1
|
Bogush D, Schramm J, Ding Y, He B, Singh C, Sharma A, Tukaramrao DB, Iyer S, Desai D, Nalesnik G, Hengst J, Bhalodia R, Gowda C, Dovat S. Signaling pathways and regulation of gene expression in hematopoietic cells. Adv Biol Regul 2023; 88:100942. [PMID: 36621151 DOI: 10.1016/j.jbior.2022.100942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Cellular functions are regulated by signal transduction pathway networks consisting of protein-modifying enzymes that control the activity of many downstream proteins. Protein kinases and phosphatases regulate gene expression by reversible phosphorylation of transcriptional factors, which are their direct substrates. Casein kinase II (CK2) is a serine/threonine kinase that phosphorylates a large number of proteins that have critical roles in cellular proliferation, metabolism and survival. Altered function of CK2 has been associated with malignant transformation, immunological disorders and other types of diseases. Protein phosphatase 1 (PP1) is a serine/threonine phosphatase, which regulates the phosphorylation status of many proteins that are essential for cellular functions. IKAROS is a DNA-binding protein, which functions as a regulator of gene transcription in hematopoietic cells. CK2 directly phosphorylates IKAROS at multiple phosphosites which determines IKAROS activity as a regulator of gene expression. PP1 binds to IKAROS via the PP1-consensus recognition site and dephosphorylates serine/threonine residues that are phosphorylated by CK2. Thus, the interplay between CK2 and PP1 signaling pathways have opposing effects on the phosphorylation status of their mutual substrate - IKAROS. This review summarizes the effects of CK2 and PP1 on IKAROS role in regulation of gene expression and its function as a tumor suppressor in leukemia.
Collapse
Affiliation(s)
- Daniel Bogush
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Joseph Schramm
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Yali Ding
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Bing He
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Chingakham Singh
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Arati Sharma
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | | | - Soumya Iyer
- University of Chicago, Chicago, IL, 60637, USA
| | - Dhimant Desai
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Gregory Nalesnik
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Jeremy Hengst
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Riya Bhalodia
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Chandrika Gowda
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA.
| | - Sinisa Dovat
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA.
| |
Collapse
|
2
|
Skinner A, Khan SJ, Smith-Bolton RK. Trithorax regulates systemic signaling during Drosophila imaginal disc regeneration. Development 2016; 142:3500-11. [PMID: 26487779 DOI: 10.1242/dev.122564] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although tissue regeneration has been studied in a variety of organisms, from Hydra to humans, many of the genes that regulate the ability of each animal to regenerate remain unknown. The larval imaginal discs of the genetically tractable model organism Drosophila melanogaster have complex patterning, well-characterized development and a high regenerative capacity, and are thus an excellent model system for studying mechanisms that regulate regeneration. To identify genes that are important for wound healing and tissue repair, we have carried out a genetic screen for mutations that impair regeneration in the wing imaginal disc. Through this screen we identified the chromatin-modification gene trithorax as a key regeneration gene. Here we show that animals heterozygous for trithorax are unable to maintain activation of a developmental checkpoint that allows regeneration to occur. This defect is likely to be caused by abnormally high expression of puckered, a negative regulator of Jun N-terminal kinase (JNK) signaling, at the wound site. Insufficient JNK signaling leads to insufficient expression of an insulin-like peptide, dILP8, which is required for the developmental checkpoint. Thus, trithorax regulates regeneration signaling and capacity.
Collapse
Affiliation(s)
- Andrea Skinner
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61853, USA
| | - Sumbul Jawed Khan
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61853, USA
| | - Rachel K Smith-Bolton
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61853, USA
| |
Collapse
|
3
|
Ciurciu A, Duncalf L, Jonchere V, Lansdale N, Vasieva O, Glenday P, Rudenko A, Vissi E, Cobbe N, Alphey L, Bennett D. PNUTS/PP1 regulates RNAPII-mediated gene expression and is necessary for developmental growth. PLoS Genet 2013; 9:e1003885. [PMID: 24204300 PMCID: PMC3814315 DOI: 10.1371/journal.pgen.1003885] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 09/03/2013] [Indexed: 12/25/2022] Open
Abstract
In multicellular organisms, tight regulation of gene expression ensures appropriate tissue and organismal growth throughout development. Reversible phosphorylation of the RNA Polymerase II (RNAPII) C-terminal domain (CTD) is critical for the regulation of gene expression states, but how phosphorylation is actively modified in a developmental context remains poorly understood. Protein phosphatase 1 (PP1) is one of several enzymes that has been reported to dephosphorylate the RNAPII CTD. However, PP1's contribution to transcriptional regulation during animal development and the mechanisms by which its activity is targeted to RNAPII have not been fully elucidated. Here we show that the Drosophila orthologue of the PP1 Nuclear Targeting Subunit (dPNUTS) is essential for organismal development and is cell autonomously required for growth of developing tissues. The function of dPNUTS in tissue development depends on its binding to PP1, which we show is targeted by dPNUTS to RNAPII at many active sites of transcription on chromosomes. Loss of dPNUTS function or specific disruption of its ability to bind PP1 results in hyperphosphorylation of the RNAPII CTD in whole animal extracts and on chromosomes. Consistent with dPNUTS being a global transcriptional regulator, we find that loss of dPNUTS function affects the expression of the majority of genes in developing 1st instar larvae, including those that promote proliferative growth. Together, these findings shed light on the in vivo role of the PNUTS-PP1 holoenzyme and its contribution to the control of gene expression during early Drosophila development. During development, cells rely on appropriate patterns of gene expression to regulate metabolism in order to meet cellular demands and maintain rapid tissue growth. Conversely, dysregulation of gene expression is critical in various disease states, such as cancer, and during ageing. A key mechanism that is ubiquitously employed to control gene expression is reversible phosphorylation, a molecular switch that is used to regulate the activity of the transcriptional machinery. Here we identify an enzyme that binds to and regulates the phosphorylation state of RNA Polymerase II, a central component of the general transcription machinery. We also show that an essential role of this enzyme is to support normal patterns of gene expression that facilitate organismal growth. These findings are not only of relevance to the understanding of normal enzyme function but may also assist in the development of therapeutic strategies for the treatment of aberrant patterns of gene expression that occur during ageing and disease progression.
Collapse
Affiliation(s)
- Anita Ciurciu
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Louise Duncalf
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Vincent Jonchere
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Nick Lansdale
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Olga Vasieva
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Peter Glenday
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Zoology, Oxford University, Oxford, United Kingdom
| | - Andreii Rudenko
- Department of Zoology, Oxford University, Oxford, United Kingdom
| | - Emese Vissi
- Department of Zoology, Oxford University, Oxford, United Kingdom
| | - Neville Cobbe
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Luke Alphey
- Department of Zoology, Oxford University, Oxford, United Kingdom
| | - Daimark Bennett
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Strübbe G, Popp C, Schmidt A, Pauli A, Ringrose L, Beisel C, Paro R. Polycomb purification by in vivo biotinylation tagging reveals cohesin and Trithorax group proteins as interaction partners. Proc Natl Acad Sci U S A 2011; 108:5572-7. [PMID: 21415365 PMCID: PMC3078387 DOI: 10.1073/pnas.1007916108] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The maintenance of specific gene expression patterns during cellular proliferation is crucial for the identity of every cell type and the development of tissues in multicellular organisms. Such a cellular memory function is conveyed by the complex interplay of the Polycomb and Trithorax groups of proteins (PcG/TrxG). These proteins exert their function at the level of chromatin by establishing and maintaining repressed (PcG) and active (TrxG) chromatin domains. Past studies indicated that a core PcG protein complex is potentially associated with cell type or even cell stage-specific sets of accessory proteins. In order to better understand the dynamic aspects underlying PcG composition and function we have established an inducible version of the biotinylation tagging approach to purify Polycomb and associated factors from Drosophila embryos. This system enabled fast and efficient isolation of Polycomb containing complexes under near physiological conditions, thereby preserving substoichiometric interactions. Novel interacting proteins were identified by highly sensitive mass spectrometric analysis. We found many TrxG related proteins, suggesting a previously unrecognized extent of molecular interaction of the two counteracting chromatin regulatory protein groups. Furthermore, our analysis revealed an association of PcG protein complexes with the cohesin complex and showed that Polycomb-dependent silencing of a transgenic reporter depends on cohesin function.
Collapse
Affiliation(s)
- Gero Strübbe
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Christian Popp
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Alexander Schmidt
- Institute of Molecular Systems Biology, Swiss Federal Institute of Technology Zürich, Wolfgang-Pauli-Strasse 16, 8093 Zürich, Switzerland
| | - Andrea Pauli
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Leonie Ringrose
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria; and
| | - Christian Beisel
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Renato Paro
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
- Faculty of Sciences, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
5
|
Boeke J, Regnard C, Cai W, Johansen J, Johansen KM, Becker PB, Imhof A. Phosphorylation of SU(VAR)3-9 by the chromosomal kinase JIL-1. PLoS One 2010; 5:e10042. [PMID: 20386606 PMCID: PMC2850320 DOI: 10.1371/journal.pone.0010042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 03/17/2010] [Indexed: 11/23/2022] Open
Abstract
The histone methyltransferase SU(VAR)3–9 plays an important role in the formation of heterochromatin within the eukaryotic nucleus. Several studies have shown that the formation of condensed chromatin is highly regulated during development, suggesting that SU(VAR)3–9's activity is regulated as well. However, no mechanism by which this may be achieved has been reported so far. As we and others had shown previously that the N-terminus of SU(VAR)3–9 plays an important role for its activity, we purified interaction partners from Drosophila embryo nuclear extract using as bait a GST fusion protein containing the SU(VAR)3–9 N-terminus. Among several other proteins known to bind Su(VAR)3–9 we isolated the chromosomal kinase JIL-1 as a strong interactor. We show that SU(VAR)3–9 is a substrate for JIL-1 in vitro as well as in vivo and map the site of phosphorylation. These findings may provide a molecular explanation for the observed genetic interaction between SU(VAR)3–9 and JIL-1.
Collapse
Affiliation(s)
- Joern Boeke
- Adolf-Butenandt Institute and Munich Center of Integrated Protein Science (CIPS), Ludwig Maximilians University of Munich, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Popescu M, Gurel Z, Ronni T, Song C, Hung KY, Payne KJ, Dovat S. Ikaros stability and pericentromeric localization are regulated by protein phosphatase 1. J Biol Chem 2009; 284:13869-13880. [PMID: 19282287 DOI: 10.1074/jbc.m900209200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ikaros encodes a zinc finger protein that is involved in gene regulation and chromatin remodeling. The majority of Ikaros localizes at pericentromeric heterochromatin (PC-HC) where it regulates expression of target genes. Ikaros function is controlled by posttranslational modification. Phosphorylation of Ikaros by CK2 kinase determines its ability to bind DNA and exert cell cycle control as well as its subcellular localization. We report that Ikaros interacts with protein phosphatase 1 (PP1) via a conserved PP1 binding motif, RVXF, in the C-terminal end of the Ikaros protein. Point mutations of the RVXF motif abolish Ikaros-PP1 interaction and result in decreased DNA binding, an inability to localize to PC-HC, and rapid degradation of the Ikaros protein. The introduction of alanine mutations at CK2-phosphorylated residues increases the half-life of the PP1-nonbinding Ikaros mutant. This suggests that dephosphorylation of these sites by PP1 stabilizes the Ikaros protein and prevents its degradation. In the nucleus, Ikaros forms complexes with ubiquitin, providing evidence that Ikaros degradation involves the ubiquitin/proteasome pathway. In vivo, Ikaros can target PP1 to the nucleus, and a fraction of PP1 colocalizes with Ikaros at PC-HC. These data suggest a novel function for the Ikaros protein; that is, the targeting of PP1 to PC-HC and other chromatin structures. We propose a model whereby the function of Ikaros is controlled by the CK2 and PP1 pathways and that a balance between these two signal transduction pathways is essential for normal cellular function and for the prevention of malignant transformation.
Collapse
Affiliation(s)
- Marcela Popescu
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin 53792-4108
| | - Zafer Gurel
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin 53792-4108
| | - Tapani Ronni
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin 53792-4108
| | - Chunhua Song
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin 53792-4108
| | - Ka Ying Hung
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin 53792-4108
| | - Kimberly J Payne
- Center for Health Disparities and Molecular Medicine and Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, California 92350
| | - Sinisa Dovat
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin 53792-4108.
| |
Collapse
|
7
|
Kirchner J, Vissi E, Gross S, Szoor B, Rudenko A, Alphey L, White-Cooper H. Drosophila Uri, a PP1alpha binding protein, is essential for viability, maintenance of DNA integrity and normal transcriptional activity. BMC Mol Biol 2008; 9:36. [PMID: 18412953 PMCID: PMC2346476 DOI: 10.1186/1471-2199-9-36] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 04/15/2008] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Protein phosphatase 1 (PP1) is involved in diverse cellular processes, and is targeted to substrates via interaction with many different protein binding partners. PP1 catalytic subunits (PP1c) fall into PP1alpha and PP1beta subfamilies based on sequence analysis, however very few PP1c binding proteins have been demonstrated to discriminate between PP1alpha and PP1beta. RESULTS URI (unconventional prefoldin RPB5 interactor) is a conserved molecular chaperone implicated in a variety of cellular processes, including the transcriptional response to nutrient signalling and maintenance of DNA integrity. We show that Drosophila Uri binds PP1alpha with much higher affinity than PP1beta, and that this ability to discriminate between PP1c forms is conserved to humans. Most Uri is cytoplasmic, however we found some protein associated with active RNAPII on chromatin. We generated a uri loss of function allele, and show that uri is essential for viability in Drosophila. uri mutants have transcriptional defects, reduced cell viability and differentiation in the germline, and accumulate DNA damage in their nuclei. CONCLUSION Uri is the first PP1alpha specific binding protein to be described in Drosophila. Uri protein plays a role in transcriptional regulation. Activity of uri is required to maintain DNA integrity and cell survival in normal development.
Collapse
Affiliation(s)
- Jasmin Kirchner
- Department of Zoology, University of Oxford, South Parks Rd, Oxford, OX1 3PS. UK
| | - Emese Vissi
- Department of Zoology, University of Oxford, South Parks Rd, Oxford, OX1 3PS. UK
| | - Sascha Gross
- Abbott Laboratories, Global Pharmaceutical Regulatory Affairs, Abbott Park, IL 60064-6157, USA
- Department of Zoology, University of Oxford, South Parks Rd, Oxford, OX1 3PS. UK
| | - Balazs Szoor
- Institute of Immunology and Infection Research, University of Edinburgh, EH9 3JT, UK
- Department of Zoology, University of Oxford, South Parks Rd, Oxford, OX1 3PS. UK
| | - Andrey Rudenko
- Harvard University, FAS Molecular & Cell Biology, Sherman Fairchild Biochemistry Bldg, 7 Divinity Ave, Cambridge MA, 02138, USA
- Department of Zoology, University of Oxford, South Parks Rd, Oxford, OX1 3PS. UK
| | - Luke Alphey
- Department of Zoology, University of Oxford, South Parks Rd, Oxford, OX1 3PS. UK
| | - Helen White-Cooper
- Department of Zoology, University of Oxford, South Parks Rd, Oxford, OX1 3PS. UK
| |
Collapse
|
8
|
Kwiek NC, Thacker DF, Datto MB, Megosh HB, Haystead TAJ. PITK, a PP1 targeting subunit that modulates the phosphorylation of the transcriptional regulator hnRNP K. Cell Signal 2006; 18:1769-78. [PMID: 16564677 DOI: 10.1016/j.cellsig.2006.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 01/24/2006] [Accepted: 01/25/2006] [Indexed: 12/20/2022]
Abstract
Protein phosphatase-1 (PP1), through interactions with substrate targeting subunits, plays critical roles in the regulation of numerous cellular processes. Herein, we describe a newly identified regulatory subunit (PITK; Phosphatase Interactor Targeting K protein) that specifically targets the catalytic subunit of PP1 to nuclear foci to selectively bind and dephosphorylate the transcriptional regulator heterogeneous nuclear ribonucleoprotein K (hnRNP K) at a regulatory S284 site. Additionally, PITK is phosphorylated in vivo at S1013 and S1017, residues that flank or reside within the PP1C-binding motif, and this phosphorylation negatively regulates the binding of the phosphatase to PITK. A mutant variant, S1013,1017A-PITK, when expressed in intact cells, exhibited an increase in native PP1 binding and elicited a more profound dephosphorylation of hnRNPK at S284. A global analysis of transcription by Affymetrix microarray revealed that the expression of PITK resulted in the altered expression of 47 genes, including a marked induction of MEK5 (>14-fold, p<0.007). Additionally, the effects of PITK and S1013,1017A-PITK on transcription could be modulated by the co-expression of hnRNP K. Taken together, our findings provide a putative mechanism by which transcriptional activity of hnRNP K can be discretely controlled through the regulation of PP1 activity.
Collapse
Affiliation(s)
- Nicole C Kwiek
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Box 3813, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
9
|
Bennett D, Lyulcheva E, Alphey L, Hawcroft G. Towards a comprehensive analysis of the protein phosphatase 1 interactome in Drosophila. J Mol Biol 2006; 364:196-212. [PMID: 17007873 DOI: 10.1016/j.jmb.2006.08.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 08/22/2006] [Accepted: 08/31/2006] [Indexed: 11/25/2022]
Abstract
Protein phosphatase type 1 (PP1) is one of the major classes of serine/threonine protein phosphatases, and has been found in all eukaryotic cells examined to date. Metazoans from Drosophila to humans have multiple genes encoding catalytic subunits of PP1 (PP1c), which are involved in a wide range of biological processes. Different PP1c isoforms have pleiotropic and overlapping functions; this has complicated the analysis of their biological roles and the identification of specific in vivo substrates. PP1c isoforms are associated in vivo with regulatory subunits that target them to specific locations and modify their substrate specificity and activity. The PP1c-binding proteins are therefore the key to understanding the role of PP1 in particular biological processes. The existence of isoform specific PP1c-binding subunits may also help to explain the unique roles of different PP1c isoforms. Here we report the identification of 24 genes encoding Drosophila PP1c-binding proteins in the yeast two-hybrid system. Sequence analysis identified a minimal interacting fragment and putative PP1c-binding motif for each protein, delimiting the region involved in binding to PP1c. Further two-hybrid analysis showed that virtually all of the interactors were capable of binding all Drosophila PP1c isoforms. One of the novel interactors, CG1553, was examined further and shown to interact with multiple isoforms by co-immunoprecipitation from Drosophila extracts and functional interaction with PP1c isoforms in vivo. Bioinformatic analyses implicate the putative PP1c-associated subunits in a diverse array of intracellular processes. Our identification of a large number of PP1c-binding proteins with the potential for directing PP1c's specific functions in Drosophila represents a significant step towards a full understanding of the range of PP1 complexes and function in animals.
Collapse
Affiliation(s)
- Daimark Bennett
- Department of Zoology, Oxford University, South Parks Road, Oxford, OX1 3PS, UK.
| | | | | | | |
Collapse
|
10
|
Abstract
Tight regulation of gene expression is critical for cells to respond normally to physiological and environmental cues and to allow cell specialization. Reversible phosphorylation of key structural and regulatory proteins, from histones to the transcriptional machinery, is acknowledged to be an important mechanism of regulating spatial and temporal patterns of gene expression. PP1 (protein phosphatase-1), a major class of serine/threonine protein phosphatase, is found at many sites on Drosophila polytene chromosomes where it is involved in controlling gene expression and chromatin structure. PP1 is targeted to different chromosomal loci through interaction with a variety of different regulatory subunits, which modify PP1's activity towards specific substrates. This mini-review gives an overview of known chromosome-associated PP1 complexes, their role in transcriptional control and the prospects for future analysis.
Collapse
|
11
|
Rudenko A, Bennett D, Alphey L. PP1beta9C interacts with Trithorax in Drosophila wing development. Dev Dyn 2005; 231:336-41. [PMID: 15366010 DOI: 10.1002/dvdy.20146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type 1 Ser/Thr protein phosphatase (PP1) has many roles in Drosophila: regulating diverse processes from chromatin condensation to transforming growth factor-beta signaling. The presence of four PP1 genes, PP1alpha87B, PP1beta9C, PP1alpha96A, and PP1alpha13C, encoding very similar proteins complicates analysis of their particular functions. Here, we report that the minor PP1 isoform PP1beta9C binds in vitro and in vivo and genetically interacts with Trithorax (TRX), the archetypal member of the Trx-G family of epigenetic regulators in Drosophila. Direct binding was demonstrated by GST pull-down experiments and PP1beta9C/TRX interaction in vivo was confirmed by coimmune precipitation from Drosophila embryonic extracts. PP1beta9C was found to be present at all TRX sites on the polytene chromosomes. Flies homo- and hemizygous for loss-of-function alleles of PP1beta9C exhibited specific wing defects when combined with various trx mutants, which indicates that PP1beta9C and TRX cooperate in Drosophila wing development.
Collapse
Affiliation(s)
- Andrey Rudenko
- Department of Zoology, Oxford University, South Parks Road, Oxford, United Kingdom
| | | | | |
Collapse
|
12
|
Riz I, Hawley RG. G1/S transcriptional networks modulated by the HOX11/TLX1 oncogene of T-cell acute lymphoblastic leukemia. Oncogene 2005; 24:5561-75. [PMID: 15897879 PMCID: PMC2408753 DOI: 10.1038/sj.onc.1208727] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The HOX11/TLX1 homeobox gene is aberrantly expressed in a subset of T-cell acute lymphoblastic leukemia (T-ALL). Here, we employed oligonucleotide microarrays to compare the expression profiles of the K3P and Sil leukemic cell lines originating from patients with HOX11+ T-ALL to that of Jurkat cells, which originated from a distinct subtype of T-ALL (TAL1+). To distinguish potential HOX11 target genes from those characteristic of the stage of HOX11 leukemic arrest, we also performed gene expression analysis on Jurkat cells, genetically engineered to express exogenous HOX11. The resulting HOX11 gene expression signature, which was validated for representative signaling pathways by transient transfection of reporter constructs, was characterized by elevated expression of transcriptional programs involved in cell proliferation, including those regulated by E2F, c-Myc and cAMP response element-binding protein. We subsequently showed that ectopic HOX11 expression resulted in hyperphosphorylation of the retinoblastoma protein (Rb), which correlated with inhibition of the major Rb serine/threonine phosphatase PP1. HOX11 also inhibited PP2A serine/threonine phosphatase activity concomitant with stimulation of the AKT/PKB signaling cascade. These results suggest that transcriptional deregulation of G1/S growth-control genes, mediated in large part through blockade of PP1/PP2A phosphatase activity, plays an important role in HOX11 pathobiology.
Collapse
Affiliation(s)
| | - Robert G. Hawley
- Correspondence: R.G. Hawley, Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Suite 419, 2300 Eye Street, NW, Washington, DC 20037, USA. Phone: (202) 994−3511, Fax: (202) 994−8885. E-mail:
| |
Collapse
|
13
|
Abstract
In development, cells pass on established gene expression patterns to daughter cells over multiple rounds of cell division. The cellular memory of the gene expression state is termed maintenance, and the proteins required for this process are termed maintenance proteins. The best characterized are proteins of the Polycomb and trithorax Groups that are required for silencing and maintenance of activation of target loci, respectively. These proteins act through DNA elements termed maintenance elements. Here, we re-examine the genetics and molecular biology of maintenance proteins. We discuss molecular models for the maintenance of activation and silencing, and the establishment of epigenetic marks, and suggest that maintenance proteins may play a role in propagating the mark through DNA synthesis.
Collapse
Affiliation(s)
- Hugh W Brock
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
14
|
Vereshchagina N, Bennett D, Szöor B, Kirchner J, Gross S, Vissi E, White-Cooper H, Alphey L. The essential role of PP1beta in Drosophila is to regulate nonmuscle myosin. Mol Biol Cell 2004; 15:4395-405. [PMID: 15269282 PMCID: PMC519135 DOI: 10.1091/mbc.e04-02-0139] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Reversible phosphorylation of myosin regulatory light chain (MRLC) is a key regulatory mechanism controlling myosin activity and thus regulating the actin/myosin cytoskeleton. We show that Drosophila PP1beta, a specific isoform of serine/threonine protein phosphatase 1 (PP1), regulates nonmuscle myosin and that this is the essential role of PP1beta. Loss of PP1beta leads to increased levels of phosphorylated nonmuscle MRLC (Sqh) and actin disorganisation; these phenotypes can be suppressed by reducing the amount of active myosin. Drosophila has two nonmuscle myosin targeting subunits, one of which (MYPT-75D) resembles MYPT3, binds specifically to PP1beta, and activates PP1beta's Sqh phosphatase activity. Expression of a mutant form of MYPT-75D that is unable to bind PP1 results in elevation of Sqh phosphorylation in vivo and leads to phenotypes that can also be suppressed by reducing the amount of active myosin. The similarity between fly and human PP1beta and MYPT genes suggests this role may be conserved.
Collapse
|
15
|
Llorian M, Beullens M, Andrés I, Ortiz JM, Bollen M. SIPP1, a novel pre-mRNA splicing factor and interactor of protein phosphatase-1. Biochem J 2004; 378:229-38. [PMID: 14640981 PMCID: PMC1223944 DOI: 10.1042/bj20030950] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2003] [Revised: 11/10/2003] [Accepted: 11/27/2003] [Indexed: 11/17/2022]
Abstract
We have identified a polypeptide that was already known to interact with polyglutamine-tract-binding protein (PQBP)-1/Npw38 as a novel splicing factor and interactor of protein phosphatase-1, hence the name SIPP1 for splicing factor that interacts with PQBP-1 and PP1 (protein phosphotase 1). SIPP1 was inhibitory to PP1, and its inhibitory potency was increased by phosphorylation with protein kinase CK1. Two-hybrid and co-sedimentation analysis revealed that SIPP1 has two distinct PP1-binding domains and that the binding of SIPP1 with PP1 involves a RVXF (Arg-Val-Xaa-Phe) motif, which functions as a PP1-binding sequence in most interactors of PP1. Enhanced-green-fluorescent-protein-tagged SIPP1 was targeted exclusively to the nucleus and was enriched in the nuclear speckles, which represent storage/assembly sites of splicing factors. We have mapped a nuclear localization signal in the N-terminus of SIPP1, while the proline-rich C-terminal domain appeared to be required for its subnuclear targeting to the speckles. Finally, we found that SIPP1 is also a component of the spliceosomes and that a SIPP1-fragment inhibits splicing catalysis by nuclear extracts independent of its ability to interact with PP1.
Collapse
Affiliation(s)
- Miriam Llorian
- Departamento de Biologia Molecular, Facultad de Medicina, Universidad de Cantabria, Unidad Asociada al CIB-CSIC, 39011 Santander, Spain
| | | | | | | | | |
Collapse
|
16
|
Ceulemans H, Bollen M. Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev 2004; 84:1-39. [PMID: 14715909 DOI: 10.1152/physrev.00013.2003] [Citation(s) in RCA: 503] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The protein serine/threonine phosphatase protein phosphatase-1 (PP1) is a ubiquitous eukaryotic enzyme that regulates a variety of cellular processes through the dephosphorylation of dozens of substrates. This multifunctionality of PP1 relies on its association with a host of function-specific targetting and substrate-specifying proteins. In this review we discuss how PP1 affects the biochemistry and physiology of eukaryotic cells. The picture of PP1 that emerges from this analysis is that of a "green" enzyme that promotes the rational use of energy, the recycling of protein factors, and a reversal of the cell to a basal and/or energy-conserving state. Thus PP1 promotes a shift to the more energy-efficient fuels when nutrients are abundant and stimulates the storage of energy in the form of glycogen. PP1 also enables the relaxation of actomyosin fibers, the return to basal patterns of protein synthesis, and the recycling of transcription and splicing factors. In addition, PP1 plays a key role in the recovery from stress but promotes apoptosis when cells are damaged beyond repair. Furthermore, PP1 downregulates ion pumps and transporters in various tissues and ion channels that are involved in the excitation of neurons. Finally, PP1 promotes the exit from mitosis and maintains cells in the G1 or G2 phases of the cell cycle.
Collapse
Affiliation(s)
- Hugo Ceulemans
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|
17
|
Zhang W, Jin Y, Ji Y, Girton J, Johansen J, Johansen KM. Genetic and Phenotypic Analysis of Alleles of the Drosophila Chromosomal JIL-1 Kinase Reveals a Functional Requirement at Multiple Developmental Stages. Genetics 2003; 165:1341-54. [PMID: 14668387 PMCID: PMC1462823 DOI: 10.1093/genetics/165.3.1341] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
In this study we provide a cytological and genetic characterization of the JIL-1 locus in Drosophila. JIL-1 is an essential chromosomal tandem kinase and in JIL-1 null animals chromatin structure is severely perturbed. Using a range of JIL-1 hypomorphic mutations, we show that they form an allelic series. JIL-1 has a strong maternal effect and JIL-1 activity is required at all stages of development, including embryonic, larval, and pupal stages. Furthermore, we identified a new allele of JIL-1, JIL-1h9, that encodes a truncated protein missing COOH-terminal sequences. Remarkably, the truncated JIL-1 protein can partially restore viability without rescuing the defects in polytene chromosome organization. This suggests that sequences within this region of JIL-1 play an important role in establishing and/or maintaining normal chromatin structure. By analyzing the effects of JIL-1 mutations we provide evidence that JIL-1 function is necessary for the normal progression of several developmental processes at different developmental stages such as oogenesis and segment specification. We propose that JIL-1 may exert such effects by a general regulation of chromatin structure affecting gene expression.
Collapse
Affiliation(s)
- Weiguo Zhang
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | |
Collapse
|
18
|
Jin Q, van Eynde A, Beullens M, Roy N, Thiel G, Stalmans W, Bollen M. The protein phosphatase-1 (PP1) regulator, nuclear inhibitor of PP1 (NIPP1), interacts with the polycomb group protein, embryonic ectoderm development (EED), and functions as a transcriptional repressor. J Biol Chem 2003; 278:30677-85. [PMID: 12788942 DOI: 10.1074/jbc.m302273200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclear protein NIPP1 (nuclear inhibitor of protein Ser/Thr phosphatase-1) interacts with the splicing factors SAP155 and CDC5L and is involved in a late step of spliceosome assembly. In addition, NIPP1 is an interactor of protein phosphatase-1 and a COOH-terminal NIPP1 fragment displays an RNase E like endoribonuclease activity. A yeast two-hybrid screening resulted in the identification of the Polycomb group protein EED (embryonic ectoderm development), an established transcriptional repressor, as a novel NIPP1 interactor. NIPP1 only interacted with full-length EED, whereas two EED interaction domains were mapped to the central and COOH-terminal thirds of NIPP1. The NIPP1-EED interaction was potentiated by the binding of (d)G-rich nucleic acids to the central domain of NIPP1. Nucleic acids also decreased the potency of NIPP1 as an inhibitor of PP1, but they did not prevent the formation of a ternary NIPP1.EED.PP1 complex. EED had no effect on the function of NIPP1 as a splicing factor or as an endoribonuclease. However, similar to EED, NIPP1 acted as a transcriptional repressor of targeted genes and this NIPP1 effect was mediated by the EED interaction domain. Also, the histone deacetylase 2 was present in a complex with NIPP1. Our data are in accordance with a role for NIPP1 as a DNA-targeting protein for EED and associated chromatin-modifying enzymes.
Collapse
Affiliation(s)
- Qiming Jin
- Division of Biochemistry, Faculty of Medicine, University of Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|