1
|
Yin RX, Yang DZ, Wu JZ. Nanoparticle drug- and gene-eluting stents for the prevention and treatment of coronary restenosis. Theranostics 2014; 4:175-200. [PMID: 24465275 PMCID: PMC3900802 DOI: 10.7150/thno.7210] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 10/23/2013] [Indexed: 01/16/2023] Open
Abstract
Percutaneous coronary intervention (PCI) has become the most common revascularization procedure for coronary artery disease. The use of stents has reduced the rate of restenosis by preventing elastic recoil and negative remodeling. However, in-stent restenosis remains one of the major drawbacks of this procedure. Drug-eluting stents (DESs) have proven to be effective in reducing the risk of late restenosis, but the use of currently marketed DESs presents safety concerns, including the non-specificity of therapeutics, incomplete endothelialization leading to late thrombosis, the need for long-term anti-platelet agents, and local hypersensitivity to polymer delivery matrices. In addition, the current DESs lack the capacity for adjustment of the drug dose and release kinetics appropriate to the disease status of the treated vessel. The development of efficacious therapeutic strategies to prevent and inhibit restenosis after PCI is critical for the treatment of coronary artery disease. The administration of drugs using biodegradable polymer nanoparticles as carriers has generated immense interest due to their excellent biocompatibility and ability to facilitate prolonged drug release. Despite the potential benefits of nanoparticles as smart drug delivery and diagnostic systems, much research is still required to evaluate potential toxicity issues related to the chemical properties of nanoparticle materials, as well as to their size and shape. This review describes the molecular mechanism of coronary restenosis, the use of DESs, and progress in nanoparticle drug- or gene-eluting stents for the prevention and treatment of coronary restenosis.
Collapse
|
2
|
Goh D, Tan A, Farhatnia Y, Rajadas J, Alavijeh MS, Seifalian AM. Nanotechnology-Based Gene-Eluting Stents. Mol Pharm 2013; 10:1279-98. [DOI: 10.1021/mp3006616] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Debbie Goh
- Centre for Nanotechnology & Regenerative Medicine, UCL Division of Surgery & Interventional Science, University College London, London NW3 2QG, United Kingdom
- UCL Medical School, University
College London, London WC1E 6BT, United Kingdom
| | - Aaron Tan
- Centre for Nanotechnology & Regenerative Medicine, UCL Division of Surgery & Interventional Science, University College London, London NW3 2QG, United Kingdom
- UCL Medical School, University
College London, London WC1E 6BT, United Kingdom
| | - Yasmin Farhatnia
- Centre for Nanotechnology & Regenerative Medicine, UCL Division of Surgery & Interventional Science, University College London, London NW3 2QG, United Kingdom
| | - Jayakumar Rajadas
- Biomaterials & Advanced Drug Delivery Laboratory, School of Medicine, Stanford University, California 94305, United States
| | | | - Alexander M. Seifalian
- Centre for Nanotechnology & Regenerative Medicine, UCL Division of Surgery & Interventional Science, University College London, London NW3 2QG, United Kingdom
- Royal Free London NHS Foundation
Trust, London NW3 2QG, United Kingdom
| |
Collapse
|
3
|
Sharma A, Tandon M, Bangari DS, Mittal SK. Adenoviral vector-based strategies for cancer therapy. CURRENT DRUG THERAPY 2009; 4:117-138. [PMID: 20160875 DOI: 10.2174/157488509788185123] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Definitive treatment of cancer has eluded scientists for decades. Current therapeutic modalities like surgery, chemotherapy, radiotherapy and receptor-targeted antibodies have varied degree of success and generally have moderate to severe side effects. Gene therapy is one of the novel and promising approaches for therapeutic intervention of cancer. Viral vectors in general and adenoviral (Ad) vectors in particular are efficient natural gene delivery systems and are one of the obvious choices for cancer gene therapy. Clinical and preclinical findings with a wide variety of approaches like tumor suppressor and suicide gene therapy, oncolysis, immunotherapy, anti-angiogenesis and RNA interference using Ad vectors have been quite promising, but there are still many hurdles to overcome. Shortcomings like increased immunogenicity, prevalence of preexisting anti-Ad immunity in human population and lack of specific targeting limit the clinical usefulness of Ad vectors. In recent years, extensive research efforts have been made to overcome these limitations through a variety of approaches including the use of conditionally-replicating Ad and specific targeting of tumor cells. In this review, we discuss the potential strengths and limitations of Ad vectors for cancer therapy.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Comparative Pathobiology, and Bindley Bioscience Center, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
4
|
González JM, Andrés V. Cytostatic gene therapy for occlusive vascular disease. Expert Opin Ther Pat 2006. [DOI: 10.1517/13543776.16.4.507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Rebar EJ. Development of pro-angiogenic engineered transcription factors for the treatment of cardiovascular disease. Expert Opin Investig Drugs 2005; 13:829-39. [PMID: 15212621 DOI: 10.1517/13543784.13.7.829] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gene therapies that use engineered transcription factors to regulate a patient's own endogenous genetic loci offer several advantages over cDNA-based approaches, including the capacity to upregulate all splice variants of a therapeutic gene. Currently, two engineered transcription factors are being developed for use in gene-mediated revascularisation therapies of cardiovascular disease. Both proteins target a powerful, constitutive transcriptional activation module to a defined sequence in the promoter region of vascular endothelial growth factor-A via linkage to an appropriately specific DNA-binding domain, either the basic helix-loop-helix motif of hypoxia-inducible factor-1alpha (HIF-1alpha) or a designed zinc finger protein. Both factors activate the expression of vascular endothelial growth factor-A in cellular studies and induce angiogenesis in animal models of cardiovascular disease. Phase I studies are underway for the HIF-1alpha-based factor and are expected to commence for the zinc finger protein-based factor by the second half of 2004.
Collapse
|
6
|
McNeish IA, Bell SJ, Lemoine NR. Gene therapy progress and prospects: cancer gene therapy using tumour suppressor genes. Gene Ther 2004; 11:497-503. [PMID: 14762396 DOI: 10.1038/sj.gt.3302238] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Targeting tumour suppressor gene pathways is an attractive therapeutic strategy in cancer. Since the first clinical trial took place in 1996, at least 20 other trials have investigated the possibility of restoring p53 function, either alone or in combination with chemotherapy, but with limited success. Other recent clinical trials have sought to harness abnormalities in the p53 pathway to permit tumour-selective replication of adenoviral vectors such as dl1520 (Onyx-015). Other tumour suppressor genes, such as retinoblastoma (Rb) and PTEN (phosphatase, tensin homologue, deleted on chromosome 10), are the targets for imminent clinical trials, while microarray technologies are revealing multiple new genes that are potential targets for future gene therapy.
Collapse
Affiliation(s)
- I A McNeish
- Cancer Research UK, Molecular Oncology Unit, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | | | | |
Collapse
|
7
|
Bicknell KA, Surry EL, Brooks G. Targeting the cell cycle machinery for the treatment of cardiovascular disease. J Pharm Pharmacol 2003; 55:571-91. [PMID: 12831500 DOI: 10.1211/002235703765344487] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Cardiovascular disease represents a major clinical problem affecting a significant proportion of the world's population and remains the main cause of death in the UK. The majority of therapies currently available for the treatment of cardiovascular disease do not cure the problem but merely treat the symptoms. Furthermore, many cardioactive drugs have serious side effects and have narrow therapeutic windows that can limit their usefulness in the clinic. Thus, the development of more selective and highly effective therapeutic strategies that could cure specific cardiovascular diseases would be of enormous benefit both to the patient and to those countries where healthcare systems are responsible for an increasing number of patients. In this review, we discuss the evidence that suggests that targeting the cell cycle machinery in cardiovascular cells provides a novel strategy for the treatment of certain cardiovascular diseases. Those cell cycle molecules that are important for regulating terminal differentiation of cardiac myocytes and whether they can be targeted to reinitiate cell division and myocardial repair will be discussed as will the molecules that control vascular smooth muscle cell (VSMC) and endothelial cell proliferation in disorders such as atherosclerosis and restenosis. The main approaches currently used to target the cell cycle machinery in cardiovascular disease have employed gene therapy techniques. We will overview the different methods and routes of gene delivery to the cardiovascular system and describe possible future drug therapies for these disorders. Although the majority of the published data comes from animal studies, there are several instances where potential therapies have moved into the clinical setting with promising results.
Collapse
Affiliation(s)
- Katrina A Bicknell
- Cardiovascular Research Group, School of Animal and Microbial Sciences, The University of Reading, PO Box 228, Whiteknights, Reading, Berkshire, RG6 6AJ, UK
| | | | | |
Collapse
|
8
|
Abstract
Vascular smooth muscle cell (VSMC) proliferation after arterial injury results in neointima formation and plays an important role in the pathogenesis of restenosis after angioplasty, in-stent restenosis, vascular bypass graft occlusion, and allograft vasculopathy. Major progress has been made recently in elucidating the cellular and molecular mechanisms underlying neointima formation. However, no known curative treatment currently exists. In cases in which pharmacologic and surgical interventions have had limited success, gene therapy remains a potential strategy for the treatment of such vascular proliferative diseases. To date, recombinant adenoviral vectors continue to be the most efficient methods of gene transfer into the arterial wall. However, concerns over the safety of using viral vectors in a clinical situation have inspired the considerable progress that has been made in improving both viral and nonviral modes of gene transfer. This review discusses some of the recent insights and outstanding progress in vascular gene therapeutic approaches to inhibit neointima both from a biologic and therapeutic perspective.
Collapse
Affiliation(s)
- Martin F Crook
- Cardiovascular Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
9
|
Nicklin SA, Baker AH. Development of targeted viral vectors for cardiovascular gene therapy. GENETIC ENGINEERING 2003; 25:15-49. [PMID: 15260232 DOI: 10.1007/978-1-4615-0073-5_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Stuart A Nicklin
- British Heart Foundation Blood Pressure Group, Division of Cardiovascular and Medical Sciences, University of Glasgow, Western Infirmary, Glasgow G11 6NT, UK
| | | |
Collapse
|
10
|
Ramachandra M, Rahman A, Zou A, Vaillancourt M, Howe JA, Antelman D, Sugarman B, Demers GW, Engler H, Johnson D, Shabram P. Re-engineering adenovirus regulatory pathways to enhance oncolytic specificity and efficacy. Nat Biotechnol 2001; 19:1035-41. [PMID: 11689848 DOI: 10.1038/nbt1101-1035] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Replicating adenoviruses may prove to be effective anticancer agents if they can be engineered to selectively destroy tumor cells. We have constructed a virus (01/PEME) containing a novel regulatory circuit in which p53-dependent expression of an antagonist of the E2F transcription factor inhibits viral replication in normal cells. In tumor cells, however, the combination of p53 pathway defects and deregulated E2F allows replication of 01/PEME at near wild-type levels. The re-engineered virus also showed significantly enhanced efficacy compared with extensively studied E1b-deleted viruses such as dl1520 in human xenograft tumor models.
Collapse
Affiliation(s)
- M Ramachandra
- Canji, Inc. 3525 John Hopkins Court, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|