1
|
Lindegger DJ. Advanced Therapies for Human Immunodeficiency Virus. Med Sci (Basel) 2024; 12:33. [PMID: 39051379 PMCID: PMC11270269 DOI: 10.3390/medsci12030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
Human Immunodeficiency Virus (HIV) remains a significant global health challenge with approximately 38 million people currently having the virus worldwide. Despite advances in treatment development, the virus persists in the human population and still leads to new infections. The virus has a powerful ability to mutate and hide from the human immune system in reservoirs of the body. Current standard treatment with antiretroviral therapy effectively controls viral replication but requires lifelong adherence and does not eradicate the virus. This review explores the potential of Advanced Therapy Medicinal Products as novel therapeutic approaches to HIV, including cell therapy, immunisation strategies and gene therapy. Cell therapy, particularly chimeric antigen receptor T cell therapy, shows promise in preclinical studies for targeting and eliminating HIV-infected cells. Immunisation therapies, such as broadly neutralising antibodies are being investigated to control viral replication and reduce reservoirs. Despite setbacks in recent trials, vaccines remain a promising avenue for HIV therapy development. Gene therapy using technologies like CRISPR/Cas9 aims to modify cells to resist HIV infection or eliminate infected cells. Challenges such as off-target effects, delivery efficiency and ethical considerations persist in gene therapy for HIV. Future directions require further research to assess the safety and efficacy of emerging therapies in clinical trials. Combined approaches may be necessary to achieve complete elimination of the HIV reservoir. Overall, advanced therapies offer new hope for advancing HIV treatment and moving closer to a cure.
Collapse
Affiliation(s)
- Daniel Josef Lindegger
- Independent Researcher, 6000 Lucerne, Switzerland;
- Independent Researcher, London SW1A2JR, UK
| |
Collapse
|
2
|
A plasmid DNA immunogen expressing fifteen protein antigens and complex virus-like particles (VLP+) mimicking naturally occurring HIV. Vaccine 2011; 29:744-53. [DOI: 10.1016/j.vaccine.2010.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 11/04/2010] [Accepted: 11/08/2010] [Indexed: 11/17/2022]
|
3
|
Cordelier P, Strayer DS. Using gene delivery to protect HIV-susceptible CNS cells: inhibiting HIV replication in microglia. Virus Res 2006; 118:87-97. [PMID: 16414141 DOI: 10.1016/j.virusres.2005.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 11/04/2005] [Accepted: 11/18/2005] [Indexed: 01/13/2023]
Abstract
Antiretroviral chemotherapy penetrates the CNS poorly. CNS HIV, thus sheltered, may injure the brain and complicate control of systemic HIV infection. Microglial cells play a major role in HIV persistence in the CNS but are rarely targeted for gene delivery. Because recombinant SV40 vectors (rSV40s) transduce other phagocytic cells efficiently, we tested rSV40 delivery of anti-HIV genetic therapy to microglial cells. Microglia prepared as enriched cultures from human fetal brain, were transduced with marker vectors, SV(RFP) and SV(Nef/FLAG), respectively, carrying DsRed and HIV-1 Nef bearing a FLAG epitope. By immunostaining and FACS, 95% of unselected cells expressed the transgenes, without detectable toxicity. Microglia were transduced with SV(AT), carrying human alpha1-antitrypsin (alpha1AT), which blocks Env and Gag processing. SV(AT)-treated microglia strongly resisted challenge with HIV-1BaL, even when microglia were transduced with SV(AT) following HIV challenge. Thus, rSV40s effectively transduce microglia and protect them from HIV.
Collapse
Affiliation(s)
- Pierre Cordelier
- Department of Pathology, Jefferson Medical College, 1020 Locust Street, Room 251, Philadelphia, PA 19107, USA
| | | |
Collapse
|
4
|
Strayer DS, Akkina R, Bunnell BA, Dropulic B, Planelles V, Pomerantz RJ, Rossi JJ, Zaia JA. Current status of gene therapy strategies to treat HIV/AIDS. Mol Ther 2005; 11:823-42. [PMID: 15922953 DOI: 10.1016/j.ymthe.2005.01.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 01/19/2005] [Accepted: 01/26/2005] [Indexed: 12/21/2022] Open
Abstract
Progress in developing effective gene transfer approaches to treat HIV-1 infection has been steady. Many different transgenes have been reported to inhibit HIV-1 in vitro. However, effective translation of such results to clinical practice, or even to animal models of AIDS, has been challenging. Among the reasons for this failure are uncertainty as to the most effective cell population(s) to target, the diffuseness of these target cells in the body, and ineffective or insufficiently durable gene delivery. Better understanding of the HIV-1 replicative cycle, host factors involved in HIV-1 infection, vector biology and application, transgene technology, animal models, and clinical study design have all contributed vastly to planning current and future strategies for application of gene therapeutic approaches to the treatment of AIDS. This review focuses on the newest developments in these areas and provides a strong basis for renewed optimism that gene therapy will have an important role to play in treating people infected with HIV-1.
Collapse
Affiliation(s)
- David S Strayer
- Department of Pathology, Jefferson Medical College, 1020 Locust Street, Room 251, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Strayer DS, Feitelson M, Sun B, Matskevich AA. Paradigms for conditional expression of RNA interference molecules for use against viral targets. Methods Enzymol 2005; 392:227-41. [PMID: 15644185 DOI: 10.1016/s0076-6879(04)92014-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The rapid increase in the study of small interfering RNA (siRNA) as a means to decrease expression of targeted genes has led to concerns about possible unexpected consequences of constitutive siRNA expression. We therefore devised a conditional siRNA expression system in which siRNA targeting hepatitis C virus (HCV) would be produced in response to HCV. We found that HCV acts via NFkappaB to stimulate the HIV long terminal repeat (LTR) as a promoter. We exploited this observation by designing conditional siRNA transcription constructs to be triggered by HCV-induced activation of NFkappaB. These were delivered by using highly efficient recombinant Tag-deleted SV40-derived vectors. Conditional activation of HIV-LTR and consequent siRNA synthesis in cells expressing HCV were observed. HCV-specific RNAi decreased HCV RNA greatly within 4 days, using transient transfection of the whole HCV genome as a model of acute HCV entry into transduced cells. We then tested the effectiveness of rSV40-delivered anti-HCV siRNA in cells stably transfected with the whole HCV genome to simulate hepatocytes chronically infected with HCV. There is considerable need for regulated production of siRNAs activated by a particular set of conditions (HCV in this case) but quiescent otherwise. Approaches described here may serve as a paradigm for such conditional siRNA expression.
Collapse
Affiliation(s)
- David S Strayer
- Department of Pathology and Cell Biology, Jefferson Medical College, Philadelphia, Pennsylvania 19107-5587, USA
| | | | | | | |
Collapse
|
6
|
Cooper LJN, Kalos M, DiGiusto D, Brown C, Forman SJ, Raubitschek A, Jensen MC. T-cell genetic modification for re-directed tumor recognition. CANCER CHEMOTHERAPY AND BIOLOGICAL RESPONSE MODIFIERS 2005; 22:293-324. [PMID: 16110618 DOI: 10.1016/s0921-4410(04)22014-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Laurence J N Cooper
- Cancer Immunotherapeutic Program, City of Hope NCI-Designated Comprehensive Cancer Center, Duarte, CA, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Vera M, Prieto J, Strayer DS, Fortes P. Factors Influencing the Production of Recombinant SV40 Vectors. Mol Ther 2004; 10:780-91. [PMID: 15451462 DOI: 10.1016/j.ymthe.2004.06.1014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 05/27/2004] [Accepted: 06/07/2004] [Indexed: 10/26/2022] Open
Abstract
Most gene therapy approaches employ viral vectors for gene delivery. Ideally, these vectors should be produced at high titer and purity with well-established protocols. Standardized methods to measure the quality of the vectors produced are imperative, as are techniques that allow reproducible quantitation of viral titer. We devised a series of protocols that achieve high-titer production and reproducible purification and provide for quality control and titering of recombinant simian virus 40 vectors (rSV40s). rSV40s are good candidate vehicles for gene transfer: they are easily modified to be nonreplicative and they are nonimmunogenic. Further, they infect a wide variety of cells and allow long-term transgene expression. We report here these protocols to produce rSV40 vectors in high yields, describe their purification, and characterize viral stocks using quality control techniques that monitor the presence of wild-type SV40 revertants and defective interfering particles. Several methods for reproducible titration of rSV40 viruses have been compared. We believe that these techniques can be widely applied to obtain high concentrations of high-quality rSV40 viruses reproducibly.
Collapse
Affiliation(s)
- Maria Vera
- Laboratory of Vector Development, Division of Gene Therapy, Foundation for Applied Medical Research, School of Medicine, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | | | | | | |
Collapse
|
8
|
Abstract
Simian virus-40 (SV40), an icosahedral papovavirus, has recently been modified to serve as a gene delivery vector. Recombinant SV40 vectors (rSV40) are good candidates for gene transfer, as they display some unique features: SV40 is a well-known virus, nonreplicative vectors are easy-to-make, and can be produced in titers of 10(12) IU/ml. They also efficiently transduce both resting and dividing cells, deliver persistent transgene expression to a wide range of cell types, and are nonimmunogenic. Present disadvantages of rSV40 vectors for gene therapy are a small cloning capacity and the possible risks related to random integration of the viral genome into the host genome. Considerable efforts have been devoted to modifing this virus and setting up protocols for viral production. Preliminary therapeutic results obtained both in tissue culture cells and in animal models for heritable and acquired diseases indicate that rSV40 vectors are promising gene transfer vehicles. This article reviews the work performed with SV40 viruses as recombinant vectors for gene transfer. A summary of the structure, genomic organization, and life cycle of wild-type SV40 viruses is presented. Furthermore, the strategies utilized for the development, production, and titering of rSV40 vectors are discussed. Last, the therapeutic applications developed to date are highlighted.
Collapse
Affiliation(s)
- Maria Vera
- School of Medicine, Foundation for Applied Medical Research, Division of Gene Therapy, Laboratory of Vectors Development, University of Navarra, Pamplona, Spain
| | | |
Collapse
|
9
|
Cordelier P, Calarota SA, Pomerantz RJ, Xiaoshan J, Strayer DS. Inhibition of HIV-1 in the Central Nervous System by IFN-α2 Delivered by an SV40 Vector. J Interferon Cytokine Res 2003; 23:477-88. [PMID: 14565857 DOI: 10.1089/10799900360708605] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In human immunodeficiency virus type 1 (HIV-1)-infected individuals, virus-induced production of interferon alpha (IFN-alpha) is impaired. In order to obtain regulated expression of IFN-alpha that responds to HIV-1 infection, a recombinant SV40 vector was designed that carries the human IFN-alpha2 cDNA under the control of the HIV-1 long terminal repeat (LTR) (SV[HIVLTR]IFN). Thus, the IFN-alpha2 gene would be trans-activated on infection with HIV-1. This vector was tested to determine if central nervous system (CNS) cell types that may be potential HIV-1 targets could be transduced and protected from HIV. SV[HIVLTR]IFN transduced NT2 cells, a human neuronal precursor cell line, mature neurons derived from NT2 precursor cells, and human primary monocyte-derived macrophages. IFN-alpha2 expression was retained in mature neurons after SV[HIVLTR]IFN-transduced NT2 precursor cells were induced to differentiate using retinoic acid. IFN-alpha expression was detected only after exposing transduced cells to HIV. Furthermore, SV[HIVLTR]IFN-delivered IFN-alpha2 expression significantly inhibited replication of multiple strains of HIV in both NT2 and NT2-derived mature neurons. SV[HIVLTR]IFN transduction also inhibited HIV-1(BaL) replication in human primary monocyte-derived macrophages. Therefore, we have demonstrated the effectiveness of IFN-alpha2, delivered by an SV40 vector driven by HIV-1 LTR as a promoter, to protect several CNS-based, potentially HIV-susceptible cell types. These findings may have implications for therapy of HIV-1 infection in the CNS.
Collapse
Affiliation(s)
- Pierre Cordelier
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
The central role of endoconvertases and HIV-1 protease (HIV-1 PR) in the processing of HIV proproteins makes the design of specific inhibitors important in anti-HIV gene therapy. Accordingly, we tested native alpha(1) antitrypsin (alpha(1)AT) delivered by a recombinant simian virus-40-based vector, SV(AT), as an inhibitor of HIV-1 proprotein maturation. Cell lines and primary human lymphocytes were transduced with SV(AT) without selection and detectable toxicity. Expression of alpha(1)AT was confirmed by Northern blotting, immunoprecipitation and immunostaining. SV(AT)-transduced cells showed no evidence of HIV-1-related cytopathic effects when challenged with high doses of HIV-1(NL4-3). As measured by HIV-1 p24 assay, SV(AT)-transduced cells were protected from HIV-1(NL4-3) at challenge dose of 40 000 TCID(50) (MOI = 0.04). In addition, peripheral blood lymphocytes treated with SV(AT) were protected from HIV doses challenge up to 40 000 TCID(50) (MOI = 0.04). By Western blot analyses, the delivered alpha(1)AT inhibited cellular processing of gp160 to gp120 and decreased HIV-1 virion gp120. SV(AT) inhibited processing of p55(Gag) as well. Furthermore, high levels of uncleaved p55(Gag) protein were detected in HIV virus particles recovered from SV(AT)-transduced cells lines and primary lymphocytes. Thus, delivering alpha(1)AT using SV(AT) to human lymphocytes strongly inhibits replication of HIV-1, most likely by inhibiting the activities both of the cellular serine proteases involved in processing gp160 and of the aspartyl protease, HIV-1 PR, which cleaves p55(Gag). alpha(1)AT delivered by SV(AT) may represent a novel and effective strategy for gene therapy to interfere with HIV replication, by blocking a stage in the virus replicative cycle that has until now been inaccessible to gene therapeutic intervention.
Collapse
Affiliation(s)
- P Cordelier
- Department of Pathology, Jefferson Medical College, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
11
|
|
12
|
Joshi P, Prasad VR. Potent inhibition of human immunodeficiency virus type 1 replication by template analog reverse transcriptase inhibitors derived by SELEX (systematic evolution of ligands by exponential enrichment). J Virol 2002; 76:6545-57. [PMID: 12050367 PMCID: PMC136251 DOI: 10.1128/jvi.76.13.6545-6557.2002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA aptamers derived by SELEX (systematic evolution of ligands by exponential enrichment) and specific for human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) bind at the template-primer cleft with high affinity and inhibit its activity. In order to determine the potential of such template analog RT inhibitors (TRTIs) to inhibit HIV-1 replication, 10 aptamers were expressed with flanking, self-cleaving ribozymes to generate aptamer RNA transcripts with minimal flanking sequences. From these, six aptamers (70.8,13, 70.15, 80.55,65, 70.28, 70.28t34, and 1.1) were selected based on binding constants (K(d)) and the degree of inhibition of RT in vitro (50% inhibitory concentration [IC(50)]). These six aptamers were each stably expressed in 293T cells followed by transfection of a molecular clone of HIV(R3B). Analysis of the virion particles revealed that the aptamers were encapsidated into the virions released and that the packaging of the viral genomic RNA or the cognate primer, tRNA(Lys)(3), was apparently unaffected. Infectivity of virions produced from 293T cell lines expressing the aptamers, as measured by infecting LuSIV reporter cells, was reduced by 90 to 99.5% compared to virions released from cells not expressing any aptamers. PCR analysis of newly made viral DNA upon infection with virions containing any of the three aptamers with the strongest binding affinities (70.8,13, 70.15, and 80.55,65) showed that all three were able to form the minus-strand strong-stop DNA. However, virions with the aptamers 70.8 and 70.15 were defective for first-strand transfer, suggesting an early block in viral reverse transcription. Jurkat T cells expressing each of the three aptamers, when infected with HIV(R3B), completely blocked the spread of HIV in culture. We found that the replication of nucleoside analog RT inhibitor-, nonnucleoside analog RT inhibitor-, and protease inhibitor-resistant viruses was strongly suppressed by the three aptamers. In addition, some of the HIV subtypes were severely inhibited (subtypes A, B, D, E, and F), while others were either moderately inhibited (subtypes C and O) or were naturally resistant to inhibition (chimeric A/D subtype). As virion-encapsidated TRTIs can predispose virions for inhibition immediately upon entry, they should prove to be efficacious agents in gene therapy approaches for AIDS.
Collapse
Affiliation(s)
- Pheroze Joshi
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | |
Collapse
|
13
|
Magnani M, Rossi L, Fraternale A, Bianchi M, Antonelli A, Crinelli R, Chiarantini L. Erythrocyte-mediated delivery of drugs, peptides and modified oligonucleotides. Gene Ther 2002; 9:749-51. [PMID: 12032702 DOI: 10.1038/sj.gt.3301758] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An important determinant for the success of every new therapy is the ability to deliver the molecules of interest to the target cells or organ. This selective delivery is even more complex when the therapeutic agents are peptides, modified oligonucleotides or genes. In this paper we summarize the possibility of using autologous erythrocytes for the delivery and targeting of new and conventional therapeutics. In fact, a number of macromolecules can be encapsulated by different procedures into human erythrocytes. These modified cells can then be re-infused into the same or a compatible recipient where they can circulate for several weeks. However, drug-loaded erythrocytes can also be modified to be selectively recognized by tissue macrophages. These phagocyte cells recognize the modified drug-loaded erythrocytes which are able to release their content into the macrophage. The feasibility and safety of the use of erythrocytes as drug delivery systems was evaluated in 10 cystic fibrosis patients, where a sustained release of corticosteroids from dexamethasone 21-phosphate-loaded erythrocytes was obtained. In vitro human erythrocytes were found to be able to deliver ubiquitin analogues and modified oligonucleotides to macrophages. Thus, drug-loaded erythrocytes are safe and useful carriers of new and conventional therapeutics and can be advantageous delivery systems for new clinical applications where proteins and oligonucleotides are therapeutic agents.
Collapse
Affiliation(s)
- M Magnani
- Institute of Biochemistry 'Giorgio Fornaini', University of Urbino, Italy.
| | | | | | | | | | | | | |
Collapse
|
14
|
Strayer DS, Branco F, Landré J, BouHamdan M, Shaheen F, Pomerantz RJ. Combination genetic therapy to inhibit HIV-1. Mol Ther 2002; 5:33-41. [PMID: 11786043 DOI: 10.1006/mthe.2001.0513] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Compared with single agents, combination antilentiviral pharmacotherapy targets multiple HIV-1 functions simultaneously, maximizing efficacy and decreasing chances of escape mutations. Combination genetic therapy could theoretically enhance efficacy similarly, but delivery of even single genes to high percentages of hematopoietic cells or their derivatives has proven problematic. Because of their high efficiency of gene delivery, we tested recombinant SV40-derived vectors (rSV40s) for this purpose. We made six rSV40s, each carrying a different transgene that targeted a different lentiviral function. We tested the ability of these constructs, individually and in double and triple combinations, to protect SupT1 human T lymphoma cells from HIV-1 challenge. Single chain antibodies (SFv) against CXCR4 and against HIV-1 reverse transcriptase (RT) and integrase (IN) were used, as were polymeric TAR decoys (PolyTAR) and a dominant-negative mutant of HIV-1 Rev (RevM10). Immunostaining showed that virtually all doubly treated cells expressed both transgenes. All transgenes individually protected from HIV-1 but, except for anti-CXCR4 SFv, their effectiveness diminished as challenge doses increased from 40 through 2500 tissue culture infectious dose(50) (TCID(50))/10(6) cells. However, all combinations of transgenes protected target cells better than individual transgenes, even from the highest challenge doses. Thus, combination gene therapies may inhibit HIV-1 better than single agents, and rSV40s may facilitate delivery of multigene therapeutics.
Collapse
Affiliation(s)
- David S Strayer
- Department of Pathology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | | | |
Collapse
|