pathogens arise from nonpathogenic lineages and adapt to new environments. Here we focus on the Cryptococcus amylolentus species complex, a nonpathogenic fungal lineage closely related to the human-pathogenic Cryptococcus neoformans/Cryptococcus gattii complex. Using genetic and genomic analyses, we reexamined the species boundaries of four available isolates within the C. amylolentus complex and revealed three genetically isolated species. Their genomes are ∼6% divergent and exhibit chromosome rearrangements, including translocations and small-scale inversions. Although two of the species (C. amylolentus and newly described C. floricola) were still able to interbreed, the resulting hybrid progeny were usually inviable or sterile, indicating that barriers to reproduction had already been established. These results advance our understanding of speciation in fungi and highlight the power of genomics in assisting our ability to correctly identify and discriminate fungal species.
Collapse
Affiliation(s)
- Andrew Ryan Passer
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Marco A Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Robert Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Moritz Mittelbach
- Geobotany, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Andrey M Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Anna Floyd Averette
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
25
|
Komakhin RA, Milyukova NA, Strelnikova SR, Krinitsina AA, Komakhina VV, Zhuchenko AA. Inheritance of Marker Genes among Progeny of Interspecific Tomato Hybrids Expressing the recA Escherichia coli Gene. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419040069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Blary A, Jenczewski E. Manipulation of crossover frequency and distribution for plant breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:575-592. [PMID: 30483818 PMCID: PMC6439139 DOI: 10.1007/s00122-018-3240-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/13/2018] [Indexed: 05/12/2023]
Abstract
The crossovers (COs) that occur during meiotic recombination lead to genetic diversity upon which natural and artificial selection can act. The potential of tinkering with the mechanisms of meiotic recombination to increase the amount of genetic diversity accessible for breeders has been under the research spotlight for years. A wide variety of approaches have been proposed to increase CO frequency, alter CO distribution and induce COs between non-homologous chromosomal regions. For most of these approaches, translational biology will be crucial for demonstrating how these strategies can be of practical use in plant breeding. In this review, we describe how tinkering with meiotic recombination could benefit plant breeding and give concrete examples of how these strategies could be implemented into breeding programs.
Collapse
Affiliation(s)
- A Blary
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - E Jenczewski
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France.
| |
Collapse
|
27
|
Interhomolog polymorphism shapes meiotic crossover within the Arabidopsis RAC1 and RPP13 disease resistance genes. PLoS Genet 2018; 14:e1007843. [PMID: 30543623 PMCID: PMC6307820 DOI: 10.1371/journal.pgen.1007843] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/27/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022] Open
Abstract
During meiosis, chromosomes undergo DNA double-strand breaks (DSBs), which can be repaired using a homologous chromosome to produce crossovers. Meiotic recombination frequency is variable along chromosomes and tends to concentrate in narrow hotspots. We mapped crossover hotspots located in the Arabidopsis thaliana RAC1 and RPP13 disease resistance genes, using varying haplotypic combinations. We observed a negative non-linear relationship between interhomolog divergence and crossover frequency within the hotspots, consistent with polymorphism locally suppressing crossover repair of DSBs. The fancm, recq4a recq4b, figl1 and msh2 mutants, or lines with increased HEI10 dosage, are known to show increased crossovers throughout the genome. Surprisingly, RAC1 crossovers were either unchanged or decreased in these genetic backgrounds, showing that chromosome location and local chromatin environment are important for regulation of crossover activity. We employed deep sequencing of crossovers to examine recombination topology within RAC1, in wild type, fancm, recq4a recq4b and fancm recq4a recq4b backgrounds. The RAC1 recombination landscape was broadly conserved in the anti-crossover mutants and showed a negative relationship with interhomolog divergence. However, crossovers at the RAC1 5'-end were relatively suppressed in recq4a recq4b backgrounds, further indicating that local context may influence recombination outcomes. Our results demonstrate the importance of interhomolog divergence in shaping recombination within plant disease resistance genes and crossover hotspots.
Collapse
|
28
|
Dluzewska J, Szymanska M, Ziolkowski PA. Where to Cross Over? Defining Crossover Sites in Plants. Front Genet 2018; 9:609. [PMID: 30619450 PMCID: PMC6299014 DOI: 10.3389/fgene.2018.00609] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022] Open
Abstract
It is believed that recombination in meiosis serves to reshuffle genetic material from both parents to increase genetic variation in the progeny. At the same time, the number of crossovers is usually kept at a very low level. As a consequence, many organisms need to make the best possible use from the one or two crossovers that occur per chromosome in meiosis. From this perspective, the decision of where to allocate rare crossover events becomes an important issue, especially in self-pollinating plant species, which experience limited variation due to inbreeding. However, the freedom in crossover allocation is significantly limited by other, genetic and non-genetic factors, including chromatin structure. Here we summarize recent progress in our understanding of those processes with a special emphasis on plant genomes. First, we focus on factors which influence the distribution of recombination initiation sites and discuss their effects at both, the single hotspot level and at the chromosome scale. We also briefly explain the aspects of hotspot evolution and their regulation. Next, we analyze how recombination initiation sites translate into the development of crossovers and their location. Moreover, we provide an overview of the sequence polymorphism impact on crossover formation and chromosomal distribution.
Collapse
Affiliation(s)
- Julia Dluzewska
- Department of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Maja Szymanska
- Department of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Piotr A Ziolkowski
- Department of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
29
|
Bolaños-Villegas P, Xu W, Martínez-García M, Pradillo M, Wang Y. Insights Into the Role of Ubiquitination in Meiosis: Fertility, Adaptation and Plant Breeding. THE ARABIDOPSIS BOOK 2018; 16:e0187. [PMID: 31068764 PMCID: PMC6501859 DOI: 10.1199/tab.0187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Ubiquitination is a post-translational modification process that plays a central role in protein degradation in eukaryotic cell cell division, including meiosis. This modification affects different cellular processes on a global scale by its pleiotropic ability to modify numerous proteins. Meiosis is essential for sexual reproduction and involves two rounds of nuclear division following a single round of DNA replication to produce haploid gametes. Unlike mitosis, meiosis has a unique prophase I, which involves homologous chromosome interaction including pairing, synapsis, recombination and segregation. Over the last several decades, molecular genetic studies have identified many proteins that participate in meiotic progression. In this review, we focus on the recent advances regarding the role of ubiquitination during plant meiotic cell cycle progression and recombination, especially the role played by the Anaphase-Promoting Complex and E3 ligases in modulating crossover formation and its impact on evolution and plant breeding.
Collapse
Affiliation(s)
- Pablo Bolaños-Villegas
- Fabio Baudrit Agricultural Research Station, University of Costa Rica, Alajuela 20102, Costa Rica
| | - Wanyue Xu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Marina Martínez-García
- Department of Genetics, Harvard Medical School, Boston, MA 02115, United States of America
| | - Mónica Pradillo
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Universidad Complutense, C/José Antonio Novais, 12, Madrid 28040, Spain
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
30
|
Jordan KW, Wang S, He F, Chao S, Lun Y, Paux E, Sourdille P, Sherman J, Akhunova A, Blake NK, Pumphrey MO, Glover K, Dubcovsky J, Talbert L, Akhunov ED. The genetic architecture of genome-wide recombination rate variation in allopolyploid wheat revealed by nested association mapping. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:1039-1054. [PMID: 29952048 PMCID: PMC6174997 DOI: 10.1111/tpj.14009] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/21/2018] [Accepted: 06/06/2018] [Indexed: 05/18/2023]
Abstract
Recombination affects the fate of alleles in populations by imposing constraints on the reshuffling of genetic information. Understanding the genetic basis of these constraints is critical for manipulating the recombination process to improve the resolution of genetic mapping, and reducing the negative effects of linkage drag and deleterious genetic load in breeding. Using sequence-based genotyping of a wheat nested association mapping (NAM) population of 2,100 recombinant inbred lines created by crossing 29 diverse lines, we mapped QTL affecting the distribution and frequency of 102 000 crossovers (CO). Genome-wide recombination rate variation was mostly defined by rare alleles with small effects together explaining up to 48.6% of variation. Most QTL were additive and showed predominantly trans-acting effects. The QTL affecting the proximal COs also acted additively without increasing the frequency of distal COs. We showed that the regions with decreased recombination carry more single nucleotide polymorphisms (SNPs) with possible deleterious effects than the regions with a high recombination rate. Therefore, our study offers insights into the genetic basis of recombination rate variation in wheat and its effect on the distribution of deleterious SNPs across the genome. The identified trans-acting additive QTL can be utilized to manipulate CO frequency and distribution in the large polyploid wheat genome opening the possibility to improve the efficiency of gene pyramiding and reducing the deleterious genetic load in the low-recombining pericentromeric regions of chromosomes.
Collapse
Affiliation(s)
| | - Shichen Wang
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
- Present address:
TEES‐AgriLife Center for Bioinformatics and Genomic Systems EngineeringTexas A&M University101 Gateway, Suite ACollege StationTX77845USA
| | - Fei He
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| | - Shiaoman Chao
- USDA‐ARS Cereal Crops Research Unit1605 Albrecht Blvd NFargoNDUSA
| | - Yanni Lun
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
- Present address:
TEES‐AgriLife Center for Bioinformatics and Genomic Systems EngineeringTexas A&M University101 Gateway, Suite ACollege StationTX77845USA
| | - Etienne Paux
- INRA GDEC Auvergne‐Rhône‐AlpesClermont‐FerrandFrance
| | | | | | - Alina Akhunova
- Integrated Genomics FacilityKansas State UniversityManhattanKSUSA
| | | | | | - Karl Glover
- Department of Agronomy, Horticulture and Plant ScienceSouth Dakota State UniversityBrookingsSDUSA
| | - Jorge Dubcovsky
- Department of Plant SciencesUniversity of CaliforniaDavis, DavisCAUSA
- Howard Hughes Medical InstituteChevy ChaseMD20815USA
| | | | | |
Collapse
|
31
|
Massive crossover elevation via combination of HEI10 and recq4a recq4b during Arabidopsis meiosis. Proc Natl Acad Sci U S A 2018; 115:2437-2442. [PMID: 29463699 DOI: 10.1073/pnas.1713071115] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
During meiosis, homologous chromosomes undergo reciprocal crossovers, which generate genetic diversity and underpin classical crop improvement. Meiotic recombination initiates from DNA double-strand breaks (DSBs), which are processed into single-stranded DNA that can invade a homologous chromosome. The resulting joint molecules can ultimately be resolved as crossovers. In Arabidopsis, competing pathways balance the repair of ∼100-200 meiotic DSBs into ∼10 crossovers per meiosis, with the excess DSBs repaired as noncrossovers. To bias DSB repair toward crossovers, we simultaneously increased dosage of the procrossover E3 ligase gene HEI10 and introduced mutations in the anticrossovers helicase genes RECQ4A and RECQ4B As HEI10 and recq4a recq4b increase interfering and noninterfering crossover pathways, respectively, they combine additively to yield a massive meiotic recombination increase. Interestingly, we also show that increased HEI10 dosage increases crossover coincidence, which indicates an effect on interference. We also show that patterns of interhomolog polymorphism and heterochromatin drive recombination increases distally towards the subtelomeres in both HEI10 and recq4a recq4b backgrounds, while the centromeres remain crossover suppressed. These results provide a genetic framework for engineering meiotic recombination landscapes in plant genomes.
Collapse
|
32
|
Lambing C, Heckmann S. Tackling Plant Meiosis: From Model Research to Crop Improvement. FRONTIERS IN PLANT SCIENCE 2018; 9:829. [PMID: 29971082 PMCID: PMC6018109 DOI: 10.3389/fpls.2018.00829] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/28/2018] [Indexed: 05/04/2023]
Abstract
Genetic engineering and traditional plant breeding, which harnesses the natural genetic variation that arises during meiosis, will have key roles to improve crop varieties and thus deliver Food Security in the future. Meiosis, a specialized cell division producing haploid gametes to maintain somatic diploidy following their fusion, assures genetic variation by regulated genetic exchange through homologous recombination. However, meiotic recombination events are restricted in their total number and their distribution along chromosomes limiting allelic variations in breeding programs. Thus, modifying the number and distribution of meiotic recombination events has great potential to improve and accelerate plant breeding. In recent years much progress has been made in understanding meiotic progression and recombination in plants. Many genes and factors involved in these processes have been identified primarily in Arabidopsis thaliana but also more recently in crops such as Brassica, rice, barley, maize, or wheat. These advances put researchers in the position to translate acquired knowledge to various crops likely improving and accelerating breeding programs. However, although fundamental aspects of meiotic progression and recombination are conserved between species, differences in genome size and organization (due to repetitive DNA content and ploidy level) exist, particularly among plants, that likely account for differences in meiotic progression and recombination patterns found between species. Thus, tools and approaches are needed to better understand differences and similarities in meiotic progression and recombination among plants, to study fundamental aspects of meiosis in a variety of plants including crops and non-model species, and to transfer knowledge into crop species. In this article, we provide an overview of tools and approaches available to study plant meiosis, highlight new techniques, give examples of areas of future research and review distinct aspects of meiosis in non-model species.
Collapse
Affiliation(s)
- Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Christophe Lambing, Stefan Heckmann,
| | - Stefan Heckmann
- Independent Research Group Meiosis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- *Correspondence: Christophe Lambing, Stefan Heckmann,
| |
Collapse
|
33
|
Sarma S, Pandey AK, Sharma K, Ravi M, Sreelakshmi Y, Sharma R. MutS-Homolog2 silencing generates tetraploid meiocytes in tomato ( Solanum lycopersicum). PLANT DIRECT 2018; 2:e00017. [PMID: 31245679 PMCID: PMC6508528 DOI: 10.1002/pld3.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 09/07/2017] [Accepted: 09/12/2017] [Indexed: 05/16/2023]
Abstract
MSH2 is the core protein of MutS-homolog family involved in recognition and repair of the errors in the DNA. While other members of MutS-homolog family reportedly regulate mitochondrial stability, meiosis, and fertility, MSH2 is believed to participate mainly in mismatch repair. The search for polymorphism in MSH2 sequence in tomato accessions revealed both synonymous and nonsynonymous SNPs; however, SIFT algorithm predicted that none of the SNPs influenced MSH2 protein function. The silencing of MSH2 gene expression by RNAi led to phenotypic abnormalities in highly silenced lines, particularly in the stamens with highly reduced pollen formation. MSH2 silencing exacerbated formation of UV-B-induced thymine dimers and blocked light-induced repair of the dimers. The MSH2 silencing also affected the progression of male meiosis to a varying degree with either halt of meiosis at zygotene stage or formation of diploid tetrads. The immunostaining of male meiocytes with centromere localized CENPC (centromere protein C) antibody showed the presence of 48 univalent along with 24 bivalent chromosomes suggesting abnormal tetraploid meiosis. The mitotic cells of root tips of silenced lines showed diploid nuclei but lacked intervening cell plates leading to cells with syncytial nuclei. Thus, we speculate that tetraploid pollen mother cells may have arisen due to the fusion of syncytial nuclei before the onset of meiosis. It is likely that in addition to mismatch repair (MMR), MSH2 may have an additional role in regulating ploidy stability.
Collapse
Affiliation(s)
- Supriya Sarma
- Repository of Tomato Genomics ResourcesDepartment of Plant SciencesSchool of Life SciencesUniversity of HyderabadHyderabadIndia
- Present address:
Centre for Cellular and Molecular BiologyHyderabadIndia
| | - Arun Kumar Pandey
- Repository of Tomato Genomics ResourcesDepartment of Plant SciencesSchool of Life SciencesUniversity of HyderabadHyderabadIndia
- Present address:
International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Kapil Sharma
- Repository of Tomato Genomics ResourcesDepartment of Plant SciencesSchool of Life SciencesUniversity of HyderabadHyderabadIndia
| | - Maruthachalam Ravi
- School of BiologyIndian Institute of Science Education and ResearchThiruvananthapuramKeralaIndia
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics ResourcesDepartment of Plant SciencesSchool of Life SciencesUniversity of HyderabadHyderabadIndia
| | - Rameshwar Sharma
- Repository of Tomato Genomics ResourcesDepartment of Plant SciencesSchool of Life SciencesUniversity of HyderabadHyderabadIndia
| |
Collapse
|
34
|
Choi K. Advances towards Controlling Meiotic Recombination for Plant Breeding. Mol Cells 2017; 40:814-822. [PMID: 29179262 PMCID: PMC5712510 DOI: 10.14348/molcells.2017.0171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/10/2017] [Accepted: 11/17/2017] [Indexed: 12/28/2022] Open
Abstract
Meiotic homologous recombination generates new combinations of preexisting genetic variation and is a crucial process in plant breeding. Within the last decade, our understanding of plant meiotic recombination and genome diversity has advanced considerably. Innovation in DNA sequencing technology has led to the exploration of high-resolution genetic and epigenetic information in plant genomes, which has helped to accelerate plant breeding practices via high-throughput genotyping, and linkage and association mapping. In addition, great advances toward understanding the genetic and epigenetic control mechanisms of meiotic recombination have enabled the expansion of breeding programs and the unlocking of genetic diversity that can be used for crop improvement. This review highlights the recent literature on plant meiotic recombination and discusses the translation of this knowledge to the manipulation of meiotic recombination frequency and location with regards to crop plant breeding.
Collapse
Affiliation(s)
- Kyuha Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673,
Korea
| |
Collapse
|
35
|
Lawrence EJ, Griffin CH, Henderson IR. Modification of meiotic recombination by natural variation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5471-5483. [PMID: 28992351 DOI: 10.1093/jxb/erx306] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is a specialized cell division that produces haploid gametes required for sexual reproduction. During the first meiotic division, homologous chromosomes pair and undergo reciprocal crossing over, which recombines linked sequence variation. Meiotic recombination frequency varies extensively both within and between species. In this review, we will examine the molecular basis of meiotic recombination rate variation, with an emphasis on plant genomes. We first consider cis modification caused by polymorphisms at the site of recombination, or elsewhere on the same chromosome. We review cis effects caused by mismatches within recombining joint molecules, the effect of structural hemizygosity, and the role of specific DNA sequence motifs. In contrast, trans modification of recombination is exerted by polymorphic loci encoding diffusible molecules, which are able to modulate recombination on the same and/or other chromosomes. We consider trans modifiers that act to change total recombination levels, hotspot locations, or interactions between homologous and homeologous chromosomes in polyploid species. Finally, we consider the significance of genetic variation that modifies meiotic recombination for adaptation and evolution of plant species.
Collapse
Affiliation(s)
- Emma J Lawrence
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Catherine H Griffin
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
36
|
Molnár I, Besenyei E, Thieme R, Thieme T, Aurori A, Baricz A, Banciu HL, Rakosy-Tican E. Mismatch repair deficiency increases the transfer of antibiosis and antixenosis properties against Colorado potato beetle in somatic hybrids of Solanum tuberosum + S. chacoense. PEST MANAGEMENT SCIENCE 2017; 73:1428-1437. [PMID: 27862922 DOI: 10.1002/ps.4473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 05/12/2023]
Abstract
BACKGROUND Colorado potato beetle (CPB) has become the biggest enemy of cultivated potato worldwide. One of the most effective sources of resistance to CPB is Solanum chacoense, an accession with a high leptine glycoalkaloid content. The aim of our study was to assay the repellence and toxicity of S. chacoense, its somatic hybrids (SHs) and their backcross progenies (BC1 ) with potato for CPB adults and larvae. Transgenic S. chacoense, deficient in DNA mismatch repair (MMR), was also used to produce SHs, in order to increase homeologous recombination and hence introgression of wild-species DNA into the potato gene pool. RESULTS Wild-type SH was highly resistant to CPB. Resistance to CPB of BC1 progenies showed a 1:3 inheritance pattern. MMR-deficient SHs performed better in the resistance analysis. Most MMR-deficient SHs had a similar toxicity as S. chacoense and an intensely repellent effect on CPB adults. Resistance of SHs and BC1 clones may be attributed to leptine biosynthesis, which was confirmed using a RAPD marker. CONCLUSION This is the first report of SHs and their progenies exhibiting both antibiosis and antixenosis against CPB. Resistant SHs are an important step forward in combating this voracious pest of potato. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Imola Molnár
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, 'Babes-Bolyai' University, Cluj-Napoca, Romania
| | - Enikő Besenyei
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, 'Babes-Bolyai' University, Cluj-Napoca, Romania
| | - Ramona Thieme
- Institute for Breeding Research on Agriculture Crops, Julius Kühn-Institut (JKI), Groß Lüsewitz, Germany
| | | | - Adriana Aurori
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, 'Babes-Bolyai' University, Cluj-Napoca, Romania
| | - Andreea Baricz
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, 'Babes-Bolyai' University, Cluj-Napoca, Romania
| | - Horia Leonard Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, 'Babes-Bolyai' University, Cluj-Napoca, Romania
| | - Elena Rakosy-Tican
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, 'Babes-Bolyai' University, Cluj-Napoca, Romania
| |
Collapse
|
37
|
Ziolkowski PA, Underwood CJ, Lambing C, Martinez-Garcia M, Lawrence EJ, Ziolkowska L, Griffin C, Choi K, Franklin FCH, Martienssen RA, Henderson IR. Natural variation and dosage of the HEI10 meiotic E3 ligase control Arabidopsis crossover recombination. Genes Dev 2017; 31:306-317. [PMID: 28223312 PMCID: PMC5358726 DOI: 10.1101/gad.295501.116] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/27/2017] [Indexed: 11/24/2022]
Abstract
During meiosis, homologous chromosomes undergo crossover recombination, which creates genetic diversity and balances homolog segregation. Despite these critical functions, crossover frequency varies extensively within and between species. Although natural crossover recombination modifier loci have been detected in plants, causal genes have remained elusive. Using natural Arabidopsis thaliana accessions, we identified two major recombination quantitative trait loci (rQTLs) that explain 56.9% of crossover variation in Col×Ler F2 populations. We mapped rQTL1 to semidominant polymorphisms in HEI10, which encodes a conserved ubiquitin E3 ligase that regulates crossovers. Null hei10 mutants are haploinsufficient, and, using genome-wide mapping and immunocytology, we show that transformation of additional HEI10 copies is sufficient to more than double euchromatic crossovers. However, heterochromatic centromeres remained recombination-suppressed. The strongest HEI10-mediated crossover increases occur in subtelomeric euchromatin, which is reminiscent of sex differences in Arabidopsis recombination. Our work reveals that HEI10 naturally limits Arabidopsis crossovers and has the potential to influence the response to selection.
Collapse
Affiliation(s)
- Piotr A Ziolkowski
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
- Department of Biotechnology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Charles J Underwood
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
- Howard Hughes Medical Institute, Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | | | - Emma J Lawrence
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Liliana Ziolkowska
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Catherine Griffin
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Kyuha Choi
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - F Chris H Franklin
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Robert A Martienssen
- Howard Hughes Medical Institute, Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
38
|
Ziolkowski PA, Henderson IR. Interconnections between meiotic recombination and sequence polymorphism in plant genomes. THE NEW PHYTOLOGIST 2017; 213:1022-1029. [PMID: 27861941 DOI: 10.1111/nph.14265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/02/2016] [Indexed: 06/06/2023]
Abstract
1022 I. 1022 II. 1023 III. 1023 IV. 1025 V. 1026 1027 References 1027 SUMMARY: Meiosis is fundamental to sexual reproduction and creates genetic variation in progeny. During meiosis paired homologous chromosomes undergo recombination, which can result in reciprocal crossovers. This process can recombine independently arising mutations onto the same chromosome. Recombination locations are highly variable between meioses, although total crossover numbers are tightly regulated. In addition to the effect of meiosis on genetic variation, sequence polymorphisms between homologous chromosomes can feedback onto the recombination pathways. Here we review the major crossover pathways in plants and some of the known homeostatic mechanisms that act during meiotic recombination. We then examine how sequence polymorphisms between homologous chromosomes, that is, heterozygosity, can influence meiotic recombination pathways in cis and trans. Finally, we provide a brief perspective on the relevance of these interconnections for natural selection and adaptation in plants.
Collapse
Affiliation(s)
- Piotr A Ziolkowski
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
- Department of Biotechnology, Adam Mickiewicz University, Umultowska 89, Poznan, 61-614, Poland
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
39
|
Zmienko A, Samelak-Czajka A, Kozlowski P, Szymanska M, Figlerowicz M. Arabidopsis thaliana population analysis reveals high plasticity of the genomic region spanning MSH2, AT3G18530 and AT3G18535 genes and provides evidence for NAHR-driven recurrent CNV events occurring in this location. BMC Genomics 2016; 17:893. [PMID: 27825302 PMCID: PMC5101643 DOI: 10.1186/s12864-016-3221-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/27/2016] [Indexed: 12/28/2022] Open
Abstract
Background Intraspecies copy number variations (CNVs), defined as unbalanced structural variations of specific genomic loci, ≥1 kb in size, are present in the genomes of animals and plants. A growing number of examples indicate that CNVs may have functional significance and contribute to phenotypic diversity. In the model plant Arabidopsis thaliana at least several hundred protein-coding genes might display CNV; however, locus-specific genotyping studies in this plant have not been conducted. Results We analyzed the natural CNVs in the region overlapping MSH2 gene that encodes the DNA mismatch repair protein, and AT3G18530 and AT3G18535 genes that encode poorly characterized proteins. By applying multiplex ligation-dependent probe amplification and droplet digital PCR we genotyped those genes in 189 A. thaliana accessions. We found that AT3G18530 and AT3G18535 were duplicated (2–14 times) in 20 and deleted in 101 accessions. MSH2 was duplicated in 12 accessions (up to 12-14 copies) but never deleted. In all but one case, the MSH2 duplications were associated with those of AT3G18530 and AT3G18535. Considering the structure of the CNVs, we distinguished 5 genotypes for this region, determined their frequency and geographical distribution. We defined the CNV breakpoints in 35 accessions with AT3G18530 and AT3G18535 deletions and tandem duplications and showed that they were reciprocal events, resulting from non-allelic homologous recombination between 99 %-identical sequences flanking these genes. The widespread geographical distribution of the deletions supported by the SNP and linkage disequilibrium analyses of the genomic sequence confirmed the recurrent nature of this CNV. Conclusions We characterized in detail for the first time the complex multiallelic CNV in Arabidopsis genome. The region encoding MSH2, AT3G18530 and AT3G18535 genes shows enormous variation of copy numbers among natural ecotypes, being a remarkable example of high Arabidopsis genome plasticity. We provided the molecular insight into the mechanism underlying the recurrent nature of AT3G18530-AT3G18535 duplications/deletions. We also performed the first direct comparison of the two leading experimental methods, suitable for assessing the DNA copy number status. Our comprehensive case study provides foundation information for further analyses of CNV evolution in Arabidopsis and other plants, and their possible use in plant breeding. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3221-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Agnieszka Zmienko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.,Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland
| | - Anna Samelak-Czajka
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland
| | - Piotr Kozlowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Maja Szymanska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland. .,Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland.
| |
Collapse
|
40
|
Lario LD, Botta P, Casati P, Spampinato CP. Role of AtMSH7 in UV-B-induced DNA damage recognition and recombination. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3019-26. [PMID: 25465032 DOI: 10.1093/jxb/eru464] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The mismatch repair (MMR) system maintains genome integrity by correcting replication-associated errors and inhibiting recombination between divergent DNA sequences. The basic features of the pathway have been highly conserved throughout evolution, although the nature and number of the proteins involved in this DNA repair system vary among organisms. Plants have an extra mismatch recognition protein, MutSγ, which is a heterodimer: MSH2-MSH7. To further understand the role of MSH7 in vivo, we present data from this protein in Arabidopsis thaliana. First, we generated transgenic plants that express β-glucuronidase (GUS) under the control of the MSH7 promoter. Histochemical staining of the transgenic plants indicated that MSH7 is preferentially expressed in proliferating tissues. Then, we identified msh7 T-DNA insertion mutants. Plants deficient in MSH7 show increased levels of UV-B-induced cyclobutane pyrimidine dimers relative to wild-type (WT) plants. Consistent with the patterns of MSH7 expression, we next analysed the role of the protein during somatic and meiotic recombination. The frequency of somatic recombination between homologous or homeologous repeats (divergence level of 1.6%) was monitored using a previously described GUS recombination reporter assay. Disruption of MSH7 has no effect on the rates of somatic homologous or homeologous recombination under control conditions or after UV-B exposure. However, the rate of meiotic recombination between two genetically linked seed-specific fluorescent markers was 97% higher in msh7 than in WT plants. Taken together, these results suggest that MSH7 is involved in UV-B-induced DNA damage recognition and in controlling meiotic recombination.
Collapse
Affiliation(s)
- Luciana Daniela Lario
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina Present address: Department of Biochemical and Pharmaceutical Technology, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Pablo Botta
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina Present address: Biotechnology Department, Nidera S.A., Ruta 8 Km 376, 2600 Venado Tuerto, Santa Fe, Argentina
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Claudia Patricia Spampinato
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
41
|
Seplyarskiy VB, Logacheva MD, Penin AA, Baranova MA, Leushkin EV, Demidenko NV, Klepikova AV, Kondrashov FA, Kondrashov AS, James TY. Crossing-over in a hypervariable species preferentially occurs in regions of high local similarity. Mol Biol Evol 2014; 31:3016-25. [PMID: 25135947 PMCID: PMC4209137 DOI: 10.1093/molbev/msu242] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Recombination between double-stranded DNA molecules is a key genetic process which occurs in a wide variety of organisms. Usually, crossing-over (CO) occurs during meiosis between genotypes with 98.0–99.9% sequence identity, because within-population nucleotide diversity only rarely exceeds 2%. However, some species are hypervariable and it is unclear how CO can occur between genotypes with less than 90% sequence identity. Here, we study CO in Schizophyllum commune, a hypervariable cosmopolitan basidiomycete mushroom, a frequently encountered decayer of woody substrates. We crossed two haploid individuals, from the United States and from Russia, and obtained genome sequences for their 17 offspring. The average genetic distance between the parents was 14%, making it possible to study CO at very high resolution. We found reduced levels of linkage disequilibrium between loci flanking the CO sites indicating that they are mostly confined to hotspots of recombination. Furthermore, CO events preferentially occurred in regions under stronger negative selection, in particular within exons that showed reduced levels of nucleotide diversity. Apparently, in hypervariable species CO must avoid regions of higher divergence between the recombining genomes due to limitations imposed by the mismatch repair system, with regions under strong negative selection providing the opportunity for recombination. These patterns are opposite to those observed in a number of less variable species indicating that population genomics of hypervariable species may reveal novel biological phenomena.
Collapse
Affiliation(s)
- Vladimir B Seplyarskiy
- School of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Maria D Logacheva
- School of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Aleksey A Penin
- School of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia Department of Biology, Lomonosov Moscow State University, Moscow, Moscow, Russia
| | - Maria A Baranova
- School of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Evgeny V Leushkin
- School of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Natalia V Demidenko
- School of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia Department of Biology, Lomonosov Moscow State University, Moscow, Moscow, Russia
| | - Anna V Klepikova
- School of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia Department of Biology, Lomonosov Moscow State University, Moscow, Moscow, Russia
| | - Fyodor A Kondrashov
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG) Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), 23 Pg. Lluís Companys, Barcelona, Spain
| | - Alexey S Kondrashov
- School of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
42
|
Lawit SJ, Chamberlin MA, Agee A, Caswell ES, Albertsen MC. Transgenic manipulation of plant embryo sacs tracked through cell-type-specific fluorescent markers: cell labeling, cell ablation, and adventitious embryos. PLANT REPRODUCTION 2013; 26:125-137. [PMID: 23539301 DOI: 10.1007/s00497-013-0215-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/13/2013] [Indexed: 06/02/2023]
Abstract
Expression datasets relating to the Arabidopsis female gametophyte have enabled the creation of a tool set which allows simultaneous visual tracking of each specific cell type (egg, synergids, central cell, and antipodals). This cell-specific, fluorescent labeling tool-set functions from gametophyte cellularization through fertilization and early embryo development. Using this system, cell fates were tracked within Arabidopsis ovules following molecular manipulations, such as the ablation of the egg and/or synergids. Upon egg cell ablation, it was observed that a synergid can switch its developmental fate to become egg/embryo-like upon loss of the native egg. Also, manipulated was the fate of the somatic ovular cells, which can become egg- and embryo-like, reminiscent of adventitious embryony. These advances represent initial steps toward engineering synthetic apomixis resulting in seed derived wholly from the maternal plant. The end goal of applied apomixis research, fixing important agronomic traits such as hybrid vigor, would be a key benefit to agricultural productivity.
Collapse
Affiliation(s)
- Shai J Lawit
- Agricultural Biotechnology, DuPont Pioneer, Johnston, IA 50131-1004, USA.
| | | | | | | | | |
Collapse
|
43
|
Abstract
Meiosis is at the heart of Mendelian heredity. Recently, much progress has been made in the understanding of this process, in various organisms. In the last 15 years, the functional characterization of numerous genes involved in meiosis has dramatically deepened our knowledge of key events, including recombination, the cell cycle, and chromosome distribution. Through a constantly advancing tool set and knowledge base, a number of advances have been made that will allow manipulation of meiosis from a plant breeding perspective. This review focuses on the aspects of meiosis that can be tinkered with to create and propagate new varieties. We would like to dedicate this review to the memory of Simon W. Chan (1974-2012) (http://www.plb.ucdavis.edu/labs/srchan/).
Collapse
|
44
|
Da Ines O, White CI. Gene Site-Specific Insertion in Plants. SITE-DIRECTED INSERTION OF TRANSGENES 2013. [DOI: 10.1007/978-94-007-4531-5_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
45
|
Features of the Arabidopsis recombination landscape resulting from the combined loss of sequence variation and DNA methylation. Proc Natl Acad Sci U S A 2012; 109:16240-5. [PMID: 22988127 DOI: 10.1073/pnas.1212955109] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rate of meiotic crossing over (CO) varies considerably along chromosomes, leading to marked distortions between physical and genetic distances. The causes underlying this variation are being unraveled, and DNA sequence and chromatin states have emerged as key factors. However, the extent to which the suppression of COs within the repeat-rich pericentromeric regions of plant and mammalian chromosomes results from their high level of DNA polymorphisms and from their heterochromatic state, notably their dense DNA methylation, remains unknown. Here, we test the combined effect of removing sequence polymorphisms and repeat-associated DNA methylation on the meiotic recombination landscape of an Arabidopsis mapping population. To do so, we use genome-wide DNA methylation data from a large panel of isogenic epigenetic recombinant inbred lines (epiRILs) to derive a recombination map based on 126 meiotically stable, differentially methylated regions covering 81.9% of the genome. We demonstrate that the suppression of COs within pericentromeric regions of chromosomes persists in this experimental setting. Moreover, suppression is reinforced within 3-Mb regions flanking pericentromeric boundaries, and this effect appears to be compensated by increased recombination activity in chromosome arms. A direct comparison with 17 classical Arabidopsis crosses shows that these recombination changes place the epiRILs at the boundary of the range of natural variation but are not severe enough to transgress that boundary significantly. This level of robustness is remarkable, considering that this population represents an extreme with key recombination barriers having been forced to a minimum.
Collapse
|
46
|
Research on plants for the understanding of diseases of nuclear and mitochondrial origin. J Biomed Biotechnol 2012; 2012:836196. [PMID: 22690124 PMCID: PMC3368588 DOI: 10.1155/2012/836196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/28/2012] [Indexed: 11/17/2022] Open
Abstract
Different model organisms, such as Escherichia coli, Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, mouse, cultured human cell lines, among others, were used to study the mechanisms of several human diseases. Since human genes and proteins have been structurally and functionally conserved in plant organisms, the use of plants, especially Arabidopsis thaliana, as a model system to relate molecular defects to clinical disorders has recently increased. Here, we briefly review our current knowledge of human diseases of nuclear and mitochondrial origin and summarize the experimental findings of plant homologs implicated in each process.
Collapse
|
47
|
Deficiency in DNA methylation increases meiotic crossover rates in euchromatic but not in heterochromatic regions in Arabidopsis. Proc Natl Acad Sci U S A 2012; 109:E981-8. [PMID: 22460791 DOI: 10.1073/pnas.1120742109] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Meiotic recombination is tightly regulated by cis- and trans-acting factors. Although DNA methylation and chromatin remodeling affect chromosome structure, their impact on meiotic recombination is not well understood. To study the effect of DNA methylation on the landscape of chromosomal recombination, we analyzed meiotic recombination in the decreased DNA methylation 1 (ddm1) mutant. DDM1 is a SWI2/SNF2-like chromatin-remodeling protein necessary for DNA methylation and heterochromatin maintenance in Arabidopsis thaliana. The rate of meiotic recombination between markers located in euchromatic regions was significantly higher in both heterozygous (DDM1/ddm1) and homozygous (ddm1/ddm1) backgrounds than in WT plants. The effect on recombination was similar for both male and female meiocytes. Contrary to expectations, ddm1 had no effect on the number of crossovers between markers in heterochromatic pericentric regions that underwent demethylation. These results are surprising, because the pericentromeric regions are hypermethylated and were expected to be the regions most affected by demethylation. Thus, DDM1 loss of function may trigger changes that enhance meiotic recombination in euchromatin regions but are not sufficient to induce the same events in heterochromatic segments. This work uncovers the repressive role of methylation on meiotic recombination in euchromatic regions and suggests that additional factors may have a role in controlling the suppression of recombination in heterochromatin.
Collapse
|
48
|
Komakhin RA, Komakhina VV, Milyukova NA, Zhuchenko AA. Analysis of the meiotic recombination frequency in transgenic tomato hybrids expressing recA and NLS-recA-licBM3 genes. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795411110093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Tam SM, Hays JB, Chetelat RT. Effects of suppressing the DNA mismatch repair system on homeologous recombination in tomato. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:1445-58. [PMID: 21870137 DOI: 10.1007/s00122-011-1679-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 07/30/2011] [Indexed: 05/12/2023]
Abstract
In plant breeding, the ability to manipulate genetic (meiotic) recombination would be beneficial for facilitating gene transfer from wild relatives of crop plants. The DNA mismatch repair (MMR) system helps maintain genetic integrity by correcting base mismatches that arise via DNA synthesis or damage, and antagonizes recombination between homeologous (divergent) DNA sequences. Previous studies have established that the genomes of cultivated tomato (Solanum lycopersicum) and the wild relative S. lycopersicoides are substantially diverged (homeologous) such that recombination between their chromosomes is strongly reduced. Here, we report the effects on homeologous recombination of suppressing endogenous MMR genes in S. lycopersicum via RNAi-induced silencing of SlMSH2 and SlMSH7 or overexpressing dominant negatives of Arabidopsis MSH2 (AtMSH2-DN) in an alien substitution line (SL-8) of S. lycopersicoides in tomato. We show that certain inhibitions of MMR (RNAi of SlMSH7, AtMSH2-DN) are associated with modest increases in homeologous recombination, ranging from 3.8 to 29.2% (average rate of 17.8%) compared to controls. Unexpectedly, only the AtMSH2-DN proteins but not RNAi-induced silencing of MSH2 was found to increase homeologous recombination. The ratio of single to double crossovers (SCO:DCO ratio) decreased by approximately 50% in progeny of the AtMSH2-DN parents. An increase in the frequency of heterozygous SL-8 plants was also observed in the progeny of the SlMSH7-RNAi parents. Our findings may contribute to acceleration of introgression in cultivated tomato.
Collapse
Affiliation(s)
- Sheh May Tam
- Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
50
|
Waterworth WM, Drury GE, Bray CM, West CE. Repairing breaks in the plant genome: the importance of keeping it together. THE NEW PHYTOLOGIST 2011; 192:805-822. [PMID: 21988671 DOI: 10.1111/j.1469-8137.2011.03926.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
DNA damage threatens the integrity of the genome and has potentially lethal consequences for the organism. Plant DNA is under continuous assault from endogenous and environmental factors and effective detection and repair of DNA damage are essential to ensure the stability of the genome. One of the most cytotoxic forms of DNA damage are DNA double-strand breaks (DSBs) which fragment chromosomes. Failure to repair DSBs results in loss of large amounts of genetic information which, following cell division, severely compromises daughter cells that receive fragmented chromosomes. This review will survey recent advances in our understanding of plant responses to chromosomal breaks, including the sources of DNA damage, the detection and signalling of DSBs, mechanisms of DSB repair, the role of chromatin structure in repair, DNA damage signalling and the link between plant recombination pathways and transgene integration. These mechanisms are of critical importance for maintenance of plant genome stability and integrity under stress conditions and provide potential targets for the improvement of crop plants both for stress resistance and for increased precision in the generation of genetically improved varieties.
Collapse
Affiliation(s)
| | - Georgina E Drury
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Clifford M Bray
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|