1
|
Hereditary Transthyretin-Related Amyloidosis: Genetic Heterogeneity and Early Personalized Gene Therapy. Biomedicines 2022; 10:biomedicines10102394. [PMID: 36289657 PMCID: PMC9598525 DOI: 10.3390/biomedicines10102394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
Point mutations of the transthyretin (TTR) gene are related with hereditary amyloidosis (hATTR). The number of people affected by this rare disease is only partially estimated. The real impact of somatic mosaicism and other genetic factors on expressivity, complexity, progression, and transmission of the disease should be better investigated. The relevance of this rare disease is increasing and many efforts have been made to improve the time to diagnosis and to estimate the real number of cases in endemic and non-endemic areas. In this context, somatic mosaicism should be better investigated to explain the complexity of the heterogeneity of the hATTR clinical features, to better estimate the number of new cases, and to focus on early and personalized gene therapy. Gene therapy can potentially improve the living conditions of affected individuals and is one of the central goals in research on amyloidosis related to the TTR gene, with the advantage of overcoming liver transplantation as the sole treatment for hATTR disease.
Collapse
|
2
|
Moscoso CG, Steer CJ. Liver targeted gene therapy: Insights into emerging therapies. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 34:9-19. [PMID: 33357766 DOI: 10.1016/j.ddtec.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/23/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022]
Abstract
The large number of monogenic metabolic disorders originating in the liver poses a unique opportunity for development of gene therapy modalities to pursue curative approaches. Various disorders have been successfully treated via liver-directed gene therapy, though most of the advances have been in animal models, with only limited success in clinical trials. Pre-clinical data in animals using non-viral approaches, including the Sleeping Beauty transposon system, are discussed. The various advances with viral vectors for liver-directed gene therapy are also a focus of this review, including retroviral, adenoviral, recombinant adeno-associated viral, and SV40 vectors. Genome editing techniques, including zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats (CRISPR), are also described. Further, the various controversies in the field with regards to somatic vs. germline editing using CRISPR in humans are explored, while also highlighting the myriad of preclinical advances. Lastly, newer technologies are reviewed, including base editing and prime editing, which use CRISPR with exciting adjunctive properties to avoid double-stranded breaks and thus the recruitment of endogenous repair mechanisms. While encouraging results have been achieved recently, there are still significant challenges to overcome prior to the broad use of vector-based and genome editing techniques in the clinical arena. As these technologies mature, the promise of a cure for many disabling inherited metabolic disorders is within reach, and urgently needed.
Collapse
Affiliation(s)
- Carlos G Moscoso
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | - Clifford J Steer
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA; Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, Minnesota 55455 USA.
| |
Collapse
|
3
|
Hayashi Y, Jono H. Recent Advances in Oligonucleotide-Based Therapy for Transthyretin Amyloidosis: Clinical Impact and Future Prospects. Biol Pharm Bull 2019; 41:1737-1744. [PMID: 30504675 DOI: 10.1248/bpb.b18-00625] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transthyretin (TTR) amyloidosis, also known as transthyretin-related familial amyloidotic polyneuropathy (ATTR-FAP), is a fatal hereditary systemic amyloidosis caused by mutant forms of TTR. Although conventional treatments for ATTR-FAP, such as liver transplantation (LT) and TTR tetramer stabilizer, reportedly halt the progression of clinical manifestation, these therapies have several limitations. Oligonucleotide-based therapy, e.g. small interfering RNA (siRNA)- and antisense oligonucleotides (ASOs)-based therapy, hold enormous potential for the treatment of intractable diseases such as ATTR-FAP, by specifically regulating the gene responsible for the disease. Clinical evidence strongly suggests that LT inhibits mutant TTR production, thus improving the manifestation of ATTR-FAP. Therefore, an oligonucleotide-based therapy for ATTR-FAP, which reduces the production of TTR by the liver, has recently been developed in preclinical and clinical studies. This review focuses on recent advances in oligonucleotide-based therapy and future prospects of next-generation oligonucleotide-based drugs for therapeutic use against ATTR-FAP.
Collapse
Affiliation(s)
- Yuya Hayashi
- Department of Pharmacy, Kumamoto University Hospital
| | - Hirofumi Jono
- Department of Pharmacy, Kumamoto University Hospital.,Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| |
Collapse
|
4
|
Aravalli RN, Steer CJ. CRISPR/Cas9 therapeutics for liver diseases. J Cell Biochem 2018; 119:4265-4278. [PMID: 29266637 DOI: 10.1002/jcb.26627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022]
Abstract
The development of innovative genome editing techniques in recent years has revolutionized the field of biomedicine. Among the novel approaches, the clustered regularly interspaced short palindromic repeat/CRISPR-associated protein (CRISPR/Cas9) technology has become the most popular, in part due to its matchless ability to carry out gene editing at the target site with great precision. With considerable successes in animal and preclinical studies, CRISPR/Cas9-mediated gene editing has paved the way for its use in human trials, including patients with a variety of liver diseases. Gene editing is a logical therapeutic approach for liver diseases because many metabolic and acquired disorders are caused by mutations within a single gene. In this review, we provide an overview on current and emerging therapeutic strategies for the treatment of liver diseases using the CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Rajagopal N Aravalli
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Clifford J Steer
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota.,Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
5
|
Matsushima M, Yabe I, Tsuda M, Sakakibara M, Shimamura T, Sasaki H. Amyloid Polyneuropathy and Myocardial Amyloidosis 10 Years after Domino Liver Transplantation from a Patient with a Transthyretin Ser50Arg Mutation. Intern Med 2017; 56:3231-3235. [PMID: 28943540 PMCID: PMC5742399 DOI: 10.2169/internalmedicine.8434-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 54-year-old man with polycystic liver disease received a domino liver transplantation (DLT) from a patient of hereditary ATTR amyloidosis with the transthyretin Ser50Arg mutation. Ten years after transplantation, he felt a slight numbness in his toes, and cardiac amyloidosis was simultaneously suspected upon a heart function evaluation. Biopsy specimens from the myocardium revealed transthyretin amyloidosis with the Ser50Arg mutation. Oral tafamidis therapy has inhibited the progression of neurological and cardiovascular symptoms this far. We herein report this first case of amyloid polyneuropathy and myocardial amyloidosis after DLT from hereditary ATTR amyloidosis with a transthyretin Ser50Arg mutation and discuss similar cases of other mutations.
Collapse
Affiliation(s)
- Masaaki Matsushima
- Department of Neurology, Hokkaido University Graduate School of Medicine, Japan
| | - Ichiro Yabe
- Department of Neurology, Hokkaido University Graduate School of Medicine, Japan
| | - Masaya Tsuda
- Department of Cardiology, Hokkaido University Graduate School of Medicine, Japan
| | - Mamoru Sakakibara
- Department of Cardiology, Hokkaido University Graduate School of Medicine, Japan
| | | | - Hidenao Sasaki
- Department of Neurology, Hokkaido University Graduate School of Medicine, Japan
| |
Collapse
|
6
|
Nuvolone M, Merlini G. Emerging therapeutic targets currently under investigation for the treatment of systemic amyloidosis. Expert Opin Ther Targets 2017; 21:1095-1110. [PMID: 29076382 DOI: 10.1080/14728222.2017.1398235] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Systemic amyloidosis occurs when one of a growing list of circulating proteins acquires an abnormal fold, aggregates and gives rise to extracellular amyloid deposits in different body sites, leading to organ dysfunction and eventually death. Current approaches are mainly aimed at lowering the supply of the amyloidogenic precursor or at stabilizing it in a non-amyloidogenic state, thus interfering with the initial phases of amyloid formation and toxicity. Areas covered: Improved understanding of the pathophysiology is indicating novel steps and molecules that could be therapeutically targeted. Here, we will review emerging molecular targets and therapeutic approaches against the main forms of systemic amyloidosis at the early preclinical level. Expert opinion: Conspicuous efforts in drug design and drug discovery have provided an unprecedented list of potential new drugs or therapeutic strategies, from gene-based therapies to small molecules and peptides, from novel monoclonal antibodies to engineered cell-based therapies. The challenge will now be to validate and optimize the most promising candidates, cross the bridge from the preclinical phase to the clinics and identify, through innovative trials design, the safest and most effective combination therapies, striving for a better care, possibly a definitive cure for these diseases.
Collapse
Affiliation(s)
- Mario Nuvolone
- a Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, Department of Molecular Medicine , University of Pavia , Pavia , Italy
| | - Giampaolo Merlini
- a Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, Department of Molecular Medicine , University of Pavia , Pavia , Italy
| |
Collapse
|
7
|
Affiliation(s)
- Hirofumi Jono
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
8
|
|
9
|
Impairment of autophagy by TTR V30M aggregates: in vivo reversal by TUDCA and curcumin. Clin Sci (Lond) 2016; 130:1665-75. [DOI: 10.1042/cs20160075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/05/2016] [Indexed: 01/03/2023]
Abstract
Transthyretin (TTR)-related amyloidoses are diseases characterized by extracellular deposition of amyloid fibrils and aggregates in tissues composed of insoluble misfolded TTR that becomes toxic. Previous studies have demonstrated the ability of small compounds in preventing and reversing TTR V30M deposition in transgenic mice gastrointestinal (GI) tract as well as lowering biomarkers associated with cellular stress and apoptotic mechanisms. In the present study we aimed to study TTR V30M aggregates effect in autophagy, a cellular mechanism crucial for cell survival that has been implicated in the development of several neurodegenerative diseases. We were able to demonstrate in cell culture that TTR V30M aggregates cause a partial impairment of the autophagic machinery as shown by p62 accumulation, whereas early steps of the autophagic flux remain unaffected as shown by autophagosome number evaluation and LC3 turnover assay. Our studies performed in TTR V30M transgenic animals demonstrated that tauroursodeoxycholic acid (TUDCA) and curcumin effectively reverse p62 accumulation in the GI tract pointing to the ability of both compounds to modulate autophagy additionally to mitigate apoptosis. Overall, our in vitro and in vivo studies establish an association between TTR V30M aggregates and autophagy impairment and suggest the use of autophagy modulators as an additional and alternative therapeutic approach for the treatment of TTR V30M-related amyloidosis.
Collapse
|
10
|
Aravalli RN, Steer CJ. Gene editing technology as an approach to the treatment of liver diseases. Expert Opin Biol Ther 2016; 16:595-608. [PMID: 26914853 DOI: 10.1517/14712598.2016.1158808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Aravalli RN, Belcher JD, Steer CJ. Liver-targeted gene therapy: Approaches and challenges. Liver Transpl 2015; 21:718-37. [PMID: 25824605 PMCID: PMC9353592 DOI: 10.1002/lt.24122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/06/2015] [Accepted: 03/14/2015] [Indexed: 12/15/2022]
Abstract
The liver plays a major role in many inherited and acquired genetic disorders. It is also the site for the treatment of certain inborn errors of metabolism that do not directly cause injury to the liver. The advancement of nucleic acid-based therapies for liver maladies has been severely limited because of the myriad untoward side effects and methodological limitations. To address these issues, research efforts in recent years have been intensified toward the development of targeted gene approaches using novel genetic tools, such as zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats as well as various nonviral vectors such as Sleeping Beauty transposons, PiggyBac transposons, and PhiC31 integrase. Although each of these methods uses a distinct mechanism of gene modification, all of them are dependent on the efficient delivery of DNA and RNA molecules into the cell. This review provides an overview of current and emerging therapeutic strategies for liver-targeted gene therapy and gene repair.
Collapse
Affiliation(s)
- Rajagopal N. Aravalli
- Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 54455
| | - John D. Belcher
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 54455
| | - Clifford J. Steer
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 54455,Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MN 54455
| |
Collapse
|
12
|
Sekijima Y. Recent progress in the understanding and treatment of transthyretin amyloidosis. J Clin Pharm Ther 2015; 39:225-33. [PMID: 24749898 DOI: 10.1111/jcpt.12145] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 01/03/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE Transthyretin (TTR) is a representative amyloidogenic protein in humans. Rate-limiting tetramer dissociation and rapid monomer misfolding and misassembly of variant TTR result in autosomal dominant familial amyloidosis. Analogous misfolding of wild-type TTR results in senile systemic amyloidosis (SSA) presenting as sporadic amyloid disease in the elderly. The objective of this review is to summarize recent progress in our understanding and treatment of TTR amyloidosis. METHODS Literature searches were conducted on the topics of transthyretin, familial amyloid polyneuropathy and clinical trials, using PubMed, the United States clinical trials directory, pharmaceutical company websites and news reports. The information was collected, evaluated for relevance and quality, critically assessed and summarized. RESULTS AND DISCUSSION The current standard first-line treatment of familial TTR amyloidosis is liver transplantation. However, large numbers of patients are not suitable transplant candidates. Recently, the clinical effects of TTR tetramer stabilizers, tafamidis and diflunisal, were demonstrated in randomized clinical trials, and tafamidis has been approved for the treatment of FAP in European countries and Japan. In addition, gene therapies with antisense oligonucleotides and small interfering RNAs are promising strategies to ameliorate TTR amyloidoses and are currently in clinical trials. WHAT IS NEW AND CONCLUSIONS Liver transplantation to treat the familial TTR amyloidosis will likely be replaced by other less invasive therapies, such as TTR tetramer stabilizers and possibly gene therapy approaches. These newly developed therapies are expected to be effective for not only familial TTR amyloidosis but also SSA, based on their mechanisms of action.
Collapse
Affiliation(s)
- Y Sekijima
- Department of Medicine (Neurology & Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
13
|
Batista AR, Gianni D, Ventosa M, Coelho AV, Almeida MR, Sena-Esteves M, Saraiva MJ. Gene therapy approach to FAP: in vivo influence of T119M in TTR deposition in a transgenic V30M mouse model. Gene Ther 2014; 21:1041-50. [DOI: 10.1038/gt.2014.86] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 07/16/2014] [Accepted: 08/06/2014] [Indexed: 11/09/2022]
|
14
|
Ueda M, Ando Y. Recent advances in transthyretin amyloidosis therapy. Transl Neurodegener 2014; 3:19. [PMID: 25228988 PMCID: PMC4165622 DOI: 10.1186/2047-9158-3-19] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/10/2014] [Indexed: 01/11/2023] Open
Abstract
Mutant (MT) forms of transthyretin (TTR) cause the most common type of autosomal-dominant hereditary systemic amyloidosis-familial amyloidotic polyneuropathy (FAP). Until 20 years ago, FAP was thought to be an endemic disease, but FAP is known to occur worldwide. To date, more than 130 mutations in the TTR gene have been reported. Genotype-phenotype correlations are seen in FAP, and some variation in clinical presentation is often observed in individual kindreds with the same mutation and even among family members. Of the pathogenic TTR mutations, Val30Met was the first to be identified and is the most frequent known mutation found throughout the world. Studies of patients with FAP amyloidogenic TTR (ATTR) Val30Met documented sensorimotor polyneuropathy, autonomic dysfunction, heart and kidney failure, gastrointestinal tract (GI) disorders, and other symptoms leading to death, usually within 10 years of the onset of disease. Diagnosis is sometimes delayed, especially in patients without a clear family history and typical clinical manifestations, since diagnosis requires various studies and techniques such as histopathology, genetic testing, and mass spectrometry. For treatment of FAP, liver transplantation (LT) reportedly halts the progression of clinical manifestations. Exchange of an FAP patient's diseased liver with a healthy liver causes MT TTR in the body to be replaced by wild-type (WT) TTR. Although clinical evaluations indicated that progression of other clinical symptoms such as peripheral neuropathy, GI symptoms, and renal involvement usually halted after LT in FAP ATTR Val30Met patients, recent studies suggested that LT failed to prevent progression of cardiac amyloidosis in FAP ATTR Val30Met patients after LT, with this failure reportedly being due to continued formation of amyloid that derived mainly from WT TTR secreted from the transplanted non-mutant liver graft. In recent years, many therapeutic strategies have been proposed, and several ongoing therapeutic trials involve, for example, stabilizers of TTR tetramers (tafamidis and diflunisal) and gene therapies to suppress TTR expression (antisense methods and use of small interfering RNAs). These novel therapies may prove to prevent progression of FAP.
Collapse
Affiliation(s)
- Mitsuharu Ueda
- Department of Diagnostic Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, 860-0811 Kumamoto, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, 860-0811 Kumamoto, Japan
| |
Collapse
|
15
|
Atelocollagen-mediated siRNA delivery: future promise for therapeutic application. Ther Deliv 2014; 5:369-71. [DOI: 10.4155/tde.14.8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
16
|
Hund E. Familial amyloidotic polyneuropathy: current and emerging treatment options for transthyretin-mediated amyloidosis. APPLICATION OF CLINICAL GENETICS 2012; 5:37-41. [PMID: 23776379 PMCID: PMC3681191 DOI: 10.2147/tacg.s19903] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transthyretin familial amyloid polyneuropathy (TTR-FAP) is a fatal clinical disorder characterized by extracellular deposition of abnormal fibrils derived from misfolded, normally soluble transthyretin (TTR) molecules. The disease is most commonly caused by a point mutation within the TTR gene inherited in an autosomal dominant fashion. Over 100 of such mutations have been identified, leading to destabilization of the physiological TTR tetramer. As a result, many monomers originate with a tendency for spontaneous conformational changes and self-aggregation. The main clinical feature of TTR-FAP is progressive sensorimotor and autonomic neuropathy. In the beginning, this polyneuropathy predominantly involves small unmyelinated nerve fibers with the result of dissociated sensory loss disproportionately affecting sensation of pain and temperature. Autonomic neuropathy typically accompanies sensory deficits early in the disease course. The symptoms include orthostatic hypotension, constipation alternating with diarrhea, erectile dysfunction, anhydrosis, and urinary retention or incontinence. Later, involvement of motor fibers causes rapidly progressive weakness and gait disturbances. In addition to the peripheral nervous system, the heart and the gut are frequently affected. Onset of symptoms is bimodal, with one peak at age 33 years (early onset) and another distinct peak in the sixth decade of life (late onset). The course of TTR-FAP is uniformly progressive and fatal. Death occurs an average of 10.8 years after the onset of symptoms in Portuguese patients, and 7.3 years in late-onset Japanese patients. Common causes include cachexia, cardiac failure, arrhythmia, and secondary infections. Liver transplantation is the standard therapy for patients who are in a clinical condition good enough to tolerate this intervention because it stops progression of neuropathy by removing the main source of mutant TTR. Recently, orally administered tafamidis meglumine has been approved by European authorities for treatment of FAP. The substance has been shown to stabilize the TTR tetramer, thereby improving the outcome of patients with TTR-FAP. Various other strategies have been studied in vitro to prevent TTR amyloidosis, including gene therapy, immunization, dissolution of TTR aggregates, and free radical scavengers, but none of them is ready for clinical use so far.
Collapse
Affiliation(s)
- Ernst Hund
- Department of Neurology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
17
|
Effects of atelocollagen formulation containing oligonucleotide on endothelial permeability. JOURNAL OF DRUG DELIVERY 2012; 2012:245835. [PMID: 22506120 PMCID: PMC3312293 DOI: 10.1155/2012/245835] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 12/11/2011] [Accepted: 12/12/2011] [Indexed: 01/15/2023]
Abstract
Atelocollagen is a major animal protein that is used as a highly biocompatible biomaterial. To date, atelocollagen has been used as an effective drug delivery technology to sustain the release of antitumor proteins and to enhance the antitumor activity of oligonucleotides in in vivo models. However, the biological effects of this technology are not fully understood. In the present study, we investigated the effects of atelocollagen on endothelial paracellular barrier function. An atelocollagen formulation containing oligonucleotides specifically increased the permeability of two types of endothelial cells, and the change was dependent on the molecular size, structure of the oligonucleotides used and the concentrations of the oligonucleotide and atelocollagen in the formulation. An immunohistochemical examination revealed that the formulation had effects on the cellular skeleton and intercellular structure although it did not affect the expression of adherens junction or tight junction proteins. These changes were induced through p38 MAP kinase signaling. It is important to elucidate the biological functions of atelocollagen in order to be able to exploit its drug delivery properties.
Collapse
|
18
|
Abstract
There has been much progress in our understanding of transthyretin (TTR)-related amyloidosis including familial amyloidotic polyneuropathy (FAP), senile systemic amyloidosis and its related disorders from many clinical and experimental aspects. FAP is an inherited severe systemic amyloidosis caused by mutated TTR, and characterized by amyloid deposition mainly in the peripheral nervous system and the heart. Liver transplantation is the only available treatment for the disease. FAP is now recognized not to be a rare disease, and to have many variations based on genetical and biochemical variations of TTR. This chapter covers the recent advances in the clinical and pathological aspects of, and therapeutic approaches to FAP, and the trend as to the molecular pathogenesis of TTR.
Collapse
Affiliation(s)
- Takamura Nagasaka
- Department of Neurology, University of Yamanashi, 1110 Shimokato, 409-3898, Chuou-city, Yamanashi, Japan,
| |
Collapse
|
19
|
Cania A, Bergesio F, Curciarello G, Perfetto F, Ciciani AM, Nigrelli S, Minuti B, Caldini AL, Di Lollo S, Nozzoli C, Salvadori M. The Florence Register of amyloidosis: 20 years' experience in the diagnosis and treatment of the disease in the Florence district area. Amyloid 2011; 18 Suppl 1:86-88. [PMID: 21838443 DOI: 10.3109/13506129.2011.574354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- A Cania
- Florence Center for the study and treatment of Amyloidosis, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ando Y. Therapy of ATTR amyloidosis: perspective. Amyloid 2011; 18 Suppl 1:182-4. [PMID: 21838480 DOI: 10.3109/13506129.2011.574354068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Y Ando
- Department of Diagnostic Medicine, Graduate School of Medical Sciences, Kumamoto University, Japan.
| |
Collapse
|
21
|
Wang HH, Xu G, Vonner AJ, Church G. Modified bases enable high-efficiency oligonucleotide-mediated allelic replacement via mismatch repair evasion. Nucleic Acids Res 2011; 39:7336-47. [PMID: 21609953 PMCID: PMC3167615 DOI: 10.1093/nar/gkr183] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome engineering using single-stranded oligonucleotides is an efficient method for generating small chromosomal and episomal modifications in a variety of host organisms. The efficiency of this allelic replacement strategy is highly dependent on avoidance of the endogenous mismatch repair (MMR) machinery. However, global MMR inactivation generally results in significant accumulation of undesired background mutations. Here, we present a novel strategy using oligos containing chemically modified bases (2′-Fluoro-Uridine, 5-Methyl-deoxyCytidine, 2,6-Diaminopurine or Iso-deoxyGuanosine) in place of the standard T, C, A or G to avoid mismatch detection and repair, which we tested in Escherichia coli. This strategy increases transient allelic-replacement efficiencies by up to 20-fold, while maintaining a 100-fold lower background mutation level. We further show that the mismatched bases between the full length oligo and the chromosome are often not incorporated at the target site, probably due to nuclease activity at the 5′ and 3′ termini of the oligo. These results further elucidate the mechanism of oligo-mediated allelic replacement (OMAR) and enable improved methodologies for efficient, large-scale engineering of genomes.
Collapse
Affiliation(s)
- Harris H Wang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Department of Genetics, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
22
|
Engstrom JU, Suzuki T, Kmiec EB. Regulation of targeted gene repair by intrinsic cellular processes. Bioessays 2009; 31:159-68. [PMID: 19204988 DOI: 10.1002/bies.200800119] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Targeted gene alteration (TGA) is a strategy for correcting single base mutations in the DNA of human cells that cause inherited disorders. TGA aims to reverse a phenotype by repairing the mutant base within the chromosome itself, avoiding the introduction of exogenous genes. The process of how to accurately repair a genetic mutation is elucidated through the use of single-stranded DNA oligonucleotides (ODNs) that can enter the cell and migrate to the nucleus. These specifically designed ODNs hybridize to the target sequence and act as a beacon for nucleotide exchange. The key to this reaction is the frequency with which the base is corrected; this will determine whether the approach becomes clinically relevant or not. Over the course of the last five years, workers have been uncovering the role played by the cells in regulating the gene repair process. In this essay, we discuss how the impact of the cell on TGA has evolved through the years and illustrate ways that inherent cellular pathways could be used to enhance TGA activity. We also describe the cost to cell metabolism and survival when certain processes are altered to achieve a higher frequency of repair.
Collapse
Affiliation(s)
- Julia U Engstrom
- University of Delaware, Department of Biological Sciences, Newark, DE 19716, USA
| | | | | |
Collapse
|
23
|
Kamata M, Susanto MT, Chen ISY. Enhanced transthyretin tetramer stability following expression of an amyloid disease transsuppressor variant in mammalian cells. J Gene Med 2009; 11:103-11. [PMID: 19065606 DOI: 10.1002/jgm.1276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The transthyretin (TTR) amyloidosis is an incurable fatal inherited disease that is characterized by progressive peripheral and autonomic neuropathy. It is caused by missense amyloidogenic mutations in the TTR gene that destabilize the native tetrameric state and lead to the cytotoxic misfolded monomeric state. One interesting variant (T119M) stabilizes heterotetramers with amyloidogenic TTR and, in the reported heterozygous individuals, protects the carriers from disease. In the present study, we characterize in vitro and in vivo the ectopic expression of the human T119M mutant, termed a transsuppressor for TTR amyloid disease. METHODS Lentiviral vectors encoding wild or mutant forms of human TTR were constructed and transduced to the human hepatocellular carcinoma cell line, HepG2, or mice. Heterooligomerization between T119M TTR and amyloidogenic variants was analysed by immunoprecipitation following western blotting. RESULTS T119M TTR was stably expressed in transduced HepG2 cells and was secreted as an oligomer that can interact with its native partner, retinol-binding protein. Importantly, the T119M TTR formed secreted heterooligomers with amyloidogenic TTR variants, V30M, L55P and V122I, in HepG2 cells that were more stable than the homooligomers of the same amyloidogenic TTR variants. Human T119M TTR also formed heterooligomers with V30M TTR in transduced mice. CONCLUSIONS The results obtained in the present study demonstrate the stabilization of heterotetramers by T119M TTR in human cells and suggest that gene transfer of T119M TTR may have potential as a gene therapy for TTR amyloidosis.
Collapse
Affiliation(s)
- Masakazu Kamata
- Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
24
|
|
25
|
Liepnieks JJ, Benson MD. Progression of cardiac amyloid deposition in hereditary transthyretin amyloidosis patients after liver transplantation. Amyloid 2007; 14:277-82. [PMID: 17968687 DOI: 10.1080/13506120701614032] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
It has been hypothesized that transthyretin (TTR) amyloidosis may progress after orthotopic liver transplantation (OLT) as a result of continued amyloid fibril synthesis and deposition from normal TTR. To test this hypothesis amyloid fibrils were isolated from cardiac tissues of three patients who died 1(1/2) to 5(1/2) years after OLT: two with Val30Met and one with Thr60Ala TTR. The ratio of variant to normal TTR in each case was determined and compared with the ratio of variant to normal in cardiac tissues from seven patients who died with TTR amyloidosis but who had not had liver transplantation. Tissues from patients with TTR amyloidosis without OLT included three with Val30Met, two with Thr60Ala, one with deltaVal122, and one with Val122Ile. All tissues from patients without OLT had greater amounts of variant TTR than normal TTR except for the Val122Ile in which the ratio was 50:50. The overall median variant to normal ratio was 60:40 with a range of 50-70% variant. In contrast, the mean percentage of variant TTR in the three tissues from patients after OLT was 25% (range 20-35). These data are consistent with the continued deposition of normal TTR in cardiac tissue after liver transplantation.
Collapse
Affiliation(s)
- Juris J Liepnieks
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202-5126, USA.
| | | |
Collapse
|
26
|
Abstract
Neuropathy is often a major manifestation of systemic amyloidosis. It is most frequently seen in patients with hereditary transthyretin (TTR) amyloidosis, but is also present in 20% of patients with systemic immunoglobulin light chain (primary) amyloidosis. Familial amyloid polyneuropathy (FAP) is the most common form of inherited amyloidotic polyneuropathy, with clinical and electrophysiologic findings similar to neuropathies with differing etiologies (e.g., diabetes mellitus). Hereditary amyloidosis is an adult-onset autosomal-dominant disease with varying degrees of penetrance. It is caused by specific gene mutations, but demonstration that a patient has one such mutation does not confirm the diagnosis of amyloidosis. Diagnosis requires tissue biopsy with demonstration of amyloid deposits either by special histochemical stains or electron microscopy. Transthyretin amyloidosis is treated by liver transplantation, which eliminates the mutated transthyretin from the blood, but for some patients continued amyloid deposition can occur from wild-type (normal) transthyretin. Presently, a study is ongoing to determine whether amyloid deposition can be inhibited by small organic molecules that are hypothesized to affect the fibril-forming ability of transthyretin. Proposed gene therapy with antisense oligonucleotides (ASOs) to suppress hepatic transthyretin synthesis is effective in a transgenic mouse model but has not yet been tested in humans.
Collapse
Affiliation(s)
- Merrill D Benson
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, MS-128, Indianapolis, IN 46202-5126, USA.
| | | |
Collapse
|
27
|
Honma K, Takeshita F, Ochiya T. Application of Atelocollagen-mediated siRNA Delivery for RNAi Therapies. YAKUGAKU ZASSHI 2007; 127:807-12. [PMID: 17473522 DOI: 10.1248/yakushi.127.807] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNAi has rapidly become a powerful tool for drug target discovery and validation in an in vitro culture system and, consequently, interest is rapidly growing for extension of its application to in vivo systems, such as animal disease models and human therapeutics. Novel treatments and drug discovery in pre-clinical studies based on RNAi are currently targeting a wide range of diseases, including viral infections and cancers by the local administration of synthetic small interfering RNA (siRNA) that target local lesions. Recently, specific methods for the systemic administration of siRNAs have been reported to treat non-human primates or a cancer metastasis model. In vivo siRNA-delivery technology is a key hurdle to the successful therapeutic application of RNAi. This article reviews the non-viral delivery system of atelocollagen for siRNA, which could be useful for functional screening of the genes in vitro and in vivo, and will provide a foundation for further development of RNAi therapeutics.
Collapse
Affiliation(s)
- Kimi Honma
- Section for Studies on Metastasis, National Cancer Center Research Institute, Tokyo, Japan
| | | | | |
Collapse
|
28
|
Urban PP, Hertkorn C, Schattenberg JM, Gawehn J, Hägele S, Wunsch M, Altland K. Leptomeningeal familial amyloidosis: A rare differential diagnosis of leptomeningeal enhancement in MRI. J Neurol 2006; 253:1238-40. [PMID: 16990995 DOI: 10.1007/s00415-006-0169-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 01/31/2006] [Indexed: 11/25/2022]
|
29
|
Abstract
One of the most dramatic events of the past 5 years in the field of molecular biology has been the discovery of RNA interference (RNAi). Although RNAi is an evolutionarily conserved phenomenon for sequence-specific gene silencing in mammalian cells, exogenous small interfering RNA (siRNA) and vector-based short hairpin RNA (shRNA) can also invoke RNAi responses. Both are now not only experimental tools for analyzing gene function but are expected to be excellent avenues for drug target discovery and the emerging class of gene medicine for targeting incurable diseases such as cancer. The success of cancer therapeutic use of RNAi relies on the development of safe and efficacious delivery systems that introduce siRNA and shRNA expression vectors into target tumor cells. For their delivery, a variety of strategies have been used, most of them based on traditional gene therapy delivery systems. In this review, we present siRNA delivery method strategies and discuss the potential of RNAi-based gene therapy in cancer treatment.
Collapse
Affiliation(s)
- Fumitaka Takeshita
- Section for Studies on Metastasis, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | | |
Collapse
|
30
|
Olsen PA, Randøl M, Luna L, Brown T, Krauss S. Genomic sequence correction by single-stranded DNA oligonucleotides: role of DNA synthesis and chemical modifications of the oligonucleotide ends. J Gene Med 2006; 7:1534-44. [PMID: 16025558 DOI: 10.1002/jgm.804] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Single-stranded oligonucleotides (ssODN) can induce site-specific genetic alterations in selected mammalian cells, but the involved mechanisms are not known. METHODS We corroborate the potential of genomic sequence correction by ssODN using chromosomally integrated mutated enhanced green fluorescent protein (mEGFP) reporter genes in CHO cell lines. The role of integration site was studied in a panel of cell clones with randomly integrated reporters and in cell lines with site-specific single copy integration of the mEGFP reporter in opposite orientations. Involvement of end modification was examined on ssODN with unprotected or phosphorothioate (PS) protected ends. Also ssODN containing octyl or hexaethylene glycol (HEG) end blocking groups were tested. The significance of DNA synthesis was investigated by cell cycle analysis and by the DNA polymerases alpha, delta and epsilon inhibitor aphidicolin. RESULTS Correction rates of up to 5% were observed upon a single transfection of ssODN. Independent of the mEGFP chromosomal integration site and of its orientation towards the replication fork, antisense ssODN were more effective than sense ssODN. When ssODN ends were blocked by either octyl or HEG groups, correction rates were reduced. Finally, we demonstrate a dependence of the process on DNA synthesis. CONCLUSIONS We show that, on a chromosomal level, the orientation of the replication fork towards the targeted locus is not central in the strand bias of ssODN-based targeted sequence correction. We demonstrate the importance of accessible ssODN ends for sequence alteration. Finally, we provide evidence for the involvement of DNA synthesis in the process.
Collapse
Affiliation(s)
- Petter Angell Olsen
- Department for Cellular and Genetic Therapy, Institute for Microbiology, Rikshospitalet, 0349 Oslo, Norway
| | | | | | | | | |
Collapse
|
31
|
Ferrara L, Kmiec EB. Targeted gene repair activates Chk1 and Chk2 and stalls replication in corrected cells. DNA Repair (Amst) 2006; 5:422-31. [PMID: 16414312 DOI: 10.1016/j.dnarep.2005.11.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 11/21/2005] [Accepted: 11/25/2005] [Indexed: 01/03/2023]
Abstract
Oligonucleotides (ODNs) can direct the exchange of single nucleotides at specific sites in the mammalian genome. It is generally believed that the ODN aligns in homologous register with its complementary site in the target gene and provides a template for the endogenous repair machinery to alter the sequence of the gene. We have been studying the initial phase of the reaction with particular emphasis on the cellular events that occur when the oligonucleotide enters the cell. Our results show that, following introduction of the oligonucleotide, the DNA-damage response pathway is activated, evidenced by the presence of phosphorylated p53, Chk1 and Chk2, respectively. As a result, progression of some of these cells through the cell cycle is slowed and those bearing corrected genes all contain phosphorylated Chk1 and Chk2. In contrast, uncorrected cells contain much lower levels of these proteins in the activated state and pass through the cell cycle in a normal fashion. We suggest that gene repair directed by oligonucleotides activates a pathway that prevents corrected cells from proliferating in cell culture through the activation of Chk1 and Chk2. Our results impact the future use of gene repair for ex vivo gene therapy applications.
Collapse
Affiliation(s)
- Luciana Ferrara
- Department of Biological Sciences, University of Delaware, Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
| | | |
Collapse
|
32
|
Yin W, Kren B, Steer C. Site-specific base changes in the coding or promoter region of the human beta- and gamma-globin genes by single-stranded oligonucleotides. Biochem J 2005; 390:253-61. [PMID: 15828874 PMCID: PMC1184579 DOI: 10.1042/bj20050045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
SSOs (single-stranded oligonucleotides) can mediate site-specific alteration of base-pairs in episomal and chromosomal target genes in mammalian cells. The TNE (targeted nucleotide exchange) can result in either repair or mutation of a gene sequence and is mediated through endogenous DNA repair pathway(s). Thus the approach provides a technique for the treatment of monogenic disorders associated with specific point mutations such as SCD (sickle cell disease). We studied the potential application of SSOs for SCD by introducing either an A to T substitution at the sixth codon of the human beta-globin gene (sickle locus) or a C to G mutation at -202 of the Ggamma-globin gene promoter region. The latter TNE is an alternative strategy to ameliorate the clinical manifestations of sickle cell anaemia by re-activating fetal haemoglobin gene expression in adult erythrocytes. A sensitive and valid PCR assay system was developed, which allows detection of point mutations as low as 0.01% at these sites. Using this system, TNE between 0.01 and 0.1% at the sickle locus or gamma-globin gene promoter region was detected after transfection with SSOs in cultured human cell lines. TNE in the Ggamma-globin promoter region exhibited varying degrees of strand bias that was dependent on SSO design and the cell's DNA mismatch repair activity. The results suggest that the endogenous DNA repair machinery may permit SSO correction of the sickle defect by modification of the beta- and/or gamma-globin genes.
Collapse
Affiliation(s)
- Wenxuan Yin
- *Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, U.S.A
| | - Betsy T. Kren
- *Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, U.S.A
| | - Clifford J. Steer
- *Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, U.S.A
- †Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MN 55455, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
33
|
Kurosawa T, Igarashi S, Nishizawa M, Onodera O. Selective silencing of a mutant transthyretin allele by small interfering RNAs. Biochem Biophys Res Commun 2005; 337:1012-8. [PMID: 16225852 DOI: 10.1016/j.bbrc.2005.09.142] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 09/22/2005] [Indexed: 11/20/2022]
Abstract
Familial amyloidotic polyneuropathy (FAP) is a hereditary systemic amyloidosis caused by dominantly acting missense mutations in the gene encoding transthyretin (TTR). The most common mutant TTR is of the Val30Met type, which results from a point mutation. Because the major constituent of amyloid fibrils is mutant TTR, agents that selectively suppress mutant TTR expression could be powerful therapeutic tools. This study has been performed to evaluate the use of small interfering RNAs (siRNAs) for the selective silencing of mutant Val30Met TTR in cell culture systems. We have identified an siRNA that specifically inhibits mutant, but not wild-type, TTR expression even in cells expressing both alleles. Thus, this siRNA-based approach may have potential for the gene therapy of FAP.
Collapse
Affiliation(s)
- Takayuki Kurosawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | | | | | | |
Collapse
|
34
|
Kolb AF, Coates CJ, Kaminski JM, Summers JB, Miller AD, Segal DJ. Site-directed genome modification: nucleic acid and protein modules for targeted integration and gene correction. Trends Biotechnol 2005; 23:399-406. [PMID: 15982766 DOI: 10.1016/j.tibtech.2005.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 05/04/2005] [Accepted: 06/08/2005] [Indexed: 10/25/2022]
Abstract
A variety of technological advances in recent years have made permanent genetic manipulation of an organism a technical possibility. As the details of natural biological processes for genome modification are elucidated, the enzymes catalyzing these events (transposases, recombinases, integrases and DNA repair enzymes) are being harnessed or modified for the purpose of intentional gene modification. Targeted integration and gene repair can be mediated by the DNA-targeting specificity inherent to a particular enzyme, or rely on user-designed specificities. Integration sites can be defined by using DNA base-pairing or protein-DNA interaction as a means of targeting. This review will describe recent progress in the development of 'user-targetable' systems, particularly highlighting the application of custom DNA-binding proteins or nucleic acid homology to confer specificity.
Collapse
Affiliation(s)
- Andreas F Kolb
- Hannah Research Institute, Hannah Research Park, Ayr, UK, KA6 5HL
| | | | | | | | | | | |
Collapse
|
35
|
Parekh-Olmedo H, Ferrara L, Brachman E, Kmiec EB. Gene therapy progress and prospects: targeted gene repair. Gene Ther 2005; 12:639-46. [PMID: 15815682 DOI: 10.1038/sj.gt.3302511] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The capacity to correct a mutant gene within the context of the chromosome holds great promise as a therapy for inherited disorders but fulfilling this promise has proven to be challenging. However, steady progress is being made and the development of gene repair as a viable and robust approach is underway. Here, we present some of the recent advances that are helping to shape our thinking about the feasibility and the limitations of this technique. For the most part, these advances center on understanding the regulation of the reaction and validating its application in animal models.
Collapse
Affiliation(s)
- H Parekh-Olmedo
- Department of Biological Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| | | | | | | |
Collapse
|
36
|
Abstract
Familial amyloidotic polyneuropathy (FAP), caused by mutated transthyretin (TTR), is the common form of hereditary generalised amyloidosis. As TTR is predominantly synthesised in the liver, liver transplantation is now considered an effective treatment for FAP to halt the production of variant TTR. However, this invasive therapy has several problems, leading to a requirement for a non-invasive treatment to be developed. At present, gene therapy for FAP has focused on two therapeutic strategies for suppressing variant TTR gene expression. The first is inhibition of variant TTR mRNA expression by antisense or ribozymes, and the other is the repair of mutated TTR gene by chimaeraplasts or single-stranded oligonucleotides. In particular, targeted gene repair is considered to be a promising tool for gene therapy because the effect can last permanently and the method is more suitable for proteins with a short plasma half-life. This article summarises the general concept of gene therapy and reviews the recent data on gene therapy for FAP.
Collapse
MESH Headings
- Amyloid Neuropathies, Familial/genetics
- Amyloid Neuropathies, Familial/therapy
- Cells, Cultured
- DNA Repair
- DNA, Recombinant/genetics
- DNA, Recombinant/therapeutic use
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/therapeutic use
- Gene Expression Regulation/drug effects
- Genetic Therapy/methods
- Genetic Vectors/therapeutic use
- Humans
- Point Mutation
- Prealbumin/chemistry
- Prealbumin/deficiency
- Prealbumin/genetics
- RNA, Antisense/pharmacology
- RNA, Antisense/therapeutic use
- RNA, Catalytic/pharmacology
- RNA, Catalytic/therapeutic use
- RNA, Messenger/antagonists & inhibitors
- Recombination, Genetic
Collapse
Affiliation(s)
- Masaaki Nakamura
- Department of Diagnostic Medicine, Graduate School of Medical Sciences, Kumamoto University, Japan
| | | |
Collapse
|
37
|
Suhr OB, Holmgren G, Lundgren E. Gene therapy: lessons learned from liver transplantation for transthyretin-amyloidosis. Liver Transpl 2004; 10:1551-3. [PMID: 15558840 DOI: 10.1002/lt.20302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ole B Suhr
- Department of Medicine, Umeå University and University Hospital, Umeå, Sweden
| | | | | |
Collapse
|