1
|
Bozhokin MS, Bozhkova SA, Sopova JV, Leonova EI, Shubniakov MI, Rubel AA, Simental-Mendía M. Perspectives for using platelet-rich plasma in the treatment of knee osteoarthritis: Can it be improved through modifications of the protocol? Chin J Traumatol 2025:S1008-1275(25)00055-0. [PMID: 40382203 DOI: 10.1016/j.cjtee.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 05/20/2025] Open
Abstract
PURPOSE Autologous platelet-rich plasma (PRP) injections are widely used in regenerative medicine, including the knee osteoarthritis (OA) therapy. This study reviews methods to enhance PRP therapy for knee OA, aiming to boost articular cartilage recovery. METHODS The search was conducted in the eLIBRARY, PubMed (MEDLINE), Ovid, ScienceDirect, and Google Scholar databases extracting publications available by the end of 2023. Studies were included if they simultaneously met the following criteria: (1) effect of using PRP in the recovery of hyaline cartilage damage after OA; (2) at least one way to modify the PRP protocol aimed to increase its efficiency; (3) data on the molecular mechanisms underlying the increase in efficiency of the modified PRP therapy in OA. RESULTS The findings of this study highlight the significant role that the composition and modification of PRP protocols play in enhancing chondrogenesis for cartilage repair. Beyond the activation or non-activation of platelets or the inclusion or removal of leukocytes, which are factors that could somehow affect the effectiveness of PRP formulations, the elimination of growth factors such as VEGF and EGF, which negatively influence cartilage regeneration, offers a promising approach to optimize PRP therapy. While growth factors like TGF-β3, PDGF, and IGF have been shown to promote chondrogenesis, the removal of detrimental factors that could contribute to chronic inflammation or OA progression could significantly improve treatment outcomes. Practices such as combining with hyaluronic acid, pre-injection PRP activation, and multiple administrations are clinically common, while other methods like adjusting growth factors concentration are still in development. CONCLUSION Various modifications of this technology allow to use molecular mechanisms involved in the restoration of hyaline cartilage and improve the effectiveness of PRP for the treatment of OA. However, significant challenges remain in standardizing PRP preparation and administration protocols. Variability in platelet concentration, growth factor composition, and activation methods complicate the assessment of efficacy and reproducibility.
Collapse
Affiliation(s)
- Mikhail S Bozhokin
- Treatment and Prevention of Wound Infection, Vreden National Medical Research Centre of Traumatology and Orthopedics, Saint Petersburg, 195427, Russia; Сenter of Cell Technologies, Institute of Cytology Russian Academy of Science, Saint Petersburg, 194064, Russia.
| | - Svetlana A Bozhkova
- Treatment and Prevention of Wound Infection, Vreden National Medical Research Centre of Traumatology and Orthopedics, Saint Petersburg, 195427, Russia
| | - Julia V Sopova
- Center of Transgenesis and Genome Editing, Saint Petersburg State University, Saint Petersburg, 198504, Russia; Laboratory of Plant Genetics and Biotechnology, Institute of General Genetics, St Petersburg Branch, Saint Petersburg, 198504, Russia
| | - Elena I Leonova
- Center of Transgenesis and Genome Editing, Saint Petersburg State University, Saint Petersburg, 198504, Russia
| | - Maxim I Shubniakov
- Treatment and Prevention of Wound Infection, Vreden National Medical Research Centre of Traumatology and Orthopedics, Saint Petersburg, 195427, Russia
| | - Aleksandr A Rubel
- Laboratory of Amyloid Biology, Saint Petersburg State University, Saint Petersburg, 198504, Russia
| | - Mario Simental-Mendía
- Orthopedic Trauma Service, "Dr. José Eleuterio González" University Hospital, School of Medicine, Autonomous University of Nuevo Leon, Monterrey, 66455, Mexico
| |
Collapse
|
2
|
Wazan LE, Widhibrata A, Liu GS. Soluble FLT-1 in angiogenesis: pathophysiological roles and therapeutic implications. Angiogenesis 2024; 27:641-661. [PMID: 39207600 DOI: 10.1007/s10456-024-09942-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Fine-tuning angiogenesis, the development of new blood vessels, is essential for maintaining a healthy circulatory and lymphatic system. The small glycoprotein vascular endothelial growth factors (VEGF) are the key mediators in this process, binding to their corresponding membrane-bound VEGF receptors (VEGFRs) to activate angiogenesis signaling pathways. These pathways are crucial throughout human life as they are involved in lymphatic and vascular endothelial cell permeability, migration, proliferation, and survival. Neovascularization, the formation of abnormal blood vessels, occurs when there is a dysregulation of angiogenesis and can result in debilitating disease. Hence, VEGFRs have been widely studied to understand their role in disease-causing angiogenesis. VEGFR1, also known as Fms-like tyrosine kinase-1 (FLT-1), is also found in a soluble form, soluble FLT-1 or sFLT-1, which is known to act as a VEGF neutralizer. It is incorporated into anti-VEGF therapy, designed to treat diseases caused by neovascularization. Here we review the journey of sFLT-1 discovery and delve into the alternative splicing mechanism that creates the soluble receptor, its prevalence in disease states, and its use in current and future potential therapies.
Collapse
Affiliation(s)
- Layal Ei Wazan
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Level 7, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia
| | - Ariel Widhibrata
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Level 7, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Level 7, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia.
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia.
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.
| |
Collapse
|
3
|
Leonova EI, Chirinskaite AV, Sopova JV. A systematic review of the safety and efficacy of platelet-rich plasma for the treatment of posttraumatic knee osteoarthritis. KAZAN MEDICAL JOURNAL 2024; 105:637-647. [DOI: 10.17816/kmj568204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Injury of the knee joint can lead to a range of adverse outcomes and significantly contributes to the development of the knee osteoarthritis. Currently, autologous platelet-rich plasma is used as a promising and safe method of treating osteoarthritis. Such plasma contains various growth factors, some of which are secreted after platelet activation. These factors can trigger a regenerative response and improve the metabolic functions of damaged structures. However, there are different protocols for preparing platelet-rich plasma, which results in preparations with different amounts of bioactive substances. As a result, the data obtained on the effect of platelet-rich plasma on the restoration of hyaline cartilage of the knee joint are very contradictory. A search for publications on a given topic was performed in the eLIBRARY, PubMed (MEDLINE), Ovid, Science Direct, Google Scholar databases, and also a search was conducted for clinical trial data on the treatment of knee osteoarthritis with platelet-rich plasma over the past 20 years. Publications dealing with other aspects of the application of this technology were excluded from the search results. An analysis of published clinical trial results found that, in most cases, patients treated with platelet-rich plasma reported improved pain and joint function, with only three studies showing no difference between platelet-rich plasma and placebo. Thus, this technology is generally promising for use in the treatment of knee osteoarthritis, however, methods of obtaining and activating platelet-rich plasma, as well as the age and comorbidities of the patient, may affect the effectiveness of therapy.
Collapse
Affiliation(s)
- Elena I. Leonova
- Center for Transgenesis and Genome Editing, Institute of Translational Biomedicine, St. Petersburg State University
| | - Angelina V. Chirinskaite
- Center for Transgenesis and Genome Editing, Institute of Translational Biomedicine, St. Petersburg State University
| | - Julia V. Sopova
- Center for Transgenesis and Genome Editing, Institute of Translational Biomedicine, St. Petersburg State University
| |
Collapse
|
4
|
Lee JS, Guo P, Klett K, Hall M, Sinha K, Ravuri S, Huard J, Murphy WL. VEGF-attenuated platelet-rich plasma improves therapeutic effect on cartilage repair. Biomater Sci 2022; 10:2172-2181. [PMID: 35348136 PMCID: PMC9622215 DOI: 10.1039/d1bm01873f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autologous platelet-rich plasma (PRP) has gained popularity as a less invasive treatment for various musculoskeletal tissue injuries and conditions due to its favorable safety profile, minimal manipulation and cost-effectiveness. Although PRP treatment has been clinically used for the treatment of osteoarthritis (OA) and damaged cartilage, evidence on therapeutic efficacy has been inconsistent, which calls for a methodology to achieve consistent and improved treatment outcomes. Given that PRP contains numerous proteins, we hypothesized that attenuation of a growth factor known to be detrimental to the healing tissue would enhance efficacy of PRP treatment. Considering that VEGF-mediated angiogenesis inhibits the repair of articular cartilage, we developed VEGF-attenuated PRP by sequestering VEGF in PRP using VEGF-binding microspheres. We demonstrated that VEGF attenuation in PRP did not inhibit the effect of PRP on chondrogenic differentiation of stem cells in vitro. In addition, healing of rat OA cartilage was significantly improved after treatment with VEGF-attenuated PRP when compared to the PRP treatment group or PBS control group. We expect that attenuation of unwanted biological activity using growth factor-binding microspheres could provide a new PRP customization method broadly applicable to various tissue repair processes.
Collapse
Affiliation(s)
- Jae Sung Lee
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA.
| | - Ping Guo
- Linda & Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, USA
| | - Katarina Klett
- Linda & Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, USA
| | - MacGregor Hall
- Department of Orthopedic Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Krishna Sinha
- Department of Orthopedic Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sudheer Ravuri
- Linda & Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, USA
| | - Johnny Huard
- Linda & Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, USA
| | - William L Murphy
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Materials Science Program, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
5
|
George G, Shyni GL, Raghu KG. Current and novel therapeutic targets in the treatment of rheumatoid arthritis. Inflammopharmacology 2020; 28:1457-1476. [PMID: 32948901 DOI: 10.1007/s10787-020-00757-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023]
Abstract
Rheumatoid arthritis (RA), a multifactorial disease characterized by synovitis, cartilage destruction, bone erosion, and periarticular decalcification, finally results in impairment of joint function. Both genetic and environmental factors are risk factors in the development of RA. Unwanted side effects accompany most of the current treatment strategies, and around 20-40% of patients with RA do not clinically benefit from these treatments. The unmet need for new treatment options for RA has prompted research in the development of novel agents acting through physiologically and pharmacologically relevant targets. Here we discuss in detail three critical pathways, Janus kinase/signal transducer and activator of transcription (JAK/STAT), Th17, and hypoxia-inducible factor (HIF), and their roles as unique therapeutic targets in the field of RA. Some of the less developed but potential targets like nucleotide-binding and oligomerization domain-like receptor containing protein 3 (NLRP3) inflammasome and histone deacetylase 1 (HDAC1) are also discussed.
Collapse
Affiliation(s)
- Genu George
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India
| | - G L Shyni
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India
| | - K G Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India.
| |
Collapse
|
6
|
Young E, Gould D, Hart S. Toward gene therapy in rheumatoid arthritis. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1736942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Emily Young
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - David Gould
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Stephen Hart
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
7
|
Lee KH, Ahn BS, Cha D, Jang WW, Choi E, Park S, Park JH, Oh J, Jung DE, Park H, Park JH, Suh Y, Jin D, Lee S, Jang YH, Yoon T, Park MK, Seong Y, Pyo J, Yang S, Kwon Y, Jung H, Lim CK, Hong JB, Park Y, Choi E, Shin JI, Kronbichler A. Understanding the immunopathogenesis of autoimmune diseases by animal studies using gene modulation: A comprehensive review. Autoimmun Rev 2020; 19:102469. [PMID: 31918027 DOI: 10.1016/j.autrev.2020.102469] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 12/21/2022]
Abstract
Autoimmune diseases are clinical syndromes that result from pathogenic inflammatory responses driven by inadequate immune activation by T- and B-cells. Although the exact mechanisms of autoimmune diseases are still elusive, genetic factors also play an important role in the pathogenesis. Recently, with the advancement of understanding of the immunological and molecular basis of autoimmune diseases, gene modulation has become a potential approach for the tailored treatment of autoimmune disorders. Gene modulation can be applied to regulate the levels of interleukins (IL), tumor necrosis factor (TNF), cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), interferon-γ and other inflammatory cytokines by inhibiting these cytokine expressions using short interfering ribonucleic acid (siRNA) or by inhibiting cytokine signaling using small molecules. In addition, gene modulation delivering anti-inflammatory cytokines or cytokine antagonists showed effectiveness in regulating autoimmunity. In this review, we summarize the potential target genes for gene or immunomodulation in autoimmune diseases including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), inflammatory bowel diseases (IBD) and multiple sclerosis (MS). This article will give a new perspective on understanding immunopathogenesis of autoimmune diseases not only in animals but also in human. Emerging approaches to investigate cytokine regulation through gene modulation may be a potential approach for the tailored immunomodulation of some autoimmune diseases near in the future.
Collapse
Affiliation(s)
- Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byung Soo Ahn
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dohyeon Cha
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won Woo Jang
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eugene Choi
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soohyun Park
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun Hyeong Park
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junseok Oh
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Da Eun Jung
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heeryun Park
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju Ha Park
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youngsong Suh
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dongwan Jin
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Siyeon Lee
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Hwan Jang
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tehwook Yoon
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min-Kyu Park
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoonje Seong
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jihoon Pyo
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sunmo Yang
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youngin Kwon
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyunjean Jung
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chae Kwang Lim
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun Beom Hong
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yeoeun Park
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eunjin Choi
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
8
|
Korntner S, Lehner C, Gehwolf R, Wagner A, Grütz M, Kunkel N, Tempfer H, Traweger A. Limiting angiogenesis to modulate scar formation. Adv Drug Deliv Rev 2019; 146:170-189. [PMID: 29501628 DOI: 10.1016/j.addr.2018.02.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/22/2018] [Accepted: 02/26/2018] [Indexed: 02/06/2023]
Abstract
Angiogenesis, the process of new blood vessel formation from existing blood vessels, is a key aspect of virtually every repair process. During wound healing an extensive, but immature and leaky vascular plexus forms which is subsequently reduced by regression of non-functional vessels. More recent studies indicate that uncontrolled vessel growth or impaired vessel regression as a consequence of an excessive inflammatory response can impair wound healing, resulting in scarring and dysfunction. However, in order to elucidate targetable factors to promote functional tissue regeneration we need to understand the molecular and cellular underpinnings of physiological angiogenesis, ranging from induction to resolution of blood vessels. Especially for avascular tissues (e.g. cornea, tendon, ligament, cartilage, etc.), limiting rather than boosting vessel growth during wound repair potentially is beneficial to restore full tissue function and may result in favourable long-term healing outcomes.
Collapse
|
9
|
Zavvar M, Assadiasl S, Soleimanifar N, Pakdel FD, Abdolmohammadi K, Fatahi Y, Abdolmaleki M, Baghdadi H, Tayebi L, Nicknam MH. Gene therapy in rheumatoid arthritis: Strategies to select therapeutic genes. J Cell Physiol 2019; 234:16913-16924. [PMID: 30809802 DOI: 10.1002/jcp.28392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/01/2019] [Indexed: 12/15/2022]
Abstract
Significant advances have been achieved in recent years to ameliorate rheumatoid arthritis (RA) in animal models using gene therapy approaches rather than biological treatments. Although biological agents serve as antirheumatic drugs with suppressing proinflammatory cytokine activities, they are usually accompanied by systemic immune suppression resulting from continuous or high systemic dose injections of biological agents. Therefore, gene transfer approaches have opened an interesting perspective to deliver one or multiple genes in a target-specific or inducible manner for the sustained intra-articular expression of therapeutic products. Accordingly, many studies have focused on gene transferring methods in animal models by using one of the available approaches. In this study, the important strategies used to select effective genes for RA gene therapy have been outlined. Given the work done in this field, the future looks bright for gene therapy as a new method in the clinical treatment of autoimmune diseases such as RA, and by ongoing efforts in this field, we hope to achieve feasible, safe, and effective treatment methods.
Collapse
Affiliation(s)
- Mahdi Zavvar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Assadiasl
- Molecular Immunology Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Narjes Soleimanifar
- Molecular Immunology Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Dadgar Pakdel
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamal Abdolmohammadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Abdolmaleki
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Baghdadi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin
| | - Mohammad H Nicknam
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Molecular Immunology Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Stone OA, Carter JG, Lin PC, Paleolog E, Machado MJC, Bates DO. Differential regulation of blood flow-induced neovascularization and mural cell recruitment by vascular endothelial growth factor and angiopoietin signalling. J Physiol 2017; 595:1575-1591. [PMID: 27868196 PMCID: PMC5330904 DOI: 10.1113/jp273430] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/15/2016] [Indexed: 12/24/2022] Open
Abstract
KEY POINTS Combining nitric oxide (NO)-mediated increased blood flow with angiopoietin-1-Tie2 receptor signalling induces arteriolargenesis - the formation of arterioles from capillaries - in a model of physiological angiogenesis. This NO-Tie-mediated arteriolargenesis requires endogenous vascular endothelial growth factor (VEGF) signalling. Inhibition of VEGF signalling increases pericyte coverage in microvessels. Together these findings indicate that generation of functional neovasculature requires close titration of NO-Tie2 signalling and localized VEGF induction, suggesting that the use of exogenous VEGF expression as a therapeutic for neovascularization may not be successful. ABSTRACT Signalling through vascular endothelial growth factor (VEGF) receptors and the tyrosine kinase with IgG and EGF domains-2 (Tie2) receptor by angiopoietins is required in combination with blood flow for the formation of a functional vascular network. We tested the hypothesis that VEGF and angiopoietin-1 (Ang1) contribute differentially to neovascularization induced by nitric oxide (NO)-mediated vasodilatation, by comparing the phenotype of new microvessels in the mesentery during induction of vascular remodelling by over-expression of endothelial nitric oxide synthase in the fat pad of the adult rat mesentery during inhibition of angiopoietin signalling with soluble Tie2 (sTie2) and VEGF signalling with soluble Fms-like tyrosine kinase receptor-1 (sFlt1). We found that NO-mediated angiogenesis was blocked by inhibition of VEGF with sFlt1 (from 881 ± 98% increase in functional vessel area to 279 ± 72%) and by inhibition of angiopoietin with sTie2 (to 337 ± 67%). Exogenous angiopoietin-1 was required to induce arteriolargenesis (8.6 ± 1.3% of vessels with recruitment of vascular smooth muscle cells; VSMCs) in the presence of enhanced flow. sTie2 and sFlt1 both inhibited VSMC recruitment (both 0%), and VEGF inhibition increased pericyte recruitment to newly formed vessels (from 27 ± 2 to 54 ± 3% pericyte ensheathment). We demonstrate that a fine balance of VEGF and angiopoietin signalling is required for the formation of a functional vascular network. Endogenous VEGF signalling prevents excess neovessel pericyte coverage, and is required for VSMC recruitment during increased nitric oxide-mediated vasodilatation and angiopoietin signalling (NO-Tie-mediated arteriogenesis). Therapeutic vascular remodelling paradigms may therefore require treatments that modulate blood flow to utilize endogenous VEGF, in combination with exogenous Ang1, for effective neovascularization.
Collapse
Affiliation(s)
- Oliver A Stone
- Microvascular Research Laboratories, Bristol Heart Institute, School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - James G Carter
- Microvascular Research Laboratories, Bristol Heart Institute, School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - P Charles Lin
- Center for Cancer Research, National Institute of Cancer, Frederick, MD, 2170, USA
| | - Ewa Paleolog
- Kennedy Institute of Rheumatology, University of Oxford, 65 Aspenlea Road, Hammersmith, London, UK
| | - Maria J C Machado
- Microvascular Research Laboratories, Bristol Heart Institute, School of Physiology and Pharmacology, University of Bristol, Bristol, UK.,Cancer Biology, Division of Oncology, School of Clinical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - David O Bates
- Microvascular Research Laboratories, Bristol Heart Institute, School of Physiology and Pharmacology, University of Bristol, Bristol, UK.,Cancer Biology, Division of Oncology, School of Clinical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
11
|
Nepomnyashchikh TS, Antonets DV, Shchelkunov SN. Gene therapy of arthritis. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416050094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Hamilton JL, Nagao M, Levine BR, Chen D, Olsen BR, Im HJ. Targeting VEGF and Its Receptors for the Treatment of Osteoarthritis and Associated Pain. J Bone Miner Res 2016; 31:911-24. [PMID: 27163679 PMCID: PMC4863467 DOI: 10.1002/jbmr.2828] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 01/15/2023]
Abstract
Increased vascular endothelial growth factor (VEGF) levels are associated with osteoarthritis (OA) progression. Indeed, VEGF appears to be involved in OA-specific pathologies including cartilage degeneration, osteophyte formation, subchondral bone cysts and sclerosis, synovitis, and pain. Moreover, a wide range of studies suggest that inhibition of VEGF signaling reduces OA progression. This review highlights both the potential significance of VEGF in OA pathology and pain, as well as potential benefits of inhibition of VEGF and its receptors as an OA treatment. With the emergence of the clinical use of anti-VEGF therapy outside of OA, both as high-dose systemic treatments and low-dose local treatments, these particular therapies are now more widely understood. Currently, there is no established disease-modifying drug available for patients with OA, which warrants continued study of the inhibition of VEGF signaling in OA, as stand-alone or adjuvant therapy. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- John L. Hamilton
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Masashi Nagao
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, 02115, USA
| | - Brett R. Levine
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Bjorn R. Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, 02115, USA
| | - Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
- Internal Medicine Section of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Bioengineering, University of Illinois, Chicago, IL, 60612, USA
- Jesse Brown Veterans Affairs, Chicago, IL 60612, USA
| |
Collapse
|
13
|
Adenoviral vector encoding soluble Flt-1 engineered human endometrial mesenchymal stem cells effectively regress endometriotic lesions in NOD/SCID mice. Gene Ther 2016; 23:580-91. [DOI: 10.1038/gt.2016.30] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 12/24/2022]
|
14
|
Feldmann M, Maini RN. Perspectives From Masters in Rheumatology and Autoimmunity: Can We Get Closer to a Cure for Rheumatoid Arthritis? Arthritis Rheumatol 2015; 67:2283-91. [PMID: 26138641 DOI: 10.1002/art.39269] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/24/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Marc Feldmann
- Kennedy Institute of Rheumatology and University of Oxford, Oxford, UK
| | - Ravinder N Maini
- Kennedy Institute of Rheumatology and University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Off-pump CABG surgery reduces systemic inflammation compared with on-pump surgery but does not change systemic endothelial responses: a prospective randomized study. Shock 2015; 42:121-8. [PMID: 24727871 DOI: 10.1097/shk.0000000000000190] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Coronary artery bypass graft (CABG) surgery can result in severe postoperative organ failure. During CABG surgery, cardiopulmonary bypass (CPB) with cardiac arrest is often used (on-pump CABG), which often results in a systemic inflammatory response. To reduce this inflammatory response, off-pump CABG was reintroduced, thereby avoiding CPB. There is increasing evidence that the endothelium plays an important role in the pathophysiology of organ failure after CABG surgery. In this study, 60 patients who were scheduled for elective CABG surgery were randomized to have surgery for on-pump or off-pump CABG. Blood was collected at four time points: start, end, 6 h, and 24 h postoperatively. Levels of inflammatory cytokines, soluble adhesion molecules, and angiogenic factors and their receptors were measured in the plasma. No differences were found in preoperative characteristics between the patient groups. The levels of tumor necrosis factor-α, interleukin 10, and myeloperoxidase, but not interleukin 6, were increased to a greater extent in the on-pump CABG compared with off-pump CABG after sternum closure. The soluble endothelial adhesion molecules E-selectin, vascular cell adhesion molecule 1, and intracellular adhesion molecule 1 were not elevated in the plasma during and after CABG surgery in both on-pump and off-pump CABG. Angiopoietin 2 was only increased 24 h after surgery in both on-pump and off-pump CABG. Higher levels of sFlt-1 were found after sternum closure in off-pump CABG compared with on-pump CABG. Avoiding CPB and aortic cross clamping in CABG surgery reduces the systemic inflammatory response. On-pump CABG does not lead to an increased release of soluble endothelial adhesion molecules in the circulation compared with off-pump CABG.
Collapse
|
16
|
Abstract
Due to a blood supply shortage, articular cartilage has a limited capacity for self-healing once damaged. Articular chondrocytes, cartilage progenitor cells, embryonic stem cells, and mesenchymal stem cells are candidate cells for cartilage regeneration. Significant current attention is paid to improving chondrogenic differentiation capacity; unfortunately, the potential chondrogenic hypertrophy of differentiated cells is largely overlooked. Consequently, the engineered tissue is actually a transient cartilage rather than a permanent one. The development of hypertrophic cartilage ends with the onset of endochondral bone formation which has inferior mechanical properties. In this review, current strategies for inhibition of chondrogenic hypertrophy are comprehensively summarized; the impact of cell source options is discussed; and potential mechanisms underlying these strategies are also categorized. This paper aims to provide guidelines for the prevention of hypertrophy in the regeneration of cartilage tissue. This knowledge may also facilitate the retardation of osteophytes in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Song Chen
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA
- Department of Joint Surgery, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Peiliang Fu
- Department of Joint Surgery, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Ruijun Cong
- Department of Orthopaedics, The 10th People's Hospital of Shanghai, Affiliated with Tongji University, Shanghai 200072, China
| | - HaiShan Wu
- Department of Joint Surgery, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA
- Exercise Physiology, West Virginia University, Morgantown, WV 26506, USA
- Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506, USA
- Corresponding author. Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, One Medical Center Drive, Morgantown, WV 26506-9196, USA. Tel.: +1 304 293 1072; fax: +1 304 293 7070.
| |
Collapse
|
17
|
Shu SA, Wang J, Tao MH, Leung PSC. Gene Therapy for Autoimmune Disease. Clin Rev Allergy Immunol 2014; 49:163-76. [DOI: 10.1007/s12016-014-8451-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
|
19
|
Maruotti N, Cantatore FP, Ribatti D. Putative effects of potentially anti-angiogenic drugs in rheumatic diseases. Eur J Clin Pharmacol 2013; 70:135-40. [PMID: 24196651 DOI: 10.1007/s00228-013-1605-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/15/2013] [Indexed: 11/27/2022]
Abstract
A role for angiogenesis has been described in several rheumatic diseases, including rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, systemic sclerosis, systemic lupus erythematosus, vasculitides, and osteoarthritis, leading to the possibility that angiogenesis inhibition may be an additional useful therapeutic arm. While the role of anti-angiogenic therapy in rheumatoid arthritis has received attention, it is conceivable that the inhibition of pathological angiogenesis may also be a useful therapeutical approach in other rheumatic diseases. Numerous compounds, such as, for example, various interleukins, antibodies directed against angiogenic factors, peptides, estrogen metabolites, disease-modifying anti-rheumatic drugs, have been found to have anti-angiogenic properties. However, additional research is needed to obtain a clear understanding of the pathogenic mechanism of angiogenesis and the potential applications of anti-angiogenic therapy in rheumatic diseases.
Collapse
Affiliation(s)
- Nicola Maruotti
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia Medical School, Foggia, Italy
| | | | | |
Collapse
|
20
|
Villalta SA, Lang J, Kubeck S, Kabre B, Szot GL, Calderon B, Wasserfall C, Atkinson MA, Brekken RA, Pullen N, Arch RH, Bluestone JA. Inhibition of VEGFR-2 reverses type 1 diabetes in NOD mice by abrogating insulitis and restoring islet function. Diabetes 2013; 62:2870-8. [PMID: 23835340 PMCID: PMC3717875 DOI: 10.2337/db12-1619] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The dysregulation of receptor tyrosine kinases (RTKs) in multiple cell types during chronic inflammation is indicative of their pathogenic role in autoimmune diseases. Among the many RTKs, vascular endothelial growth factor receptor (VEGFR) stands out for its multiple effects on immunity, vascularization, and cell migration. Herein, we examined whether VEGFR participated in the pathogenesis of type 1 diabetes (T1D) in nonobese diabetic (NOD) mice. We found that RTK inhibitors (RTKIs) and VEGF or VEGFR-2 antibodies reversed diabetes when administered at the onset of hyperglycemia. Increased VEGF expression promoted islet vascular remodeling in NOD mice, and inhibition of VEGFR activity with RTKIs abrogated the increase in islet vascularity, impairing T-cell migration into the islet and improving glucose control. Metabolic studies confirmed that RTKIs worked by preserving islet function, as treated mice had improved glucose tolerance without affecting insulin sensitivity. Finally, examination of human pancreata from patients with T1D revealed that VEGFR-2 was confined to the islet vascularity, which was increased in inflamed islets. Collectively, this work reveals a previously unappreciated role for VEGFR-2 signaling in the pathogenesis of T1D by controlling T-cell accessibility to the pancreatic islets and highlights a novel application of VEGFR-2 antagonists for the therapeutic treatment of T1D.
Collapse
Affiliation(s)
- S. Armando Villalta
- Diabetes Center and the Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Jiena Lang
- Diabetes Center and the Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Samantha Kubeck
- Diabetes Center and the Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Beniwende Kabre
- Diabetes Center and the Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Gregory L. Szot
- Diabetes Center and the Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Boris Calderon
- Division of Laboratory and Genomic Medicine; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Clive Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Mark A. Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Rolf A. Brekken
- Division of Surgical Oncology, Department of Surgery and Department of Pharmacology, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nick Pullen
- Pfizer Global Research and Development, Cambridge, Massachusetts
| | - Robert H. Arch
- Pfizer Global Research and Development, Chesterfield, Missouri
| | - Jeffrey A. Bluestone
- Diabetes Center and the Department of Medicine, University of California, San Francisco, San Francisco, California
| |
Collapse
|
21
|
Tsunemi S, Iwasaki T, Kitano S, Matsumoto K, Takagi-Kimura M, Kubo S, Tamaoki T, Sano H. Molecular targeting of hepatocyte growth factor by an antagonist, NK4, in the treatment of rheumatoid arthritis. Arthritis Res Ther 2013; 15:R75. [PMID: 23876175 PMCID: PMC3978668 DOI: 10.1186/ar4252] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 07/22/2013] [Indexed: 12/14/2022] Open
Abstract
Introduction Hepatocyte growth factor (HGF) is a potent proangiogenic molecule that induces neovascularization. The HGF antagonist, NK4, competitively antagonizes HGF binding to its receptor. In the present study, we determined the inhibitory effect of NK4 in a rheumatoid arthritis (RA) model using SKG mice. Methods Arthritis was induced in SKG mice by a single intraperitoneal injection of β-glucan. Recombinant adenovirus containing NK4 cDNA (AdCMV.NK4) was also injected intravenously at the time of or 1 month after β-glucan injection. Ankle bone destruction was examined radiographically. The histopathologic features of joints were examined using hematoxylin and eosin and immunohistochemical staining. Enzyme-linked immunosorbent assays were used to determine the serum levels of HGF, interferon γ (IFN-γ, interleukin 4 (IL-4) and IL-17 production by CD4+ T cells stimulated with allogeneic spleen cells. Results The intravenous injection of AdCMV.NK4 into SKG mice suppressed the progression of β-glucan-induced arthritis. Bone destruction was also inhibited by NK4 treatment. The histopathologic findings of the ankles revealed that angiogenesis, inflammatory cytokines and RANKL expression in synovial tissues were significantly inhibited by NK4 treatment. Recombinant NK4 (rNK4) proteins inhibited IFN-γ, IL-4 and IL-17 production by CD4+ T cells stimulated with allogeneic spleen cells. Conclusions These results indicate that NK4 inhibits arthritis by inhibition of angiogenesis and inflammatory cytokine production by CD4+ T cells. Therefore, molecular targeting of angiogenic inducers by NK4 can potentially be used as a novel therapeutic approach for the treatment of RA.
Collapse
|
22
|
Emami MJ, Jaberi FM, Azarpira N, Vosoughi AR, Tanideh N. Prevention of arthrofibrosis by monoclonal antibody against vascular endothelial growth factor: a novel use of bevacizumab in rabbits. Orthop Traumatol Surg Res 2012; 98:759-764. [PMID: 23062445 DOI: 10.1016/j.otsr.2012.05.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 04/10/2012] [Accepted: 05/09/2012] [Indexed: 02/02/2023]
Abstract
BACKGROUND Prevention of arthrofibrosis by different drugs and surgical techniques is an essential issue in modern orthopedics. HYPOTHESIS Intra-articular injection of bevacizumab can reduce arthrofibrosis on the rabbit's stifle joint model. MATERIALS AND METHODS Arthrofibrosis was induced in the right stifle joint of thirty male New Zealand white rabbits by removing the cortical bone of the medial femoral condyle under general anesthesia. The rabbits were randomly divided into three equal groups. The control group received intra-articular injection of saline; the one-injection group received a single dose of bevacizumab (2.5mg/kg), and the two-injection group received two intra-articular injections; the operation day and 14 days later. Forty-five days after surgery, animals were sacrificed. The severity of fibrosis was assessed based on the range of motion of the joint, a macroscopic adhesion score, and histopathologic variables such as the number of fibroblasts and of inflammatory cells, collagenous matrix deposition, synovial hyperplasia, granulation tissue formation, vascular proliferation, and presence of giant cells. RESULTS Although no statistically significant differences were found between the range of motion (P=0.222) and the macroscopic evaluation (P=0.067) of the control group and the one-injection group, all microscopic variables regarding the prevention of arthrofibrosis were significantly superior in the one-injection group except granulation tissue (P=0.347). Compared to the one-injection group, the two-injection group had better results not only in terms of macroscopic evaluation (P=0.001 for range of motion and 0.012 for visual adhesion score) but also in most of the histopathologic variables especially the number of fibroblasts (P=0.002), vascularity (P=0.028) and collagenous matrix deposition (P=0.039). CONCLUSION A single intra-articular injection of bevacizumab was effective for prevention of microscopically detected arthrofibrosis in the rabbit. Compared to single injection, two injections of bevacizumab improved the clinical outcome. LEVEL OF EVIDENCE Level II.
Collapse
Affiliation(s)
- M J Emami
- Research Center for Bone and Joint Diseases, Department of Orthopedic Surgery, Chamran Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | | |
Collapse
|
23
|
Williams RO. What Have We Learned about the Pathogenesis of Rheumatoid Arthritis from TNF-Targeted Therapy? ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/652739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Studies of cytokine regulation in rheumatoid arthritis led to the development of TNFα inhibitors which are now used for a number of indications, including rheumatoid arthritis, inflammatory bowel disease, psoriasis, psoriatic arthritis, and ankylosing spondylitis. The widespread use of biologics in the clinic offers unique opportunities for probing disease pathogenesis and this paper provides an overview of rheumatoid arthritis, with a particular emphasis on the impact of anti-TNFα therapy on pathogenetic mechanisms. An overview is also provided on the most commonly used animal models that mimic RA, including adjuvant-induced arthritis, collagen-induced arthritis, TNFα-transgenic mice, and the K/BxN and SKG models. These models have led to significant discoveries relating to the importance of pro-inflammatory cytokines in the pathogenesis of rheumatoid arthritis, resulting from disregulation of the normally finely tuned balance of pro- and anti-inflammatory cytokine signalling. In addition, experimental evidence is discussed suggesting how genetic and environmental factors can contribute to disease susceptibility. The role of effector and regulatory T cells is discussed in the light of the relatively disappointing therapeutic effects of T cell modifying agents such as anti-CD4 antibody and cyclosporin. It is concluded that comprehensive analyses of mechanisms of action of biologics and other drugs entering the clinic will be essential to optimise therapy, with the ultimate aim of providing a cure.
Collapse
Affiliation(s)
- Richard O. Williams
- Kennedy Institute of Rheumatology, University of Oxford, 65 Aspenlea Road, London W6 8LH, UK
| |
Collapse
|
24
|
Guma M, Firestein GS. c-Jun N-Terminal Kinase in Inflammation and Rheumatic Diseases. Open Rheumatol J 2012; 6:220-31. [PMID: 23028407 PMCID: PMC3460413 DOI: 10.2174/1874312901206010220] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 01/03/2011] [Accepted: 07/13/2011] [Indexed: 01/24/2023] Open
Abstract
The c-Jun N-terminal kinases (JNKs) are members of the mitogen-activated protein kinase (MAPK) family and are activated by environmental stress. JNK is also activated by proinflammatory cytokines, such as TNF and IL-1, and Toll-like receptor ligands. This pathway, therefore, can act as a critical convergence point in immune system signaling for both adaptive and innate responses. Like other MAPKs, the JNKs are activated via the sequential activation of protein kinases that includes two dual-specificity MAP kinase kinases (MKK4 and MKK7) and multiple MAP kinase kinase kinases. MAPKs, including JNKs, can be deactivated by a specialized group of phosphatases, called MAP kinase phosphatases. JNK phosphorylates and regulates the activity of transcription factors other than c-Jun, including ATF2, Elk-1, p53 and c-Myc and non-transcription factors, such as members of the Bcl-2 family. The pathway plays a critical role in cell proliferation, apoptosis, angiogenesis and migration. In this review, an overview of the functions that are related to rheumatic diseases is presented. In addition, some diseases in which JNK participates will be highlighted.
Collapse
Affiliation(s)
- Monica Guma
- Division of Rheumatology, Allergy and Immunology, UC San Diego School of Medicine, La Jolla, CA, USA
| | | |
Collapse
|
25
|
Soluble fms-like tyrosine kinase 1 and soluble endoglin are elevated circulating anti-angiogenic factors in pre-eclampsia. Pregnancy Hypertens 2012; 2:358-67. [PMID: 26105603 DOI: 10.1016/j.preghy.2012.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 06/24/2012] [Indexed: 01/05/2023]
Abstract
Pre-eclampsia, characterized by hypertension and proteinuria, affects approximately 3-5% of all pregnancies worldwide and is a major cause of maternal and fetal morbidity and mortality. Maternal endothelial dysfunction is associated with disease pathogenesis. Recently, reports have shown that elevated levels of circulating soluble fms-like tyrosine kinase 1 [sFlt1] and soluble endoglin [sEng] are associated with pre-eclampsia. Flt1 is a receptor for vascular endothelial growth factor receptor [VEGF], whereas endoglin [Eng] is an auxiliary receptor for transforming growth factor-β [TGF-β] super-family members. Both signaling pathways modulate angiogenesis and are involved in vascular homeostasis. Increased levels of sFlt1 and sEng dysregulate VEGF and TGF-β signaling respectively, resulting in endothelial dysfunction of maternal blood vessels. This review summarizes our current knowledge of Flt1 and endoglin and soluble forms in pre-eclampsia. Furthermore, it highlights the predictive and early-screening value of circulating levels of sFlt1 and sEng for the risk of developing pre-eclampsia.
Collapse
|
26
|
Hypoxia--a key regulator of angiogenesis and inflammation in rheumatoid arthritis. Nat Rev Rheumatol 2012; 8:153-62. [PMID: 22293762 DOI: 10.1038/nrrheum.2011.205] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The importance of inflammation in rheumatoid arthritis (RA) is well understood. This knowledge has resulted in the development of anti-inflammatory therapies--either broadly acting (such as steroids) or more specific approaches (such as antibodies against TNF)--with biologic therapies (including TNF inhibitors) revolutionizing the treatment of RA. However, what is less well appreciated in RA are the links between inflammation, blood-vessel formation (angiogenesis) and cellular responses to changes in oxygen tension. Inadequate oxygenation, termed hypoxia, is thought to drive the increase in synovial angiogenesis that occurs in RA, through expression of hypoxia-inducible molecules, including vascular endothelial growth factor (VEGF). This process promotes further infiltration of inflammatory cells and production of inflammatory mediators, perpetuating synovitis. This Review highlights the molecular pathways activated by hypoxia, and how these pathways might interact with inflammatory signaling to promote and maintain synovitis in RA, with a particular focus on the response of macrophages to hypoxia in the context of RA. Successful treatment of RA, for example with anti-TNF antibodies, reduces levels of proangiogenic factors, including VEGF, and leads to normalization of the vasculature. These processes emphasise the close links between hypoxia, angiogenesis and inflammation in this disease and supports the concept that angiogenesis blockade could be of therapeutic benefit in RA.
Collapse
|
27
|
Kong JS, Yoo SA, Kang JH, Ko W, Jeon S, Chae CB, Cho CS, Kim WU. Suppression of neovascularization and experimental arthritis by D-form of anti-flt-1 peptide conjugated with mini-PEG™. Angiogenesis 2011; 14:431-42. [DOI: 10.1007/s10456-011-9226-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 06/30/2011] [Indexed: 12/27/2022]
|
28
|
Gharaibeh B, Lavasani M, Cummins JH, Huard J. Terminal differentiation is not a major determinant for the success of stem cell therapy - cross-talk between muscle-derived stem cells and host cells. Stem Cell Res Ther 2011; 2:31. [PMID: 21745421 PMCID: PMC3219062 DOI: 10.1186/scrt72] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have found that when muscle-derived stem cells (MDSCs) are implanted into a variety of tissues only a small fraction of the donor cells can be found within the regenerated tissues and the vast majority of cells are host derived. This observation has also been documented by other investigators using a variety of different stem cell types. It is speculated that the transplanted stem cells release factors that modulate repair indirectly by mobilizing the host's cells and attracting them to the injury site in a paracrine manner. This process is loosely called a 'paracrine mechanism', but its effects are not necessarily restricted to the injury site. In support of this speculation, it has been reported that increasing angiogenesis leads to an improvement of cardiac function, while inhibiting angiogenesis reduces the regeneration capacity of the stem cells in the injured vascularized tissues. This observation supports the finding that most of the cells that contribute to the repair process are indeed chemo-attracted to the injury site, potentially through host neo-angiogenesis. Since it has recently been observed that cells residing within the walls of blood vessels (endothelial cells and pericytes) appear to represent an origin for post-natal stem cells, it is tempting to hypothesize that the promotion of tissue repair, via neo-angiogenesis, involves these blood vessel-derived stem cells. For non-vascularized tissues, such as articular cartilage, the regenerative property of the injected stem cells still promotes a paracrine, or bystander, effect, which involves the resident cells found within the injured microenvironment, albeit not through the promotion of angiogenesis. In this paper, we review the current knowledge of post-natal stem cell therapy and demonstrate the influence that implanted stem cells have on the tissue regeneration and repair process. We argue that the terminal differentiation capacity of implanted stem cells is not the major determinant of the cells regenerative potential and that the paracrine effect imparted by the transplanted cells plays a greater role in the regeneration process.
Collapse
Affiliation(s)
- Burhan Gharaibeh
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | | | | |
Collapse
|
29
|
Angiogenesis as a therapeutic target in arthritis in 2011: learning the lessons of the colorectal cancer experience. Angiogenesis 2011; 14:223-34. [DOI: 10.1007/s10456-011-9208-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/13/2011] [Indexed: 01/21/2023]
|
30
|
Sugiyama M, Kakeji Y, Tsujitani S, Harada Y, Onimaru M, Yoshida K, Tanaka S, Emi Y, Morita M, Morodomi Y, Hasegawa M, Maehara Y, Yonemitsu Y. Antagonism of VEGF by genetically engineered dendritic cells is essential to induce antitumor immunity against malignant ascites. Mol Cancer Ther 2011; 10:540-9. [PMID: 21209070 DOI: 10.1158/1535-7163.mct-10-0479] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malignant ascitis (MA) is a highly intractable and immunotherapy-resistant state of advanced gastrointestinal and ovarian cancers. Using a murine model of MA with CT26 colon cancer cells, we here determined that the imbalance between the VEGF-A/vascular permeability factor and its decoy receptor, soluble fms-like tryrosine kinase receptor-1 (sFLT-1), was a major cause of MA resistance to dendritic cell (DC)-based immunotherapy. We found that the ratio of VEGF-A/sFLT-1 was increased not only in murine but also in human MA, and F-gene-deleted recombinant Sendai virus (rSeV/dF)-mediated secretion of human sFLT-1 by DCs augmented not only the activity of DCs themselves, but also dramatically improved the survival of tumor-bearing animals associated with enhanced CTL activity and its infiltration to peritoneal tumors. These findings were not seen in immunodeficient mice, indicating that a VEGF-A/sFLT-1 imbalance is critical for determining the antitumor immune response by DC-vaccination therapy against MA.
Collapse
Affiliation(s)
- Masahiko Sugiyama
- R&D Laboratory for Innovative Biotherapeutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Rm 505 Collaborative Research Station II, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Semerano L, Clavel G, Assier E, Denys A, Boissier MC. Blood vessels, a potential therapeutic target in rheumatoid arthritis? Joint Bone Spine 2010; 78:118-23. [PMID: 20851025 DOI: 10.1016/j.jbspin.2010.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 06/23/2010] [Indexed: 01/01/2023]
Abstract
New micro-vessels formation within synovium and macro-vessels endothelial damage with atheroma are two major features of rheumatoid arthritis, the former related to the articular involvement of the disease, the latter to its main systemic complication. The similarities between pannus development and solid tumors growth, and the efficacy of anti-angiogenic treatments in oncology, opened the perspective of directly targeting angiogenesis in arthritis. Nevertheless, despite the success of different anti-angiogenic therapeutic strategies in many arthritis experimental models, the application in human disease is still lacking. Recent data suggest that synovial neoangiogenesis and macro-vessels endothelial damage might be two linked phenomena. While synovial angiogenesis seems to be detrimental to endothelial damage repair, even anti-angiogenic treatments might paradoxically aggravate macro-vascular disease, especially in the context of uncontrolled inflammation. These elements induce to further explore the interconnections between inflammation and angiogenesis on one side and between micro- and macro-vascular diseases on the other, in order to establish the proper way to therapeutically target blood vessels in rheumatoid arthritis.
Collapse
Affiliation(s)
- Luca Semerano
- Department of Rheumatology, Avicenne Hospital, AP-HP, Bobigny, France.
| | | | | | | | | |
Collapse
|
32
|
Fine-mapping resolves Eae23 into two QTLs and implicates ZEB1 as a candidate gene regulating experimental neuroinflammation in rat. PLoS One 2010; 5:e12716. [PMID: 20856809 PMCID: PMC2939884 DOI: 10.1371/journal.pone.0012716] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 08/12/2010] [Indexed: 11/22/2022] Open
Abstract
Background To elucidate mechanisms involved in multiple sclerosis (MS), we studied genetic regulation of experimental autoimmune encephalomyelitis (EAE) in rats, assuming a conservation of pathogenic pathways. In this study, we focused on Eae23, originally identified to regulate EAE in a (LEW.1AV1xPVG.1AV1)F2 cross. Our aim was to determine whether one or more genes within the 67 Mb region regulate EAE and to define candidate risk genes. Methodology/Principal Findings We used high resolution quantitative trait loci (QTL) analysis in the 10th generation (G10) of an advanced intercross line (AIL) to resolve Eae23 into two QTLs that independently regulate EAE, namely Eae23a and Eae23b. We established a congenic strain to validate the effect of this region on disease. PVG alleles in Eae23 resulted in significant protection from EAE and attenuated CNS inflammation/demyelination. Disease amelioration was accompanied with increased levels of Foxp3+ cells in the CNS of the congenic strain compared to DA. We then focused on candidate gene investigation in Eae23b, a 9 Mb region linked to all clinical phenotypes. Affymetrix exon arrays were used to study expression of the genes in Eae23b in the parental strains, where none showed differential expression. However, we found lower expression of exon 4 of ZEB1, which is specific for splice-variant Zfhep1. ZEB1 is an interleukin 2 (IL2) repressor involved in T cell development. The splice-specific variance prompted us to next analyze the expression of ZEB1 and its two splice variants, Zfhep1 and Zfhep2, in both lymph node and spleen. We demonstrated that ZEB1 splice-variants are differentially expressed; severity of EAE and higher IL2 levels were associated with down-regulation of Zfhep1 and up-regulation of Zfhep2. Conclusions/Significance We speculate that the balance between splice-variants of ZEB1 could influence the regulation of EAE. Further functional studies of ZEB1 and the splice-variants may unravel novel pathways contributing to MS pathogenesis and inflammation in general.
Collapse
|
33
|
Jorgensen C, Apparailly F. Prospects for gene therapy in inflammatory arthritis. Best Pract Res Clin Rheumatol 2010; 24:541-52. [DOI: 10.1016/j.berh.2010.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Espelin CW, Goldsipe A, Sorger PK, Lauffenburger DA, de Graaf D, Hendriks BS. Elevated GM-CSF and IL-1beta levels compromise the ability of p38 MAPK inhibitors to modulate TNFalpha levels in the human monocytic/macrophage U937 cell line. MOLECULAR BIOSYSTEMS 2010; 6:1956-72. [PMID: 20617251 DOI: 10.1039/c002848g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rheumatoid arthritis (RA) is a complex, multicellular disease involving a delicate balance between both pro- and anti-inflammatory cytokines which ultimately determines the disease phenotype. The simultaneous presence of multiple signaling molecules, and more specifically their relative levels, potentially influences the efficacy of directed therapies. Using the human U937 monocytic cell line, we generated a self-consistent dataset measuring 50 cytokines and 23 phosphoproteins in the presence of 6 small molecule inhibitors under 15 stimulatory conditions throughout a 24 hour time course. From this dataset, we are able to explore phosphoprotein and cytokine relationships, as well as evaluate the significance of cellular context on the ability of small molecule inhibitors to block inflammatory processes. We show that the ability of a p38 inhibitor to attenuate TNFalpha production is influenced by local levels of GM-CSF and IL-1beta, two cytokines known to be elevated in the joints of RA patients. Within the cell, compensatory mechanisms between signaling pathways are apparent, as selective p38 MAPK inhibition results in the increased phosphorylation of other MAPKs (ERK and JNK) and their downstream substrates (CREB, c-Jun, and ATF-2). Further, we demonstrate that TNFalpha-neutralizing antibodies have secondary effects on cytokine production, impacting more than just TNFalpha alone. p38 MAPK inhibition using a small molecule inhibitor also blocks production of anti-inflammatory cytokines including IL-10, IL-1ra and IL-2ra. Collectively, the impact of cell context on TNFalpha production and unintended blockade of anti-inflammatory cytokines may compromise the efficacy of p38 inhibitors in a clinical setting. The effort described in this work evaluates the effect of inhibitors on multiple endpoints (both intra- and extracellular), under a range of biologically relevant conditions, thus providing a unique means for differentiation of compounds and potential opportunity for improved pharmacological manipulation of disease endpoints in RA.
Collapse
Affiliation(s)
- Christopher W Espelin
- Systems Biology Group, Pfizer Research Technology Center, 620 Memorial Drive, Cambridge, MA 02139, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Raychaudhuri SP, Raychaudhuri SK. Biologics: target-specific treatment of systemic and cutaneous autoimmune diseases. Indian J Dermatol 2010; 54:100-9. [PMID: 20101303 PMCID: PMC2807147 DOI: 10.4103/0019-5154.53175] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Biologics are becoming important in the treatment of systemic and cutaneous autoimmune diseases. They are designed to target specific components of immune system. As the new drugs are capable of targeting proteins in a more specific fashion, yet have lower risks of systemic side-effects, they have considerable advantages over the older immunomodulators. The development of TNF-alpha blockers in the treatment of psoriasis, psoriatic arthritis, rheumatoid arthritis, Crohn's disease and ankylosing spondylitis have been major breakthroughs. Likewise, B-cell depletion has proved to be equally revolutionary for the treatment of lupus, pemphigus, certain vasculitides etc. But all said and done, the development of these molecules and their clinical usage are still at evolving stages. Consensus needs be formed to further categorize the clinical profiles of the patients in whom biologics are to be used in the future, given that the long-term safety profiles of these agents are very much unknown at present.
Collapse
Affiliation(s)
- Siba P Raychaudhuri
- Department of Immunology and Rheumatology, VA Medical Center, Sacramento, CA, USA.
| | | |
Collapse
|
36
|
Leung PSC, Shu SA, Kenny TP, Wu PY, Tao MH. Development and validation of gene therapies in autoimmune diseases: Epidemiology to animal models. Autoimmun Rev 2009; 9:A400-5. [PMID: 20035901 DOI: 10.1016/j.autrev.2009.12.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recent advancement in immunology, molecular biology, and bioinformatics has yielded extensive information on the pathophysiological mechanisms of autoimmunity, which has greatly facilitated the identification of potential therapeutic targets and the development of gene therapy in the treatment of autoimmune disease. Preclinical studies were carried out in animal models. This phenomenon is well illustrated in two prototypic animal models of autoimmune disease: the autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS) and collagen-induced arthritis (CIA) model in rheumatoid arthritis (RA). Here we discuss the current data on the development and validation of gene therapy in autoimmunity in these two models. The success in preclinical animal model studies provides the proof-of-concept of gene therapy for potential future applications in the treatment of autoimmune diseases. Furthermore, the identification of risk factors from epidemiological studies reveals further potential therapeutic targets to be examined in animal models.
Collapse
Affiliation(s)
- Patrick S C Leung
- Division of Rheumatology/Allergy and Clinical Immunology, School of Medicine, University of California, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
37
|
Izquierdo E, Cañete JD, Celis R, Santiago B, Usategui A, Sanmartí R, Del Rey MJ, Pablos JL. Immature blood vessels in rheumatoid synovium are selectively depleted in response to anti-TNF therapy. PLoS One 2009; 4:e8131. [PMID: 19956574 PMCID: PMC2779850 DOI: 10.1371/journal.pone.0008131] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 11/12/2009] [Indexed: 11/18/2022] Open
Abstract
Background Angiogenesis is considered an important factor in the pathogenesis of Rheumatoid Arthritis (RA) where it has been proposed as a therapeutic target. In other settings, active angiogenesis is characterized by pathologic, immature vessels that lack periendothelial cells. We searched for the presence of immature vessels in RA synovium and analyzed the dynamics of synovial vasculature along the course of the disease, particularly after therapeutic response to TNF antagonists. Methodology/Principal Findings Synovial arthroscopic biopsies from RA, osteoarthritis (OA) and normal controls were analyzed by double labeling of endothelium and pericytes/smooth muscle mural cells to identify and quantify mature/immature blood vessels. To analyze clinicopathological correlations, a cross-sectional study on 82 synovial biopsies from RA patients with variable disease duration and severity was performed. A longitudinal analysis was performed in 25 patients with active disease rebiopsied after anti-TNF-α therapy. We found that most RA synovial tissues contained a significant fraction of immature blood vessels lacking periendothelial coverage, whereas they were rare in OA, and inexistent in normal synovial tissues. Immature vessels were observed from the earliest phases of the disease but their presence or density was significantly increased in patients with longer disease duration, higher activity and severity, and stronger inflammatory cell infiltration. In patients that responded to anti-TNF-α therapy, immature vessels were selectively depleted. The mature vasculature was similarly expanded in early or late disease and unchanged by therapy. Conclusion/Significance RA synovium contains a significant fraction of neoangiogenic, immature blood vessels. Progression of the disease increases the presence and density of immature but not mature vessels and only immature vessels are depleted in response to anti-TNFα therapy. The different dynamics of the mature and immature vascular fractions has important implications for the development of anti-angiogenic interventions in RA.
Collapse
Affiliation(s)
- Elena Izquierdo
- Servicio de Reumatología, Hospital 12 de Octubre, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Clapp C, Thebault S, Jeziorski MC, Martínez De La Escalera G. Peptide hormone regulation of angiogenesis. Physiol Rev 2009; 89:1177-215. [PMID: 19789380 DOI: 10.1152/physrev.00024.2009] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is now apparent that regulation of blood vessel growth contributes to the classical actions of hormones on development, growth, and reproduction. Endothelial cells are ideally positioned to respond to hormones, which act in concert with locally produced chemical mediators to regulate their growth, motility, function, and survival. Hormones affect angiogenesis either directly through actions on endothelial cells or indirectly by regulating proangiogenic factors like vascular endothelial growth factor. Importantly, the local microenvironment of endothelial cells can determine the outcome of hormone action on angiogenesis. Members of the growth hormone/prolactin/placental lactogen, the renin-angiotensin, and the kallikrein-kinin systems that exert stimulatory effects on angiogenesis can acquire antiangiogenic properties after undergoing proteolytic cleavage. In view of the opposing effects of hormonal fragments and precursor molecules, the regulation of the proteases responsible for specific protein cleavage represents an efficient mechanism for balancing angiogenesis. This review presents an overview of the actions on angiogenesis of the above-mentioned peptide hormonal families and addresses how specific proteolysis alters the final outcome of these actions in the context of health and disease.
Collapse
Affiliation(s)
- Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.
| | | | | | | |
Collapse
|
39
|
Wu FTH, Stefanini MO, Mac Gabhann F, Kontos CD, Annex BH, Popel AS. A systems biology perspective on sVEGFR1: its biological function, pathogenic role and therapeutic use. J Cell Mol Med 2009; 14:528-52. [PMID: 19840194 PMCID: PMC3039304 DOI: 10.1111/j.1582-4934.2009.00941.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is the growth of new capillaries from pre-existent microvasculature. A wide range of pathological conditions, from atherosclerosis to cancer, can be attributed to either excessive or deficient angiogenesis. Central to the physiological regulation of angiogenesis is the vascular endothelial growth factor (VEGF) system – its ligands and receptors (VEGFRs) are thus prime molecular targets of pro-angiogenic and anti-angiogenic therapies. Of growing interest as a prognostic marker and therapeutic target in angiogenesis-dependent diseases is soluble VEGF receptor-1 (sVEGFR1, also known as sFlt-1) – a truncated version of the cell membrane-spanning VEGFR1. For instance, it is known that sVEGFR1 is involved in the endothelial dysfunction characterizing the pregnancy disorder of pre-eclampsia, and sVEGFR1’s therapeutic potential as an anti-angiogenic agent is being evaluated in pre-clinical models of cancer. This mini review begins with an examination of the protein domain structure and biomolecular interactions of sVEGFR1 in relation to the full-length VEGFR1. A synopsis of known and inferred physiological and pathological roles of sVEGFR1 is then given, with emphasis on the utility of computational systems biology models in deciphering the molecular mechanisms by which sVEGFR1’s purported biological functions occur. Finally, we present the need for a systems biology perspective in interpreting circulating VEGF and sVEGFR1 concentrations as surrogate markers of angiogenic status in angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Florence T H Wu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
The expansion of the synovial lining of joints in rheumatoid arthritis (RA) necessitates an increase in the vascular supply to the synovium, to cope with the increased requirement for oxygen and nutrients. New blood vessel formation -'angiogenesis'- is recognized as a key event in the formation and maintenance of the pannus in RA, suggesting that targeting blood vessels in RA may be an effective future therapeutic strategy. Although many pro-angiogenic factors have been demonstrated to be expressed in RA synovium, vascular endothelial growth factor (VEGF) has been demonstrated to a have a central involvement in the angiogenic process in RA. Nevertheless, it is unclear whether angiogenesis - whether driven by VEGF and/or other factors - should be considered as a 'cause' or 'consequence' of disease. This ongoing 'chicken vs. egg' debate is difficult, as even the success of angiogenesis inhibition in models of RA does not provide a direct answer to the question. This review will focus on the role of the vasculature in RA, and the contribution of different angiogenic factors in promoting disease. Although no data regarding the effectiveness of anti-angiogenic therapy in RA have been reported to date, the blockade of angiogenesis nevertheless looks to be a promising therapeutic avenue.
Collapse
Affiliation(s)
- Ewa M Paleolog
- Kennedy Institute of Rheumatology and Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College, London, UK.
| |
Collapse
|
41
|
Akhavani MA, Larsen H, Paleolog E. Circulating endothelial progenitor cells as a link between synovial vascularity and cardiovascular mortality in rheumatoid arthritis. Scand J Rheumatol 2009; 36:83-90. [PMID: 17476612 DOI: 10.1080/03009740701305704] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cardiovascular disease refers to the class of diseases that involve the heart and/or blood vessels (arteries and veins). Most Western countries face high and ever-increasing rates of cardiovascular disease. Each year, more Americans are killed by heart disease than by cancer. Diseases of the heart alone cause 30% of all deaths, with other diseases of the cardiovascular system causing substantial further deaths and disability. Indeed, cardiovascular disease is the major cause of death and disability in the USA and most European countries. The development of the vascular systems requires an intricate interplay of molecules such as vascular endothelial growth factor and endothelial progenitor cells. A defective vascular repair/regeneration is thought to be responsible for propagation of atherosclerosis, a key feature of cardiovascular disease. This is partly attributed to a reduction in the circulating endothelial progenitor cells in peripheral blood. Patients with rheumatoid arthritis (RA) have a higher than average incidence of cardiovascular disease in comparison with the general population, with an increased risk of stroke and myocardial infarction, and an increased risk of fatality following myocardial infarction. This review focuses on the current evidence linking the role played by endothelial progenitor cells to the development of cardiovascular disease and why this might relate to the increased risk observed in RA patients.
Collapse
Affiliation(s)
- M A Akhavani
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College, London, UK
| | | | | |
Collapse
|
42
|
Wu FTH, Stefanini MO, Mac Gabhann F, Popel AS. A compartment model of VEGF distribution in humans in the presence of soluble VEGF receptor-1 acting as a ligand trap. PLoS One 2009; 4:e5108. [PMID: 19352513 PMCID: PMC2663039 DOI: 10.1371/journal.pone.0005108] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 03/10/2009] [Indexed: 12/25/2022] Open
Abstract
Vascular endothelial growth factor (VEGF), through its activation of cell surface receptor tyrosine kinases including VEGFR1 and VEGFR2, is a vital regulator of stimulatory and inhibitory processes that keep angiogenesis--new capillary growth from existing microvasculature--at a dynamic balance in normal physiology. Soluble VEGF receptor-1 (sVEGFR1)--a naturally-occurring truncated version of VEGFR1 lacking the transmembrane and intracellular signaling domains--has been postulated to exert inhibitory effects on angiogenic signaling via two mechanisms: direct sequestration of angiogenic ligands such as VEGF; or dominant-negative heterodimerization with surface VEGFRs. In pre-clinical studies, sVEGFR1 gene and protein therapy have demonstrated efficacy in inhibiting tumor angiogenesis; while in clinical studies, sVEGFR1 has shown utility as a diagnostic or prognostic marker in a widening array of angiogenesis-dependent diseases. Here we developed a novel computational multi-tissue model for recapitulating the dynamic systemic distributions of VEGF and sVEGFR1. Model features included: physiologically-based multi-scale compartmentalization of the human body; inter-compartmental macromolecular biotransport processes (vascular permeability, lymphatic drainage); and molecularly-detailed binding interactions between the ligand isoforms VEGF(121) and VEGF(165), signaling receptors VEGFR1 and VEGFR2, non-signaling co-receptor neuropilin-1 (NRP1), as well as sVEGFR1. The model was parameterized to represent a healthy human subject, whereupon we investigated the effects of sVEGFR1 on the distribution and activation of VEGF ligands and receptors. We assessed the healthy baseline stability of circulating VEGF and sVEGFR1 levels in plasma, as well as their reliability in indicating tissue-level angiogenic signaling potential. Unexpectedly, simulated results showed that sVEGFR1 - acting as a diffusible VEGF sink alone, i.e., without sVEGFR1-VEGFR heterodimerization--did not significantly lower interstitial VEGF, nor inhibit signaling potential in tissues. Additionally, the sensitivity of plasma VEGF and sVEGFR1 to physiological fluctuations in transport rates may partially account for the heterogeneity in clinical measurements of these circulating angiogenic markers, potentially hindering their diagnostic reliability for diseases.
Collapse
Affiliation(s)
- Florence T H Wu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.
| | | | | | | |
Collapse
|
43
|
Lee JD, Huh JE, Jeon G, Yang HR, Woo HS, Choi DY, Park DS. Flavonol-rich RVHxR from Rhus verniciflua Stokes and its major compound fisetin inhibits inflammation-related cytokines and angiogenic factor in rheumatoid arthritic fibroblast-like synovial cells and in vivo models. Int Immunopharmacol 2009; 9:268-76. [DOI: 10.1016/j.intimp.2008.11.005] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 11/08/2008] [Accepted: 11/10/2008] [Indexed: 12/16/2022]
|
44
|
Scaldaferri F, Vetrano S, Sans M, Arena V, Straface G, Stigliano E, Repici A, Sturm A, Malesci A, Panes J, Yla-Herttuala S, Fiocchi C, Danese S. VEGF-A links angiogenesis and inflammation in inflammatory bowel disease pathogenesis. Gastroenterology 2009; 136:585-95.e5. [PMID: 19013462 DOI: 10.1053/j.gastro.2008.09.064] [Citation(s) in RCA: 252] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 09/18/2008] [Accepted: 09/25/2008] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Vascular endothelial growth factor A (VEGF-A) mediates angiogenesis and might also have a role in inflammation and immunity. We examined whether VEGF-A signaling has a role in inflammatory bowel disease (IBD). METHODS Expression levels of VEGF-A, and its receptors VEGFR-1 and VEGFR-2, were examined in samples from patients with IBD and compared with those of controls. The capacity of VEGF-A to induce angiogenesis was tested in human intestinal microvascular endothelial cells using cell-migration and matrigel tubule-formation assays. Levels of vascular cellular adhesion molecule-1 and intercellular adhesion molecule were measured by flow cytometry to determine induction of inflammation; neutrophil adhesion was also assayed. Expression patterns were determined in tissues from mice with dextran sulfate sodium (DSS)-induced colitis; the effects of VEGF-A overexpression and blockade were assessed in these mice by adenoviral transfer of VEGF-A and soluble VEGFR-1. Intestinal angiogenesis was measured by quantitative CD31 staining and leukocyte adhesion in vivo by intravital microscopy. RESULTS Levels of VEGF-A and VEGFR-2 increased in samples from patients with IBD and colitic mice. VEGF-A induced angiogenesis of human intestinal microvascular endothelial cells in vitro as well as an inflammatory phenotype and adherence of neutrophils to intestinal endothelium. Overexpression of VEGF-A in mice with DSS-induced colitis worsened their condition, whereas overexpression of soluble VEGFR-1 had the opposite effect. Furthermore, overexpression of VEGF-A increased mucosal angiogenesis and stimulated leukocyte adhesion in vivo. CONCLUSIONS VEGF-A appears to be a novel mediator of IBD by promoting intestinal angiogenesis and inflammation. Agents that block VEGF-A signaling might reduce intestinal inflammation in patients with IBD.
Collapse
Affiliation(s)
- Franco Scaldaferri
- Division of Gastroenterology, Istituto Clinico Humanitas, University of Milan, Milan; Department of Internal Medicine, Catholic University, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kubo S, Cooper GM, Matsumoto T, Phillippi JA, Corsi KA, Usas A, Li G, Fu FH, Huard J. Blocking vascular endothelial growth factor with soluble Flt-1 improves the chondrogenic potential of mouse skeletal muscle-derived stem cells. ARTHRITIS AND RHEUMATISM 2009; 60:155-65. [PMID: 19116905 PMCID: PMC3075626 DOI: 10.1002/art.24153] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To investigate the effect of vascular endothelial growth factor (VEGF) stimulation and the effect of blocking VEGF with its antagonist, soluble Flt-1 (sFlt-1), on chondrogenesis, using muscle-derived stem cells (MDSCs) isolated from mouse skeletal muscle. METHODS The direct effect of VEGF on the in vitro chondrogenic ability of mouse MDSCs was tested using a pellet culture system, followed by real-time quantitative polymerase chain reaction (PCR) and histologic analyses. Next, the effect of VEGF on chondrogenesis within the synovial joint was tested, using genetically engineered MDSCs implanted into rat osteochondral defects. In this model, MDSCs transduced with a retroviral vector to express bone morphogenetic protein 4 (BMP-4) were coimplanted with MDSCs transduced to express either VEGF or sFlt-1 (a VEGF antagonist) to provide a gain- and loss-of-function experimental design. Histologic scoring was used to compare cartilage formation among the treatment groups. RESULTS Hyaline-like cartilage matrix production was observed in both VEGF-treated and VEGF-blocked (sFlt-1-treated) pellet cultures, but quantitative PCR revealed that sFlt-1 treatment improved the expression of chondrogenic genes in MDSCs that were stimulated to undergo chondrogenic differentiation with BMP-4 and transforming growth factor beta3 (TGFbeta3). In vivo testing of articular cartilage repair showed that VEGF-transduced MDSCs caused an arthritic change in the knee joint, and sFlt-1 improved the MDSC-mediated repair of articular cartilage, compared with BMP-4 alone. CONCLUSION Soluble Flt-1 gene therapy improved the BMP-4- and TGFbeta3-induced chondrogenic gene expression of MDSCs in vitro and improved the persistence of articular cartilage repair by preventing vascularization and bone invasion into the repaired articular cartilage.
Collapse
Affiliation(s)
- Seiji Kubo
- Stem Cell Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, PA
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Gregory M. Cooper
- Stem Cell Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, PA
- Department of Surgery, Division of Pediatric Plastic Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Tomoyuki Matsumoto
- Stem Cell Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, PA
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Julie A. Phillippi
- Stem Cell Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Karin A. Corsi
- Stem Cell Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Arvydas Usas
- Stem Cell Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Guangheng Li
- Stem Cell Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Freddie H. Fu
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Johnny Huard
- Stem Cell Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, PA
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA
- Departments of Molecular Genetics and Biochemistry, and Bioengineering, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
46
|
Sumariwalla PF, Jin P, Zhang J, Ni I, Crawford D, Shepard HM, Paleolog EM, Feldmann M. Antagonism of the human epidermal growth factor receptor family controls disease severity in murine collagen-induced arthritis. ACTA ACUST UNITED AC 2008; 58:3071-80. [PMID: 18821697 DOI: 10.1002/art.23885] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To evaluate the therapeutic potential of the human epidermal growth factor receptor (HER) family inhibitor, herstatin, in an animal model of arthritis. METHODS Constructs of herstatin and modified tissue plasminogen activator (tPA)-herstatin were expressed in HEK 293T cells, and secreted protein was analyzed by Western blotting. Tissue PA-herstatin adenovirus (Ad-tPA-Her) was prepared, and titers established. Gene expression of Ad-tPA-Her was determined by polymerase chain reaction using HeLa cells. Pharmacokinetics of gene and protein expression in vivo in liver tissue and serum samples were confirmed via intravenous administration of Ad-tPA-Her. Clinical signs of disease were monitored in arthritic DBA/1 mice after therapeutic administration of Ad-tPA-Her, and histologic analysis of hind foot specimens was performed. RESULTS Native herstatin was not secreted in supernatants, while modified tPA-herstatin was detected in abundance. HeLa cells stably expressed the tPA-herstatin gene when infected with virus. Additionally, tPA-herstatin gene and protein expression was observed over time in mice treated with virus. Importantly, Ad-tPA-Her, when administered therapeutically to arthritic mice, controlled clinical and histologic signs of disease and reduced the number of joints with severe damage. CONCLUSION Our results support the notion that the human epidermal growth factor receptor family has a role in the progression of collagen-induced arthritis. The novel tPA-herstatin fusion protein could be used as an effective therapeutic tool for control of inflammatory disorders involving an angiogenic component.
Collapse
Affiliation(s)
- Percy F Sumariwalla
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College London, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Fischer C, Mazzone M, Jonckx B, Carmeliet P. FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nat Rev Cancer 2008; 8:942-56. [PMID: 19029957 DOI: 10.1038/nrc2524] [Citation(s) in RCA: 442] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Less than 5 years ago, it was still not clear whether anti-angiogenic drugs would prove successful in the clinic. After numerous patients with cancer or age-related macular degeneration have been treated with these drugs, they have now become part of the standard range of therapeutic tools. Despite this milestone, anti-angiogenic therapy still faces a number of clinical hurdles, such as improving efficacy, avoiding escape and resistance, and minimizing toxicity. Hopefully, other agents with complementary mechanisms, such as those that target placental growth factor, will offer novel opportunities for improved treatment.
Collapse
Affiliation(s)
- Christian Fischer
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin, Berlin, Germany
| | | | | | | |
Collapse
|
48
|
Brühl H, Mack M, Niedermeier M, Lochbaum D, Schölmerich J, Straub RH. Functional expression of the chemokine receptor CCR7 on fibroblast-like synoviocytes. Rheumatology (Oxford) 2008; 47:1771-4. [PMID: 18838387 DOI: 10.1093/rheumatology/ken383] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVES We have characterized the expression and the function of the chemokine receptor CCR7 on fibroblast-like synoviocytes (FLS) of patients with RA and OA and on dermal fibroblasts. METHODS FLS were obtained after enzymatic digestion of synovial tissue (ST) of patients with RA and OA undergoing knee replacement surgery and taken into culture for chemokine receptor analysis by RT-PCR, flow cytometry and functional tests. Immunofluorescence for CCR7, fibroblast and T-cell markers was performed on ST of RA and OA patients. To study the response of FLS to CCR7 ligands and other chemokines, migration assays were performed in modified Boyden chambers. After stimulation of FLS with CCR7 ligands, the secretion of VEGF was evaluated by ELISA and Luminex. RESULTS CCR7 is expressed on FLS of patients with RA and OA, but not on dermal fibroblasts. FLS migrated in response to the CCR7 ligands, CCL19 and CCL21. Stimulation of FLS with CCL19 resulted in a significantly increased secretion of VEGF of RA- and OA-FLS. CONCLUSION Apart from the migration of FLS in response to CCL19 and CCL21, it was shown that activation of the CCR7 receptor on FLS results in an enhanced VEGF secretion. A considerable expression of CCR7 ligands in proximity to perivascular infiltrates has previously been described in inflamed synovial tissue of RA patients. Stimulation of FLS via CCR7 could thereby contribute to angiogenesis in the synovial tissue.
Collapse
Affiliation(s)
- H Brühl
- Department of Internal Medicine I, University Hospital, 93042 Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Clanchy FIL, Williams RO. Plasmid DNA as a safe gene delivery vehicle for treatment of chronic inflammatory disease. Expert Opin Biol Ther 2008; 8:1507-19. [DOI: 10.1517/14712598.8.10.1507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
50
|
Zhu CS, Hu XQ, Xiong ZJ, Lu ZQ, Zhou GY, Wang DJ. Adenoviral delivery of soluble VEGF receptor 1 (sFlt-1) inhibits experimental autoimmune encephalomyelitis in dark Agouti (DA) rats. Life Sci 2008; 83:404-12. [DOI: 10.1016/j.lfs.2008.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 06/10/2008] [Accepted: 07/04/2008] [Indexed: 10/21/2022]
|