1
|
Guay KP, Chou WC, Canniff NP, Paul KB, Hebert DN. N-glycan-dependent protein maturation and quality control in the ER. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00855-y. [PMID: 40389697 DOI: 10.1038/s41580-025-00855-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2025] [Indexed: 05/21/2025]
Abstract
The vast majority of proteins that traverse the mammalian secretory pathway become N-glycosylated in the endoplasmic reticulum (ER). The bulky glycan protein modifications, which are conserved in fungi and humans, act as maturation and quality-control tags. In this Review, we discuss findings published in the past decade that have rapidly expanded our understanding of the transfer and processing of N-glycans, as well as their role in protein maturation, quality control and trafficking in the ER, facilitated by structural insights into the addition of N-glycans by the oligosaccharyltransferases A and B (OST-A and OST-B). These findings suggest that N-glycans serve as reporters of the folding status of secretory proteins as they traverse the ER, enabling the lectin chaperones to guide their maturation. We also explore how the emergence of co-translational glycosylation and the expansion of the glycoproteostasis network in metazoans has expanded the role of N-glycans in early protein-maturation events and quality control.
Collapse
Affiliation(s)
- Kevin P Guay
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA.
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA.
| | - Wen-Chuan Chou
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA
| | - Nathan P Canniff
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA
| | - Kylie B Paul
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA
| | - Daniel N Hebert
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
2
|
Hagströmer CJ, Hyld Steffen J, Kreida S, Al-Jubair T, Frick A, Gourdon P, Törnroth-Horsefield S. Structural and functional analysis of aquaporin-2 mutants involved in nephrogenic diabetes insipidus. Sci Rep 2023; 13:14674. [PMID: 37674034 PMCID: PMC10482962 DOI: 10.1038/s41598-023-41616-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
Aquaporins are water channels found in the cell membrane, where they allow the passage of water molecules in and out of the cells. In the kidney collecting duct, arginine vasopressin-dependent trafficking of aquaporin-2 (AQP2) fine-tunes reabsorption of water from pre-urine, allowing precise regulation of the final urine volume. Point mutations in the gene for AQP2 may disturb this process and lead to nephrogenic diabetes insipidus (NDI), whereby patients void large volumes of highly hypo-osmotic urine. In recessive NDI, mutants of AQP2 are retained in the endoplasmic reticulum due to misfolding. Here we describe the structural and functional characterization of three AQP2 mutations associated with recessive NDI: T125M and T126M, situated close to a glycosylation site and A147T in the transmembrane region. Using a proteoliposome assay, we show that all three mutants permit the transport of water. The crystal structures of T125M and T126M together with biophysical characterization of all three mutants support that they retain the native structure, but that there is a significant destabilization of A147T. Our work provides unique molecular insights into the mechanisms behind recessive NDI as well as deepens our understanding of how misfolded proteins are recognized by the ER quality control system.
Collapse
Affiliation(s)
| | - Jonas Hyld Steffen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Kreida
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Tamim Al-Jubair
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Anna Frick
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Pontus Gourdon
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | |
Collapse
|
3
|
Viruses Hijack ERAD to Regulate Their Replication and Propagation. Int J Mol Sci 2022; 23:ijms23169398. [PMID: 36012666 PMCID: PMC9408921 DOI: 10.3390/ijms23169398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022] Open
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is highly conserved in yeast. Recent studies have shown that ERAD is also ubiquitous and highly conserved in eukaryotic cells, where it plays an essential role in maintaining endoplasmic reticulum (ER) homeostasis. Misfolded or unfolded proteins undergo ERAD. They are recognized in the ER, retrotranslocated into the cytoplasm, and degraded by proteasomes after polyubiquitin. This may consist of several main steps: recognition of ERAD substrates, retrotranslocation, and proteasome degradation. Replication and transmission of the virus in the host is a process of a “game” with the host. It can be assumed that the virus has evolved various mechanisms to use the host’s functions for its replication and transmission, including ERAD. However, until now, it is still unclear how the host uses ERAD to deal with virus infection and how the viruses hijack the function of ERAD to obtain a favorable niche or evade the immune clearance of the host. Recent studies have shown that viruses have also evolved mechanisms to use various processes of ERAD to promote their transmission. This review describes the occurrence of ERAD and how the viruses hijack the function of ERAD to spread by affecting the homeostasis and immune response of the host, and we will focus on the role of E3 ubiquitin ligase.
Collapse
|
4
|
Sun X, Guo C, Ali K, Zheng Q, Wei Q, Zhu Y, Wang L, Li G, Li W, Zheng B, Bai Q, Wu G. A Non-redundant Function of MNS5: A Class I α-1, 2 Mannosidase, in the Regulation of Endoplasmic Reticulum-Associated Degradation of Misfolded Glycoproteins. FRONTIERS IN PLANT SCIENCE 2022; 13:873688. [PMID: 35519817 PMCID: PMC9062699 DOI: 10.3389/fpls.2022.873688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/14/2022] [Indexed: 05/14/2023]
Abstract
Endoplasmic Reticulum-Associated Degradation (ERAD) is one of the major processes in maintaining protein homeostasis. Class I α-mannosidases MNS4 and MNS5 are involved in the degradation of misfolded variants of the heavily glycosylated proteins, playing an important role for glycan-dependent ERAD in planta. MNS4 and MNS5 reportedly have functional redundancy, meaning that only the loss of both MNS4 and MNS5 shows phenotypes. However, MNS4 is a membrane-associated protein while MNS5 is a soluble protein, and both can localize to the endoplasmic reticulum (ER). Furthermore, MNS4 and MNS5 differentially demannosylate the glycoprotein substrates. Importantly, we found that their gene expression patterns are complemented rather than overlapped. This raises the question of whether they indeed work redundantly, warranting a further investigation. Here, we conducted an exhaustive genetic screen for a suppressor of the bri1-5, a brassinosteroid (BR) receptor mutant with its receptor downregulated by ERAD, and isolated sbi3, a suppressor of bri1-5 mutant named after sbi1 (suppressor of bri1). After genetic mapping together with whole-genome re-sequencing, we identified a point mutation G343E in AT1G27520 (MNS5) in sbi3. Genetic complementation experiments confirmed that sbi3 was a loss-of-function allele of MNS5. In addition, sbi3 suppressed the dwarf phenotype of bri1-235 in the proteasome-independent ERAD pathway and bri1-9 in the proteasome-dependent ERAD pathway. Importantly, sbi3 could only affect BRI1/bri1 with kinase activities such that it restored BR-sensitivities of bri1-5, bri1-9, and bri1-235 but not null bri1. Furthermore, sbi3 was less tolerant to tunicamycin and salt than the wild-type plants. Thus, our study uncovers a non-redundant function of MNS5 in the regulation of ERAD as well as plant growth and ER stress response, highlighting a need of the traditional forward genetic approach to complement the T-DNA or CRISPR-Cas9 systems on gene functional study.
Collapse
|
5
|
Endoplasmic Reticulum Subproteome Analysis Reveals Underlying Defense Mechanisms of Wheat Seedling Leaves under Salt Stress. Int J Mol Sci 2021; 22:ijms22094840. [PMID: 34063651 PMCID: PMC8124925 DOI: 10.3390/ijms22094840] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/13/2023] Open
Abstract
Salt stress is the second most important abiotic stress factor in the world, which seriously affects crop growth, development and grain production. In this study, we performed the first integrated physiological and endoplasmic reticulum (ER) proteome analysis of wheat seedling leaves under salt stress using a label-free-based quantitative proteomic approach. Salt stress caused significant decrease in seedling height, root length, relative water content and chlorophyll content of wheat seedling leaves, indicating that wheat seedling growth was significantly inhibited under salt stress. The ER proteome analysis identified 233 ER-localized differentially accumulated proteins (DAPs) in response to salt stress, including 202 upregulated and 31 downregulated proteins. The upregulated proteins were mainly involved in the oxidation-reduction process, transmembrane transport, the carboxylic acid metabolic process, stress response, the arbohydrate metabolic process and proteolysis, while the downregulated proteins mainly participated in the metabolic process, biological regulation and the cellular process. In particular, salt stress induced significant upregulation of protein disulfide isomerase-like proteins and heat shock proteins and significant downregulation of ribosomal protein abundance. Further transcript expression analysis revealed that half of the detected DAP genes showed a consistent pattern with their protein levels under salt stress. A putative metabolic pathway of ER subproteome of wheat seedling leaves in response to salt stress was proposed, which reveals the potential roles of wheat ER proteome in salt stress response and defense.
Collapse
|
6
|
Abstract
Folding of proteins is essential so that they can exert their functions. For proteins that transit the secretory pathway, folding occurs in the endoplasmic reticulum (ER) and various chaperone systems assist in acquiring their correct folding/subunit formation. N-glycosylation is one of the most conserved posttranslational modification for proteins, and in eukaryotes it occurs in the ER. Consequently, eukaryotic cells have developed various systems that utilize N-glycans to dictate and assist protein folding, or if they consistently fail to fold properly, to destroy proteins for quality control and the maintenance of homeostasis of proteins in the ER.
Collapse
|
7
|
Adams BM, Canniff NP, Guay KP, Larsen ISB, Hebert DN. Quantitative glycoproteomics reveals cellular substrate selectivity of the ER protein quality control sensors UGGT1 and UGGT2. eLife 2020; 9:e63997. [PMID: 33320095 PMCID: PMC7771966 DOI: 10.7554/elife.63997] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
UDP-glucose:glycoprotein glucosyltransferase (UGGT) 1 and 2 are central hubs in the chaperone network of the endoplasmic reticulum (ER), acting as gatekeepers to the early secretory pathway, yet little is known about their cellular clients. These two quality control sensors control lectin chaperone binding and glycoprotein egress from the ER. A quantitative glycoproteomics strategy was deployed to identify cellular substrates of the UGGTs at endogenous levels in CRISPR-edited HEK293 cells. The 71 UGGT substrates identified were mainly large multidomain and heavily glycosylated proteins when compared to the general N-glycoproteome. UGGT1 was the dominant glucosyltransferase with a preference toward large plasma membrane proteins whereas UGGT2 favored the modification of smaller, soluble lysosomal proteins. This study sheds light on differential specificities and roles of UGGT1 and UGGT2 and provides insight into the cellular reliance on the carbohydrate-dependent chaperone system to facilitate proper folding and maturation of the cellular N-glycoproteome.
Collapse
Affiliation(s)
- Benjamin M Adams
- Department of Biochemistry and Molecular Biology, University of MassachusettsAmherstUnited States
- Program in Molecular and Cellular Biology, University of MassachusettsAmherstUnited States
| | - Nathan P Canniff
- Department of Biochemistry and Molecular Biology, University of MassachusettsAmherstUnited States
- Program in Molecular and Cellular Biology, University of MassachusettsAmherstUnited States
| | - Kevin P Guay
- Department of Biochemistry and Molecular Biology, University of MassachusettsAmherstUnited States
- Program in Molecular and Cellular Biology, University of MassachusettsAmherstUnited States
| | - Ida Signe Bohse Larsen
- Department of Cellular and Molecular Medicine, University of CopenhagenCopenhagenDenmark
- Copenhagen Center for Glycomics, University of CopenhagenCopenhagenDenmark
| | - Daniel N Hebert
- Department of Biochemistry and Molecular Biology, University of MassachusettsAmherstUnited States
- Program in Molecular and Cellular Biology, University of MassachusettsAmherstUnited States
| |
Collapse
|
8
|
Abstract
In consistent with other membrane-bound and secretory proteins, immune checkpoint proteins go through a set of modifications in the endoplasmic reticulum (ER) to acquire their native functional structures before they function at their destinations. There are various ER-resident chaperones and enzymes synergistically regulate and catalyze the glycosylation, folding and transporting of proteins. The whole processing is under the surveillance of ER quality control system which allows the correctly folded proteins to exit from the ER with the help of coat proteinII(COPII) coated vesicles, while retains the rest of terminally misfolded ones in the ER and then eliminates them via ER-associated degradation (ERAD) or ER-to-lysosomes-associated degradation (ERLAD). The dysfunction of the ER causes ER stress which triggers unfolded protein response (UPR) to restore ER proteostasis. Unsolvable prolonged ER stress ultimately results in cell death. This chapter reviews the process that proteins undergo in the ER, and the glycosylation, folding and degradation of immune checkpoint proteins as well as the associated potential immunotherapies to date.
Collapse
|
9
|
Adams BM, Ke H, Gierasch LM, Gershenson A, Hebert DN. Proper secretion of the serpin antithrombin relies strictly on thiol-dependent quality control. J Biol Chem 2019; 294:18992-19011. [PMID: 31662433 DOI: 10.1074/jbc.ra119.010450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/24/2019] [Indexed: 01/04/2023] Open
Abstract
The protein quality control machinery of the endoplasmic reticulum (ERQC) ensures that client proteins are properly folded. ERQC substrates may be recognized as nonnative by the presence of exposed hydrophobic surfaces, free thiols, or processed N-glycans. How these features dictate which ERQC pathways engage a given substrate is poorly understood. Here, using metabolic labeling, immunoprecipitations, various biochemical assays, and the human serpin antithrombin III (ATIII) as a model, we explored the role of ERQC systems in mammalian cells. Although ATIII has N-glycans and a hydrophobic core, we found that its quality control depended solely on free thiol content. Mutagenesis of all six Cys residues in ATIII to Ala resulted in its efficient secretion even though the product was not natively folded. ATIII variants with free thiols were retained in the endoplasmic reticulum but not degraded. These results provide insight into the hierarchy of ERQC systems and reveal a fundamental vulnerability of ERQC in a case of reliance on the thiol-dependent quality control pathway.
Collapse
Affiliation(s)
- Benjamin M Adams
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003.,Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Haiping Ke
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Lila M Gierasch
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003.,Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003.,Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003.,Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Daniel N Hebert
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003 .,Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
10
|
Tanaka Y, Sasaki M, Ito F, Aoyama T, Sato-Okamoto M, Takahashi-Nakaguchi A, Chibana H, Shibata N. Cooperation between ER stress and calcineurin signaling contributes to the maintenance of cell wall integrity in Candida glabrata. Fungal Biol 2017; 122:19-33. [PMID: 29248112 DOI: 10.1016/j.funbio.2017.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 09/04/2017] [Accepted: 09/30/2017] [Indexed: 10/18/2022]
Abstract
Candida glabrata is the second most common source of Candida infections in humans. In this pathogen, the maintenance of cell wall integrity (CWI) frequently precludes effective pharmacological treatment by antifungal agents. In numerous fungi, cell wall modulation is reported to be controlled by endoplasmic reticulum (ER) stress, but how the latter affects CWI maintenance in C. glabrata is not clearly understood. Here, we characterized a C. glabrata strain harboring a mutation in the CNE1 gene, which encodes a molecular chaperone associated with nascent glycoprotein maturation in the ER. Disruption of cne1 induced ER stress and caused changes in the normal cell wall structure, specifically a reduction in the β-1,6-glucan content and accumulation of chitin. Conversely, a treatment with the typical ER stress inducer tunicamycin up-regulated the production of cell wall chitin but did not affect β-1,6-glucan content. Our results also indicated that C. glabrata features a uniquely evolved ER stress-mediated CWI pathway, which differs from that in the closely related species Saccharomyces cerevisiae. Furthermore, we demonstrated that ER stress-mediated CWI pathway in C. glabrata is also induced by the disruption of other genes encoding proteins that function in a correlated manner in the quality control of N-linked glycoproteins in the ER. These results suggest that calcineurin and ER quality control system act as a platform for maintaining CWI in C. glabrata.
Collapse
Affiliation(s)
- Yutaka Tanaka
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Masato Sasaki
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Fumie Ito
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Toshio Aoyama
- Department of Electronic and Information Engineering, Suzuka National College of Technology, Shirako-tyo, Suzuka, Mie 510-0294, Japan
| | - Michiyo Sato-Okamoto
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | | | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Nobuyuki Shibata
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| |
Collapse
|
11
|
Khaodee W, Inboot N, Udomsom S, Kumsaiyai W, Cressey R. Glucosidase II beta subunit (GluIIβ) plays a role in autophagy and apoptosis regulation in lung carcinoma cells in a p53-dependent manner. Cell Oncol (Dordr) 2017; 40:579-591. [PMID: 28929344 DOI: 10.1007/s13402-017-0349-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2017] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Glucosidase II plays a major role in regulating the post-translational modification of N-linked glycoproteins. Previously, we found that the beta subunit of glucosidase II (GluIIβ) levels are significantly increased in lung carcinoma tissues, indicating a potential role in lung tumorigenesis. Here, we investigated the role of GluIIβ in the regulation of autophagy and apoptosis in lung carcinoma- and immortalized human bronchial epithelial-derived cells. METHODS A selective glucosidase II inhibitor, bromoconduritol, was used to inhibit GluII enzyme activity and a siRNA-based technology was used to suppress the expression of the GluIIβ encoding gene PRKCSH in lung carcinoma cells differing in p53 status. Cell viability was assessed using a MTT assay, cell cycle progression was assessed using flow cytometry, autophagy was assessed using Western blotting and apoptosis was assessed using an annexin V-FITC/PI double labeling method. RESULTS We found that GluIIβ inhibition resulted in the induction of autophagy in all cell lines tested, but apoptosis in only wild-type p53 cells. We also found that GluIIβ inhibition dose-dependently decreased activation of the EGFR/RTK and PI3K/AKT signaling pathways. Although the apoptosis inducing effect of GluIIβ inhibition appeared to be p53-dependent, we found that a combined treatment with lysosomal inhibitors to block autophagy enhanced the apoptotic effect of GluIIβ inhibition in both wild-type p53 and p53-null cells. CONCLUSIONS Our data indicate that GluIIβ inhibition results in autophagy and apoptosis in lung carcinoma-derived cells, supporting the hypothesis that this enzyme may play a role in blocking these two tumor suppressive processes. Since blocking autophagy by lysosomal inhibitors enhanced the apoptosis-inducing effect of bromoconduritol, independent of p53 status, their combined use may hold promise for the treatment of cancer, particularly lung cancer.
Collapse
Affiliation(s)
- Worapong Khaodee
- Division of Clinical Chemistry, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Nichanan Inboot
- Division of Clinical Chemistry, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Suruk Udomsom
- Biomedical Engineering Program, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand.,Biomedical Engineering Center, Chiang Mai University, Chiang Mai, Thailand
| | - Warunee Kumsaiyai
- Division of Clinical Chemistry, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Ratchada Cressey
- Division of Clinical Chemistry, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand. .,MT Cancer Research Unit, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
12
|
Calles-Garcia D, Yang M, Soya N, Melero R, Ménade M, Ito Y, Vargas J, Lukacs GL, Kollman JM, Kozlov G, Gehring K. Single-particle electron microscopy structure of UDP-glucose:glycoprotein glucosyltransferase suggests a selectivity mechanism for misfolded proteins. J Biol Chem 2017; 292:11499-11507. [PMID: 28490633 DOI: 10.1074/jbc.m117.789495] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/07/2017] [Indexed: 11/06/2022] Open
Abstract
The enzyme UDP-glucose:glycoprotein glucosyltransferase (UGGT) mediates quality control of glycoproteins in the endoplasmic reticulum by attaching glucose to N-linked glycan of misfolded proteins. As a sensor, UGGT ensures that misfolded proteins are recognized by the lectin chaperones and do not leave the secretory pathway. The structure of UGGT and the mechanism of its selectivity for misfolded proteins have been unknown for 25 years. Here, we used negative-stain electron microscopy and small-angle X-ray scattering to determine the structure of UGGT from Drosophila melanogaster at 18-Å resolution. Three-dimensional reconstructions revealed a cage-like structure with a large central cavity. Particle classification revealed flexibility that precluded determination of a high-resolution structure. Introduction of biotinylation sites into a fungal UGGT expressed in Escherichia coli allowed identification of the catalytic and first thioredoxin-like domains. We also used hydrogen-deuterium exchange mass spectrometry to map the binding site of an accessory protein, Sep15, to the first thioredoxin-like domain. The UGGT structural features identified suggest that the central cavity contains the catalytic site and is lined with hydrophobic surfaces. This enhances the binding of misfolded substrates with exposed hydrophobic residues and excludes folded proteins with hydrophilic surfaces. In conclusion, we have determined the UGGT structure, which enabled us to develop a plausible functional model of the mechanism for UGGT's selectivity for misfolded glycoproteins.
Collapse
Affiliation(s)
- Daniel Calles-Garcia
- From the Department of Biochemistry, McGill University, Montreal, Quebec H3G0B1, Canada
| | - Meng Yang
- From the Department of Biochemistry, McGill University, Montreal, Quebec H3G0B1, Canada
| | - Naoto Soya
- Department of Physiology, McGill University, Montreal, Quebec H3G1Y6, Canada
| | - Roberto Melero
- Biocomputing Unit, Centro Nacional de Biotectnologíay, 28049 Madrid, Spain
| | - Marie Ménade
- From the Department of Biochemistry, McGill University, Montreal, Quebec H3G0B1, Canada
| | - Yukishige Ito
- Synthetic Cellular Chemistry Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Javier Vargas
- Biocomputing Unit, Centro Nacional de Biotectnologíay, 28049 Madrid, Spain.,Bioengineering Lab, Escuela Politécnica Superior, Universidad San Pablo CEU, 28668 Madrid, Spain, and
| | - Gergely L Lukacs
- Department of Physiology, McGill University, Montreal, Quebec H3G1Y6, Canada
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350
| | - Guennadi Kozlov
- From the Department of Biochemistry, McGill University, Montreal, Quebec H3G0B1, Canada
| | - Kalle Gehring
- From the Department of Biochemistry, McGill University, Montreal, Quebec H3G0B1, Canada,
| |
Collapse
|
13
|
Obaid AY, Sabir JSM, Atef A, Liu X, Edris S, El-Domyati FM, Mutwakil MZ, Gadalla NO, Hajrah NH, Al-Kordy MA, Hall N, Bahieldin A, Jansen RK. Analysis of transcriptional response to heat stress in Rhazya stricta. BMC PLANT BIOLOGY 2016; 16:252. [PMID: 27842501 PMCID: PMC5109689 DOI: 10.1186/s12870-016-0938-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/28/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Climate change is predicted to be a serious threat to agriculture due to the need for crops to be able to tolerate increased heat stress. Desert plants have already adapted to high levels of heat stress so they make excellent systems for identifying genes involved in thermotolerance. Rhazya stricta is an evergreen shrub that is native to extremely hot regions across Western and South Asia, making it an excellent system for examining plant responses to heat stress. Transcriptomes of apical and mature leaves of R. stricta were analyzed at different temperatures during several time points of the day to detect heat response mechanisms that might confer thermotolerance and protection of the plant photosynthetic apparatus. RESULTS Biological pathways that were crosstalking during the day involved the biosynthesis of several heat stress-related compounds, including soluble sugars, polyols, secondary metabolites, phenolics and methionine. Highly downregulated leaf transcripts at the hottest time of the day (40-42.4 °C) included genes encoding cyclin, cytochrome p450/secologanin synthase and U-box containing proteins, while upregulated, abundant transcripts included genes encoding heat shock proteins (HSPs), chaperones, UDP-glycosyltransferase, aquaporins and protein transparent testa 12. The upregulation of transcripts encoding HSPs, chaperones and UDP-glucosyltransferase and downregulation of transcripts encoding U-box containing proteins likely contributed to thermotolerance in R. stricta leaf by correcting protein folding and preventing protein degradation. Transcription factors that may regulate expression of genes encoding HSPs and chaperones under heat stress included HSFA2 to 4, AP2-EREBP and WRKY27. CONCLUSION This study contributed new insights into the regulatory mechanisms of thermotolerance in the wild plant species R. stricta, an arid land, perennial evergreen shrub common in the Arabian Peninsula and Indian subcontinent. Enzymes from several pathways are interacting in the biosynthesis of soluble sugars, polyols, secondary metabolites, phenolics and methionine and are the primary contributors to thermotolerance in this species.
Collapse
Affiliation(s)
- Abdullah Y. Obaid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Ahmed Atef
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Xuan Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB UK
| | - Sherif Edris
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), Faculty of Medicine, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Fotouh M. El-Domyati
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Mohammed Z. Mutwakil
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Nour O. Gadalla
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Nahid H. Hajrah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Magdy A. Al-Kordy
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Neil Hall
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB UK
| | - Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Robert K. Jansen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
14
|
Harmoko R, Yoo JY, Ko KS, Ramasamy NK, Hwang BY, Lee EJ, Kim HS, Lee KJ, Oh DB, Kim DY, Lee S, Li Y, Lee SY, Lee KO. N-glycan containing a core α1,3-fucose residue is required for basipetal auxin transport and gravitropic response in rice (Oryza sativa). THE NEW PHYTOLOGIST 2016; 212:108-22. [PMID: 27241276 DOI: 10.1111/nph.14031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/24/2016] [Indexed: 05/18/2023]
Abstract
In plants, α1,3-fucosyltransferase (FucT) catalyzes the transfer of fucose from GDP-fucose to asparagine-linked GlcNAc of the N-glycan core in the medial Golgi. To explore the physiological significance of this processing, we isolated two Oryza sativa (rice) mutants (fuct-1 and fuct-2) with loss of FucT function. Biochemical analyses of the N-glycan structure confirmed that α1,3-fucose is missing from the N-glycans of allelic fuct-1 and fuct-2. Compared with the wild-type cv Kitaake, fuct-1 displayed a larger tiller angle, shorter internode and panicle lengths, and decreased grain filling as well as an increase in chalky grains with abnormal shape. The mutant allele fuct-2 gave rise to similar developmental abnormalities, although they were milder than those of fuct-1. Restoration of a normal tiller angle in fuct-1 by complementation demonstrated that the phenotype is caused by the loss of FucT function. Both fuct-1 and fuct-2 plants exhibited reduced gravitropic responses. Expression of the genes involved in tiller and leaf angle control was also affected in the mutants. We demonstrate that reduced basipetal auxin transport and low auxin accumulation at the base of the shoot in fuct-1 account for both the reduced gravitropic response and the increased tiller angle.
Collapse
Affiliation(s)
- Rikno Harmoko
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Jae Yong Yoo
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Ki Seong Ko
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Nirmal Kumar Ramasamy
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Bo Young Hwang
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Eun Ji Lee
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Ho Soo Kim
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Kyung Jin Lee
- Integrative Omics Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Doo-Byoung Oh
- Integrative Omics Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Dool-Yi Kim
- Crop Function Division, National Institute of Crop Science, Rural Development Administration, 181 Hyeoksin-ro, Wanju-gun, Jeollabuk-do, 55365, Korea
| | - Sanghun Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Yang Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Kyun Oh Lee
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| |
Collapse
|
15
|
Abstract
Thyroglobulin (Tg) is a vertebrate secretory protein synthesized in the thyrocyte endoplasmic reticulum (ER), where it acquires N-linked glycosylation and conformational maturation (including formation of many disulfide bonds), leading to homodimerization. Its primary functions include iodide storage and thyroid hormonogenesis. Tg consists largely of repeating domains, and many tyrosyl residues in these domains become iodinated to form monoiodo- and diiodotyrosine, whereas only a small portion of Tg structure is dedicated to hormone formation. Interestingly, evolutionary ancestors, dependent upon thyroid hormone for development, synthesize thyroid hormones without the complete Tg protein architecture. Nevertheless, in all vertebrates, Tg follows a strict pattern of region I, II-III, and the cholinesterase-like (ChEL) domain. In vertebrates, Tg first undergoes intracellular transport through the secretory pathway, which requires the assistance of thyrocyte ER chaperones and oxidoreductases, as well as coordination of distinct regions of Tg, to achieve a native conformation. Curiously, regions II-III and ChEL behave as fully independent folding units that could function as successful secretory proteins by themselves. However, the large Tg region I (bearing the primary T4-forming site) is incompetent by itself for intracellular transport, requiring the downstream regions II-III and ChEL to complete its folding. A combination of nonsense mutations, frameshift mutations, splice site mutations, and missense mutations in Tg occurs spontaneously to cause congenital hypothyroidism and thyroidal ER stress. These Tg mutants are unable to achieve a native conformation within the ER, interfering with the efficiency of Tg maturation and export to the thyroid follicle lumen for iodide storage and hormonogenesis.
Collapse
Affiliation(s)
- Bruno Di Jeso
- Laboratorio di Patologia Generale (B.D.J.), Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy; and Division of Metabolism, Endocrinology, and Diabetes (P.A.), University of Michigan Medical School, Ann Arbor, Michigan 48105
| | - Peter Arvan
- Laboratorio di Patologia Generale (B.D.J.), Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy; and Division of Metabolism, Endocrinology, and Diabetes (P.A.), University of Michigan Medical School, Ann Arbor, Michigan 48105
| |
Collapse
|
16
|
Hachisu M, Seko A, Daikoku S, Takeda Y, Sakono M, Ito Y. Hydrophobic Tagged Dihydrofolate Reductase for Creating Misfolded Glycoprotein Mimetics. Chembiochem 2016; 17:300-3. [PMID: 26670196 DOI: 10.1002/cbic.201500595] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Indexed: 12/18/2022]
Abstract
In the endoplasmic reticulum (ER), nascent glycoproteins that have not acquired the native conformation are either repaired or sorted for degradation by specific quality-control systems composed by various proteins. Among them, UDP-glucose:glycoprotein glucosyltransferase (UGGT) serves as a folding sensor in the ER. However, the molecular mechanism of its recognition remains obscure. This study used pseudo-misfolded glycoproteins, comprising a modified dihydrofolate reductase with artificial pyrene-cysteine moiety on the protein surface (pDHFR) and Man9 GlcNAc2 -methotrexate (M9-MTX). All five M9-MTX/pDHFR complexes, with a pyrene group at different positions, were found to be good substrates of UGGT, irrespective of the site of pyrene modification. These results suggest UGGT's mode of substrate recognition is fuzzy, thus allowing various glycoproteins to be accommodated in the folding cycle.
Collapse
Affiliation(s)
- Masakazu Hachisu
- ERATO Ito Glycotrilogy Project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Akira Seko
- ERATO Ito Glycotrilogy Project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shusaku Daikoku
- ERATO Ito Glycotrilogy Project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yoichi Takeda
- ERATO Ito Glycotrilogy Project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Department of Biotechnology, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Masafumi Sakono
- ERATO Ito Glycotrilogy Project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Department of Applied Chemistry, University of Toyama, 3190 Gofuku, Toyama, Toyama, 930-855, Japan
| | - Yukishige Ito
- ERATO Ito Glycotrilogy Project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
17
|
Ohara K, Takeda Y, Daikoku S, Hachisu M, Seko A, Ito Y. Profiling Aglycon-Recognizing Sites of UDP-glucose:glycoprotein Glucosyltransferase by Means of Squarate-Mediated Labeling. Biochemistry 2015. [PMID: 26196150 DOI: 10.1021/acs.biochem.5b00785] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Because of its ability to selectively glucosylate misfolded glycoproteins, UDP-glucose:glycoprotein glucosyltransferase (UGGT) functions as a folding sensor in the glycoprotein quality control system in the endoplasmic reticulum (ER). The unique property of UGGT derives from its ability to transfer a glucose residue to N-glycan moieties of incompletely folded glycoproteins. We have previously discovered nonproteinic synthetic substrates of this enzyme, allowing us to conduct its high-sensitivity assay in a quantitative manner. In this study, we aimed to conduct site-selective affinity labeling of UGGT using a functionalized oligosaccharide probe to identify domain(s) responsible for recognition of the aglycon moiety of substrates. To this end, a probe 1 was designed to selectively label nucleophilic amino acid residues in the proximity of the canonical aglycon-recognizing site of human UGGT1 (HUGT1) via squaramide formation. As expected, probe 1 was able to label HUGT1 in the presence of UDP. Analysis by nano-LC-ESI/MS(n) identified a unique lysine residue (K1424) that was modified by 1. Kyte-Doolittle analysis as well as homology modeling revealed a cluster of hydrophobic amino acids that may be functional in the folding sensing mechanism of HUGT1.
Collapse
Affiliation(s)
- Keiichiro Ohara
- †Japan Science and Technology Agency (JST), ERATO, Ito Glycotrilogy Project, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoichi Takeda
- †Japan Science and Technology Agency (JST), ERATO, Ito Glycotrilogy Project, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shusaku Daikoku
- †Japan Science and Technology Agency (JST), ERATO, Ito Glycotrilogy Project, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masakazu Hachisu
- †Japan Science and Technology Agency (JST), ERATO, Ito Glycotrilogy Project, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akira Seko
- †Japan Science and Technology Agency (JST), ERATO, Ito Glycotrilogy Project, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yukishige Ito
- †Japan Science and Technology Agency (JST), ERATO, Ito Glycotrilogy Project, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,‡RIKEN, Synthetic Cellular Chemistry Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
18
|
Caramelo JJ, Parodi AJ. A sweet code for glycoprotein folding. FEBS Lett 2015; 589:3379-87. [PMID: 26226420 DOI: 10.1016/j.febslet.2015.07.021] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/15/2015] [Accepted: 07/15/2015] [Indexed: 12/11/2022]
Abstract
Glycoprotein synthesis is initiated in the endoplasmic reticulum (ER) lumen upon transfer of a glycan (Glc3Man9GlcNAc2) from a lipid derivative to Asn residues (N-glycosylation). N-Glycan-dependent quality control of glycoprotein folding in the ER prevents exit to Golgi of folding intermediates, irreparably misfolded glycoproteins and incompletely assembled multimeric complexes. It also enhances folding efficiency by preventing aggregation and facilitating formation of proper disulfide bonds. The control mechanism essentially involves four components, resident lectin-chaperones (calnexin and calreticulin) that recognize monoglucosylated polymannose protein-linked glycans, lectin-associated oxidoreductase acting on monoglucosylated glycoproteins (ERp57), a glucosyltransferase that creates monoglucosylated epitopes in protein-linked glycans (UGGT) and a glucosidase (GII) that removes the glucose units added by UGGT. This last enzyme is the only mechanism component sensing glycoprotein conformations as it creates monoglucosylated glycans exclusively in not properly folded glycoproteins or in not completely assembled multimeric glycoprotein complexes. Glycoproteins that fail to properly fold are eventually driven to proteasomal degradation in the cytosol following the ER-associated degradation pathway, in which the extent of N-glycan demannosylation by ER mannosidases play a relevant role in the identification of irreparably misfolded glycoproteins.
Collapse
Affiliation(s)
- Julio J Caramelo
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avda. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina.
| | - Armando J Parodi
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avda. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina.
| |
Collapse
|
19
|
Blanco-Herrera F, Moreno AA, Tapia R, Reyes F, Araya M, D'Alessio C, Parodi A, Orellana A. The UDP-glucose: glycoprotein glucosyltransferase (UGGT), a key enzyme in ER quality control, plays a significant role in plant growth as well as biotic and abiotic stress in Arabidopsis thaliana. BMC PLANT BIOLOGY 2015; 15:127. [PMID: 26017403 PMCID: PMC4465474 DOI: 10.1186/s12870-015-0525-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 05/18/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND UDP-glucose: glycoprotein glucosyltransferase (UGGT) is a key player in the quality control mechanism (ER-QC) that newly synthesized glycoproteins undergo in the ER. It has been shown that the UGGT Arabidopsis orthologue is involved in ER-QC; however, its role in plant physiology remains unclear. RESULTS Here, we show that two mutant alleles in the At1g71220 locus have none or reduced UGGT activity. In wild type plants, the AtUGGT transcript levels increased upon activation of the unfolded protein response (UPR). Interestingly, mutants in AtUGGT exhibited an endogenous up-regulation of genes that are UPR targets. In addition, mutants in AtUGGT showed a 30% reduction in the incorporation of UDP-Glucose into the ER suggesting that this enzyme drives the uptake of this substrate for the CNX/CRT cycle. Plants deficient in UGGT exhibited a delayed growth rate of the primary root and rosette as well as an alteration in the number of leaves. These mutants are more sensitive to pathogen attack as well as heat, salt, and UPR-inducing stressors. Additionally, the plants showed impairment in the establishment of systemic acquired resistance (SAR). CONCLUSIONS These results show that a lack of UGGT activity alters plant vegetative development and impairs the response to several abiotic and biotic stresses. Moreover, our results uncover an unexpected role of UGGT in the incorporation of UDP-Glucose into the ER lumen in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Francisca Blanco-Herrera
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, 837-0146, RM, Chile.
| | - Adrián A Moreno
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, 837-0146, RM, Chile.
- FONDAP Center for Genome Regulation, Santiago, RM, Chile.
| | - Rodrigo Tapia
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, 837-0146, RM, Chile.
| | - Francisca Reyes
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, 837-0146, RM, Chile.
- FONDAP Center for Genome Regulation, Santiago, RM, Chile.
| | - Macarena Araya
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, 837-0146, RM, Chile.
| | - Cecilia D'Alessio
- Fundación Instituto Leloir and IIBBA, CONICET, Buenos Aires, Argentina.
- School of Sciences, University of Buenos Aires, Buenos Aires, Argentina.
| | - Armando Parodi
- Fundación Instituto Leloir and IIBBA, CONICET, Buenos Aires, Argentina.
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, 837-0146, RM, Chile.
- FONDAP Center for Genome Regulation, Santiago, RM, Chile.
| |
Collapse
|
20
|
Tannous A, Pisoni GB, Hebert DN, Molinari M. N-linked sugar-regulated protein folding and quality control in the ER. Semin Cell Dev Biol 2015; 41:79-89. [PMID: 25534658 PMCID: PMC4474783 DOI: 10.1016/j.semcdb.2014.12.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/02/2014] [Indexed: 11/18/2022]
Abstract
Asparagine-linked glycans (N-glycans) are displayed on the majority of proteins synthesized in the endoplasmic reticulum (ER). Removal of the outermost glucose residue recruits the lectin chaperone malectin possibly involved in a first triage of defective polypeptides. Removal of a second glucose promotes engagement of folding and quality control machineries built around the ER lectin chaperones calnexin (CNX) and calreticulin (CRT) and including oxidoreductases and peptidyl-prolyl isomerases. Deprivation of the last glucose residue dictates the release of N-glycosylated polypeptides from the lectin chaperones. Correctly folded proteins are authorized to leave the ER. Non-native polypeptides are recognized by the ER quality control key player UDP-glucose glycoprotein glucosyltransferase 1 (UGT1), re-glucosylated and re-addressed to the CNX/CRT chaperone binding cycle to provide additional opportunity for the protein to fold in the ER. Failure to attain the native structure determines the selection of the misfolded polypeptides for proteasome-mediated degradation.
Collapse
Affiliation(s)
- Abla Tannous
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Daniel N Hebert
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003, USA.
| | - Maurizio Molinari
- Università della Svizzera italiana, CH-6900 Lugano, Switzerland; Institute for Research in Biomedicine, Protein Folding and Quality Control, CH-6500 Bellinzona, Switzerland; Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
21
|
Izumi M, Dedola S, Ito Y, Kajihara Y. Chemical Synthesis of Homogeneous Glycoproteins for the Study of Glycoprotein Quality Control System. Isr J Chem 2015. [DOI: 10.1002/ijch.201400154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Glycopeptide probes for understanding peptide specificity of the folding sensor enzyme UGGT. Bioorg Med Chem Lett 2014; 24:5563-5567. [DOI: 10.1016/j.bmcl.2014.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/01/2014] [Accepted: 11/04/2014] [Indexed: 12/22/2022]
|
23
|
Halperin L, Jung J, Michalak M. The many functions of the endoplasmic reticulum chaperones and folding enzymes. IUBMB Life 2014; 66:318-26. [PMID: 24839203 DOI: 10.1002/iub.1272] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 04/24/2014] [Indexed: 12/12/2022]
Abstract
Endoplasmic reticulum (ER) is an essential sub-cellular compartment of the eukaryotic cell performing many diverse functions essential for the cell and the whole organism. ER molecular chaperones and folding enzymes are multidomain proteins that are designed to support nascent proteins entering ER lumen to achieve their native conformation, mediate post-translational modification, prevent misfolded protein aggregation, and facilitate exit from the ER. Typically the role of ER chaperones expands beyond protein folding. Here, we illustrate the multifunctional nature of many ER associated molecular chaperones and folding enzymes and unique functional overlap of these proteins all designed to support the many functions of the ER membrane.
Collapse
Affiliation(s)
- Laura Halperin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
24
|
Dedola S, Izumi M, Makimura Y, Seko A, Kanamori A, Sakono M, Ito Y, Kajihara Y. Folding of Synthetic Homogeneous Glycoproteins in the Presence of a Glycoprotein Folding Sensor Enzyme. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309665] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Dedola S, Izumi M, Makimura Y, Seko A, Kanamori A, Sakono M, Ito Y, Kajihara Y. Folding of synthetic homogeneous glycoproteins in the presence of a glycoprotein folding sensor enzyme. Angew Chem Int Ed Engl 2014; 53:2883-7. [PMID: 24500819 DOI: 10.1002/anie.201309665] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/20/2013] [Indexed: 11/09/2022]
Abstract
UDP-glucose:glycoprotein glucosyltransferase (UGGT) plays a key role in recognizing folded and misfolded glycoproteins in the glycoprotein quality control system of the endoplasmic reticulum. UGGT detects misfolded glycoproteins and re-glucosylates them as a tag for misfolded glycoproteins. A flexible model to reproduce in vitro folding of a glycoprotein in the presence of UGGT in a mixture containing correctly folded, folding intermediates, and misfolded glycoproteins is described. The data demonstrates that UGGT can re-glucosylate all intermediates in the in vitro folding experiments, thus indicating that UGGT inspects not only final folded products, but also the glycoprotein folding intermediates.
Collapse
Affiliation(s)
- Simone Dedola
- Department of Chemistry, Graduate School of Science, Institution Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043 (Japan); Institution Japan Science and Technology Agency (JST), ERATO, Ito Glycotrilogy Project, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan)
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Deciphering the roles of glycan processing in glycoprotein quality control through organic synthesis. Biosci Biotechnol Biochem 2013; 77:2331-8. [PMID: 24317068 DOI: 10.1271/bbb.130594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein quality control (QC) in the endoplasmic reticulum (ER) comprises many aspects, including folding and transport of nascent proteins and degradation of misfolded proteins. Recent studies have revealed that high-mannose-type glycans play pivotal roles in the QC process. To gain knowledge of the molecular basis of this process with well-defined homogeneous compounds, we achieved a convergent synthesis of high-mannose-type glycans and their functionalized derivatives. A major part of our study focused on analyses of UDP-Glc: glycoprotein glucosyltransferase (UGGT) and ER glucosidase II, which play crucial roles in glycoprotein QC, to clarify their specificities. In addition, we established an in vitro assay system mimicking the in vivo condition, which is highly crowded due to the presence of various macromolecules.
Collapse
|
27
|
Athanasiou D, Aguilà M, Bevilacqua D, Novoselov SS, Parfitt DA, Cheetham ME. The cell stress machinery and retinal degeneration. FEBS Lett 2013; 587:2008-17. [PMID: 23684651 PMCID: PMC4471140 DOI: 10.1016/j.febslet.2013.05.020] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 05/01/2013] [Accepted: 05/02/2013] [Indexed: 12/12/2022]
Abstract
Retinal degenerations are a group of clinically and genetically heterogeneous disorders characterised by progressive loss of vision due to neurodegeneration. The retina is a highly specialised tissue with a unique architecture and maintaining homeostasis in all the different retinal cell types is crucial for healthy vision. The retina can be exposed to a variety of environmental insults and stress, including light-induced damage, oxidative stress and inherited mutations that can lead to protein misfolding. Within retinal cells there are different mechanisms to cope with disturbances in proteostasis, such as the heat shock response, the unfolded protein response and autophagy. In this review, we discuss the multiple responses of the retina to different types of stress involved in retinal degenerations, such as retinitis pigmentosa, age-related macular degeneration and glaucoma. Understanding the mechanisms that maintain and re-establish proteostasis in the retina is important for developing new therapeutic approaches to fight blindness.
Collapse
Affiliation(s)
| | - Monica Aguilà
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Dalila Bevilacqua
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | | | - David A. Parfitt
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | | |
Collapse
|
28
|
Izumi M, Kiuchi T, Ito Y, Kajihara Y. Misfolded Glycoproteins as Probes for Analysis of Folding Sensor Enzyme UDP-Glucose. TRENDS GLYCOSCI GLYC 2013. [DOI: 10.4052/tigg.25.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Smirle J, Au CE, Jain M, Dejgaard K, Nilsson T, Bergeron J. Cell biology of the endoplasmic reticulum and the Golgi apparatus through proteomics. Cold Spring Harb Perspect Biol 2013; 5:a015073. [PMID: 23284051 DOI: 10.1101/cshperspect.a015073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Enriched endoplasmic reticulum (ER) and Golgi membranes subjected to mass spectrometry have uncovered over a thousand different proteins assigned to the ER and Golgi apparatus of rat liver. This, in turn, led to the uncovering of several hundred proteins of poorly understood function and, through hierarchical clustering, showed that proteins distributed in patterns suggestive of microdomains in cognate organelles. This has led to new insights with respect to their intracellular localization and function. Another outcome has been the critical testing of the cisternal maturation hypothesis showing overwhelming support for a predominant role of COPI vesicles in the transport of resident proteins of the ER and Golgi apparatus (as opposed to biosynthetic cargo). Here we will discuss new insights gained and also highlight new avenues undertaken to further explore the cell biology of the ER and the Golgi apparatus through tandem mass spectrometry.
Collapse
Affiliation(s)
- Jeffrey Smirle
- The Research Institute of the McGill University Health Centre and the Department of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Endoplasmic reticulum (ER) stress is of considerable interest to plant biologists because it occurs in plants subjected to adverse environmental conditions. ER stress responses mitigate the damage caused by stress and confer levels of stress tolerance to plants. ER stress is activated by misfolded proteins that accumulate in the ER under adverse environmental conditions. Under these conditions, the demand for protein folding exceeds the capacity of the system, which sets off the unfolded protein response (UPR). Two arms of the UPR signaling pathway have been described in plants: one that involves two ER membrane-associated transcription factors (bZIP17 and bZIP28) and another that involves a dual protein kinase (RNA-splicing factor IRE1) and its target RNA (bZIP60). Under mild or short-term stress conditions, signaling from IRE1 activates autophagy, a cell survival response. But under severe or chronic stress conditions, ER stress can lead to cell death.
Collapse
Affiliation(s)
- Stephen H Howell
- Plant Sciences Institute and Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
31
|
Iwamoto S, Isoyama M, Hirano M, Yamaya K, Ito Y, Matsuo I, Totani K. Reconstructed glycan profile for evaluation of operating status of the endoplasmic reticulum glycoprotein quality control. Glycobiology 2012; 23:121-31. [DOI: 10.1093/glycob/cws130] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
32
|
Ito Y, Takeda Y. Analysis of glycoprotein processing in the endoplasmic reticulum using synthetic oligosaccharides. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2012; 88:31-40. [PMID: 22314014 PMCID: PMC3316936 DOI: 10.2183/pjab.88.31] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 12/19/2011] [Indexed: 05/31/2023]
Abstract
Protein quality control (QC) in the endoplasmic reticulum (ER) comprises many steps, including folding and transport of nascent proteins as well as degradation of misfolded proteins. Recent studies have revealed that high-mannose-type glycans play a pivotal role in the QC process. To gain knowledge about the molecular basis of this process with well-defined homogeneous compounds, we achieved a convergent synthesis of high-mannose-type glycans and their functionalized derivatives. We focused on analyses of UDP-Glc: glycoprotein glucosyltransferase (UGGT) and ER Glucosidase II, which play crucial roles in glycoprotein QC; however, their specificities remain unclear. In addition, we established an in vitro assay system mimicking the in vivo condition which is highly crowded because of the presence of various biomacromolecules.
Collapse
|
33
|
Wolf DH, Stolz A. The Cdc48 machine in endoplasmic reticulum associated protein degradation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:117-24. [PMID: 21945179 DOI: 10.1016/j.bbamcr.2011.09.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/01/2011] [Accepted: 09/02/2011] [Indexed: 10/17/2022]
Abstract
The AAA-type ATPase Cdc48 (named p97/VCP in mammals) is a molecular machine in all eukaryotic cells that transforms ATP hydrolysis into mechanic power to unfold and pull proteins against physical forces, which make up a protein's structure and hold it in place. From the many cellular processes, Cdc48 is involved in, its function in endoplasmic reticulum associated protein degradation (ERAD) is understood best. This quality control process for proteins of the secretory pathway scans protein folding and discovers misfolded proteins in the endoplasmic reticulum (ER), the organelle, destined for folding of these proteins and their further delivery to their site of action. Misfolded lumenal and membrane proteins of the ER are detected by chaperones and lectins and retro-translocated out of the ER for degradation. Here the Cdc48 machinery, recruited to the ER membrane, takes over. After polyubiquitylation of the protein substrate, Cdc48 together with its dimeric co-factor complex Ufd1-Npl4 pulls the misfolded protein out and away from the ER membrane and delivers it to down-stream components for degradation by a cytosolic proteinase machine, the proteasome. The known details of the Cdc48-Ufd1-Npl4 motor complex triggered process are subject of this review article.
Collapse
Affiliation(s)
- Dieter H Wolf
- Institut für Biochemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | | |
Collapse
|
34
|
Witte MD, van der Marel GA, Aerts JMFG, Overkleeft HS. Irreversible inhibitors and activity-based probes as research tools in chemical glycobiology. Org Biomol Chem 2011; 9:5908-26. [DOI: 10.1039/c1ob05531c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
35
|
Buchberger A, Bukau B, Sommer T. Protein Quality Control in the Cytosol and the Endoplasmic Reticulum: Brothers in Arms. Mol Cell 2010; 40:238-52. [DOI: 10.1016/j.molcel.2010.10.001] [Citation(s) in RCA: 386] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 09/27/2010] [Accepted: 09/30/2010] [Indexed: 12/12/2022]
|
36
|
Tamura T, Sunryd JC, Hebert DN. Sorting things out through endoplasmic reticulum quality control. Mol Membr Biol 2010; 27:412-27. [PMID: 20553226 DOI: 10.3109/09687688.2010.495354] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The endoplasmic reticulum (ER) is a highly organized and specialized organelle optimized for the production of proteins. It is comprised of a highly interconnected network of tubules that contain a large set of resident proteins dedicated to the maturation and processing of proteins that traverse the eukaryotic secretory pathway. As protein maturation is an imperfect process, frequently resulting in misfolding and/or the formation of aggregates, proteins are subjected to a series of evaluation processes within the ER. Proteins deemed native are sorted for anterograde trafficking, while immature or non-native proteins are initially retained in the ER in an attempt to rescue the aberrant products. Terminally misfolded substrates are eventually targeted for turnover through the ER-associated degradation or ERAD pathway to protect the cell from the release of a defective product. A clearer picture of the identity of the machinery involved in these quality control evaluation processes and their mechanisms of actions has emerged over the past decade.
Collapse
Affiliation(s)
- Taku Tamura
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
37
|
Pearse BR, Tamura T, Sunryd JC, Grabowski GA, Kaufman RJ, Hebert DN. The role of UDP-Glc:glycoprotein glucosyltransferase 1 in the maturation of an obligate substrate prosaposin. J Cell Biol 2010; 189:829-41. [PMID: 20498017 PMCID: PMC2878942 DOI: 10.1083/jcb.200912105] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 04/28/2010] [Indexed: 01/02/2023] Open
Abstract
An endoplasmic reticulum (ER) quality control system assists in efficient folding and disposal of misfolded proteins. N-linked glycans are critical in these events because their composition dictates interactions with molecular chaperones. UDP-glucose:glycoprotein glucosyltransferase 1 (UGT1) is a key quality control factor of the ER. It adds glucoses to N-linked glycans of nonglucosylated substrates that fail a quality control test, supporting additional rounds of chaperone binding and ER retention. How UGT1 functions in its native environment is poorly understood. The role of UGT1 in the maturation of glycoproteins at basal expression levels was analyzed. Prosaposin was identified as a prominent endogenous UGT1 substrate. A dramatic decrease in the secretion of prosaposin was observed in ugt1(-/-) cells with prosaposin localized to large juxtanuclear aggresome-like inclusions, which is indicative of its misfolding and the essential role that UGT1 plays in its proper maturation. A model is proposed that explains how UGT1 may aid in the folding of sequential domain-containing proteins such as prosaposin.
Collapse
Affiliation(s)
- Bradley R. Pearse
- Department of Biochemistry and Molecular Biology and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| | - Taku Tamura
- Department of Biochemistry and Molecular Biology and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| | - Johan C. Sunryd
- Department of Biochemistry and Molecular Biology and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| | - Gregory A. Grabowski
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Randal J. Kaufman
- Howard Hughes Medical Institute, Department of Biological Chemistry, and Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Daniel N. Hebert
- Department of Biochemistry and Molecular Biology and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
38
|
Tokhtaeva E, Munson K, Sachs G, Vagin O. N-glycan-dependent quality control of the Na,K-ATPase beta(2) subunit. Biochemistry 2010; 49:3116-28. [PMID: 20199105 PMCID: PMC3186216 DOI: 10.1021/bi100115a] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bulky hydrophilic N-glycans stabilize the proper tertiary structure of glycoproteins. In addition, N-glycans comprise the binding sites for the endoplasmic reticulum (ER)-resident lectins that assist correct folding of newly synthesized glycoproteins. To reveal the role of N-glycans in maturation of the Na,K-ATPase beta(2) subunit in the ER, the effects of preventing or modifying the beta(2) subunit N-glycosylation on trafficking of the subunit and its binding to the ER lectin chaperone, calnexin, were studied in MDCK cells. Preventing N-glycosylation abolishes binding of the beta(2) subunit to calnexin and results in the ER retention of the subunit. Furthermore, the fully N-glycosylated beta(2) subunit is retained in the ER when glycan-calnexin interactions are prevented by castanospermine, showing that N-glycan-mediated calnexin binding is required for correct subunit folding. Calnexin binding persists for several hours after translation is stopped with cycloheximide, suggesting that the beta(2) subunit undergoes repeated post-translational calnexin-assisted folding attempts. Homology modeling of the beta(2) subunit using the crystal structure of the alpha(1)-beta(1) Na,K-ATPase shows the presence of a relatively hydrophobic amino acid cluster proximal to N-glycosylation sites 2 and 7. Combined, but not separate, removal of sites 2 and 7 dramatically impairs calnexin binding and prevents the export of the beta(2) subunit from the ER. Similarly, hydrophilic substitution of two hydrophobic amino acids in this cluster disrupts both beta(2)-calnexin binding and trafficking of the subunit to the Golgi. Therefore, the hydrophobic residues in the proximity of N-glycans 2 and 7 are required for post-translational calnexin binding to these N-glycans in incompletely folded conformers, which, in turn, is necessary for maturation of the Na,K-ATPase beta(2) subunit.
Collapse
Affiliation(s)
- Elmira Tokhtaeva
- Department of Physiology, School of Medicine, UCLA, and Veterans Administration Greater Los Angeles Health Care System, VAGLAHS/West LA, Building 113, Room 324, 11301 Wilshire Boulevard, Los Angeles, California 90073
| | - Keith Munson
- Department of Physiology, School of Medicine, UCLA, and Veterans Administration Greater Los Angeles Health Care System, VAGLAHS/West LA, Building 113, Room 324, 11301 Wilshire Boulevard, Los Angeles, California 90073
| | - George Sachs
- Department of Physiology, School of Medicine, UCLA, and Veterans Administration Greater Los Angeles Health Care System, VAGLAHS/West LA, Building 113, Room 324, 11301 Wilshire Boulevard, Los Angeles, California 90073
| | - Olga Vagin
- Department of Physiology, School of Medicine, UCLA, and Veterans Administration Greater Los Angeles Health Care System, VAGLAHS/West LA, Building 113, Room 324, 11301 Wilshire Boulevard, Los Angeles, California 90073
| |
Collapse
|
39
|
Määttänen P, Gehring K, Bergeron JJM, Thomas DY. Protein quality control in the ER: the recognition of misfolded proteins. Semin Cell Dev Biol 2010; 21:500-11. [PMID: 20347046 DOI: 10.1016/j.semcdb.2010.03.006] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/16/2010] [Accepted: 03/18/2010] [Indexed: 02/08/2023]
Abstract
The mechanism, in molecular terms of protein quality control, specifically of how the cell recognizes and discriminates misfolded proteins, remains a challenge. In the secretory pathway the folding status of glycoproteins passing through the endoplasmic reticulum is marked by the composition of the N-glycan. The different glycoforms are recognized by specialized lectins. The folding sensor UGGT acts as an unusual molecular chaperone and covalently modifies the Man9 N-glycan of a misfolded protein by adding a glucose moiety and converts it to Glc1Man9 that rebinds the lectin calnexin. However, further links between the folding status of a glycoprotein and the composition of the N-glycan are unclear. There is little unequivocal evidence for other proteins in the ER recognizing the N-glycan and also acting as molecular chaperones. Nevertheless, based upon a few examples, we suggest that this function is carried out by individual proteins in several different complexes. Thus, calnexin binds the protein disulfide isomerase ERp57, that acts upon Glc1Man9 glycoproteins. In another example the protein disulfide isomerase ERdj5 binds specifically to EDEM (which is probably a mannosidase) and a lectin OS9, and reduces the disulfide bonds of bound glycoproteins destined for ERAD. Thus the glycan recognition is performed by a lectin and the chaperone function performed by a specific partner protein that can recognize misfolded proteins. We predict that this will be a common arrangement of proteins in the ER and that members of protein foldase families such as PDI and PPI will bind specifically to lectins in the ER. Molecular chaperones BiP and GRp94 will assist in the folding of proteins bound in these complexes as well as in the folding of non-glycoproteins.
Collapse
Affiliation(s)
- Pekka Määttänen
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | |
Collapse
|
40
|
Endoplasmic reticulum associated protein degradation: a chaperone assisted journey to hell. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:694-705. [PMID: 20219571 DOI: 10.1016/j.bbamcr.2010.02.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 02/11/2010] [Accepted: 02/18/2010] [Indexed: 01/16/2023]
Abstract
Recognition and elimination of misfolded proteins are essential cellular processes. More than thirty percent of the cellular proteins are proteins of the secretory pathway. They fold in the lumen or membrane of the endoplasmic reticulum from where they are sorted to their site of action. The folding process, as well as any refolding after cell stress, depends on chaperone activity. In case proteins are unable to acquire their native conformation, chaperones with different substrate specificity and activity guide them to elimination. For most misfolded proteins of the endoplasmic reticulum this requires retro-translocation to the cytosol and polyubiquitylation of the misfolded protein by an endoplasmic reticulum associated machinery. Thereafter ubiquitylated proteins are guided to the proteasome for degradation. This review summarizes our up to date knowledge of chaperone classes and chaperone function in endoplasmic reticulum associated degradation of protein waste.
Collapse
|
41
|
D'Alessio C, Caramelo JJ, Parodi AJ. UDP-GlC:glycoprotein glucosyltransferase-glucosidase II, the ying-yang of the ER quality control. Semin Cell Dev Biol 2010; 21:491-9. [PMID: 20045480 DOI: 10.1016/j.semcdb.2009.12.014] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 12/17/2009] [Indexed: 12/22/2022]
Abstract
The N-glycan-dependent quality control of glycoprotein folding prevents endoplasmic to Golgi exit of folding intermediates, irreparably misfolded glycoproteins and incompletely assembled multimeric complexes. It also enhances folding efficiency by preventing aggregation and facilitating formation of proper disulfide bonds. The control mechanism essentially involves four components, resident lectin-chaperones that recognize monoglucosylated polymannose glycans, a lectin-associated oxidoreductase acting on monoglucosylated glycoproteins, a glucosyltransferase that creates monoglucosytlated epitopes in protein-linked glycans and a glucosidase that removes the glucose units added by the glucosyltransferase. This last enzyme is the only mechanism component sensing glycoprotein conformations as it creates monoglucosylated glycans exclusively in not properly folded species or in not completely assembled complexes. The glucosidase is a dimeric heterodimer composed of a catalytic subunit and an additional one that is partially responsible for the ER localization of the enzyme and for the enhancement of the deglucosylation rate as its mannose 6-phosphate receptor homologous domain presents the substrate to the catalytic site. This review deals with our present knowledge on the glucosyltransferase and the glucosidase.
Collapse
Affiliation(s)
- Cecilia D'Alessio
- Laboratory of Glycobiology, Fundación Instituto Leloir, Avda. Patricias Argentinas 435, C1405BWE, Buenos Aires, Argentina
| | | | | |
Collapse
|
42
|
Takeda Y, Totani K, Matsuo I, Ito Y. Chemical approaches toward understanding glycan-mediated protein quality control. Curr Opin Chem Biol 2009; 13:582-91. [DOI: 10.1016/j.cbpa.2009.09.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 09/01/2009] [Accepted: 09/05/2009] [Indexed: 10/20/2022]
|
43
|
Totani K, Ihara Y, Tsujimoto T, Matsuo I, Ito Y. The recognition motif of the glycoprotein-folding sensor enzyme UDP-Glc:glycoprotein glucosyltransferase. Biochemistry 2009; 48:2933-40. [PMID: 19222173 DOI: 10.1021/bi8020586] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The folding of glycoproteins is primarily mediated by a quality control system in the ER, in which UDP-Glc:glycoprotein glucosyltransferase (UGGT) serves as a "folding sensor". In this system, client glycoproteins are delivered to UGGT after the trimming of their innermost glucose residue by glucosidase II, which releases them from the lectin chaperones calnexin (CNX) and calreticulin (CRT). UGGT is inactive against folded proteins, allowing them to proceed to the Golgi apparatus for further processing to complex- or hybrid-type glycoforms. On the other hand, this enzyme efficiently glucosylates incompletely folded glycoproteins to monoglucosylated structures, providing them with an opportunity to interact with CNX/CRT. In order to clarify the mode of this enzyme's substrate recognition, we conducted a structure-activity relationship study using a series of synthetic probes. The inhibitory activities of various glycans suggest that UGGT has a strong affinity for the core pentasaccharide (Man3GlcNAc2) of high-mannose-type glycans. Our comparison of the reactivity of acceptors that have been modified by various aglycons supports the hypothesis that UGGT recognizes the hydrophobic region of client glycoproteins. Moreover, we discovered fluorescently labeled substrates that will be valuable for highly sensitive detection of UGGT activity.
Collapse
Affiliation(s)
- Kiichiro Totani
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
44
|
Pearse BR, Hebert DN. Lectin chaperones help direct the maturation of glycoproteins in the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:684-93. [PMID: 19891995 DOI: 10.1016/j.bbamcr.2009.10.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 10/09/2009] [Accepted: 10/20/2009] [Indexed: 02/06/2023]
Abstract
Eukaryotic secretory pathway cargo fold to their native structures within the confines of the endoplasmic reticulum (ER). To ensure a high degree of folding fidelity, a multitude of covalent and noncovalent constraints are imparted upon nascent proteins. These constraints come in the form of topological restrictions or membrane tethers, covalent modifications, and interactions with a series of molecular chaperones. N-linked glycosylation provides inherent benefits to proper folding and creates a platform for interactions with specific chaperones and Cys modifying enzymes. Recent insights into this timeline of protein maturation have revealed mechanisms for protein glycosylation and iterative targeting of incomplete folding intermediates, which provides nurturing interactions with molecular chaperones that assist in the efficient maturation of proteins in the eukaryotic secretory pathway.
Collapse
Affiliation(s)
- Bradley R Pearse
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
45
|
Abstract
Protein folding in the endoplasmic reticulum (ER) is monitored by ER quality control (ERQC) mechanisms. Proteins that pass ERQC criteria traffic to their final destinations through the secretory pathway, whereas non-native and unassembled subunits of multimeric proteins are degraded by the ER-associated degradation (ERAD) pathway. During ERAD, molecular chaperones and associated factors recognize and target substrates for retrotranslocation to the cytoplasm, where they are degraded by the ubiquitin-proteasome machinery. The discovery of diseases that are associated with ERAD substrates highlights the importance of this pathway. Here, we summarize our current understanding of each step during ERAD, with emphasis on the factors that catalyse distinct activities.
Collapse
Affiliation(s)
- Shruthi S Vembar
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
46
|
Wang N, Glidden EJ, Murphy SR, Pearse BR, Hebert DN. The cotranslational maturation program for the type II membrane glycoprotein influenza neuraminidase. J Biol Chem 2008; 283:33826-37. [PMID: 18849342 DOI: 10.1074/jbc.m806897200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The earliest steps in nascent protein maturation greatly affect its overall efficiency. Constraints placed on maturing proteins at these early stages limit available conformations and help to direct the native maturation process. For type II membrane proteins, these cotranslational constraints include N- and C-terminal membrane tethering, chaperone binding, and disulfide bond formation. The cotranslational maturation process for the type II membrane glycoprotein influenza neuraminidase (NA) was investigated to provide a deeper understanding of these initial endoplasmic reticulum events. The type II orientation provides experimental advantages to monitor the first maturation steps. Calnexin was shown to cotranslationally interact with NA prior to calreticulin. These interactions were required for the efficient maturation of NA as it prematurely formed intramolecular disulfides and aggregated when calnexin and calreticulin interactions were abolished. Lectin chaperone binding slowed the NA maturation process, increasing its fidelity. Carbohydrates were required for NA maturation in a regio-specific manner. A subset of NA formed intermolecular disulfides and oligomerized cotranslationally. This fraction increased in the absence of calnexin and calreticulin binding. NA dimerization also occurred for an NA mutant lacking the critical large loop disulfide bond, indicating that dimerization did not require proper NA oxidation. The strict evaluation of proper maturation carried out by the quality control machinery was instilled at the tetramerization step. This study illustrates the type II membrane protein maturation process and shows how important cotranslational events contribute to the proper cellular maturation of glycoproteins.
Collapse
Affiliation(s)
- Ning Wang
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | |
Collapse
|
47
|
Pearse BR, Gabriel L, Wang N, Hebert DN. A cell-based reglucosylation assay demonstrates the role of GT1 in the quality control of a maturing glycoprotein. ACTA ACUST UNITED AC 2008; 181:309-20. [PMID: 18426978 PMCID: PMC2315677 DOI: 10.1083/jcb.200712068] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The endoplasmic reticulum (ER) protein GT1 (UDP-glucose: glycoprotein glucosyltransferase) is the central enzyme that modifies N-linked carbohydrates based upon the properties of the polypeptide backbone of the maturing substrate. GT1 adds glucose residues to nonglucosylated proteins that fail the quality control test, supporting ER retention through persistent binding to the lectin chaperones calnexin and calreticulin. How GT1 functions in its native environment on a maturing substrate is poorly understood. We analyzed the reglucosylation of a maturing model glycoprotein, influenza hemagglutinin (HA), in the intact mammalian ER. GT1 reglucosylated N-linked glycans in the slow-folding stem domain of HA once the nascent chain was released from the ribosome. Maturation mutants that disrupted the oxidation or oligomerization of HA also supported region-specific reglucosylation by GT1. Therefore, GT1 acts as an ER quality control sensor by posttranslationally reglucosylating glycans on slow-folding or nonnative domains to recruit chaperones specifically to critical aberrant regions.
Collapse
Affiliation(s)
- Bradley R Pearse
- Department of Biochemistry, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
48
|
Abstract
The endoplasmic reticulum (ER) is the first sub-cellular compartment encountered by secretory proteins en route to the plasma membrane. Newly synthesized secretory proteins translocate into the ER lumen and acquire their correct conformation prior to being exported to later compartments. When folding is not properly achieved, proteins accumulate in the ER due to resident quality control machineries and terminally misfolded proteins are ultimately degraded through the ER-associated degradation pathway. All these molecular machines function in a coordinated fashion to restore and maintain ER homeostasis. A fifth molecular machine plays a coordinating role in the ER. Indeed, the ER stress signaling machinery signals ER dysfunction to the rest of the cell and consequently integrates the functions of the four other molecular machines to improve their operation in stressful conditions. In this work, we have attempted to define the ER as a molecular biological system regulated by its own specific signaling pathways defined as the Unfolded Protein Response to delineate a systems biology approach of ER stress signaling.
Collapse
|
49
|
Caramelo JJ, Parodi AJ. How sugars convey information on protein conformation in the endoplasmic reticulum. Semin Cell Dev Biol 2007; 18:732-42. [PMID: 17997334 PMCID: PMC2196135 DOI: 10.1016/j.semcdb.2007.09.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 07/24/2007] [Accepted: 09/05/2007] [Indexed: 11/21/2022]
Abstract
The N-glycan-dependent quality control of glycoprotein folding prevents endoplasmic reticulum to Golgi exit of folding intermediates, irreparably misfolded glycoproteins and not completely assembled multimeric complexes. It also enhances folding efficiency by preventing aggregation and facilitating formation of proper disulfide bonds. The control mechanism essentially involves four components, resident lectin-chaperones that recognize monoglucosylated polymannose glycans, a lectin-associated oxidoreductase acting on monoglucosylated glycoproteins, a glucosyltransferase and a glucosidase that creates monoglucosylated epitopes in glycans transferred in protein N-glycosylation or removes the glucose units added by the glucosyltransferase. This last enzyme is the only mechanism component sensing glycoprotein conformations as it creates monoglucosylated glycans exclusively in not properly folded species or in not completely assembled complexes. The purpose of the review is to describe the most significant recent findings on the mechanism of glycoprotein folding and assembly quality control and to discuss the main still unanswered questions.
Collapse
Affiliation(s)
- Julio J. Caramelo
- Laboratory of Glycobiology, Fundación Instituto Leloir, C1405BWE Buenos Aires, Argentina
| | - Armando J. Parodi
- Laboratory of Glycobiology, Fundación Instituto Leloir, C1405BWE Buenos Aires, Argentina
| |
Collapse
|
50
|
Ni M, Lee AS. ER chaperones in mammalian development and human diseases. FEBS Lett 2007; 581:3641-51. [PMID: 17481612 PMCID: PMC2040386 DOI: 10.1016/j.febslet.2007.04.045] [Citation(s) in RCA: 599] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 04/13/2007] [Accepted: 04/18/2007] [Indexed: 12/16/2022]
Abstract
The field of endoplasmic reticulum (ER) stress in mammalian cells has expanded rapidly during the past decade, contributing to understanding of the molecular pathways that allow cells to adapt to perturbations in ER homeostasis. One major mechanism is mediated by molecular ER chaperones which are critical not only for quality control of proteins processed in the ER, but also for regulation of ER signaling in response to ER stress. Here, we summarized the properties and functions of GRP78/BiP, GRP94/gp96, GRP170/ORP150, GRP58/ERp57, PDI, ERp72, calnexin, calreticulin, EDEM, Herp and co-chaperones SIL1 and P58(IPK) and their role in development and diseases. Many of the new insights are derived from recently constructed mouse models where the genes encoding the chaperones are genetically altered, providing invaluable tools for examining the physiological involvement of the ER chaperones in vivo.
Collapse
Affiliation(s)
- Min Ni
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, USC Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Amy S. Lee
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, USC Keck School of Medicine, Los Angeles, CA 90089, USA
| |
Collapse
|