1
|
Molasky NMR, Zhang Z, Gillespie JR, Domagala J, Reyna D, Lipka E, Fan E, Buckner FS. A novel methionyl-tRNA synthetase inhibitor targeting gram-positive bacterial pathogens. Antimicrob Agents Chemother 2024; 68:e0074524. [PMID: 39470194 PMCID: PMC11619354 DOI: 10.1128/aac.00745-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/15/2024] [Indexed: 10/30/2024] Open
Abstract
New antibiotics are needed to treat gram-positive bacterial pathogens. MRS-2541 is a novel inhibitor of methionyl-tRNA synthetase with selective activity against gram-positive bacteria. The minimum inhibitory concentrations (MICs) against Staphylococcus aureus, Streptococcus pyogenes, and Enterococcus species range from 0.063 to 0.5 µg/mL. Given orally to mice at 50 mg/kg every 8 hours, MRS-2541 shows sustained plasma levels well above these MICs. In the mouse thigh infection model, MRS-2541 decreased methicillin-resistant Staphylococcus aureus and Streptococcus pyogenes bacterial loads to the same degree as linezolid. MRS-2541 is a promising new antibiotic for development against skin and soft tissue infections.
Collapse
Affiliation(s)
- Nora M. R. Molasky
- Center for Emerging and Re-emerging Infectious Diseases, Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, Seattle, Washington, USA
| | - Zhongsheng Zhang
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - J. Robert Gillespie
- Center for Emerging and Re-emerging Infectious Diseases, Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, Seattle, Washington, USA
| | - John Domagala
- Therapeutic Systems Research Laboratories, Inc., Ann Arbor, Michigan, USA
| | - Dawn Reyna
- Therapeutic Systems Research Laboratories, Inc., Ann Arbor, Michigan, USA
| | - Elke Lipka
- Therapeutic Systems Research Laboratories, Inc., Ann Arbor, Michigan, USA
| | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Frederick S. Buckner
- Center for Emerging and Re-emerging Infectious Diseases, Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Penteado RF, Iulek J. Crystal structure of Methionyl-tRNA Synthetase from Rickettsia typhi in complex with its cognate amino acid. Biochimie 2024; 219:63-73. [PMID: 37673171 DOI: 10.1016/j.biochi.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/08/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Rickettsia typhi is the causative agent of murine typhus (endemic typhus), a febrile illness that can be self-contained, though in some cases it can progress to death. The three dimensional structure of Methionyl-tRNA Synthetase from R. typhi (RtMetRS) in complex with its substrate l-methionine was solved by molecular replacement and refined at 2.30 Å resolution in space group P1 from one X-ray diffraction dataset. Processing and refinement trials were decisive to establish the lower symmetry space group and indicated the presence of twinning with four domains. RtMetRS belongs to the MetRS1 family and was crystallized with the CP domain in an open conformation, what is distinctive from other MetRS1 enzymes whose structures were solved with a bound L-methionine (therefore, in a closed conformation). This conformation resembles the ones observed in the MetRS2 family.
Collapse
Affiliation(s)
- Renato Ferras Penteado
- Department of Chemistry, State University of Ponta Grossa, Ponta Grossa, PR, 84030-900, Brazil
| | - Jorge Iulek
- Department of Chemistry, State University of Ponta Grossa, Ponta Grossa, PR, 84030-900, Brazil.
| |
Collapse
|
3
|
Lu F, Xia K, Su J, Yi J, Luo Z, Xu J, Gu Q, Chen B, Zhou H. Biochemical and structural characterization of chlorhexidine as an ATP-assisted inhibitor against type 1 methionyl-tRNA synthetase from Gram-positive bacteria. Eur J Med Chem 2024; 268:116303. [PMID: 38458107 DOI: 10.1016/j.ejmech.2024.116303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/27/2024] [Accepted: 03/02/2024] [Indexed: 03/10/2024]
Abstract
Methionyl-tRNA synthetase (MetRS) catalyzes the attachment of l-methionine (l-Met) to tRNAMet to generate methionyl-tRNAMet, an essential substrate for protein translation within ribosome. Owing to its indispensable biological function and the structural discrepancies with human counterpart, bacterial MetRS is considered an ideal target for developing antibacterials. Herein, chlorhexidine (CHX) was identified as a potent binder of Staphylococcus aureus MetRS (SaMetRS) through an ATP-aided affinity screening. The co-crystal structure showed that CHX simultaneously occupies the enlarged l-Met pocket (EMP) and the auxiliary pocket (AP) of SaMetRS with its two chlorophenyl groups, while its central hexyl linker swings upwards to interact with some conserved hydrophobic residues. ATP adopts alternative conformations in the active site cavity, and forms ionic bonds and water-mediated hydrogen bonds with CHX. Consistent with this synergistic binding mode, ATP concentration-dependently enhanced the binding affinity of CHX to SaMetRS from 10.2 μM (no ATP) to 0.45 μM (1 mM ATP). While it selectively inhibited two representative type 1 MetRSs from S. aureus and Enterococcus faecalis, CHX did not show significant interactions with three tested type 2 MetRSs, including human cytoplasmic MetRS, in the enzyme inhibition and biophysical binding assays, probably due to the conformational differences between two types of MetRSs at their EMP and AP. Our findings on CHX may inspire the design of MetRS-directed antimicrobials in future.
Collapse
Affiliation(s)
- Feihu Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Kaijiang Xia
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jingtian Su
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jia Yi
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhiteng Luo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bingyi Chen
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Huihao Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Zanki V, Bozic B, Mocibob M, Ban N, Gruic-Sovulj I. A pair of isoleucyl-tRNA synthetases in Bacilli fulfills complementary roles to keep fast translation and provide antibiotic resistance. Protein Sci 2022; 31:e4418. [PMID: 36757682 PMCID: PMC9909778 DOI: 10.1002/pro.4418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/05/2022] [Accepted: 07/31/2022] [Indexed: 11/06/2022]
Abstract
Isoleucyl-tRNA synthetase (IleRS) is an essential enzyme that covalently couples isoleucine to the corresponding tRNA. Bacterial IleRSs group in two clades, ileS1 and ileS2, the latter bringing resistance to the natural antibiotic mupirocin. Generally, bacteria rely on either ileS1 or ileS2 as a standalone housekeeping gene. However, we have found an exception by noticing that Bacillus species with genomic ileS2 consistently also keep ileS1, which appears mandatory in the family Bacillaceae. Taking Priestia (Bacillus) megaterium as a model organism, we showed that PmIleRS1 is constitutively expressed, while PmIleRS2 is stress-induced. Both enzymes share the same level of the aminoacylation accuracy. Yet, PmIleRS1 exhibited a two-fold faster aminoacylation turnover (kcat ) than PmIleRS2 and permitted a notably faster cell-free translation. At the same time, PmIleRS2 displayed a 104 -fold increase in its Ki for mupirocin, arguing that the aminoacylation turnover in IleRS2 could have been traded-off for antibiotic resistance. As expected, a P. megaterium strain deleted for ileS2 was mupirocin-sensitive. Interestingly, an attempt to construct a mupirocin-resistant strain lacking ileS1, a solution not found among species of the family Bacillaceae in nature, led to a viable but compromised strain. Our data suggest that PmIleRS1 is kept to promote fast translation, whereas PmIleRS2 is maintained to provide antibiotic resistance when needed. This is consistent with an emerging picture in which fast-growing organisms predominantly use IleRS1 for competitive survival.
Collapse
Affiliation(s)
- Vladimir Zanki
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Bartol Bozic
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Marko Mocibob
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Ita Gruic-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
5
|
Krahn N, Söll D, Vargas-Rodriguez O. Diversification of aminoacyl-tRNA synthetase activities via genomic duplication. Front Physiol 2022; 13:983245. [PMID: 36060688 PMCID: PMC9437257 DOI: 10.3389/fphys.2022.983245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Intricate evolutionary events enabled the emergence of the full set of aminoacyl-tRNA synthetase (aaRS) families that define the genetic code. The diversification of aaRSs has continued in organisms from all domains of life, yielding aaRSs with unique characteristics as well as aaRS-like proteins with innovative functions outside translation. Recent bioinformatic analyses have revealed the extensive occurrence and phylogenetic diversity of aaRS gene duplication involving every synthetase family. However, only a fraction of these duplicated genes has been characterized, leaving many with biological functions yet to be discovered. Here we discuss how genomic duplication is associated with the occurrence of novel aaRSs and aaRS-like proteins that provide adaptive advantages to their hosts. We illustrate the variety of activities that have evolved from the primordial aaRS catalytic sites. This precedent underscores the need to investigate currently unexplored aaRS genomic duplications as they may hold a key to the discovery of exciting biological processes, new drug targets, important bioactive molecules, and tools for synthetic biology applications.
Collapse
Affiliation(s)
- Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
6
|
Temmerman R, Ghanbari M, Antonissen G, Schatzmayr G, Duchateau L, Haesebrouck F, Garmyn A, Devreese M. Dose-dependent impact of enrofloxacin on broiler chicken gut resistome is mitigated by synbiotic application. Front Microbiol 2022; 13:869538. [PMID: 35992659 PMCID: PMC9386515 DOI: 10.3389/fmicb.2022.869538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
Fluoroquinolone agents are considered critical for human medicine by the World Health Organization (WHO). However, they are often used for the treatment of avian colibacillosis in poultry production, creating considerable concern regarding the potential spread of fluoroquinolone resistance genes from commensals to pathogens. Therefore, there is a need to understand the impact of fluoroquinolone application on the reservoir of ARGs in poultry gut and devise means to circumvent potential resistome expansion. Building upon a recent dose optimization effort, we used shotgun metagenomics to investigate the time-course change in the cecal microbiome and resistome of broiler chickens receiving an optimized dosage [12.5 mg/kg body weight (bw)/day], with or without synbiotic supplementation (PoultryStar®, BIOMIN GmbH), and a high dosage of enrofloxacin (50 mg/kg bw/day). Compared to the high dose treatment, the low (optimized) dose of enrofloxacin caused the most significant perturbations in the cecal microbiota and resistome of the broiler chickens, demonstrated by a lower cecal microbiota diversity while substantially increasing the antibiotic resistance genes (ARGs) resistome diversity. Withdrawal of antibiotics resulted in a pronounced reduction in ARG diversity. Chickens receiving the synbiotic treatment had the lowest diversity and number of enriched ARGs, suggesting an alleviating impact on the burden of the gut resistome. Some Proteobacteria were significantly increased in the cecal metagenome of chickens receiving enrofloxacin and showed a positive association with increased ARG burden. Differential abundance (DA) analysis revealed a significant increase in the abundance of ARGs encoding resistance to macrolides-lincosamides-streptogramins (MLS), aminoglycosides, and tetracyclines over the period of enrofloxacin application, with the optimized dosage application resulting in a twofold higher number of affected ARG compared to high dosage application. Our results provide novel insights into the dose-dependent effects of clinically important enrofloxacin application in shaping the broiler gut resistome, which was mitigated by a synbiotic application. The contribution to ameliorating the adverse effects of antimicrobial agents, that is, lowering the spread of antimicrobial resistance genes, on the poultry and potentially other livestock gastrointestinal microbiomes and resistomes merits further study.
Collapse
Affiliation(s)
- Robin Temmerman
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Gunther Antonissen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Luc Duchateau
- Faculty of Veterinary Medicine, Biometrics Research Center, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - An Garmyn
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Mathias Devreese
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
7
|
Yi J, Cai Z, Qiu H, Lu F, Luo Z, Chen B, Gu Q, Xu J, Zhou H. Fragment screening and structural analyses highlight the ATP-assisted ligand binding for inhibitor discovery against type 1 methionyl-tRNA synthetase. Nucleic Acids Res 2022; 50:4755-4768. [PMID: 35474479 PMCID: PMC9071491 DOI: 10.1093/nar/gkac285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022] Open
Abstract
Methionyl-tRNA synthetase (MetRS) charges tRNAMet with l-methionine (L-Met) to decode the ATG codon for protein translation, making it indispensable for all cellular lives. Many gram-positive bacteria use a type 1 MetRS (MetRS1), which is considered a promising antimicrobial drug target due to its low sequence identity with human cytosolic MetRS (HcMetRS, which belongs to MetRS2). Here, we report crystal structures of a representative MetRS1 from Staphylococcus aureus (SaMetRS) in its apo and substrate-binding forms. The connecting peptide (CP) domain of SaMetRS differs from HcMetRS in structural organization and dynamic movement. We screened 1049 chemical fragments against SaMetRS preincubated with or without substrate ATP, and ten hits were identified. Four cocrystal structures revealed that the fragments bound to either the L-Met binding site or an auxiliary pocket near the tRNA CCA end binding site of SaMetRS. Interestingly, fragment binding was enhanced by ATP in most cases, suggesting a potential ATP-assisted ligand binding mechanism in MetRS1. Moreover, co-binding with ATP was also observed in our cocrystal structure of SaMetRS with a class of newly reported inhibitors that simultaneously occupied the auxiliary pocket, tRNA site and L-Met site. Our findings will inspire the development of new MetRS1 inhibitors for fighting microbial infections.
Collapse
Affiliation(s)
| | | | - Haipeng Qiu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Feihu Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiteng Luo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Bingyi Chen
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huihao Zhou
- To whom correspondence should be addressed. Tel: +86 20 39943350;
| |
Collapse
|
8
|
Lactobacillus rhamnosus Ameliorates Multi-Drug-Resistant Bacillus cereus-Induced Cell Damage through Inhibition of NLRP3 Inflammasomes and Apoptosis in Bovine Endometritis. Microorganisms 2022; 10:microorganisms10010137. [PMID: 35056585 PMCID: PMC8777719 DOI: 10.3390/microorganisms10010137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 01/09/2023] Open
Abstract
Bacillus cereus, considered a worldwide human food-borne pathogen, has brought serious health risks to humans and animals and huge losses to animal husbandry. The plethora of diverse toxins and drug resistance are the focus for B. cereus. As an alternative treatment to antibiotics, probiotics can effectively alleviate the hazards of super bacteria, food safety, and antibiotic resistance. This study aimed to investigate the frequency and distribution of B. cereus in dairy cows and to evaluate the effects of Lactobacillus rhamnosus in a model of endometritis induced by multi-drug-resistant B. cereus. A strong poisonous strain with a variety of drug resistances was used to establish an endometrial epithelial cell infection model. B. cereus was shown to cause damage to the internal structure, impair the integrity of cells, and activate the inflammatory response, while L. rhamnosus could inhibit cell apoptosis and alleviate this damage. This study indicates that the B. cereus-induced activation of the NLRP3 signal pathway involves K+ efflux. We conclude that LGR-1 may relieve cell destruction by reducing K+ efflux to the extracellular caused by the perforation of the toxins secreted by B. cereus on the cell membrane surface.
Collapse
|
9
|
Mercaldi GF, Andrade MDO, Zanella JDL, Cordeiro AT, Benedetti CE. Molecular basis for diaryldiamine selectivity and competition with tRNA in a type 2 methionyl-tRNA synthetase from a Gram-negative bacterium. J Biol Chem 2021; 296:100658. [PMID: 33857480 PMCID: PMC8165550 DOI: 10.1016/j.jbc.2021.100658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022] Open
Abstract
Gram-negative bacteria are responsible for a variety of human, animal, and plant diseases. The spread of multidrug-resistant Gram-negative bacteria poses a challenge to disease control and highlights the need for novel antimicrobials. Owing to their critical role in protein synthesis, aminoacyl-tRNA synthetases, including the methionyl-tRNA synthetases MetRS1 and MetRS2, are attractive drug targets. MetRS1 has long been exploited as a drug target in Gram-positive bacteria and protozoan parasites. However, MetRS1 inhibitors have limited action upon Gram-negative pathogens or on Gram-positive bacteria that produce MetRS2 enzymes. The underlying mechanism by which MetRS2 enzymes are insensitive to MetRS1 inhibitors is presently unknown. Herein, we report the first structures of MetRS2 from a multidrug-resistant Gram-negative bacterium in its ligand-free state and bound to its substrate or MetRS1 inhibitors. The structures reveal the binding mode of two diaryldiamine MetRS1 inhibitors that occupy the amino acid-binding site and a surrounding auxiliary pocket implicated in tRNA acceptor arm binding. The structural features associated with amino acid polymorphisms found in the methionine and auxiliary pockets reveal the molecular basis for diaryldiamine binding and selectivity between MetRS1 and MetRS2 enzymes. Moreover, we show that mutations in key polymorphic residues in the methionine and auxiliary pockets not only altered inhibitor binding affinity but also significantly reduced enzyme function. Our findings thus reinforce the tRNA acceptor arm binding site as a druggable pocket in class I aminoacyl-tRNA synthetases and provide a structural basis for optimization of MetRS2 inhibitors for the development of new antimicrobials against Gram-negative pathogens.
Collapse
Affiliation(s)
- Gustavo Fernando Mercaldi
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil.
| | - Maxuel de Oliveira Andrade
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Jackeline de Lima Zanella
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Artur Torres Cordeiro
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Celso Eduardo Benedetti
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil.
| |
Collapse
|
10
|
Liu C, Yu P, Yu S, Wang J, Guo H, Zhang Y, Zhang J, Liao X, Li C, Wu S, Gu Q, Zeng H, Zhang Y, Wei X, Zhang J, Wu Q, Ding Y. Assessment and molecular characterization of Bacillus cereus isolated from edible fungi in China. BMC Microbiol 2020; 20:310. [PMID: 33054711 PMCID: PMC7557095 DOI: 10.1186/s12866-020-01996-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022] Open
Abstract
Background Bacillus cereus is a foodborne pathogen commonly found in nature and food and can cause food spoilage and health issues. Although the prevalence of B. cereus in foods has been reported worldwide, the extent of contamination in edible fungi, which has become increasingly popular as traditional or functional food, is largely unknown. Here we investigated the prevalence, toxin genes’ distribution, antibiotic resistance, and genetic diversity of B. cereus isolated from edible fungi in China. Results Six hundred and ninety-nine edible fungi samples were collected across China, with 198 (28.3%) samples found to be contaminated by B. cereus, with an average contamination level of 55.4 most probable number (MPN)/g. Two hundred and forty-seven B. cereus strains were isolated from the contaminated samples. Seven enterotoxin genes and one cereulide synthetase gene were detected. The detection frequencies of all enterotoxin genes were ≥ 80%, whereas the positive rate of the cesB gene in B. cereus was 3%. Most isolates were resistant to penicillins, β-lactam/β-lactamase inhibitor combinations, cephems, and ansamycins, but were susceptible to penems, aminoglycosides, macrolides, ketolide, glycopeptides, quinolones, phenylpropanol, tetracyclines, lincosamides, streptogramins, and nitrofurans. Meanwhile, 99.6% of all isolates displayed multiple antimicrobial resistance to three or more classes of antimicrobials. Using genetic diversity analysis, all isolates were defined in 171 sequence types (STs), of which 83 isolates were assigned to 78 new STs. Conclusions This study provides large-scale insight into the prevalence and potential risk of B. cereus in edible fungi in China. Approximately one-third of the samples were contaminated with B. cereus, and almost all isolates showed multiple antimicrobial resistance. Detection frequencies of all seven enterotoxin genes were equal to or more than 80%. These new findings may indicate a need for proper pre-/post-processing of edible fungi to eliminate B. cereus, thereby preventing the potential risk to public health.
Collapse
Affiliation(s)
- Chengcheng Liu
- Guangdong Institute of Microbiology, Guangdong Academy of Science, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100#, 58th Building, Guangzhou, 510070, China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Huangpu Ave. 601, Guangzhou, 510632, China
| | - Pengfei Yu
- Guangdong Institute of Microbiology, Guangdong Academy of Science, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100#, 58th Building, Guangzhou, 510070, China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Huangpu Ave. 601, Guangzhou, 510632, China
| | - Shubo Yu
- Guangdong Institute of Microbiology, Guangdong Academy of Science, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100#, 58th Building, Guangzhou, 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Hui Guo
- Guangdong Institute of Microbiology, Guangdong Academy of Science, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100#, 58th Building, Guangzhou, 510070, China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Huangpu Ave. 601, Guangzhou, 510632, China
| | - Ying Zhang
- Guangdong Institute of Microbiology, Guangdong Academy of Science, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100#, 58th Building, Guangzhou, 510070, China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Huangpu Ave. 601, Guangzhou, 510632, China
| | - Junhui Zhang
- Guangdong Institute of Microbiology, Guangdong Academy of Science, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100#, 58th Building, Guangzhou, 510070, China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Huangpu Ave. 601, Guangzhou, 510632, China
| | - Xiyu Liao
- Guangdong Institute of Microbiology, Guangdong Academy of Science, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100#, 58th Building, Guangzhou, 510070, China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Huangpu Ave. 601, Guangzhou, 510632, China
| | - Chun Li
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Huangpu Ave. 601, Guangzhou, 510632, China
| | - Shi Wu
- Guangdong Institute of Microbiology, Guangdong Academy of Science, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100#, 58th Building, Guangzhou, 510070, China
| | - Qihui Gu
- Guangdong Institute of Microbiology, Guangdong Academy of Science, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100#, 58th Building, Guangzhou, 510070, China
| | - Haiyan Zeng
- Guangdong Institute of Microbiology, Guangdong Academy of Science, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100#, 58th Building, Guangzhou, 510070, China
| | - Youxiong Zhang
- Guangdong Institute of Microbiology, Guangdong Academy of Science, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100#, 58th Building, Guangzhou, 510070, China
| | - Xianhu Wei
- Guangdong Institute of Microbiology, Guangdong Academy of Science, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100#, 58th Building, Guangzhou, 510070, China
| | - Jumei Zhang
- Guangdong Institute of Microbiology, Guangdong Academy of Science, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100#, 58th Building, Guangzhou, 510070, China
| | - Qingping Wu
- Guangdong Institute of Microbiology, Guangdong Academy of Science, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100#, 58th Building, Guangzhou, 510070, China.
| | - Yu Ding
- Guangdong Institute of Microbiology, Guangdong Academy of Science, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100#, 58th Building, Guangzhou, 510070, China. .,Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Huangpu Ave. 601, Guangzhou, 510632, China.
| |
Collapse
|
11
|
Yu P, Yu S, Wang J, Guo H, Zhang Y, Liao X, Zhang J, Wu S, Gu Q, Xue L, Zeng H, Pang R, Lei T, Zhang J, Wu Q, Ding Y. Bacillus cereus Isolated From Vegetables in China: Incidence, Genetic Diversity, Virulence Genes, and Antimicrobial Resistance. Front Microbiol 2019; 10:948. [PMID: 31156567 PMCID: PMC6530634 DOI: 10.3389/fmicb.2019.00948] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/15/2019] [Indexed: 12/24/2022] Open
Abstract
Bacillus cereus is a food-borne opportunistic pathogen that can induce diarrheal and emetic symptoms. It is widely distributed in different environments and can be found in various foods, including fresh vegetables. As their popularity grows worldwide, the risk of bacterial contamination in fresh vegetables should be fully evaluated, particularly in vegetables that are consumed raw or processed minimally, which are not commonly sterilized by enough heat treatment. Thereby, it is necessary to perform potential risk evaluation of B. cereus in vegetables. In this study, 294 B. cereus strains were isolated from vegetables in different cities in China to analyze incidence, genetic polymorphism, presence of virulence genes, and antimicrobial resistance. B. cereus was detected in 50% of all the samples, and 21/211 (9.95%) of all the samples had contamination levels of more than 1,100 MPN/g. Virulence gene detection revealed that 95 and 82% of the isolates harbored nheABC and hblACD gene clusters, respectively. Additionally, 87% of the isolates harbored cytK gene, and 3% of the isolates possessed cesB. Most strains were resistant to rifampicin and β-lactam antimicrobials but were sensitive to imipenem, gentamicin, ciprofloxacin, kanamycin, telithromycin, ciprofloxacin, and chloramphenicol. In addition, more than 95.6% of the isolates displayed resistance to three kinds of antibiotics. Based on multilocus sequence typing, all strains were classified into 210 different sequence types (STs), of which 145 isolates were assigned to 137 new STs. The most prevalent ST was ST770, but it included only eight isolates. Taken together, our research provides the first reference for the incidence and characteristics of B. cereus in vegetables collected throughout China, indicating a potential hazard of B. cereus when consuming vegetables without proper handling.
Collapse
Affiliation(s)
- Pengfei Yu
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Shubo Yu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Hui Guo
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Ying Zhang
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Xiyu Liao
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Junhui Zhang
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Shi Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Qihui Gu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Liang Xue
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Haiyan Zeng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Rui Pang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Tao Lei
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| |
Collapse
|
12
|
Bhattacharyya A, Haldar A, Bhattacharyya M, Ghosh A. Anthropogenic influence shapes the distribution of antibiotic resistant bacteria (ARB) in the sediment of Sundarban estuary in India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:1626-1639. [PMID: 30180366 DOI: 10.1016/j.scitotenv.2018.08.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
The abundance and dissemination of antibiotic resistance genes as emerging environmental contaminants have become a significant and growing threat to human and environmental health. Traditionally, investigations of antibiotic resistance have been confined to a subset of clinically relevant antibiotic-resistant bacterial pathogens. During the last decade it became evident that the environmental microbiota possesses an enormous number and diversity of antibiotic resistance genes, some of which are very similar to the genes circulating in pathogenic microbiota. Recent studies demonstrate that aquatic ecosystems are potential reservoirs of antibiotic-resistant bacteria (ARBs) and antibiotic resistance genes (ARGs). Therefore, these aquatic ecosystems serve as potential sources for their transmission of ARGs to human pathogens. An assessment of such risks requires a better understanding of the level and variability of the natural resistance background and the extent of the anthropogenic impact. We have analyzed eight sediment samples from Sundarban mangrove ecosystem in India, collected at sampling stations with different histories of anthropogenic influences, and analyzed the relative abundance of the blaTEM gene using quantitative real-time PCR. The blaTEM gene abundance strongly correlated with the respective anthropogenic influences (polyaromatic hydrocarbon, heavy metals etc.) of the sampling stations. Besides, 18 multidrug-resistant (ampicillin, kanamycin, vancomycin, and tetracycline resistant) bacterial strains (ARBs) were isolated and characterized. Moreover, the effect of different antibiotics on the biofilm forming ability of the isolates was evaluated quantitatively under a variety of experimental regimes. This is the first report of preservation and possible dissemination of ARGs in the mangrove ecosystem.
Collapse
Affiliation(s)
- Anish Bhattacharyya
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal 700019, India
| | - Anwesha Haldar
- Department of Geography, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal 700019, India
| | - Maitree Bhattacharyya
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal 700019, India.
| | - Abhrajyoti Ghosh
- Department of Biochemistry, Bose Institute, P1/12, C. I. T. Road, Scheme VIIM, Kolkata, West Bengal 700054, India.
| |
Collapse
|
13
|
Robles S, Hu Y, Resto T, Dean F, Bullard JM. Identification and Characterization of a Chemical Compound that Inhibits Methionyl-tRNA Synthetase from Pseudomonas aeruginosa. Curr Drug Discov Technol 2018; 14:156-168. [PMID: 28359232 DOI: 10.2174/1570163814666170330100238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa is an opportunistic pathogen problematic in causing nosocomial infections and is highly susceptible to development of resistance to multiple antibiotics. The gene encoding methionyl-tRNA synthetase (MetRS) from P. aeruginosa was cloned and the resulting protein characterized. METHODS MetRS was kinetically evaluated and the KM for its three substrates, methionine, ATP and tRNAMet were determined to be 35, 515, and 29 μM, respectively. P. aeruginosaMetRS was used to screen two chemical compound libraries containing 1690 individual compounds. RESULTS A natural product compound (BM01C11) was identified that inhibited the aminoacylation function. The compound inhibited P. aeruginosa MetRS with an IC50 of 70 μM. The minimum inhibitory concentration (MIC) of BM01C11 was determined against nine clinically relevant bacterial strains, including efflux pump mutants and hypersensitive strains of P. aeruginosa and E. coli. The MIC against the hypersensitive strain of P. aeruginosa was 16 μg/ml. However, the compound was not effective against the wild-type and efflux pump mutant strains, indicating that efflux may not be responsible for the lack of activity against the wild-type strains. When tested in human cell cultures, the cytotoxicity concentration (CC50) was observed to be 30 μg/ml. The compound did not compete with methionine or ATP for binding MetRS, indicating that the mechanism of action of the compound likely occurs outside the active site of aminoacylation. CONCLUSION An inhibitor of P. aeruginosa MetRS, BM01C11, was identified as a flavonoid compound named isopomiferin. Isopomiferin inhibited the enzymatic activity of MetRS and displayed broad spectrum antibacterial activity. These studies indicate that isopomiferin may be amenable to development as a therapeutic for bacterial infections.
Collapse
Affiliation(s)
- Sara Robles
- Chemistry Department, The University of Texas-RGV, 1201 W. University Drive, Edinburg, TX 78541. United States
| | - Yanmei Hu
- Chemistry Department, The University of Texas-RGV, 1201 W. University Drive, Edinburg, TX 78541. United States
| | - Tahyra Resto
- Chemistry Department, The University of Texas-RGV, 1201 W. University Drive, Edinburg, TX 78541. United States
| | - Frank Dean
- Chemistry Department, The University of Texas-RGV, 1201 W. University Drive, Edinburg, TX 78541. United States
| | - James M Bullard
- Chemistry Department, The University of Texas-RGV, 1201 W. University Drive, Edinburg, TX 78541. United States
| |
Collapse
|
14
|
Barros-Álvarez X, Turley S, Ranade RM, Gillespie JR, Duster NA, Verlinde CLMJ, Fan E, Buckner FS, Hol WGJ. The crystal structure of the drug target Mycobacterium tuberculosis methionyl-tRNA synthetase in complex with a catalytic intermediate. Acta Crystallogr F Struct Biol Commun 2018; 74:245-254. [PMID: 29633973 PMCID: PMC5893993 DOI: 10.1107/s2053230x18003151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 02/23/2018] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis is a pathogenic bacterial infectious agent that is responsible for approximately 1.5 million human deaths annually. Current treatment requires the long-term administration of multiple medicines with substantial side effects. Lack of compliance, together with other factors, has resulted in a worrisome increase in resistance. New treatment options are therefore urgently needed. Here, the crystal structure of methionyl-tRNA synthetase (MetRS), an enzyme critical for protein biosynthesis and therefore a drug target, in complex with its catalytic intermediate methionyl adenylate is reported. Phenylalanine 292 of the M. tuberculosis enzyme is in an `out' conformation and barely contacts the adenine ring, in contrast to other MetRS structures where ring stacking occurs between the adenine and a protein side-chain ring in the `in' conformation. A comparison with human cytosolic MetRS reveals substantial differences in the active site as well as regarding the position of the connective peptide subdomain 1 (CP1) near the active site, which bodes well for arriving at selective inhibitors. Comparison with the human mitochondrial enzyme at the amino-acid sequence level suggests that arriving at inhibitors with higher affinity for the mycobacterial enzyme than for the mitochondrial enzyme might be achievable.
Collapse
Affiliation(s)
- Ximena Barros-Álvarez
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de los Andes, Mérida, Venezuela
| | - Stewart Turley
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Ranae M. Ranade
- Division of Allergy and Infectious Diseases, School of Medicine, University of Washington, Seattle, Washington, USA
| | - J. Robert Gillespie
- Division of Allergy and Infectious Diseases, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Nicole A. Duster
- Division of Allergy and Infectious Diseases, School of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Frederick S. Buckner
- Division of Allergy and Infectious Diseases, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Wim G. J. Hol
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
15
|
Gao T, Ding Y, Wu Q, Wang J, Zhang J, Yu S, Yu P, Liu C, Kong L, Feng Z, Chen M, Wu S, Zeng H, Wu H. Prevalence, Virulence Genes, Antimicrobial Susceptibility, and Genetic Diversity of Bacillus cereus Isolated From Pasteurized Milk in China. Front Microbiol 2018; 9:533. [PMID: 29632521 PMCID: PMC5879084 DOI: 10.3389/fmicb.2018.00533] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/08/2018] [Indexed: 12/28/2022] Open
Abstract
Bacillus cereus is a common and important food-borne pathogen that can be found in various food products. Due to low-temperature sterilization for a short period of time, pasteurization is not sufficient for complete elimination of B. cereus in milk, thereby cause severe economic loss and food safety problems. It is therefore of paramount importance to perform risk assessment of B. cereus in pasteurized milk. In this study, we isolated B. cereus from pasteurized milk samples in different regions of China, and evaluated the contamination situation, existence of virulence genes, antibiotic resistance profile and genetic polymorphism of B. cereus isolates. Intriguingly, 70 samples (27%) were found to be contaminated by B. cereus and the average contamination level was 111 MPN/g. The distribution of virulence genes was assessed toward 10 enterotoxigenic genes (hblA, hblC, hblD, nheA, nheB, nheC, cytK, entFM, bceT, and hlyII) and one emetic gene (cesB). Forty five percent strains harbored enterotoxigenic genes hblACD and 93% isolates contained nheABC gene cluster. The positive rate of cytK, entFM, bceT, hlyII, and cesB genes were 73, 96, 75, 54, and 5%, respectively. Antibiotic susceptibility assessment showed that most of the isolates were resistant to β-lactam antibiotics and rifampicin, but susceptible to other antibiotics such as ciprofloxacin, gentamicin and chloramphenicol. Total multidrug-resistant population was about 34%. In addition, B. cereus isolates in pasteurized milk showed a high genetic diversity. In conclusion, our findings provide the first reference on the prevalence, contamination level and characteristics of B. cereus isolated from pasteurized milk in China, suggesting a potential high risk of B. cereus to public health and dairy industry.
Collapse
Affiliation(s)
- Tiantian Gao
- University of Chinese Academy of Sciences, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Shubo Yu
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Pengfei Yu
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Chengcheng Liu
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Li Kong
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Zhao Feng
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Moutong Chen
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Shi Wu
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Haiyan Zeng
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Haoming Wu
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| |
Collapse
|
16
|
Development of Methionyl-tRNA Synthetase Inhibitors as Antibiotics for Gram-Positive Bacterial Infections. Antimicrob Agents Chemother 2017; 61:AAC.00999-17. [PMID: 28848016 DOI: 10.1128/aac.00999-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/22/2017] [Indexed: 01/17/2023] Open
Abstract
Antibiotic-resistant bacteria are widespread and pose a growing threat to human health. New antibiotics acting by novel mechanisms of action are needed to address this challenge. The bacterial methionyl-tRNA synthetase (MetRS) enzyme is essential for protein synthesis, and the type found in Gram-positive bacteria is substantially different from its counterpart found in the mammalian cytoplasm. Both previously published and new selective inhibitors were shown to be highly active against Gram-positive bacteria with MICs of ≤1.3 μg/ml against Staphylococcus, Enterococcus, and Streptococcus strains. Incorporation of radioactive precursors demonstrated that the mechanism of activity was due to the inhibition of protein synthesis. Little activity against Gram-negative bacteria was observed, consistent with the fact that Gram-negative bacterial species contain a different type of MetRS enzyme. The ratio of the MIC to the minimum bactericidal concentration (MBC) was consistent with a bacteriostatic mechanism. The level of protein binding of the compounds was high (>95%), and this translated to a substantial increase in MICs when the compounds were tested in the presence of serum. Despite this, the compounds were very active when they were tested in a Staphylococcus aureus murine thigh infection model. Compounds 1717 and 2144, given by oral gavage, resulted in 3- to 4-log decreases in the bacterial load compared to that in vehicle-treated mice, which was comparable to the results observed with the comparator drugs, vancomycin and linezolid. In summary, the research describes MetRS inhibitors with oral bioavailability that represent a class of compounds acting by a novel mechanism with excellent potential for clinical development.
Collapse
|
17
|
Debard S, Bader G, De Craene JO, Enkler L, Bär S, Laporte D, Hammann P, Myslinski E, Senger B, Friant S, Becker HD. Nonconventional localizations of cytosolic aminoacyl-tRNA synthetases in yeast and human cells. Methods 2017; 113:91-104. [DOI: 10.1016/j.ymeth.2016.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/27/2016] [Accepted: 09/30/2016] [Indexed: 11/26/2022] Open
|
18
|
Furukawa R, Nakagawa M, Kuroyanagi T, Yokobori SI, Yamagishi A. Quest for Ancestors of Eukaryal Cells Based on Phylogenetic Analyses of Aminoacyl-tRNA Synthetases. J Mol Evol 2016; 84:51-66. [PMID: 27889804 DOI: 10.1007/s00239-016-9768-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 11/18/2016] [Indexed: 11/28/2022]
Abstract
The three-domain phylogenetic system of life has been challenged, particularly with regard to the position of Eukarya. The recent increase of known genome sequences has allowed phylogenetic analyses of all extant organisms using concatenated sequence alignment of universally conserved genes; these data supported the two-domain hypothesis, which place eukaryal species as ingroups of the Domain Archaea. However, the origin of Eukarya is complicated: the closest archaeal species to Eukarya differs in single-gene phylogenetic analyses depending on the genes. In this report, we performed molecular phylogenetic analyses of 23 aminoacyl-tRNA synthetases (ARS). Cytoplasmic ARSs in 12 trees showed a monophyletic Eukaryotic branch. One ARS originated from TACK superphylum. One ARS originated from Euryarchaeota and three originated from DPANN superphylum. Four ARSs originated from different bacterial species. The other 8 cytoplasmic ARSs were split into two or three groups in respective trees, which suggested that the cytoplasmic ARSs were replaced by secondary ARSs, and the original ARSs have been lost during evolution of Eukarya. In these trees, one original cytoplasmic ARS was derived from Euryarchaeota and three were derived from DPANN superphylum. Our results strongly support the two-domain hypothesis. We discovered that rampant-independent lateral gene transfers from several archaeal species of DPANN superphylum have contributed to the formation of Eukaryal cells. Based on our phylogenetic analyses, we proposed a model for the establishment of Eukarya.
Collapse
Affiliation(s)
- Ryutaro Furukawa
- Laboratory of Extremophiles, Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Mizuho Nakagawa
- Laboratory of Extremophiles, Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Takuya Kuroyanagi
- Laboratory of Extremophiles, Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Shin-Ichi Yokobori
- Laboratory of Extremophiles, Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Akihiko Yamagishi
- Laboratory of Extremophiles, Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan.
| |
Collapse
|
19
|
Cvetesic N, Dulic M, Bilus M, Sostaric N, Lenhard B, Gruic-Sovulj I. Naturally Occurring Isoleucyl-tRNA Synthetase without tRNA-dependent Pre-transfer Editing. J Biol Chem 2016; 291:8618-31. [PMID: 26921320 PMCID: PMC4861432 DOI: 10.1074/jbc.m115.698225] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Indexed: 11/23/2022] Open
Abstract
Isoleucyl-tRNA synthetase (IleRS) is unusual among aminoacyl-tRNA synthetases in having a tRNA-dependent pre-transfer editing activity. Alongside the typical bacterial IleRS (such as Escherichia coli IleRS), some bacteria also have the enzymes (eukaryote-like) that cluster with eukaryotic IleRSs and exhibit low sensitivity to the antibiotic mupirocin. Our phylogenetic analysis suggests that the ileS1 and ileS2 genes of contemporary bacteria are the descendants of genes that might have arisen by an ancient duplication event before the separation of bacteria and archaea. We present the analysis of evolutionary constraints of the synthetic and editing reactions in eukaryotic/eukaryote-like IleRSs, which share a common origin but diverged through adaptation to different cell environments. The enzyme from the yeast cytosol exhibits tRNA-dependent pre-transfer editing analogous to E. coli IleRS. This argues for the presence of this proofreading in the common ancestor of both IleRS types and an ancient origin of the synthetic site-based quality control step. Yet surprisingly, the eukaryote-like enzyme from Streptomyces griseus IleRS lacks this capacity; at the same time, its synthetic site displays the 103-fold drop in sensitivity to antibiotic mupirocin relative to the yeast enzyme. The discovery that pre-transfer editing is optional in IleRSs lends support to the notion that the conserved post-transfer editing domain is the main checkpoint in these enzymes. We substantiated this by showing that under error-prone conditions S. griseus IleRS is able to rescue the growth of an E. coli lacking functional IleRS, providing the first evidence that tRNA-dependent pre-transfer editing in IleRS is not essential for cell viability.
Collapse
Affiliation(s)
- Nevena Cvetesic
- From the Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia and
| | - Morana Dulic
- From the Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia and
| | - Mirna Bilus
- From the Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia and
| | - Nikolina Sostaric
- From the Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia and
| | - Boris Lenhard
- the Computational Regulatory Genomics Group, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, United Kingdom
| | - Ita Gruic-Sovulj
- From the Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia and
| |
Collapse
|
20
|
Bacterial resistance to leucyl-tRNA synthetase inhibitor GSK2251052 develops during treatment of complicated urinary tract infections. Antimicrob Agents Chemother 2014; 59:289-98. [PMID: 25348524 DOI: 10.1128/aac.03774-14] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
GSK2251052, a novel leucyl-tRNA synthetase (LeuRS) inhibitor, was in development for the treatment of infections caused by multidrug-resistant Gram-negative pathogens. In a phase II study (study LRS114688) evaluating the efficacy of GSK2251052 in complicated urinary tract infections, resistance developed very rapidly in 3 of 14 subjects enrolled, with ≥32-fold increases in the GSK2251052 MIC of the infecting pathogen being detected. A fourth subject did not exhibit the development of resistance in the baseline pathogen but posttherapy did present with a different pathogen resistant to GSK2251052. Whole-genome DNA sequencing of Escherichia coli isolates collected longitudinally from two study LRS114688 subjects confirmed that GSK2251052 resistance was due to specific mutations, selected on the first day of therapy, in the LeuRS editing domain. Phylogenetic analysis strongly suggested that resistant Escherichia coli isolates resulted from clonal expansion of baseline susceptible strains. This resistance development likely resulted from the confluence of multiple factors, of which only some can be assessed preclinically. Our study shows the challenges of developing antibiotics and the importance of clinical studies to evaluate their effect on disease pathogenesis. (These studies have been registered at ClinicalTrials.gov under registration no. NCT01381549 for the study of complicated urinary tract infections and registration no. NCT01381562 for the study of complicated intra-abdominal infections.).
Collapse
|
21
|
Dulic M, Perona JJ, Gruic-Sovulj I. Determinants for tRNA-dependent pretransfer editing in the synthetic site of isoleucyl-tRNA synthetase. Biochemistry 2014; 53:6189-98. [PMID: 25207837 PMCID: PMC4188249 DOI: 10.1021/bi5007699] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
accurate expression of genetic information relies on the fidelity
of amino acid–tRNA coupling by aminoacyl-tRNA synthetases (aaRS).
When the specificity against structurally similar noncognate amino
acids in the synthetic reaction does not support a threshold fidelity
level for translation, the aaRS employ intrinsic hydrolytic editing
to correct errors in aminoacylation. Escherichia coli isoleucyl-tRNA synthetase (EcIleRS) is a class I aaRS that is notable
for its use of tRNA-dependent pretransfer editing to hydrolyze noncognate
valyl-adenylate prior to aminoacyl-tRNA formation. On the basis of
the finding that IleRS possessing an inactivated post-transfer editing
domain is still capable of robust tRNA-dependent editing, we have
recently proposed that the pretransfer editing activity resides within
the synthetic site. Here we apply an improved methodology that allows
quantitation of the AMP fraction that arises particularly from tRNA-dependent
aa-AMP hydrolysis. By this approach, we demonstrate that tRNA-dependent
pretransfer editing accounts for nearly one-third of the total proofreading
by EcIleRS and that a highly conserved tyrosine within the synthetic
site modulates both editing and aminoacylation. Therefore, synthesis
of aminoacyl-tRNA and hydrolysis of aminoacyl-adenylates employ overlapping
amino acid determinants. We suggest that this overlap hindered the
evolution of synthetic site-based pretransfer editing as the predominant
proofreading pathway, because that activity is difficult to accommodate
in the context of efficient aminoacyl-tRNA synthesis. Instead, the
acquisition of a spatially separate domain dedicated to post-transfer
editing alone allowed for the development of a powerful deacylation
machinery that effectively competes with dissociation of misacylated
tRNAs.
Collapse
Affiliation(s)
- Morana Dulic
- Department of Chemistry, Faculty of Science, University of Zagreb , Horvatovac 102a, 10000 Zagreb, Croatia
| | | | | |
Collapse
|
22
|
Jones TE, Ribas de Pouplana L, Alexander RW. Evidence for late resolution of the aux codon box in evolution. J Biol Chem 2013; 288:19625-32. [PMID: 23696642 DOI: 10.1074/jbc.m112.449249] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recognition strategies for tRNA aminoacylation are ancient and highly conserved, having been selected very early in the evolution of the genetic code. In most cases, the trinucleotide anticodons of tRNA are important identity determinants for aminoacylation by cognate aminoacyl-tRNA synthetases. However, a degree of ambiguity exists in the recognition of certain tRNA(Ile) isoacceptors that are initially transcribed with the methionine-specifying CAU anticodon. In most organisms, the C34 wobble position in these tRNA(Ile) precursors is rapidly modified to lysidine to prevent recognition by methionyl-tRNA synthetase (MRS) and production of a chimeric Met-tRNA(Ile) that would compromise translational fidelity. In certain bacteria, however, lysidine modification is not required for MRS rejection, indicating that this recognition strategy is not universally conserved and may be relatively recent. To explore the actual distribution of lysidine-dependent tRNA(Ile) rejection by MRS, we have investigated the ability of bacterial MRSs from different clades to differentiate cognate tRNACAU(Met) from near-cognate tRNACAU(Ile). Discrimination abilities vary greatly and appear unrelated to phylogenetic or structural features of the enzymes or sequence determinants of the tRNA. Our data indicate that tRNA(Ile) identity elements were established late and independently in different bacterial groups. We propose that the observed variation in MRS discrimination ability reflects differences in the evolution of genetic code machineries of emerging bacterial clades.
Collapse
Affiliation(s)
- Thomas E Jones
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109-7486, USA
| | | | | |
Collapse
|
23
|
Dewan V, Reader J, Forsyth KM. Role of aminoacyl-tRNA synthetases in infectious diseases and targets for therapeutic development. Top Curr Chem (Cham) 2013; 344:293-329. [PMID: 23666077 DOI: 10.1007/128_2013_425] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aminoacyl-tRNA synthetases (AARSs) play a pivotal role in protein synthesis and cell viability. These 22 "housekeeping" enzymes (1 for each standard amino acid plus pyrrolysine and o-phosphoserine) are specifically involved in recognizing and aminoacylating their cognate tRNAs in the cellular pool with the correct amino acid prior to delivery of the charged tRNA to the protein synthesis machinery. Besides serving this canonical function, higher eukaryotic AARSs, some of which are organized in the cytoplasm as a multisynthetase complex of nine enzymes plus additional cellular factors, have also been implicated in a variety of non-canonical roles. AARSs are involved in the regulation of transcription, translation, and various signaling pathways, thereby ensuring cell survival. Based in part on their versatility, AARSs have been recruited by viruses to perform essential functions. For example, host synthetases are packaged into some retroviruses and are required for their replication. Other viruses mimic tRNA-like structures in their genomes, and these motifs are aminoacylated by the host synthetase as part of the viral replication cycle. More recently, it has been shown that certain large DNA viruses infecting animals and other diverse unicellular eukaryotes encode tRNAs, AARSs, and additional components of the protein-synthesis machinery. This chapter will review our current understanding of the role of host AARSs and tRNA-like structures in viruses and discuss their potential as anti-viral drug targets. The identification and development of compounds that target bacterial AARSs, thereby serving as novel antibiotics, will also be discussed. Particular attention will be given to recent work on a number of tRNA-dependent AARS inhibitors and to advances in a new class of natural "pro-drug" antibiotics called Trojan Horse inhibitors. Finally, we will explore how bacteria that naturally produce AARS-targeting antibiotics must protect themselves against cell suicide using naturally antibiotic resistant AARSs, and how horizontal gene transfer of these AARS genes to pathogens may threaten the future use of this class of antibiotics.
Collapse
Affiliation(s)
- Varun Dewan
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, Center for RNA Biology, and Center for Retroviral Research, The Ohio State University, Columbus, OH, 43210, USA
| | | | | |
Collapse
|
24
|
|
25
|
Ancient origin of the divergent forms of leucyl-tRNA synthetases in the Halobacteriales. BMC Evol Biol 2012; 12:85. [PMID: 22694720 PMCID: PMC3436685 DOI: 10.1186/1471-2148-12-85] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 04/27/2012] [Indexed: 02/01/2023] Open
Abstract
Background Horizontal gene transfer (HGT) has greatly impacted the genealogical history of many lineages, particularly for prokaryotes, with genes frequently moving in and out of a line of descent. Many genes that were acquired by a lineage in the past likely originated from ancestral relatives that have since gone extinct. During the course of evolution, HGT has played an essential role in the origin and dissemination of genetic and metabolic novelty. Results Three divergent forms of leucyl-tRNA synthetase (LeuRS) exist in the archaeal order Halobacteriales, commonly known as haloarchaea. Few haloarchaeal genomes have the typical archaeal form of this enzyme and phylogenetic analysis indicates it clusters within the Euryarchaeota as expected. The majority of sequenced halobacterial genomes possess a bacterial form of LeuRS. Phylogenetic reconstruction puts this larger group of haloarchaea at the base of the bacterial domain. The most parsimonious explanation is that an ancient transfer of LeuRS took place from an organism related to the ancestor of the bacterial domain to the haloarchaea. The bacterial form of LeuRS further underwent gene duplications and/or gene transfers within the haloarchaea, with some genomes possessing two distinct types of bacterial LeuRS. The cognate tRNALeu also reveals two distinct clusters for the haloarchaea; however, these tRNALeu clusters do not coincide with the groupings found in the LeuRS tree, revealing that LeuRS evolved independently of its cognate tRNA. Conclusions The study of leucyl-tRNA synthetase in haloarchaea illustrates the importance of gene transfer originating in lineages that went extinct since the transfer occurred. The haloarchaeal LeuRS and tRNALeu did not co-evolve.
Collapse
|
26
|
Agarwal V, Nair SK. Aminoacyl tRNA synthetases as targets for antibiotic development. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20032e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Andam CP, Fournier GP, Gogarten JP. Multilevel populations and the evolution of antibiotic resistance through horizontal gene transfer. FEMS Microbiol Rev 2011; 35:756-67. [DOI: 10.1111/j.1574-6976.2011.00274.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
28
|
|
29
|
Manikandan S, Ganesapand S, Singh M, Kumaraguru A. Emerging of Multidrug Resistance Human Pathogens from Urinary Tract Infections. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/crb.2011.9.15] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Bridging the gap between ribosomal and nonribosomal protein synthesis. Proc Natl Acad Sci U S A 2010; 107:14517-8. [PMID: 20696925 DOI: 10.1073/pnas.1009939107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
31
|
Ataide SF, Rogers TE, Ibba M. The CCA anticodon specifies separate functions inside and outside translation in Bacillus cereus. RNA Biol 2009; 6:479-87. [PMID: 19667754 DOI: 10.4161/rna.6.4.9332] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bacillus cereus 14579 encodes two tRNAs with the CCA anticodon, tRNA(Trp) and tRNA(Other). tRNA(Trp) was separately aminoacylated by two enzymes, TrpRS1 and TrpRS2, which share only 34% similarity and display different catalytic capacities and specificities. TrpRS1 was 18-fold more proficient at aminoacylating tRNA(Trp) with Trp, while TrpRS2 more efficiently utilizes the Trp analog 5-hydroxy Trp. tRNA(Other) was not aminoacylated by either TrpRS but instead by the combined activity of LysRS1 and LysRS2, which recognized sequence elements absent from tRNA(Trp). Polysomes were found to contain tRNA(Trp), consistent with its role in translation, but not tRNA(Other) suggesting a function outside protein synthesis. Regulation of the genes encoding TrpRS1 and TrpRS2 (trpS1 and trpS2) is dependent on riboswitch-mediated recognition of the CCA anticodon, and the role of tRNA(Other) in this process was investigated. Deletion of tRNA(Other) led to up to a 50 fold drop in trpS1 expression, which resulted in the loss of differential regulation of the trpS1 and trpS2 genes in stationary phase. These findings reveal that sequence-specific interactions with a tRNA anticodon can be confined to processes outside translation, suggesting a means by which such RNAs may evolve non-coding functions.
Collapse
Affiliation(s)
- Sandro F Ataide
- Department of Microbiology, Ohio State University, Columbus, OH 43210-1292, USA
| | | | | |
Collapse
|
32
|
A novel tryptophanyl-tRNA synthetase gene confers high-level resistance to indolmycin. Antimicrob Agents Chemother 2009; 53:3972-80. [PMID: 19546369 DOI: 10.1128/aac.00723-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Indolmycin, a potential antibacterial drug, competitively inhibits bacterial tryptophanyl-tRNA synthetases. An effort to identify indolmycin resistance genes led to the discovery of a gene encoding an indolmycin-resistant isoform of tryptophanyl-tRNA synthetase. Overexpression of this gene in an indolmycin-sensitive strain increased the indolmycin MIC 60-fold. Its transcription and distribution in various bacterial genera were assessed. The level of resistance conferred by this gene was compared to that of a known indolmycin resistance gene and to those of genes with resistance-conferring point mutations.
Collapse
|
33
|
Green LS, Bullard JM, Ribble W, Dean F, Ayers DF, Ochsner UA, Janjic N, Jarvis TC. Inhibition of methionyl-tRNA synthetase by REP8839 and effects of resistance mutations on enzyme activity. Antimicrob Agents Chemother 2009; 53:86-94. [PMID: 19015366 PMCID: PMC2612134 DOI: 10.1128/aac.00275-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 06/09/2008] [Accepted: 10/22/2008] [Indexed: 11/20/2022] Open
Abstract
REP8839 is a selective inhibitor of methionyl-tRNA synthetase (MetRS) with antibacterial activity against a variety of gram-positive organisms. We determined REP8839 potency against Staphylococcus aureus MetRS and assessed its selectivity for bacterial versus human orthologs of MetRS. The inhibition constant (K(i)) of REP8839 was 10 pM for Staphylococcus aureus MetRS. Inhibition of MetRS by REP8839 was competitive with methionine and uncompetitive with ATP. Thus, high physiological ATP levels would actually facilitate optimal binding of the inhibitor. While many gram-positive bacteria, such as Staphylococcus aureus, express exclusively the MetRS1 subtype, many gram-negative bacteria express an alternative homolog called MetRS2. Some gram-positive bacteria, such as Streptococcus pneumoniae and Bacillus anthracis, express both MetRS1 and MetRS2. MetRS2 orthologs were considerably less susceptible to REP8839 inhibition. REP8839 inhibition of human mitochondrial MetRS was 1,000-fold weaker than inhibition of Staphylococcus aureus MetRS; inhibition of human cytoplasmic MetRS was not detectable, corresponding to >1,000,000-fold selectivity for the bacterial target relative to its cytoplasmic counterpart. Mutations in MetRS that confer reduced susceptibility to REP8839 were examined. The mutant MetRS enzymes generally exhibited substantially impaired catalytic activity, particularly in aminoacylation turnover rates. REP8839 K(i) values ranged from 4- to 190,000-fold higher for the mutant enzymes than for wild-type MetRS. These observations provide a potential mechanistic explanation for the reduced growth fitness observed with MetRS mutant strains relative to that with wild-type Staphylococcus aureus.
Collapse
|
34
|
Luque I, Riera-Alberola ML, Andújar A, Ochoa de Alda JAG. Intraphylum diversity and complex evolution of cyanobacterial aminoacyl-tRNA synthetases. Mol Biol Evol 2008; 25:2369-89. [PMID: 18775898 DOI: 10.1093/molbev/msn197] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A comparative genomic analysis of 35 cyanobacterial strains has revealed that the gene complement of aminoacyl-tRNA synthetases (AARSs) and routes for aminoacyl-tRNA synthesis may differ among the species of this phylum. Several genes encoding AARS paralogues were identified in some genomes. In-depth phylogenetic analysis was done for each of these proteins to gain insight into their evolutionary history. GluRS, HisRS, ArgRS, ThrRS, CysRS, and Glu-Q-RS showed evidence of a complex evolutionary course as indicated by a number of inconsistencies with our reference tree for cyanobacterial phylogeny. In addition to sequence data, support for evolutionary hypotheses involving horizontal gene transfer or gene duplication events was obtained from other observations including biased sequence conservation, the presence of indels (insertions or deletions), or vestigial traces of ancestral redundant genes. We present evidences for a novel protein domain with two putative transmembrane helices recruited independently by distinct AARS in particular cyanobacteria.
Collapse
Affiliation(s)
- Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avda Américo Vespucio, Seville, Spain.
| | | | | | | |
Collapse
|
35
|
Critchley IA, Ochsner UA. Recent advances in the preclinical evaluation of the topical antibacterial agent REP8839. Curr Opin Chem Biol 2008; 12:409-17. [PMID: 18620074 DOI: 10.1016/j.cbpa.2008.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 06/09/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
Abstract
REP8839 is a synthetic fluorovinylthiophene-containing diaryldiamine that inhibits bacterial methionyl tRNA synthetase (MetRS) and is a new chemical entity that represents a novel pharmacological class. The compound has potent in vitro antibacterial activity against many clinically important Gram-positive bacteria including the major skin pathogens Staphylococcus aureus and Streptococcus pyogenes. In light of the emergence of methicillin-resistant S. aureus in the community and increasing resistance to mupirocin, REP8839 is being evaluated as a topical agent for the treatment of superficial skin infections. REP8839 was active against resistant phenotypes of S. aureus and can be formulated at high concentrations to minimize the development of resistance. A formulation of REP8839 has demonstrated efficacy in a porcine partial thickness wound infection model against mupirocin-resistant S. aureus.
Collapse
Affiliation(s)
- Ian A Critchley
- Microbiology Research, Replidyne, Inc., 1450 Infinite Drive, Louisville, CO 80027, USA.
| | | |
Collapse
|
36
|
Hausmann CD, Ibba M. Aminoacyl-tRNA synthetase complexes: molecular multitasking revealed. FEMS Microbiol Rev 2008; 32:705-21. [PMID: 18522650 DOI: 10.1111/j.1574-6976.2008.00119.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The accurate synthesis of proteins, dictated by the corresponding nucleotide sequence encoded in mRNA, is essential for cell growth and survival. Central to this process are the aminoacyl-tRNA synthetases (aaRSs), which provide amino acid substrates for the growing polypeptide chain in the form of aminoacyl-tRNAs. The aaRSs are essential for coupling the correct amino acid and tRNA molecules, but are also known to associate in higher order complexes with proteins involved in processes beyond translation. Multiprotein complexes containing aaRSs are found in all three domains of life playing roles in splicing, apoptosis, viral assembly, and regulation of transcription and translation. An overview of the complexes aaRSs form in all domains of life is presented, demonstrating the extensive network of connections between the translational machinery and cellular components involved in a myriad of essential processes beyond protein synthesis.
Collapse
Affiliation(s)
- Corinne D Hausmann
- Department of Microbiology, The Ohio State University, Columbus, OH 43210-1292, USA
| | | |
Collapse
|
37
|
Comparison of the essential cellular functions of the two murA genes of Bacillus anthracis. Antimicrob Agents Chemother 2008; 52:2009-13. [PMID: 18378720 DOI: 10.1128/aac.01594-07] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Targeted antisense and gene replacement mutagenesis experiments demonstrate that only the murA1 gene and not the murA2 gene is required for the normal cellular growth of Bacillus anthracis. Antisense-based modulation of murA1 gene expression hypersensitizes cells to the MurA-specific antibiotic fosfomycin despite the normally high resistance of B. anthracis to this drug.
Collapse
|
38
|
Ataide SF, Wilson SN, Dang S, Rogers TE, Roy B, Banerjee R, Henkin TM, Ibba M. Mechanisms of resistance to an amino acid antibiotic that targets translation. ACS Chem Biol 2007; 2:819-27. [PMID: 18154269 DOI: 10.1021/cb7002253] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structural and functional diversity among the aminoacyl-tRNA synthetases prevent infiltration of the genetic code by noncognate amino acids. To explore whether these same features distinguish the synthetases as potential sources of resistance against antibiotic amino acid analogues, we investigated bacterial growth inhibition by S-(2-aminoethyl)-L-cysteine (AEC). Wild-type lysyl-tRNA synthetase (LysRS) and a series of active site variants were screened for their ability to restore growth of an Escherichia coli LysRS null strain at increasing concentrations of AEC. While wild-type E. coli growth is completely inhibited at 5 microM AEC, two LysRS variants, Y280F and F426W, provided substantial resistance and allowed E. coli to grow in the presence of up to 1 mM AEC. Elevated resistance did not reflect changes in the kinetics of amino acid activation or tRNA (Lys) aminoacylation, which showed at best 4-6-fold improvements, but instead correlated with the binding affinity for AEC, which was decreased approximately 50-fold in the LysRS variants. In addition to changes in LysRS, AEC resistance has also been attributed to mutations in the L box riboswitch, which regulates expression of the lysC gene, encoding aspartokinase. The Y280F and F426W LysRS mutants contained wild-type L box riboswitches that responded normally to AEC in vitro, indicating that LysRS is the primary cellular target of this antibiotic. These findings suggest that the AEC resistance conferred by L box mutations is an indirect effect resulting from derepression of lysC expression and increased cellular pools of lysine, which results in more effective competition with AEC for binding to LysRS.
Collapse
Affiliation(s)
| | | | | | | | - Bappaditya Roy
- Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, 700 019 West Bengal, India
| | - Rajat Banerjee
- Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, 700 019 West Bengal, India
| | - Tina M. Henkin
- Department of Microbiology
- Ohio State Biochemistry Program
- Ohio State RNA Group
| | - Michael Ibba
- Department of Microbiology
- Ohio State Biochemistry Program
- Ohio State RNA Group
| |
Collapse
|
39
|
Nicolas P, Bessières P, Ehrlich SD, Maguin E, van de Guchte M. Extensive horizontal transfer of core genome genes between two Lactobacillus species found in the gastrointestinal tract. BMC Evol Biol 2007; 7:141. [PMID: 17708761 PMCID: PMC1994166 DOI: 10.1186/1471-2148-7-141] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 08/20/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While genes that are conserved between related bacterial species are usually thought to have evolved along with the species, phylogenetic trees reconstructed for individual genes may contradict this picture and indicate horizontal gene transfer. Individual trees are often not resolved with high confidence, however, and in that case alternative trees are generally not considered as contradicting the species tree, although not confirming it either. Here we conduct an in-depth analysis of 401 protein phylogenetic trees inferred with varying levels of confidence for three lactobacilli from the acidophilus complex. At present the relationship between these bacteria, isolated from environments as diverse as the gastrointestinal tract (Lactobacillus acidophilus and Lactobacillus johnsonii) and yogurt (Lactobacillus delbrueckii ssp. bulgaricus), is ambiguous due to contradictory phenotypical and 16S rRNA based classifications. RESULTS Among the 401 phylogenetic trees, those that could be reconstructed with high confidence support the 16S-rRNA tree or one alternative topology in an astonishing 3:2 ratio, while the third possible topology is practically absent. Lowering the confidence threshold for trees to be taken into consideration does not significantly affect this ratio, and therefore suggests that gene transfer may have affected as much as 40% of the core genome genes. Gene function bias suggests that the 16S rRNA phylogeny of the acidophilus complex, which indicates that L. acidophilus and L. delbrueckii ssp. bulgaricus are the closest related of these three species, is correct. A novel approach of comparison of interspecies protein divergence data employed in this study allowed to determine that gene transfer most likely took place between the lineages of the two species found in the gastrointestinal tract. CONCLUSION This case-study reports an unprecedented level of phylogenetic incongruence, presumably resulting from extensive horizontal gene transfer. The data give a first indication of the large extent of gene transfer that may take place in the gastrointestinal tract and its accumulated effect. For future studies, our results should encourage a careful weighing of data on phylogenetic tree topology, confidence and distribution to conclude on the absence or presence and extent of horizontal gene transfer.
Collapse
Affiliation(s)
- Pierre Nicolas
- INRA, Mathématique Informatique et Génome, UR1077, 78350 Jouy en Josas, France
| | - Philippe Bessières
- INRA, Mathématique Informatique et Génome, UR1077, 78350 Jouy en Josas, France
| | - S Dusko Ehrlich
- INRA, Génétique Microbienne, UR895, 78350 Jouy en Josas, France
| | | | | |
Collapse
|
40
|
Ochsner UA, Sun X, Jarvis T, Critchley I, Janjic N. Aminoacyl-tRNA synthetases: essential and still promising targets for new anti-infective agents. Expert Opin Investig Drugs 2007; 16:573-93. [PMID: 17461733 DOI: 10.1517/13543784.16.5.573] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The emergence of resistance to existing antibiotics demands the development of novel antimicrobial agents directed against novel targets. Historically, bacterial cell wall synthesis, protein, and DNA and RNA synthesis have been major targets of very successful classes of antibiotics such as beta-lactams, glycopeptides, macrolides, aminoglycosides, tetracyclines, rifampicins and quinolones. Recently, efforts have been made to develop novel agents against validated targets in these pathways but also against new, previously unexploited targets. The era of genomics has provided insights into novel targets in microbial pathogens. Among the less exploited--but still promising--targets is the family of 20 aminoacyl-tRNA synthetases (aaRSs), which are essential for protein synthesis. These targets have been validated in nature as aaRS inhibition has been shown as the specific mode of action for many natural antimicrobial agents synthesized by bacteria and fungi. Therefore, aaRSs have the potential to be targeted by novel agents either from synthetic or natural sources to yield specific and selective anti-infectives. Numerous high-throughput screening programs aimed at identifying aaRS inhibitors have been performed over the last 20 years. A large number of promising lead compounds have been identified but only a few agents have moved forward into clinical development. This review provides an update on the present strategies to develop novel aaRS inhibitors as anti-infective drugs.
Collapse
Affiliation(s)
- Urs A Ochsner
- Replidyne, Inc., 1450 Infinite Dr, Louisville, CO 80027, USA.
| | | | | | | | | |
Collapse
|
41
|
Kedar GC, Brown-Driver V, Reyes DR, Hilgers MT, Stidham MA, Shaw KJ, Finn J, Haselbeck RJ. Evaluation of the metS and murB loci for antibiotic discovery using targeted antisense RNA expression analysis in Bacillus anthracis. Antimicrob Agents Chemother 2007; 51:1708-18. [PMID: 17339372 PMCID: PMC1855544 DOI: 10.1128/aac.01180-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The biowarfare-relevant bacterial pathogen Bacillus anthracis contains two paralogs each of the metS and murB genes, which encode the important antibiotic target functions methionyl-tRNA synthetase and UDP-N-acetylenolpyruvoylglucosamine reductase, respectively. Empirical screens were conducted to detect and characterize gene fragments of each of these four genes that could cause growth reduction of B. anthracis when inducibly expressed from a plasmid-borne promoter. Numerous such gene fragments that were overwhelmingly in the antisense orientation were identified for the metS1 and murB2 alleles, while no such orientation bias was seen for the metS2 and murB1 alleles. Gene replacement mutagenesis was used to confirm the essentiality of the metS1 and murB2 alleles, and the nonessentiality of the metS2 and murB1 alleles, for vegetative growth. Induced transcription of RNA from metS1 and murB2 antisense-oriented gene fragments resulted in specific reduction of mRNA of their cognate genes. Attenuation of MetS1 enzyme expression hypersensitized B. anthracis cells to a MetS-specific antimicrobial compound but not to other antibiotics that affect cell wall assembly, fatty acid biosynthesis, protein translation, or DNA replication. Antisense-dependent reduction of MurB2 enzyme expression caused hypersensitivity to beta-lactam antibiotics, a synergistic response that has also been noted for the MurA-specific antibiotic fosfomycin. These experiments form the basis of mode-of-action detection assays that can be used in the discovery of novel MetS- or MurB-specific antibiotic drugs that are effective against B. anthracis or other gram-positive bacterial pathogens.
Collapse
Affiliation(s)
- G C Kedar
- Trius Therapeutics Inc, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Brindefalk B, Viklund J, Larsson D, Thollesson M, Andersson SGE. Origin and evolution of the mitochondrial aminoacyl-tRNA synthetases. Mol Biol Evol 2006; 24:743-56. [PMID: 17182897 DOI: 10.1093/molbev/msl202] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many theories favor a fusion of 2 prokaryotic genomes for the origin of the Eukaryotes, but there are disagreements on the origin, timing, and cellular structures of the cells involved. Equally controversial is the source of the nuclear genes for mitochondrial proteins, although the alpha-proteobacterial contribution to the mitochondrial genome is well established. Phylogenetic inferences show that the nuclearly encoded mitochondrial aminoacyl-tRNA synthetases (aaRSs) occupy a position in the tree that is not close to any of the currently sequenced alpha-proteobacterial genomes, despite cohesive and remarkably well-resolved alpha-proteobacterial clades in 12 of the 20 trees. Two or more alpha-proteobacterial clusters were observed in 8 cases, indicative of differential loss of paralogous genes or horizontal gene transfer. Replacement and retargeting events within the nuclear genomes of the Eukaryotes was indicated in 10 trees, 4 of which also show split alpha-proteobacterial groups. A majority of the mitochondrial aaRSs originate from within the bacterial domain, but none specifically from the alpha-Proteobacteria. For some aaRS, the endosymbiotic origin may have been erased by ongoing gene replacements on the bacterial as well as the eukaryotic side. For others that accurately resolve the alpha-proteobacterial divergence patterns, the lack of affiliation with mitochondria is more surprising. We hypothesize that the ancestral eukaryotic gene pool hosted primordial "bacterial-like" genes, to which a limited set of alpha-proteobacterial genes, mostly coding for components of the respiratory chain complexes, were added and selectively maintained.
Collapse
Affiliation(s)
- Björn Brindefalk
- Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
43
|
Abstract
The aminoacyl-tRNA synthetases (aaRSs) are responsible for selecting specific amino acids for protein synthesis, and this essential role in translation has garnered them much attention as targets for novel antimicrobials. Understanding how the aaRSs evolved efficient substrate selection offers a potential route to develop useful inhibitors of microbial protein synthesis. Here, we discuss discrimination of small molecules by aaRSs, and how the evolutionary divergence of these mechanisms offers a means to target inhibitors against these essential microbial enzymes.
Collapse
Affiliation(s)
- Sandro F Ataide
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
44
|
Shaul S, Nussinov R, Pupko T. Paths of lateral gene transfer of lysyl-aminoacyl-tRNA synthetases with a unique evolutionary transition stage of prokaryotes coding for class I and II varieties by the same organisms. BMC Evol Biol 2006; 6:22. [PMID: 16529662 PMCID: PMC1475646 DOI: 10.1186/1471-2148-6-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 03/12/2006] [Indexed: 11/15/2022] Open
Abstract
Background While the premise that lateral gene transfer (LGT) is a dominant evolutionary force is still in considerable dispute, the case for widespread LGT in the family of aminoacyl-tRNA synthetases (aaRS) is no longer contentious. aaRSs are ancient enzymes, guarding the fidelity of the genetic code. They are clustered in two structurally unrelated classes. Only lysine aminoacyl-tRNA synthetase (LysRS) is found both as a class 1 and a class 2 enzyme (LysRS1-2). Remarkably, in several extant prokaryotes both classes of the enzyme coexist, a unique phenomenon that has yet to receive its due attention. Results We applied a phylogenetic approach for determining the extent and origin of LGT in prokaryotic LysRS. Reconstructing species trees for Archaea and Bacteria, and inferring that their last common ancestors encoded LysRS1 and LysRS2, respectively, we studied the gains and losses of both classes. A complex pattern of LGT events emerged. In specific groups of organisms LysRS1 was replaced by LysRS2 (and vice versa). In one occasion, within the alpha proteobacteria, a LysRS2 to LysRS1 LGT was followed by reversal to LysRS2. After establishing the most likely LGT paths, we studied the possible origins of the laterally transferred genes. To this end, we reconstructed LysRS gene trees and evaluated the likely origins of the laterally transferred genes. While the sources of LysRS1 LGTs were readily identified, those for LysRS2 remain, for now, uncertain. The replacement of one LysRS by another apparently transits through a stage simultaneously coding for both synthetases, probably conferring a selective advantage to the affected organisms. Conclusion The family of LysRSs features complex LGT events. The currently available data were sufficient for identifying unambiguously the origins of LysRS1 but not of LysRS2 gene transfers. A selective advantage is suggested to organisms encoding simultaneously LysRS1-2.
Collapse
Affiliation(s)
- Shaul Shaul
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Ruth Nussinov
- Basic Research Program, SAIC-Frederick, Inc. Center for Cancer Research, Nanobiology Program, NCI-Frederick Frederick, MD 21702, USA
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tal Pupko
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
45
|
Ochsner UA, Young CL, Stone KC, Dean FB, Janjic N, Critchley IA. Mode of action and biochemical characterization of REP8839, a novel inhibitor of methionyl-tRNA synthetase. Antimicrob Agents Chemother 2006; 49:4253-62. [PMID: 16189106 PMCID: PMC1251548 DOI: 10.1128/aac.49.10.4253-4262.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aminoacyl-tRNA synthetases have attracted interest as essential and novel targets involved in bacterial protein synthesis. REP8839 is a potent inhibitor of MetS, the methionyl-tRNA synthetase in Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), and in Streptococcus pyogenes. The biochemical activity of REP8839 was shown by specific inhibition of purified S. aureus MetS (50% inhibitory concentration, <1.9 nM). Target specificity was confirmed by overexpression of the metS gene in S. aureus, resulting in an eightfold increase in the MIC for REP8839. Macromolecular synthesis assays in the presence of REP8839 demonstrated a dose-dependent inhibition of protein synthesis and RNA synthesis in S. pneumoniae R6, but only protein synthesis was affected in an isogenic rel mutant deficient in the stringent response. Strains with reduced susceptibility to REP8839 were generated by selection of strains with spontaneous mutations and through serial passages. Point mutations within the metS gene were mapped, leading to a total of 23 different amino acid substitutions within MetS that were located around the modeled active site. The most frequent MetS mutations were I57N, leading to a shift in the MIC from 0.06 microg/ml to 4 microg/ml, and G54S, resulting in a MIC of 32 microg/ml that was associated with a reduced growth rate. The mutation prevention concentration was 32 microg/ml in four S. aureus strains (methicillin-sensitive S. aureus and MRSA), which is well below the drug concentration of 2% (20,000 microg/ml) in a topical formulation. In conclusion, we demonstrate by biochemical, physiologic, and genetic mode-of-action studies that REP8839 exerts its antibacterial activity through specific inhibition of MetS, a novel target.
Collapse
|
46
|
Ataide SF, Jester BC, Devine KM, Ibba M. Stationary-phase expression and aminoacylation of a transfer-RNA-like small RNA. EMBO Rep 2006; 6:742-7. [PMID: 16065067 PMCID: PMC1369145 DOI: 10.1038/sj.embor.7400474] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 06/03/2005] [Accepted: 06/07/2005] [Indexed: 11/09/2022] Open
Abstract
Genome-scale analyses have shown numerous functional duplications in the canonical translational machinery. One of the most striking examples is the occurrence of unrelated class I and class II lysyl-transfer RNA synthetases (LysRS), which together may aminoacylate non-canonical tRNAs. We show that, in Bacillus cereus, the two LysRSs together aminoacylate a small RNA of unknown function named tRNA(Other), and that the aminoacylated product stably binds translation elongation factor Tu. In vitro reconstitution of a defined lysylation system showed that Lys-tRNA(Other) is synthesized in the presence of both LysRSs, but not by either alone. In vivo analyses showed that the class 2 LysRS was present both during and after exponential growth, whereas the class I enzyme and tRNA(Other) were predominantly produced during the stationary phase. Aminoacylation of tRNA(Other) was also found to be confined to the stationary phase, which suggests a role for this non-canonical tRNA in growth-phase-specific protein synthesis.
Collapse
Affiliation(s)
- Sandro F Ataide
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210-1292, USA
| | - Brian C Jester
- Department of Genetics, Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Kevin M Devine
- Department of Genetics, Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Michael Ibba
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210-1292, USA
- Ohio State Biochemistry Program, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210-1292, USA
- Tel: +1 614 292 2120; Fax: +1 614 292 8120; E-mail:
| |
Collapse
|
47
|
Hurdle JG, O'Neill AJ, Chopra I. Prospects for aminoacyl-tRNA synthetase inhibitors as new antimicrobial agents. Antimicrob Agents Chemother 2005; 49:4821-33. [PMID: 16304142 PMCID: PMC1315952 DOI: 10.1128/aac.49.12.4821-4833.2005] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Julian Gregston Hurdle
- Antimicrobial Research Centre and School of Biochemistry and Microbiology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | |
Collapse
|
48
|
Critchley IA, Young CL, Stone KC, Ochsner UA, Guiles J, Tarasow T, Janjic N. Antibacterial activity of REP8839, a new antibiotic for topical use. Antimicrob Agents Chemother 2005; 49:4247-52. [PMID: 16189105 PMCID: PMC1251549 DOI: 10.1128/aac.49.10.4247-4252.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 06/14/2005] [Accepted: 07/07/2005] [Indexed: 11/20/2022] Open
Abstract
REP8839 is a novel methionyl-tRNA synthetase (MetS) inhibitor with potent antibacterial activity against clinical isolates of Staphylococcus aureus, Streptococcus pyogenes, and other clinically important gram-positive bacteria but little activity against gram-negative bacteria. All isolates of S. aureus, including strains resistant to methicillin, mupirocin, vancomycin, and linezolid were susceptible to REP8839 at concentrations of < or =0.5 microg/ml. REP8839 was also active against Staphylococcus epidermidis, including multiply resistant strains (MIC, < or =0.25 microg/ml). All S. pyogenes isolates were susceptible to REP8839 at concentrations of < or =0.25 microg/ml, suggesting that MetS2, a second enzyme previously identified in Streptococcus pneumoniae, was not present in this organism. REP8839 was highly bound to the protein of human serum, and activity was not greatly influenced by inoculum size but was affected by pH, exhibiting optimal antibacterial activity in a neutral medium rather than a weak acidic medium. Like mupirocin, REP8839 exhibited bacteriostatic activity against key pathogens. The emergence of mupirocin resistance in S. aureus highlights the need for a new topical antibiotic with the ability to inhibit high-level mupirocin-resistant strains and other emerging phenotypes, such as vancomycin-resistant and community-acquired methicillin-resistant isolates.
Collapse
|
49
|
Brown JR, Volker C. Phylogeny of gamma-proteobacteria: resolution of one branch of the universal tree? Bioessays 2004; 26:463-8. [PMID: 15112225 DOI: 10.1002/bies.20030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The reconstruction of bacterial evolutionary relationships has proven to be a daunting task because variable mutation rates and horizontal gene transfer (HGT) among species can cause grave incongruities between phylogenetic trees based on single genes. Recently, a highly robust phylogenetic tree was constructed for 13 gamma-proteobacteria using the combined alignments of 205 conserved orthologous proteins.1 Only two proteins had incongruent tree topologies, which were attributed to HGT between Pseudomonas species and Vibrio cholerae or enterics. While the evolutionary relationships among these species appears to be resolved, further analysis suggests that HGT events with other bacterial partners likely occurred; this alters the implicit assumption of gamma-proteobacteria monophyly. Thus, any thorough reconstruction of bacterial evolution must not only choose a suitable set of molecular markers but also strive to reduce potential bias in the selection of species.
Collapse
Affiliation(s)
- James R Brown
- Bioinformatics Division, Genetics Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426-0989, USA.
| | | |
Collapse
|
50
|
Salazar JC, Ahel I, Orellana O, Tumbula-Hansen D, Krieger R, Daniels L, Söll D. Coevolution of an aminoacyl-tRNA synthetase with its tRNA substrates. Proc Natl Acad Sci U S A 2003; 100:13863-8. [PMID: 14615592 PMCID: PMC283512 DOI: 10.1073/pnas.1936123100] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glutamyl-tRNA synthetases (GluRSs) occur in two types, the discriminating and the nondiscriminating enzymes. They differ in their choice of substrates and use either tRNAGlu or both tRNAGlu and tRNAGln. Although most organisms encode only one GluRS, a number of bacteria encode two different GluRS proteins; yet, the tRNA specificity of these enzymes and the reason for such gene duplications are unknown. A database search revealed duplicated GluRS genes in >20 bacterial species, suggesting that this phenomenon is not unusual in the bacterial domain. To determine the tRNA preferences of GluRS, we chose the duplicated enzyme sets from Helicobacter pylori and Acidithiobacillus ferrooxidans. H. pylori contains one tRNAGlu and one tRNAGln species, whereas A. ferrooxidans possesses two of each. We show that the duplicated GluRS proteins are enzyme pairs with complementary tRNA specificities. The H. pylori GluRS1 acylated only tRNAGlu, whereas GluRS2 was specific solely for tRNAGln. The A. ferrooxidans GluRS2 preferentially charged tRNA(UUG)(Gln). Conversely, A. ferrooxidans GluRS1 glutamylated both tRNAGlu isoacceptors and the tRNA(CUG)(Gln) species. These three tRNA species have two structural elements in common, the augmented D-helix and a deletion of nucleotide 47. It appears that the discriminating or nondiscriminating natures of different GluRS enzymes have been derived by the coevolution of protein and tRNA structure. The coexistence of the two GluRS enzymes in one organism may lay the groundwork for the acquisition of the canonical glutaminyl-tRNA synthetase by lateral gene transfer from eukaryotes.
Collapse
MESH Headings
- Acidithiobacillus/enzymology
- Acidithiobacillus/genetics
- Amino Acyl-tRNA Synthetases/genetics
- Amino Acyl-tRNA Synthetases/metabolism
- Base Sequence
- Evolution, Molecular
- Gene Duplication
- Gene Transfer, Horizontal
- Genes, Bacterial
- Helicobacter pylori/enzymology
- Helicobacter pylori/genetics
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phylogeny
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer, Gln/chemistry
- RNA, Transfer, Gln/genetics
- RNA, Transfer, Gln/metabolism
- RNA, Transfer, Glu/chemistry
- RNA, Transfer, Glu/genetics
- RNA, Transfer, Glu/metabolism
- Substrate Specificity
Collapse
Affiliation(s)
- Juan C Salazar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | | | | | |
Collapse
|