1
|
Cui Y, Ma X, Wei J, Chen C, Shakir N, Guirram H, Dai Z, Anderson T, Ferguson D, Qiu S. MET receptor tyrosine kinase promotes the generation of functional synapses in adult cortical circuits. Neural Regen Res 2025; 20:1431-1444. [PMID: 39075910 PMCID: PMC11624886 DOI: 10.4103/nrr.nrr-d-23-01471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/02/2024] [Accepted: 04/20/2024] [Indexed: 07/31/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202505000-00026/figure1/v/2024-07-28T173839Z/r/image-tiff Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration, however, few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse function. We have previously shown that MET receptor tyrosine kinase in the developing cortical circuits promotes dendritic growth and dendritic spine morphogenesis. To investigate whether enhancing MET in adult cortex has synapse regenerating potential, we created a knockin mouse line, in which the human MET gene expression and signaling can be turned on in adult (10-12 months) cortical neurons through doxycycline-containing chow. We found that similar to the developing brain, turning on MET signaling in the adult cortex activates small GTPases and increases spine density in prefrontal projection neurons. These findings are further corroborated by increased synaptic activity and transient generation of immature silent synapses. Prolonged MET signaling resulted in an increased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-D-aspartate (AMPA/NMDA) receptor current ratio, indicative of enhanced synaptic function and connectivity. Our data reveal that enhancing MET signaling could be an interventional approach to promote synaptogenesis and preserve functional connectivity in the adult brain. These findings may have implications for regenerative therapy in aging and neurodegeneration conditions.
Collapse
Affiliation(s)
- Yuehua Cui
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Xiaokuang Ma
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Jing Wei
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Chang Chen
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Neha Shakir
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Hitesch Guirram
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Zhiyu Dai
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Trent Anderson
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Deveroux Ferguson
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Shenfeng Qiu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| |
Collapse
|
2
|
Nunes LGA, Rosario FJ, Urschitz J. In vivo placental gene modulation via sonoporation. Placenta 2024:S0143-4004(24)00688-X. [PMID: 39477696 PMCID: PMC12014858 DOI: 10.1016/j.placenta.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/25/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024]
Abstract
Placental dysregulation frequently results in pregnancy complications that impact fetal well-being and potentially predispose the infant to diseases later in life. Thus, efforts to understand the molecular mechanisms underlying placental disorders are crucial to aid the development of effective treatments to restore placental function. Currently, the most common methods used for trophoblast-specific gene modulation in the laboratory are transgenic animals and lentiviral trophectoderm transduction. The generation of transgenic animal lines is costly and requires a considerable amount of time to generate and maintain, while the integration preference of lentiviruses, actively transcribed genes, may result in genotoxicity. Therefore, there is much interest in the development of non-viral in vivo transfection techniques for use in both research and clinical settings. Herein, we describe a non-viral, minimally invasive method for in vivo placental gene modulation through sonoporation, an ultrasound-mediated transfection technique wherein the application of ultrasound on target tissues is used to direct the uptake of DNA vectors. In this method, plasmids are bound to lipid microbubbles, which are then injected into the maternal bloodstream and ultimately delivered to the placenta when subjected to low-frequency ultrasound. Syncytiotrophoblasts are directly exposed to maternal blood and, therefore highly accessible to therapeutic agents in the maternal circulation. This technique can be used to modulate gene expression and, subsequently, the function of the placenta, circumventing the requirement to generate transgenic animals. Sonoporation also offers a safer alternative to existing viral techniques, making it not only an advantageous research tool but also a potentially adaptable technique in clinical settings.
Collapse
Affiliation(s)
- Lance G A Nunes
- Institute for Biogenesis Research, University of Hawai'i, Honolulu, HI, United States
| | - Fredrick J Rosario
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Johann Urschitz
- Institute for Biogenesis Research, University of Hawai'i, Honolulu, HI, United States.
| |
Collapse
|
3
|
Ghaffari MK, Rafati A, Karbalaei N, Haghani M, Nemati M, Sefati N, Namavar MR. The effect of intra-nasal co-treatment with insulin and growth factor-rich serum on behavioral defects, hippocampal oxidative-nitrosative stress, and histological changes induced by icv-STZ in a rat model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4833-4849. [PMID: 38157024 DOI: 10.1007/s00210-023-02899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
Impaired insulin and growth factor functions are thought to drive many alterations in neurodegenerative diseases like dementia and seem to contribute to oxidative stress and inflammatory responses. Recent studies revealed that nasal growth factor therapy could induce neuronal and oligodendroglia protection in rodent brain damage induction models. Impairment of several growth factors signaling was reported in neurodegenerative diseases. So, in the present study, we examined the effects of intranasal co-treatment of insulin and a pool of growth factor-rich serum (GFRS) which separated from activated platelets on memory, and behavioral defects induced by intracerebroventricular streptozotocin (icv-STZ) rat model also investigated changes in the hippocampal oxidative-nitrosative state and histology. We found that icv-STZ injection (3 mg/kg bilaterally) impairs spatial learning and memory in Morris Water Maze, leads to anxiogenic-like behavior in the open field arena, and induces oxidative-nitrosative stress, neuroinflammation, and neuronal/oligodendroglia death in the hippocampus. GFRS (1µl/kg, each other day, 9 doses) and regular insulin (4 U/40 µl, daily, 18 doses) treatments improved learning, memory, and anxiogenic behaviors. The present study showed that co-treatment (GFRS + insulin with respective dose) has more robust protection against hippocampal oxidative-nitrosative stress, neuroinflammation, and neuronal/oligodendroglia survival in comparison with the single therapy. Memory and behavioral improvements in the co-treatment of insulin and GFRS could be attributed to their effects on neuronal/oligodendroglia survival and reduction of neuroinflammation in the hippocampus.
Collapse
Affiliation(s)
- Mahdi Khorsand Ghaffari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Rafati
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karbalaei
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Haghani
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Nemati
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Niloofar Sefati
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namavar
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Shen Q, Li Z, Wang Y, Meyer MD, De Guzman MT, Lim JC, Xiao H, Bouchard RR, Lu GJ. 50-nm Gas-Filled Protein Nanostructures to Enable the Access of Lymphatic Cells by Ultrasound Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307123. [PMID: 38533973 PMCID: PMC11550859 DOI: 10.1002/adma.202307123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/14/2024] [Indexed: 03/28/2024]
Abstract
Ultrasound imaging and ultrasound-mediated gene and drug delivery are rapidly advancing diagnostic and therapeutic methods; however, their use is often limited by the need for microbubbles, which cannot transverse many biological barriers due to their large size. Here, the authors introduce 50-nm gas-filled protein nanostructures derived from genetically engineered gas vesicles(GVs) that are referred to as 50 nmGVs. These diamond-shaped nanostructures have hydrodynamic diameters smaller than commercially available 50-nm gold nanoparticles and are, to the authors' knowledge, the smallest stable, free-floating bubbles made to date. 50 nmGVs can be produced in bacteria, purified through centrifugation, and remain stable for months. Interstitially injected 50 nmGVs can extravasate into lymphatic tissues and gain access to critical immune cell populations, and electron microscopy images of lymph node tissues reveal their subcellular location in antigen-presenting cells adjacent to lymphocytes. The authors anticipate that 50 nmGVs can substantially broaden the range of cells accessible to current ultrasound technologies and may generate applications beyond biomedicine as ultrasmall stable gas-filled nanomaterials.
Collapse
Affiliation(s)
- Qionghua Shen
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Zongru Li
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Yixian Wang
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Matthew D Meyer
- Shared Equipment Authority, Rice University, Houston, TX, 77005, USA
| | - Marc T De Guzman
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Janie C Lim
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Han Xiao
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
- SynthX Center, Rice University, Houston, TX, 77005, USA
| | - Richard R Bouchard
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - George J Lu
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
- Department of BioSciences, Rice University, Houston, TX, 77005, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
5
|
Buccellato FR, D’Anca M, Tartaglia GM, Del Fabbro M, Scarpini E, Galimberti D. Treatment of Alzheimer's Disease: Beyond Symptomatic Therapies. Int J Mol Sci 2023; 24:13900. [PMID: 37762203 PMCID: PMC10531090 DOI: 10.3390/ijms241813900] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
In an ever-increasing aged world, Alzheimer's disease (AD) represents the first cause of dementia and one of the first chronic diseases in elderly people. With 55 million people affected, the WHO considers AD to be a disease with public priority. Unfortunately, there are no final cures for this pathology. Treatment strategies are aimed to mitigate symptoms, i.e., acetylcholinesterase inhibitors (AChEI) and the N-Methyl-D-aspartate (NMDA) antagonist Memantine. At present, the best approaches for managing the disease seem to combine pharmacological and non-pharmacological therapies to stimulate cognitive reserve. Over the last twenty years, a number of drugs have been discovered acting on the well-established biological hallmarks of AD, deposition of β-amyloid aggregates and accumulation of hyperphosphorylated tau protein in cells. Although previous efforts disappointed expectations, a new era in treating AD has been working its way recently. The Food and Drug Administration (FDA) gave conditional approval of the first disease-modifying therapy (DMT) for the treatment of AD, aducanumab, a monoclonal antibody (mAb) designed against Aβ plaques and oligomers in 2021, and in January 2023, the FDA granted accelerated approval for a second monoclonal antibody, Lecanemab. This review describes ongoing clinical trials with DMTs and non-pharmacological therapies. We will also present a future scenario based on new biomarkers that can detect AD in preclinical or prodromal stages, identify people at risk of developing AD, and allow an early and curative treatment.
Collapse
Affiliation(s)
- Francesca R. Buccellato
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Marianna D’Anca
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Elio Scarpini
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
6
|
Shen Q, Li Z, Meyer MD, De Guzman MT, Lim JC, Bouchard RR, Lu GJ. 50-nm gas-filled protein nanostructures to enable the access of lymphatic cells by ultrasound technologies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546433. [PMID: 37425762 PMCID: PMC10327079 DOI: 10.1101/2023.06.27.546433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Ultrasound imaging and ultrasound-mediated gene and drug delivery are rapidly advancing diagnostic and therapeutic methods; however, their use is often limited by the need of microbubbles, which cannot transverse many biological barriers due to their large size. Here we introduce 50-nm gas-filled protein nanostructures derived from genetically engineered gas vesicles that we referred to as 50nm GVs. These diamond-shaped nanostructures have hydrodynamic diameters smaller than commercially available 50-nm gold nanoparticles and are, to our knowledge, the smallest stable, free-floating bubbles made to date. 50nm GVs can be produced in bacteria, purified through centrifugation, and remain stable for months. Interstitially injected 50nm GVs can extravasate into lymphatic tissues and gain access to critical immune cell populations, and electron microscopy images of lymph node tissues reveal their subcellular location in antigen-presenting cells adjacent to lymphocytes. We anticipate that 50nm GVs can substantially broaden the range of cells accessible to current ultrasound technologies and may generate applications beyond biomedicine as ultrasmall stable gas-filled nanomaterials.
Collapse
|
7
|
Abdelnour C, Gonzalez MC, Gibson LL, Poston KL, Ballard CG, Cummings JL, Aarsland D. Dementia with Lewy Bodies Drug Therapies in Clinical Trials: Systematic Review up to 2022. Neurol Ther 2023; 12:727-749. [PMID: 37017910 PMCID: PMC10195935 DOI: 10.1007/s40120-023-00467-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023] Open
Abstract
INTRODUCTION Reviews of randomized clinical trials (RCTs) in dementia with Lewy bodies (DLB) are essential for informing ongoing research efforts of symptomatic therapies and potentially disease-modifying therapies (DMTs). METHODS We performed a systematic review of all clinical trials conducted until September 27, 2022, by examining 3 international registries: ClinicalTrials.gov, the European Union Drug Regulating Authorities Clinical Trials Database, and the International Clinical Trials Registry Platform, to identify drugs in trials in DLB. RESULTS We found 25 agents in 40 trials assessing symptomatic treatments and DMTs for DLB: 7 phase 3, 31 phase 2, and 2 phase 1 trials. We found an active pipeline for drug development in DLB, with most ongoing clinical trials in phase 2. We identified a recent trend towards including participants at the prodromal stages, although more than half of active clinical trials will enroll mild to moderate dementia patients. Additionally, repurposed agents are frequently tested, representing 65% of clinical trials. CONCLUSION Current challenges in DLB clinical trials include the need for disease-specific outcome measures and biomarkers, and improving representation of global and diverse populations.
Collapse
Affiliation(s)
- Carla Abdelnour
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | - Maria Camila Gonzalez
- Department of Quality and Health Technology, Faculty of Health Sciences, University of Stavanger, Stavanger, Norway
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
- Centre for Age-Related Diseases, Stavanger University Hospital, Stavanger, Norway
| | - Lucy L Gibson
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Dag Aarsland
- Centre for Age-Related Diseases, Stavanger University Hospital, Stavanger, Norway
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
8
|
Johnston JL, Reda SM, Setti SE, Taylor RW, Berthiaume AA, Walker WE, Wu W, Moebius HJ, Church KJ. Fosgonimeton, a Novel Positive Modulator of the HGF/MET System, Promotes Neurotrophic and Procognitive Effects in Models of Dementia. Neurotherapeutics 2023; 20:431-451. [PMID: 36538176 PMCID: PMC10121968 DOI: 10.1007/s13311-022-01325-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2022] [Indexed: 12/24/2022] Open
Abstract
All types of dementia, including Alzheimer's disease, are debilitating neurodegenerative conditions marked by compromised cognitive function for which there are few effective treatments. Positive modulation of hepatocyte growth factor (HGF)/MET, a critical neurotrophic signaling system, may promote neuronal health and function, thereby addressing neurodegeneration in dementia. Here, we evaluate a series of novel small molecules for their ability to (1) positively modulate HGF/MET activity, (2) induce neurotrophic changes and protect against neurotoxic insults in primary neuron culture, (3) promote anti-inflammatory effects in vitro and in vivo, and (4) reverse cognitive deficits in animal models of dementia. Through screening studies, the compound now known as fosgonimeton-active metabolite (fosgo-AM) was identified by use of immunocytochemistry to be the most potent positive modulator of HGF/MET and was selected for further testing. Primary hippocampal neurons treated with fosgo-AM showed enhanced synaptogenesis and neurite outgrowth, supporting the neurotrophic effects of positive modulators of HGF/MET. Additionally, fosgo-AM protected against neurotoxic insults in primary cortical neuron cultures. In vivo, treatment with fosgo-AM rescued cognitive deficits in the rat scopolamine amnesia model of dementia. Although fosgo-AM demonstrated several procognitive effects in vitro and in vivo, a prodrug strategy was used to enhance the pharmacological properties of fosgo-AM, resulting in the development of fosgonimeton (ATH-1017). The effect of fosgonimeton on cognition was confirmed in a lipopolysaccharide (LPS)-induced neuroinflammatory mouse model of dementia. Together, the results of these studies support the potential of positive modulators of HGF/MET to be used as novel therapeutics and suggest the drug candidate fosgonimeton might protect against neurodegeneration and be therapeutic in the management of Alzheimer's disease and other types of dementia.
Collapse
Affiliation(s)
- Jewel L Johnston
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | - Sherif M Reda
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | - Sharay E Setti
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | - Robert W Taylor
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | | | - William E Walker
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | - Wei Wu
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | - Hans J Moebius
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | - Kevin J Church
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA.
| |
Collapse
|
9
|
Moebius HJ, Church KJ. The Case for a Novel Therapeutic Approach to Dementia: Small Molecule Hepatocyte Growth Factor (HGF/MET) Positive Modulators. J Alzheimers Dis 2023; 92:1-12. [PMID: 36683507 PMCID: PMC10041442 DOI: 10.3233/jad-220871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An estimated 6.5 million Americans aged 65 years or older have Alzheimer's disease (AD), which will grow to 13.8 million Americans by 2060. Despite the growing burden of dementia, no fundamental change in drug development for AD has been seen in > 20 years. Currently approved drugs for AD produce only modest symptomatic improvements in cognition with small effect sizes. A growing mismatch exists between the urgent need to develop effective drugs for symptomatic AD and the largely failed search for disease modification. The failure rate of clinical trials in AD is high overall, and in particular for disease-modifying therapies. Research efforts in AD have focused predominantly on amyloid-β and tau pathologies, but limiting clinical research to these "classical hallmarks" of the disease does not address the most urgent patient, caregiver, or societal needs. Rather, clinical research should consider the complex pathophysiology of AD. Innovative approaches are needed that provide outside-the-box thinking, and re-imagine trial design, interventions, and outcomes as well as progress in proteomics and fluid biomarker analytics for both diagnostics and disease monitoring. A new approach offering a highly specific, yet multi-pronged intervention that exerts positive modulation on the HGF/MET neurotrophic system is currently being tested in mid-to-late-stage clinical trials in mild to moderate AD. Findings from such trials may provide data to support novel approaches for development of innovative drugs for treating AD at various disease stages, including among patients already symptomatic, and may offer benefits for other neurodegenerative diseases.
Collapse
|
10
|
Wei J, Ma X, Nehme A, Cui Y, Zhang L, Qiu S. Reduced HGF/MET Signaling May Contribute to the Synaptic Pathology in an Alzheimer's Disease Mouse Model. Front Aging Neurosci 2022; 14:954266. [PMID: 35903536 PMCID: PMC9314739 DOI: 10.3389/fnagi.2022.954266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder strongly associates with aging. While amyloid plagues and neurofibrillary tangles are pathological hallmarks of AD, recent evidence suggests synaptic dysfunction and physical loss may be the key mechanisms that determine the clinical syndrome and dementia onset. Currently, no effective therapy prevents neuropathological changes and cognitive decline. Neurotrophic factors and their receptors represent novel therapeutic targets to treat AD and dementia. Recent clinical literature revealed that MET receptor tyrosine kinase protein is reduced in AD patient's brain. Activation of MET by its ligand hepatocyte growth factor (HGF) initiates pleiotropic signaling in the developing brain that promotes neurogenesis, survival, synaptogenesis, and plasticity. We hypothesize that if reduced MET signaling plays a role in AD pathogenesis, this might be reflected in the AD mouse models and as such provides opportunities for mechanistic studies on the role of HGF/MET in AD. Examining the 5XFAD mouse model revealed that MET protein exhibits age-dependent progressive reduction prior to overt neuronal pathology, which cannot be explained by indiscriminate loss of total synaptic proteins. In addition, genetic ablation of MET protein in cortical excitatory neurons exacerbates amyloid-related neuropathology in 5XFAD mice. We further found that HGF enhances prefrontal layer 5 neuron synaptic plasticity measured by long-term potentiation (LTP). However, the degree of LTP enhancement is significantly reduced in 5XFAD mice brain slices. Taken together, our study revealed that early reduction of HGF/MET signaling may contribute to the synaptic pathology observed in AD.
Collapse
|
11
|
MacDonald S, Shah AS, Tousi B. Current Therapies and Drug Development Pipeline in Lewy Body Dementia: An Update. Drugs Aging 2022; 39:505-522. [PMID: 35619045 DOI: 10.1007/s40266-022-00939-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 11/25/2022]
Abstract
The term Lewy body dementia refers to either of two related diagnoses: dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD). Clinical management of Lewy body dementia is challenging. The current treatment options focus on relieving symptoms; no disease-modifying therapies are available. There are currently no US Food and Drug Administration (FDA) approved drugs for the treatment of DLB, and there are only a few for PDD. Cholinesterase inhibitors are shown to be beneficial in improving cognitive symptoms in Lewy body dementia. Rivastigmine was approved by the FDA to treat PDD. Donepezil was approved in Japan as a treatment for DLB. Levodopa may provide modest benefit in treating motor symptoms and zonisamide in adjunct to low-dose levodopa helps with parkinsonism. Treatment of autonomic symptoms are based on symptomatic treatment with off-label agents. Our main objective in this article is to present an overview of the current pharmacological options available to treat the clinical features of DLB and PDD. When evaluating the existing management options for Lewy body dementia, it is difficult to fully separate PDD from DLB. However, we have attempted to identify whether the cited studies include patients with PDD and/or DLB. Moreover, we have provided an overview of the current drug pipeline in Lewy body dementia. All currently active trials are in phase I or II and most are focused on disease modification rather than symptomatic treatment. Phase II trial results for neflamapimod show promising results. Due to heterogeneity of symptoms and underlying pathophysiology, there is a need for new biomarker strategies and improved definitions of outcome measures for Lewy body dementia drug trials.
Collapse
Affiliation(s)
- Steve MacDonald
- Cleveland Clinic Lou Ruvo Center for Brain Health, Cleveland, OH, USA
| | | | - Babak Tousi
- Cleveland Clinic Lou Ruvo Center for Brain Health, Cleveland, OH, USA.
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
12
|
Hua X, Church K, Walker W, L'Hostis P, Viardot G, Danjou P, Hendrix S, Moebius HJ. Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of the Positive Modulator of HGF/MET, Fosgonimeton, in Healthy Volunteers and Subjects with Alzheimer's Disease: Randomized, Placebo-Controlled, Double-Blind, Phase I Clinical Trial. J Alzheimers Dis 2022; 86:1399-1413. [PMID: 35180125 PMCID: PMC9108585 DOI: 10.3233/jad-215511] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: Fosgonimeton (ATH-1017) is being developed as a first-in-class regenerative therapy for people with Alzheimer’s disease (AD) and dementia; potentially improving dementia symptoms and altering disease progression by reversing synaptic disconnection and neuronal loss. Objective: This randomized, double-blind, placebo-controlled phase I trial (NCT03298672) evaluated the safety, tolerability, pharmacokinetics, and pharmacodynamics of fosgonimeton. Methods: Fosgonimeton was administered once daily via subcutaneous injection to 88 subjects. The single ascending dose study enrolled healthy young male subjects (n = 48; age, 33.4±6.3 years; dose, 2, 6, 20, 40, 60, or 90 mg); the multiple ascending dose study enrolled healthy elderly subjects (n = 29; age, 63.8±4.0 years; dose, 20, 40, 60, or 80 mg; 9-day duration); and the fixed-dose study enrolled AD subjects (n = 11; age, 69.2±7.1 years; dose, 40 mg; 9-day duration). Quantitative electroencephalogram (qEEG) and event-related potential (ERP) P300 measured neurophysiological signals following fosgonimeton treatment, supporting brain penetration and target engagement. Results: Fosgonimeton and placebo were shown to be safe and well-tolerated across all doses. Pharmacokinetic results for fosgonimeton were dose-proportional, with no sex effect or accumulation over 9 days. The main effect of fosgonimeton on qEEG was acute and sustained gamma power induction. In AD subjects, there was a significant effect toward ERP P300 latency normalization compared with placebo (p = 0.027; n = 7 at 40 mg fosgonimeton versus n = 4 placebo). Conclusion: These results support the continued development of fosgonimeton as a novel therapeutic for people with AD and dementia. The fast-onset normalization of ERP P300 latency in AD subjects suggests enhancement of synaptic function and potential procognitive effects.
Collapse
Affiliation(s)
- Xue Hua
- Athira Pharma, Inc., Bothell, WA, USA
| | | | | | - Philippe L'Hostis
- Core Lab, Drug Evaluation and Pharmacology Research, Biotrial, Rennes, France
| | - Geoffrey Viardot
- Core Lab, Drug Evaluation and Pharmacology Research, Biotrial, Rennes, France
| | - Philippe Danjou
- Phase 1 Unite, Drug Evaluation and Pharmacology Research, Biotrial, Newark, NJ, USA
| | | | | |
Collapse
|
13
|
Desole C, Gallo S, Vitacolonna A, Montarolo F, Bertolotto A, Vivien D, Comoglio P, Crepaldi T. HGF and MET: From Brain Development to Neurological Disorders. Front Cell Dev Biol 2021; 9:683609. [PMID: 34179015 PMCID: PMC8220160 DOI: 10.3389/fcell.2021.683609] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/30/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatocyte growth factor (HGF) and its tyrosine kinase receptor, encoded by the MET cellular proto-oncogene, are expressed in the nervous system from pre-natal development to adult life, where they are involved in neuronal growth and survival. In this review, we highlight, beyond the neurotrophic action, novel roles of HGF-MET in synaptogenesis during post-natal brain development and the connection between deregulation of MET expression and developmental disorders such as autism spectrum disorder (ASD). On the pharmacology side, HGF-induced MET activation exerts beneficial neuroprotective effects also in adulthood, specifically in neurodegenerative disease, and in preclinical models of cerebral ischemia, spinal cord injuries, and neurological pathologies, such as Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). HGF is a key factor preventing neuronal death and promoting survival through pro-angiogenic, anti-inflammatory, and immune-modulatory mechanisms. Recent evidence suggests that HGF acts on neural stem cells to enhance neuroregeneration. The possible therapeutic application of HGF and HGF mimetics for the treatment of neurological disorders is discussed.
Collapse
Affiliation(s)
- Claudia Desole
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Simona Gallo
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Annapia Vitacolonna
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Francesca Montarolo
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.,Neurobiology Unit, Neurology, CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Antonio Bertolotto
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.,Neurobiology Unit, Neurology, CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Denis Vivien
- INSERM U1237, University of Caen, Gyp Cyceron, Caen, France.,Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Paolo Comoglio
- IFOM, FIRC Institute for Molecular Oncology, Milan, Italy
| | - Tiziana Crepaldi
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
14
|
Ilovitsh T, Feng Y, Foiret J, Kheirolomoom A, Zhang H, Ingham ES, Ilovitsh A, Tumbale SK, Fite BZ, Wu B, Raie MN, Zhang N, Kare AJ, Chavez M, Qi LS, Pelled G, Gazit D, Vermesh O, Steinberg I, Gambhir SS, Ferrara KW. Low-frequency ultrasound-mediated cytokine transfection enhances T cell recruitment at local and distant tumor sites. Proc Natl Acad Sci U S A 2020; 117:12674-12685. [PMID: 32430322 PMCID: PMC7293655 DOI: 10.1073/pnas.1914906117] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Robust cytotoxic T cell infiltration has proven to be difficult to achieve in solid tumors. We set out to develop a flexible protocol to efficiently transfect tumor and stromal cells to produce immune-activating cytokines, and thus enhance T cell infiltration while debulking tumor mass. By combining ultrasound with tumor-targeted microbubbles, membrane pores are created and facilitate a controllable and local transfection. Here, we applied a substantially lower transmission frequency (250 kHz) than applied previously. The resulting microbubble oscillation was significantly enhanced, reaching an effective expansion ratio of 35 for a peak negative pressure of 500 kPa in vitro. Combining low-frequency ultrasound with tumor-targeted microbubbles and a DNA plasmid construct, 20% of tumor cells remained viable, and ∼20% of these remaining cells were transfected with a reporter gene both in vitro and in vivo. The majority of cells transfected in vivo were mucin 1+/CD45- tumor cells. Tumor and stromal cells were then transfected with plasmid DNA encoding IFN-β, producing 150 pg/106 cells in vitro, a 150-fold increase compared to no-ultrasound or no-plasmid controls and a 50-fold increase compared to treatment with targeted microbubbles and ultrasound (without IFN-β). This enhancement in secretion exceeds previously reported fourfold to fivefold increases with other in vitro treatments. Combined with intraperitoneal administration of checkpoint inhibition, a single application of IFN-β plasmid transfection reduced tumor growth in vivo and recruited efficacious immune cells at both the local and distant tumor sites.
Collapse
Affiliation(s)
- Tali Ilovitsh
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Yi Feng
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Josquin Foiret
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Azadeh Kheirolomoom
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Hua Zhang
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Elizabeth S Ingham
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Asaf Ilovitsh
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Spencer K Tumbale
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Brett Z Fite
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Bo Wu
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Marina N Raie
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Nisi Zhang
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Aris J Kare
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Michael Chavez
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Gadi Pelled
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Dan Gazit
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Ophir Vermesh
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Idan Steinberg
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Sanjiv S Gambhir
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Katherine W Ferrara
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305;
- Department of Radiology, Stanford University, Stanford, CA 94305
| |
Collapse
|
15
|
Adly NN, El-kawaly WH, Abdelsattar HA. Atherosclerosis impacts the link between hepatocyte growth factor and cognition. JOURNAL OF GERONTOLOGY AND GERIATRICS 2020. [DOI: 10.36150/2499-6564-356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Nonviral ultrasound-mediated gene delivery in small and large animal models. Nat Protoc 2019; 14:1015-1026. [PMID: 30804568 DOI: 10.1038/s41596-019-0125-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022]
Abstract
Ultrasound-mediated gene delivery (sonoporation) is a minimally invasive, nonviral and clinically translatable method of gene therapy. This method offers a favorable safety profile over that of viral vectors and is less invasive as compared with other physical gene delivery approaches (e.g., electroporation). We have previously used sonoporation to overexpress transgenes in different skeletal tissues in order to induce tissue regeneration. Here, we provide a protocol that could easily be adapted to address various other targets of tissue regeneration or additional applications, such as cancer and neurodegenerative diseases. This protocol describes how to prepare, conduct and optimize ultrasound-mediated gene delivery in both a murine and a porcine animal model. The protocol includes the preparation of a microbubble-DNA mix and in vivo sonoporation under ultrasound imaging. Ultrasound-mediated gene delivery can be accomplished within 10 min. After DNA delivery, animals can be followed to monitor gene expression, protein secretion and other transgene-specific outcomes, including tissue regeneration. This procedure can be accomplished by a competent graduate student or technician with prior experience in ultrasound imaging or in performing in vivo procedures.
Collapse
|
17
|
Ibi D, Tsuchihashi A, Nomura T, Hiramatsu M. Involvement of GAT2/BGT-1 in the preventive effects of betaine on cognitive impairment and brain oxidative stress in amyloid β peptide-injected mice. Eur J Pharmacol 2019; 842:57-63. [DOI: 10.1016/j.ejphar.2018.10.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/13/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022]
|
18
|
Bagyinszky E, Giau VV, Shim K, Suk K, An SSA, Kim S. Role of inflammatory molecules in the Alzheimer's disease progression and diagnosis. J Neurol Sci 2017; 376:242-254. [PMID: 28431620 DOI: 10.1016/j.jns.2017.03.031] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/14/2017] [Accepted: 03/20/2017] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a complex disorder and the most common form of neurodegenerative dementia. Several genetic, environmental, and physiological factors, including inflammations and metabolic influences, are involved in the progression of AD. Inflammations are composed of complicated networks of many chemokines and cytokines with diverse cells. Inflammatory molecules are needed for the protection against pathogens, and maintaining their balances is important for normal physiological function. Recent studies demonstrated that inflammation may be involved in neurodegenerative dementia. Cellular immune components, such as microglia or astrocytes, mediate the release of inflammatory molecules, including tumor necrosis factor, growth factors, adhesion molecules, or chemokines. Over- and underexpression of pro- and anti-inflammatory molecules, respectively, may result in neuroinflammation and thus disease initiation and progression. In addition, levels of several inflammatory factors were reported to be altered in the brain or bodily fluids of patients with AD, reflecting their neuropathological changes. Therefore, simultaneous detection of several inflammatory molecules in the early or pre-symptomatic stage may improve the early diagnosis of AD. Further studies are needed to determine, how induction or inhibition of inflammatory factors could be used for AD therapies. This review summarizes the role or possible role of immune cells and inflammatory molecules in disease progression or prevention.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Department of Bionano Technology, Gachon University, Gyeonggi-do, Republic of Korea
| | - Vo Van Giau
- Department of Bionano Technology, Gachon University, Gyeonggi-do, Republic of Korea
| | - Kyuhwan Shim
- Department of Bionano Technology, Gachon University, Gyeonggi-do, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon University, Gyeonggi-do, Republic of Korea.
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi-do, Republic of Korea
| |
Collapse
|
19
|
Chen P, Yan Q, Wang S, Wang C, Zhao P. Transfer of three transcription factors via a lentiviral vector ameliorates spatial learning and memory impairment in a mouse model of Alzheimer's disease. Gene 2016; 587:59-63. [DOI: 10.1016/j.gene.2016.04.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/15/2016] [Indexed: 01/01/2023]
|
20
|
|
21
|
Wright JW, Kawas LH, Harding JW. The development of small molecule angiotensin IV analogs to treat Alzheimer's and Parkinson's diseases. Prog Neurobiol 2014; 125:26-46. [PMID: 25455861 DOI: 10.1016/j.pneurobio.2014.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023]
Abstract
Alzheimer's (AD) and Parkinson's (PD) diseases are neurodegenerative diseases presently without effective drug treatments. AD is characterized by general cognitive impairment, difficulties with memory consolidation and retrieval, and with advanced stages episodes of agitation and anger. AD is increasing in frequency as life expectancy increases. Present FDA approved medications do little to slow disease progression and none address the underlying progressive loss of synaptic connections and neurons. New drug design approaches are needed beyond cholinesterase inhibitors and N-methyl-d-aspartate receptor antagonists. Patients with PD experience the symptomatic triad of bradykinesis, tremor-at-rest, and rigidity with the possibility of additional non-motor symptoms including sleep disturbances, depression, dementia, and autonomic nervous system failure. This review summarizes available information regarding the role of the brain renin-angiotensin system (RAS) in learning and memory and motor functions, with particular emphasis on research results suggesting a link between angiotensin IV (AngIV) interacting with the AT4 receptor subtype. Currently there is controversy over the identity of this AT4 receptor protein. Albiston and colleagues have offered convincing evidence that it is the insulin-regulated aminopeptidase (IRAP). Recently members of our laboratory have presented evidence that the brain AngIV/AT4 receptor system coincides with the brain hepatocyte growth factor/c-Met receptor system. In an effort to resolve this issue we have synthesized a number of small molecule AngIV-based compounds that are metabolically stable, penetrate the blood-brain barrier, and facilitate compromised memory and motor systems. These research efforts are described along with details concerning a recently synthesized molecule, Dihexa that shows promise in overcoming memory and motor dysfunctions by augmenting synaptic connectivity via the formation of new functional synapses.
Collapse
Affiliation(s)
- John W Wright
- Departments of Psychology, Integrative Physiology and Neuroscience and Program in Biotechnology, Washington State University, Pullman, WA 99164-4820, USA; M3 Biotechnology, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA.
| | - Leen H Kawas
- Departments of Psychology, Integrative Physiology and Neuroscience and Program in Biotechnology, Washington State University, Pullman, WA 99164-4820, USA; M3 Biotechnology, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA
| | - Joseph W Harding
- Departments of Psychology, Integrative Physiology and Neuroscience and Program in Biotechnology, Washington State University, Pullman, WA 99164-4820, USA; M3 Biotechnology, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA
| |
Collapse
|
22
|
Wong WK, Cheung AWS, Yu SW, Sha O, Cho EYP. Hepatocyte growth factor promotes long-term survival and axonal regeneration of retinal ganglion cells after optic nerve injury: comparison with CNTF and BDNF. CNS Neurosci Ther 2014; 20:916-29. [PMID: 24992648 DOI: 10.1111/cns.12304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 11/29/2022] Open
Abstract
AIMS Different trophic factors are known to promote retinal ganglion cell survival and regeneration, but each had their own limitations. We report that hepatocyte growth factor (HGF) confers distinct advantages in supporting ganglion cell survival and axonal regeneration, when compared to two well-established trophic factors ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF). METHODS Ganglion cells in adult hamster were injured by cutting the optic nerve. HGF, CNTF, or BDNF was injected at different dosages intravitreally after injury. Ganglion cell survival was quantified at 7, 14, or 28 days postinjury. Peripheral nerve (PN) grafting to the cut optic nerve of the growth factor-injected eye was performed either immediately after injury or delayed until 7 days post-injury. Expression of heat-shock protein 27 and changes in microglia numbers were quantified in different growth factor groups. The cellular distribution of c-Met in the retina was examined by anti-c-Met immunostaining. RESULTS Hepatocyte Growth Factor (HGF) was equally potent as BDNF in promoting short-term survival (up to 14 days post-injury) and also supported survival at 28 days post-injury when ganglion cells treated by CNTF or BDNF failed to be sustained. When grafting was performed without delay, HGF stimulated twice the number of axons to regenerate compared with control but was less potent than CNTF. However, in PN grafting delayed for 7 days after optic nerve injury, HGF maintained a better propensity of ganglion cells to regenerate than CNTF. Unlike CNTF, HGF application did not increase HSP27 expression in ganglion cells. Microglia proliferation was prolonged in HGF-treated retinas compared with CNTF or BDNF. C-Met was localized to both ganglion cells and Muller cells, suggesting HGF could be neuroprotective via interacting with both neurons and glia. CONCLUSION Compared with CNTF or BDNF, HGF is advantageous in sustaining long-term ganglion cell survival and their propensity to respond to favorable stimuli.
Collapse
Affiliation(s)
- Wai-Kai Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | | | | | |
Collapse
|
23
|
Fang JD, Lee SL. Matriptase is required for the active form of hepatocyte growth factor induced Met, focal adhesion kinase and protein kinase B activation on neural stem/progenitor cell motility. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1285-94. [DOI: 10.1016/j.bbamcr.2014.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/19/2014] [Accepted: 03/23/2014] [Indexed: 12/31/2022]
|
24
|
Immune effects of optimized DNA vaccine and protective effects in a MPTP model of Parkinson’s disease. Neurol Sci 2013; 34:1559-70. [DOI: 10.1007/s10072-012-1284-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/17/2012] [Indexed: 11/25/2022]
|
25
|
Li Y, Wang J, Satterle A, Wu Q, Wang J, Liu F. Gene transfer to skeletal muscle by site-specific delivery of electroporation and ultrasound. Biochem Biophys Res Commun 2012; 424:203-7. [DOI: 10.1016/j.bbrc.2012.06.090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 06/18/2012] [Indexed: 12/30/2022]
|
26
|
Pimentel-Coelho PM, Rivest S. The early contribution of cerebrovascular factors to the pathogenesis of Alzheimer’s disease. Eur J Neurosci 2012; 35:1917-37. [DOI: 10.1111/j.1460-9568.2012.08126.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Wright JW, Harding JW. The brain renin–angiotensin system: a diversity of functions and implications for CNS diseases. Pflugers Arch 2012; 465:133-51. [DOI: 10.1007/s00424-012-1102-2] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/20/2012] [Accepted: 03/30/2012] [Indexed: 12/14/2022]
|
28
|
Arnold SE, Xie SX, Leung YY, Wang LS, Kling MA, Han X, Kim EJ, Wolk DA, Bennett DA, Chen-Plotkin A, Grossman M, Hu W, Lee VMY, Mackin RS, Trojanowski JQ, Wilson RS, Shaw LM. Plasma biomarkers of depressive symptoms in older adults. Transl Psychiatry 2012; 2:e65. [PMID: 22832727 PMCID: PMC3309547 DOI: 10.1038/tp.2011.63] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 11/01/2011] [Accepted: 11/01/2011] [Indexed: 12/29/2022] Open
Abstract
The pathophysiology of negative affect states in older adults is complex, and a host of central nervous system and peripheral systemic mechanisms may play primary or contributing roles. We conducted an unbiased analysis of 146 plasma analytes in a multiplex biochemical biomarker study in relation to number of depressive symptoms endorsed by 566 participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) at their baseline and 1-year assessments. Analytes that were most highly associated with depressive symptoms included hepatocyte growth factor, insulin polypeptides, pregnancy-associated plasma protein-A and vascular endothelial growth factor. Separate regression models assessed contributions of past history of psychiatric illness, antidepressant or other psychotropic medicine, apolipoprotein E genotype, body mass index, serum glucose and cerebrospinal fluid (CSF) τ and amyloid levels, and none of these values significantly attenuated the main effects of the candidate analyte levels for depressive symptoms score. Ensemble machine learning with Random Forests found good accuracy (~80%) in classifying groups with and without depressive symptoms. These data begin to identify biochemical biomarkers of depressive symptoms in older adults that may be useful in investigations of pathophysiological mechanisms of depression in aging and neurodegenerative dementias and as targets of novel treatment approaches.
Collapse
Affiliation(s)
- S E Arnold
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wright JW, Harding JW. Brain renin-angiotensin—A new look at an old system. Prog Neurobiol 2011; 95:49-67. [DOI: 10.1016/j.pneurobio.2011.07.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 06/27/2011] [Accepted: 07/03/2011] [Indexed: 12/15/2022]
|
30
|
Numakawa T, Matsumoto T, Numakawa Y, Richards M, Yamawaki S, Kunugi H. Protective Action of Neurotrophic Factors and Estrogen against Oxidative Stress-Mediated Neurodegeneration. J Toxicol 2011; 2011:405194. [PMID: 21776259 PMCID: PMC3135156 DOI: 10.1155/2011/405194] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/28/2011] [Accepted: 03/29/2011] [Indexed: 01/01/2023] Open
Abstract
Oxidative stress is involved in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Low levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are important for maintenance of neuronal function, though elevated levels lead to neuronal cell death. A complex series of events including excitotoxicity, Ca(2+) overload, and mitochondrial dysfunction contributes to oxidative stress-mediated neurodegeneration. As expected, many antioxidants like phytochemicals and vitamins are known to reduce oxidative toxicity. Additionally, growing evidence indicates that neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and estrogens significantly prevent neuronal damage caused by oxidative stress. Here, we review and discuss recent studies addressing the protective mechanisms of neurotrophic factors and estrogen within this system.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
- Core Research for Evolutional Science and Technology Program (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Tomoya Matsumoto
- Core Research for Evolutional Science and Technology Program (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
- Department of Psychiatry and Neurosciences, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yumiko Numakawa
- Peptide-prima Co., Ltd., 1-25-81, Nuyamazu, Kumamoto 861-2102, Japan
| | - Misty Richards
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
- The Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - Shigeto Yamawaki
- Core Research for Evolutional Science and Technology Program (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
- Department of Psychiatry and Neurosciences, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
- Core Research for Evolutional Science and Technology Program (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| |
Collapse
|
31
|
Paris D, Ganey N, Banasiak M, Laporte V, Patel N, Mullan M, Murphy SF, Yee GT, Bachmeier C, Ganey C, Beaulieu-Abdelahad D, Mathura VS, Brem S, Mullan M. Impaired orthotopic glioma growth and vascularization in transgenic mouse models of Alzheimer's disease. J Neurosci 2010; 30:11251-8. [PMID: 20739545 PMCID: PMC2935547 DOI: 10.1523/jneurosci.2586-10.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 06/23/2010] [Accepted: 06/30/2010] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia among the aging population and is characterized pathologically by the progressive intracerebral accumulation of beta-amyloid (Abeta) peptides and neurofibrillary tangles. The level of proangiogenic growth factors and inflammatory mediators with proangiogenic activity is known to be elevated in AD brains which has led to the supposition that the cerebrovasculature of AD patients is in a proangiogenic state. However, angiogenesis depends on the balance between proangiogenic and antiangiogenic factors and the brains of AD patients also show an accumulation of endostatin and Abeta peptides which have been shown to be antiangiogenic. To determine whether angiogenesis is compromised in the brains of two transgenic mouse models of AD overproducing Abeta peptides (Tg APPsw and Tg PS1/APPsw mice), we assessed the growth and vascularization of orthotopically implanted murine gliomas since they require a high degree of angiogenesis to sustain their growth. Our data reveal that intracranial tumor growth and angiogenesis is significantly reduced in Tg APPsw and Tg PS1/APPsw mice compared with their wild-type littermates. In addition, we show that Abeta inhibits the angiogenesis stimulated by glioma cells when cocultured with human brain microvascular cells on a Matrigel layer. Altogether our data suggest that the brain of transgenic mouse models of AD does not constitute a favorable environment to support neoangiogenesis and may explain why vascular insults synergistically precipitate the cognitive presentation of AD.
Collapse
Affiliation(s)
- Daniel Paris
- The Roskamp Institute, Sarasota, Florida 34243, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
How Many Ways Can Mouse Behavioral Experiments Go Wrong? Confounding Variables in Mouse Models of Neurodegenerative Diseases and How to Control Them. ADVANCES IN THE STUDY OF BEHAVIOR 2010. [DOI: 10.1016/s0065-3454(10)41007-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Nakamura T, Mizuno S. The discovery of hepatocyte growth factor (HGF) and its significance for cell biology, life sciences and clinical medicine. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:588-610. [PMID: 20551596 PMCID: PMC3081175 DOI: 10.2183/pjab.86.588] [Citation(s) in RCA: 374] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
It has been more than 25 years since HGF was discovered as a mitogen of hepatocytes. HGF is produced by stromal cells, and stimulates epithelial cell proliferation, motility, morphogenesis and angiogenesis in various organs via tyrosine phosphorylation of its receptor, c-Met. In fetal stages, HGF-neutralization, or c-Met gene destruction, leads to hypoplasia of many organs, indicating that HGF signals are essential for organ development. Endogenous HGF is required for self-repair of injured livers, kidneys, lungs and so on. In addition, HGF exerts protective effects on epithelial and non-epithelial organs (including the heart and brain) via anti-apoptotic and anti-inflammatory signals. During organ diseases, plasma HGF levels significantly increased, while anti-HGF antibody infusion accelerated tissue destruction in rodents. Thus, endogenous HGF is required for minimization of diseases, while insufficient production of HGF leads to organ failure. This is the reason why HGF supplementation produces therapeutic outcomes under pathological conditions. Moreover, emerging studies delineated key roles of HGF during tumor metastasis, while HGF-antagonism leads to anti-tumor outcomes. Taken together, HGF-based molecules, including HGF-variants, HGF-fragments and c-Met-binders are available as regenerative or anti-tumor drugs. Molecular analysis of the HGF-c-Met system could provide bridges between basic biology and clinical medicine.
Collapse
Affiliation(s)
- Toshikazu Nakamura
- Kringle Pharma Joint Research Division for Regenerative Drug Discovery, Center for Advanced Science and Innovation, Osaka University, Osaka, Japan.
| | | |
Collapse
|
34
|
Takeda S, Sato N, Niisato K, Takeuchi D, Kurinami H, Shinohara M, Rakugi H, Kano M, Morishita R. Validation of Abeta1-40 administration into mouse cerebroventricles as an animal model for Alzheimer disease. Brain Res 2009; 1280:137-47. [PMID: 19464276 DOI: 10.1016/j.brainres.2009.05.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 05/08/2009] [Accepted: 05/08/2009] [Indexed: 11/19/2022]
Abstract
Valid animal models for a specific human disease are indispensable for development of new therapeutic agents. The conclusions drawn from animal models largely depend on the validity of the model. Several studies have shown that administration of Abeta into the brain causes some of the pathological events observed in Alzheimer disease (AD). However, the validity of these models has not fully been examined. In this present study, we further characterized and validated Abeta1-40 injected mice as an animal model for AD, based on three major criteria: face, construct and predictive validity. Intracerebroventricular (i.c.v.) injection of Abeta1-40 into mice significantly impaired memory acquisition, but not memory retrieval, which implies similarity to the episodic anterograde memory deficit observed in the early stage of AD. Electrophysiological assessment showed that i.c.v. administration of Abeta1-40 significantly attenuated hippocampal long-term potentiation. Treatment with galantamine, a drug currently in clinical use for AD, significantly improved cognitive dysfunction in this model. These results demonstrate that i.c.v. injection of Abeta1-40 caused specific dysfunction of memory processes, which at least partly fulfills three validity criteria for AD. Symptomatic and pathophysiological similarities of this model to AD are quite important in considering the usefulness of this animal model. This validated animal model could be useful to develop and evaluate potential new drugs for AD.
Collapse
Affiliation(s)
- Shuko Takeda
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
De Bundel D, Smolders I, Vanderheyden P, Michotte Y. Ang II and Ang IV: unraveling the mechanism of action on synaptic plasticity, memory, and epilepsy. CNS Neurosci Ther 2009; 14:315-39. [PMID: 19040556 DOI: 10.1111/j.1755-5949.2008.00057.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The central angiotensin system plays a crucial role in cardiovascular regulation. More recently, angiotensin peptides have been implicated in stress, anxiety, depression, cognition, and epilepsy. Angiotensin II (Ang II) exerts its actions through AT(1) and AT(2) receptors, while most actions of its metabolite Ang IV were believed to be independent of AT(1) or AT(2) receptor activation. A specific binding site with high affinity for Ang IV was discovered and denominated "AT(4) receptor". The beneficiary effects of AT(4) ligands in animal models for cognitive impairment and epileptic seizures initiated the search for their mechanism of action. This proved to be a challenging task, and after 20 years of research, the nature of the "AT(4) receptor" remains controversial. Insulin-regulated aminopeptidase (IRAP) was first identified as the high-affinity binding site for AT(4) ligands. Recently, the hepatocyte growth factor receptor c-MET was also proposed as a receptor for AT(4) ligands. The present review focuses on the effects of Ang II and Ang IV on synaptic transmission and plasticity, learning, memory, and epileptic seizure activity. Possible interactions of Ang IV with the classical AT(1) and AT(2) receptor subtypes are evaluated, and other potential mechanisms by which AT(4) ligands may exert their effects are discussed. Identification of these mechanisms may provide a valuable target in the development in novel drugs for the treatment of cognitive disorders and epilepsy.
Collapse
Affiliation(s)
- Dimitri De Bundel
- Research Group Experimental Pharmacology, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | |
Collapse
|