1
|
Furstenau TN, Cartwright RA. The impact of self-incompatibility systems on the prevention of biparental inbreeding. PeerJ 2017; 5:e4085. [PMID: 29188143 PMCID: PMC5703146 DOI: 10.7717/peerj.4085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/02/2017] [Indexed: 12/05/2022] Open
Abstract
Inbreeding in hermaphroditic plants can occur through two different mechanisms: biparental inbreeding, when a plant mates with a related individual, or self-fertilization, when a plant mates with itself. To avoid inbreeding, many hermaphroditic plants have evolved self-incompatibility (SI) systems which prevent or limit self-fertilization. One particular SI system-homomorphic SI-can also reduce biparental inbreeding. Homomorphic SI is found in many angiosperm species, and it is often assumed that the additional benefit of reduced biparental inbreeding may be a factor in the success of this SI system. To test this assumption, we developed a spatially-explicit, individual-based simulation of plant populations that displayed three different types of homomorphic SI. We measured the total level of inbreeding avoidance by comparing each population to a self-compatible population (NSI), and we measured biparental inbreeding avoidance by comparing to a population of self-incompatible plants that were free to mate with any other individual (PSI). Because biparental inbreeding is more common when offspring dispersal is limited, we examined the levels of biparental inbreeding over a range of dispersal distances. We also tested whether the introduction of inbreeding depression affected the level of biparental inbreeding avoidance. We found that there was a statistically significant decrease in autozygosity in each of the homomorphic SI populations compared to the PSI population and, as expected, this was more pronounced when seed and pollen dispersal was limited. However, levels of homozygosity and inbreeding depression were not reduced. At low dispersal, homomorphic SI populations also suffered reduced female fecundity and had smaller census population sizes. Overall, our simulations showed that the homomorphic SI systems had little impact on the amount of biparental inbreeding in the population especially when compared to the overall reduction in inbreeding compared to the NSI population. With further study, this observation may have important consequences for research into the origin and evolution of homomorphic self-incompatibility systems.
Collapse
Affiliation(s)
- Tara N. Furstenau
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- The School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, United States of America
| | - Reed A. Cartwright
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
2
|
Croze M, Wollstein A, Božičević V, Živković D, Stephan W, Hutter S. A genome-wide scan for genes under balancing selection in Drosophila melanogaster. BMC Evol Biol 2017; 17:15. [PMID: 28086750 PMCID: PMC5237213 DOI: 10.1186/s12862-016-0857-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 12/17/2016] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND In the history of population genetics balancing selection has been considered as an important evolutionary force, yet until today little is known about its abundance and its effect on patterns of genetic diversity. Several well-known examples of balancing selection have been reported from humans, mice, plants, and parasites. However, only very few systematic studies have been carried out to detect genes under balancing selection. We performed a genome scan in Drosophila melanogaster to find signatures of balancing selection in a derived (European) and an ancestral (African) population. We screened a total of 34 genomes searching for regions of high genetic diversity and an excess of SNPs with intermediate frequency. RESULTS In total, we found 183 candidate genes: 141 in the European population and 45 in the African one, with only three genes shared between both populations. Most differences between both populations were observed on the X chromosome, though this might be partly due to false positives. Functionally, we find an overrepresentation of genes involved in neuronal development and circadian rhythm. Furthermore, some of the top genes we identified are involved in innate immunity. CONCLUSION Our results revealed evidence of genes under balancing selection in European and African populations. More candidate genes have been found in the European population. They are involved in several different functions.
Collapse
Affiliation(s)
- Myriam Croze
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany.
| | - Andreas Wollstein
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Vedran Božičević
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Daniel Živković
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany.,Center of Food and Life Sciences Weihenstephan, Technische Universität München, 85354, Freising, Germany
| | - Wolfgang Stephan
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany.,Natural History Museum Berlin, 10115, Berlin, Germany
| | - Stephan Hutter
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
3
|
Ferrandiz-Rovira M, Bigot T, Allainé D, Callait-Cardinal MP, Cohas A. Large-scale genotyping of highly polymorphic loci by next-generation sequencing: how to overcome the challenges to reliably genotype individuals? Heredity (Edinb) 2015; 114:485-93. [PMID: 25757407 DOI: 10.1038/hdy.2015.13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 01/19/2015] [Accepted: 01/23/2015] [Indexed: 11/10/2022] Open
Abstract
Studying the different roles of adaptive genes is still a challenge in evolutionary ecology and requires reliable genotyping of large numbers of individuals. Next-generation sequencing (NGS) techniques enable such large-scale sequencing, but stringent data processing is required. Here, we develop an easy to use methodology to process amplicon-based NGS data and we apply this methodology to reliably genotype four major histocompatibility complex (MHC) loci belonging to MHC class I and II of Alpine marmots (Marmota marmota). Our post-processing methodology allowed us to increase the number of retained reads. The quality of genotype assignment was further assessed using three independent validation procedures. A total of 3069 high-quality MHC genotypes were obtained at four MHC loci for 863 Alpine marmots with a genotype assignment error rate estimated as 0.21%. The proposed methodology could be applied to any genetic system and any organism, except when extensive copy-number variation occurs (that is, genes with a variable number of copies in the genotype of an individual). Our results highlight the potential of amplicon-based NGS techniques combined with adequate post-processing to obtain the large-scale highly reliable genotypes needed to understand the evolution of highly polymorphic functional genes.
Collapse
Affiliation(s)
- M Ferrandiz-Rovira
- 1] Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, CNRS, UMR5558, Université Lyon 1, F-69622, Villeurbanne, F-69000 Lyon, France [2] Université Lyon, VetAgro Sup Campus Vet, Marcy-L'Étoile, France
| | - T Bigot
- Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, CNRS, UMR5558, Université Lyon 1, F-69622, Villeurbanne, F-69000 Lyon, France
| | - D Allainé
- Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, CNRS, UMR5558, Université Lyon 1, F-69622, Villeurbanne, F-69000 Lyon, France
| | - M-P Callait-Cardinal
- 1] Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, CNRS, UMR5558, Université Lyon 1, F-69622, Villeurbanne, F-69000 Lyon, France [2] Université Lyon, VetAgro Sup Campus Vet, Marcy-L'Étoile, France
| | - A Cohas
- Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, CNRS, UMR5558, Université Lyon 1, F-69622, Villeurbanne, F-69000 Lyon, France
| |
Collapse
|
4
|
Goubet PM, Bergès H, Bellec A, Prat E, Helmstetter N, Mangenot S, Gallina S, Holl AC, Fobis-Loisy I, Vekemans X, Castric V. Contrasted patterns of molecular evolution in dominant and recessive self-incompatibility haplotypes in Arabidopsis. PLoS Genet 2012; 8:e1002495. [PMID: 22457631 PMCID: PMC3310759 DOI: 10.1371/journal.pgen.1002495] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 12/08/2011] [Indexed: 11/22/2022] Open
Abstract
Self-incompatibility has been considered by geneticists a model system for reproductive biology and balancing selection, but our understanding of the genetic basis and evolution of this molecular lock-and-key system has remained limited by the extreme level of sequence divergence among haplotypes, resulting in a lack of appropriate genomic sequences. In this study, we report and analyze the full sequence of eleven distinct haplotypes of the self-incompatibility locus (S-locus) in two closely related Arabidopsis species, obtained from individual BAC libraries. We use this extensive dataset to highlight sharply contrasted patterns of molecular evolution of each of the two genes controlling self-incompatibility themselves, as well as of the genomic region surrounding them. We find strong collinearity of the flanking regions among haplotypes on each side of the S-locus together with high levels of sequence similarity. In contrast, the S-locus region itself shows spectacularly deep gene genealogies, high variability in size and gene organization, as well as complete absence of sequence similarity in intergenic sequences and striking accumulation of transposable elements. Of particular interest, we demonstrate that dominant and recessive S-haplotypes experience sharply contrasted patterns of molecular evolution. Indeed, dominant haplotypes exhibit larger size and a much higher density of transposable elements, being matched only by that in the centromere. Overall, these properties highlight that the S-locus presents many striking similarities with other regions involved in the determination of mating-types, such as sex chromosomes in animals or in plants, or the mating-type locus in fungi and green algae. Self-incompatibility is a common genetic system preventing selfing through recognition and rejection of self-pollen in hermaphroditic flowering plants. In the Brassicaceae family, this system is controlled by a single genomic region, called the S-locus, where many distinct specificities segregate in natural populations. In this study, we obtained genomic sequences comprising the S-locus in two closely related Brassicaceae species, Arabidopsis lyrata and A. halleri, and analyzed their diversity and patterns of molecular evolution. We report compelling evidence that the S-locus presents many similar properties with other genomic regions involved in the determination of mating-types in mammals, insects, plants, or fungi. In particular, in spite of their diversity, these genomic regions all show absence of similarity in intergenic sequences, large depth of genealogies, highly divergent organization, and accumulation of transposable elements. Moreover, some of these features were found to vary according to dominance of the S-locus specificities, suggesting that dominance/recessivity interactions are key drivers of the evolution of this genomic region.
Collapse
Affiliation(s)
- Pauline M. Goubet
- Laboratoire GEPV, CNRS FRE 3268, Univ Lille 1 – Univ Lille Nord de France, Cité Scientifique, Villeneuve d'Ascq, France
| | - Hélène Bergès
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - Arnaud Bellec
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - Elisa Prat
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - Nicolas Helmstetter
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - Sophie Mangenot
- Genoscope, Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant, Institut de Génomique, Genoscope, Evry, France
| | - Sophie Gallina
- Laboratoire GEPV, CNRS FRE 3268, Univ Lille 1 – Univ Lille Nord de France, Cité Scientifique, Villeneuve d'Ascq, France
| | - Anne-Catherine Holl
- Laboratoire GEPV, CNRS FRE 3268, Univ Lille 1 – Univ Lille Nord de France, Cité Scientifique, Villeneuve d'Ascq, France
| | - Isabelle Fobis-Loisy
- Reproduction et Développement des Plantes, Institut Fédératif de Recherche 128, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Claude Bernard Lyon I, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Xavier Vekemans
- Laboratoire GEPV, CNRS FRE 3268, Univ Lille 1 – Univ Lille Nord de France, Cité Scientifique, Villeneuve d'Ascq, France
| | - Vincent Castric
- Laboratoire GEPV, CNRS FRE 3268, Univ Lille 1 – Univ Lille Nord de France, Cité Scientifique, Villeneuve d'Ascq, France
- * E-mail:
| |
Collapse
|
5
|
Galan M, Guivier E, Caraux G, Charbonnel N, Cosson JF. A 454 multiplex sequencing method for rapid and reliable genotyping of highly polymorphic genes in large-scale studies. BMC Genomics 2010; 11:296. [PMID: 20459828 PMCID: PMC2876125 DOI: 10.1186/1471-2164-11-296] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 05/11/2010] [Indexed: 11/10/2022] Open
Abstract
Background High-throughput sequencing technologies offer new perspectives for biomedical, agronomical and evolutionary research. Promising progresses now concern the application of these technologies to large-scale studies of genetic variation. Such studies require the genotyping of high numbers of samples. This is theoretically possible using 454 pyrosequencing, which generates billions of base pairs of sequence data. However several challenges arise: first in the attribution of each read produced to its original sample, and second, in bioinformatic analyses to distinguish true from artifactual sequence variation. This pilot study proposes a new application for the 454 GS FLX platform, allowing the individual genotyping of thousands of samples in one run. A probabilistic model has been developed to demonstrate the reliability of this method. Results DNA amplicons from 1,710 rodent samples were individually barcoded using a combination of tags located in forward and reverse primers. Amplicons consisted in 222 bp fragments corresponding to DRB exon 2, a highly polymorphic gene in mammals. A total of 221,789 reads were obtained, of which 153,349 were finally assigned to original samples. Rules based on a probabilistic model and a four-step procedure, were developed to validate sequences and provide a confidence level for each genotype. The method gave promising results, with the genotyping of DRB exon 2 sequences for 1,407 samples from 24 different rodent species and the sequencing of 392 variants in one half of a 454 run. Using replicates, we estimated that the reproducibility of genotyping reached 95%. Conclusions This new approach is a promising alternative to classical methods involving electrophoresis-based techniques for variant separation and cloning-sequencing for sequence determination. The 454 system is less costly and time consuming and may enhance the reliability of genotypes obtained when high numbers of samples are studied. It opens up new perspectives for the study of evolutionary and functional genetics of highly polymorphic genes like major histocompatibility complex genes in vertebrates or loci regulating self-compatibility in plants. Important applications in biomedical research will include the detection of individual variation in disease susceptibility. Similarly, agronomy will benefit from this approach, through the study of genes implicated in productivity or disease susceptibility traits.
Collapse
Affiliation(s)
- Maxime Galan
- INRA EFPA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus international de Baillarguet, CS 30016, F-34988 Montferrier-sur-Lez cedex, France.
| | | | | | | | | |
Collapse
|
6
|
Reininga JM, Nielsen D, Purugganan MD. Functional and geographical differentiation of candidate balanced polymorphisms in Arabidopsis thaliana. Mol Ecol 2009; 18:2844-55. [PMID: 19457201 DOI: 10.1111/j.1365-294x.2009.04206.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Molecular population genetic analysis of three chromosomal regions in Arabidopsis thaliana suggested that balancing selection might operate to maintain variation at three novel candidate adaptive trait genes, including SOLUBLE STARCH SYNTHASE I (SSI), PLASTID TRANSCRIPTIONALLY ACTIVE 7(PTAC7), and BELL-LIKE HOMEODOMAIN 10 (BLH10). If balanced polymorphisms are indeed maintained at these loci, then we would expect to observe functional variation underlying the previously detected signatures of selection. We observe multiple replacement polymorphisms within and in the 32 amino acids just upstream of the protein-protein interacting BELL domain at the BLH10 locus. While no clear protein sequence differences are found between allele types in SSI and PTAC7, these two genes show evidence for allele-specific variation in expression levels. Geographical patterns of allelic differentiation seem consistent with population stratification in this species and a significant longitudinal cline was observed at all three candidate loci. These data support a hypothesis of balancing selection at all three candidate loci and provide a basis for more detailed functional work by identifying possible functional differences that might be selectively maintained.
Collapse
Affiliation(s)
- Jennifer M Reininga
- Department of Genetics, Box 7614, North Carolina State University, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
7
|
Genetic causes and consequences of the breakdown of self-incompatibility: case studies in the Brassicaceae. Genet Res (Camb) 2008; 90:47-60. [PMID: 18289400 DOI: 10.1017/s0016672307008907] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The genetic consequences of inbreeding is a subject that has received thorough theoretical attention and has been of interest to empirical biologists since the time of Darwin. Particularly for species with genetically controlled mechanisms to promote outcrossing (self-incompatibility or SI systems), it is expected that high levels of genetic load should accumulate through sheltering of deleterious recessive mutations. Nevertheless, transitions to selfing are common across angiosperms, which suggests that the potentially negative consequences of reduced heterozygosity and genetic diversity are balanced by other factors, such as reproductive assurance. This mini-review focuses on empirical research in the Brassicaceae to emphasize some of the genetic consequences of shifts to inbreeding in terms of mechanisms for loss of SI, changes in genetic diversity following loss of SI, and inbreeding depression in relation to outcrossing history. Despite the long history of theoretical attention, there are still some surprisingly large gaps in our understanding in each of these areas. Rather than providing a complete overview, examples are drawn predominantly from published and emerging data from Arabidopsis thaliana and its relatives to highlight recent progress and remaining questions. We are currently on the brink of major breakthroughs in understanding due both to advances in sequencing technology and a shift in focus from crop plants to natural populations, where critical factors such as population structure, phylogeography, demographic history, partial compatibility and individual variation can be taken into account when investigating the nature of the selective forces regulating mating system evolution.
Collapse
|
8
|
Nieto Feliner G, Rosselló JA. Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Mol Phylogenet Evol 2007; 44:911-9. [PMID: 17383902 DOI: 10.1016/j.ympev.2007.01.013] [Citation(s) in RCA: 261] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 12/03/2006] [Accepted: 01/10/2007] [Indexed: 11/20/2022]
Abstract
The internal transcribed spacers (ITS) of the nuclear ribosomal 18S-5.8S-26S cistron continue to be the most popular non-plastid region for species-level phylogenetic studies of plant groups despite the early warnings about their potential flaws, which may ultimately result in incorrect assumptions of orthology. It has been gradually realized that the alternative target regions in the nuclear genome (low-copy nuclear genes, LCNG) are burdened with similar problems. The consequence is that, to date, developing useful LCNG for non-model organisms requires an investment in time and effort that hinders its use as a real practical alternative for many labs. It is here argued that ITS sequences, despite drawbacks, can still produce insightful results in species-level phylogenetic studies or when non-anonymous nuclear markers are required, provided that a thoughtful use of them is made. To facilitate this, two series of guidelines are proposed. One helps to circumvent problems of ITS amplification from the target organism, including spurious results from contaminants, paralogs and pseudogenes, as well as detection of sequencing artifacts. The other series helps to find out causes for unresolved clades in phylogenetic reconstruction, to integrate gene phylogenies, to distinguish horizontal transfer from lineage sorting, and to reveal if ITS phylogeny is not a good estimate of organism phylogeny.
Collapse
|
9
|
Levine MT, Begun DJ. Comparative population genetics of the immunity gene, Relish: is adaptive evolution idiosyncratic? PLoS One 2007; 2:e442. [PMID: 17505533 PMCID: PMC1859838 DOI: 10.1371/journal.pone.0000442] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 04/19/2007] [Indexed: 11/29/2022] Open
Abstract
The frequency of adaptive evolution acting on common loci in distant lineages remains an outstanding question in evolutionary biology. We asked whether the immunity factor, Relish, a gene with a history of directional selection in Drosophila simulans, shows evidence of a similar selective history in other Drosophila species. We found only weak evidence of recurrent adaptive protein evolution at the Relish locus in three sister species pairs, suggesting that this key component of the insect immune system has an idiosyncratic evolutionary history in Drosophila.
Collapse
Affiliation(s)
- Mia T Levine
- Center for Population Biology, University of California at Davis, Davis, California, United States of America.
| | | |
Collapse
|
10
|
Cho S, Huang ZY, Green DR, Smith DR, Zhang J. Evolution of the complementary sex-determination gene of honey bees: balancing selection and trans-species polymorphisms. Genome Res 2006; 16:1366-75. [PMID: 17065615 PMCID: PMC1626638 DOI: 10.1101/gr.4695306] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The mechanism of sex determination varies substantively among evolutionary lineages. One important mode of genetic sex determination is haplodiploidy, which is used by approximately 20% of all animal species, including >200,000 species of the entire insect order Hymenoptera. In the honey bee Apis mellifera, a hymenopteran model organism, females are heterozygous at the csd (complementary sex determination) locus, whereas males are hemizygous (from unfertilized eggs). Fertilized homozygotes develop into sterile males that are eaten before maturity. Because homozygotes have zero fitness and because common alleles are more likely than rare ones to form homozygotes, csd should be subject to strong overdominant selection and negative frequency-dependent selection. Under these selective forces, together known as balancing selection, csd is expected to exhibit a high degree of intraspecific polymorphism, with long-lived alleles that may be even older than the species. Here we sequence the csd genes as well as randomly selected neutral genomic regions from individuals of three closely related species, A. mellifera, Apis cerana, and Apis dorsata. The polymorphic level is approximately seven times higher in csd than in the neutral regions. Gene genealogies reveal trans-species polymorphisms at csd but not at any neutral regions. Consistent with the prediction of rare-allele advantage, nonsynonymous mutations are found to be positively selected in csd only in early stages after their appearances. Surprisingly, three different hypervariable repetitive regions in csd are present in the three species, suggesting variable mechanisms underlying allelic specificities. Our results provide a definitive demonstration of balancing selection acting at the honey bee csd gene, offer insights into the molecular determinants of csd allelic specificities, and help avoid homozygosity in bee breeding.
Collapse
Affiliation(s)
- Soochin Cho
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Zachary Y. Huang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Daniel R. Green
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Deborah R. Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045, USA
- Corresponding author.
E-mail ; fax (734) 763-0544
| |
Collapse
|
11
|
|
12
|
Abstract
High-diversity genes represent an important class of loci in organismal genomes. Since elevated levels of nucleotide variation are a key component of the molecular signature for balancing selection or local adaptation, high-diversity genes may represent loci whose alleles are selectively maintained as balanced polymorphisms. Comparison of 4300 random shotgun sequence fragments of the Arabidopsis thaliana Ler ecotype genome with the whole genomic sequence of the Col-0 ecotype identified 60 genes with putatively high levels of intraspecific variability. Eleven of these genes were sequenced in multiple A. thaliana accessions, 3 of which were found to display elevated levels of nucleotide polymorphism. These genes encode the myb-like transcription factor MYB103, a putative soluble starch synthase I, and a homeodomain-leucine zipper transcription factor. Analysis of these genes and 4-7 flanking genes in 14-20 A. thaliana ecotypes revealed that two of these loci show other characteristics of balanced polymorphisms, including broad peaks of nucleotide diversity spanning multiple linked genes and an excess of intermediate-frequency polymorphisms. Scanning genomes for high-diversity genomic regions may be useful in approaches to adaptive trait locus mapping for uncovering candidate balanced polymorphisms.
Collapse
Affiliation(s)
- Jennifer M Cork
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | |
Collapse
|
13
|
Shimizu KK, Cork JM, Caicedo AL, Mays CA, Moore RC, Olsen KM, Ruzsa S, Coop G, Bustamante CD, Awadalla P, Purugganan MD. Darwinian Selection on a Selfing Locus. Science 2004; 306:2081-4. [PMID: 15604405 DOI: 10.1126/science.1103776] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The shift to self-pollination is one of the most prevalent evolutionary transitions in flowering plants. In the selfing plant Arabidopsis thaliana, pseudogenes at the SCR and SRK self-incompatibility loci are believed to underlie the evolution of self-fertilization. Positive directional selection has driven the evolutionary fixation of pseudogene alleles of SCR, leading to substantially reduced nucleotide variation. Coalescent simulations indicate that this adaptive event may have occurred very recently and is possibly associated with the post-Pleistocene expansion of A. thaliana from glacial refugia. This suggests that ancillary morphological innovations associated with self-pollination can evolve rapidly after the inactivation of the self-incompatibility response.
Collapse
Affiliation(s)
- Kentaro K Shimizu
- Department of Genetics, North Carolina State University, Box 7614, Raleigh, NC 27695, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Fobis-Loisy I, Miege C, Gaude T. Molecular evolution of the s locus controlling mating in the brassicaceae. PLANT BIOLOGY (STUTTGART, GERMANY) 2004; 6:109-18. [PMID: 15045661 DOI: 10.1055/s-2004-817804] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Flowering plants possess self-incompatibility (SI) mechanisms that promote outbreeding and thereby increase their genetic diversity. In the self-incompatible Brassicaceae, recognition and rejection of self-pollen is based on a receptor-ligand interaction between male and female SI determinants. A transmembrane receptor kinase (S locus Receptor Kinase, SRK) determines the SI specificity in stigmatic cells, whereas a pollen coat-localized ligand (S locus Cysteine-Rich, SCR) determines the SI specificity in pollen. During recent years, major advances have been made in the understanding of the molecular basis of self-pollen recognition by stigmatic cells. In this review, we will focus on evolutionary aspects of the SI system in Brassicaceae. We will describe how the study of the molecular aspect of SI, not only in the historical Brassica model but also in Arabidopsis species, has contributed to highlight certain aspects of evolution of SI in the Brassicaceae.
Collapse
Affiliation(s)
- I Fobis-Loisy
- Reproduction et Développement des Plantes, Ecole Normale Supérieure de Lyon, UMR 5667 CNRS-INRA-ENSL-UCBI Lyon, Lyon, France
| | | | | |
Collapse
|
15
|
Charlesworth B, Charlesworth D, Barton NH. The Effects of Genetic and Geographic Structure on Neutral Variation. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2003. [DOI: 10.1146/annurev.ecolsys.34.011802.132359] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Brian Charlesworth
- Institute for Cell, Animal, and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom;
| | - Deborah Charlesworth
- Institute for Cell, Animal, and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom;
| | - Nicholas H. Barton
- Institute for Cell, Animal, and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom;
| |
Collapse
|
16
|
Charlesworth D, Mable BK, Schierup MH, Bartolomé C, Awadalla P. Diversity and linkage of genes in the self-incompatibility gene family in Arabidopsis lyrata. Genetics 2003; 164:1519-35. [PMID: 12930757 PMCID: PMC1462643 DOI: 10.1093/genetics/164.4.1519] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We report studies of seven members of the S-domain gene family in Arabidopsis lyrata, a member of the Brassicaceae that has a sporophytic self-incompatibility (SI) system. Orthologs for five loci are identifiable in the self-compatible relative A. thaliana. Like the Brassica stigmatic incompatibility protein locus (SRK), some of these genes have kinase domains. We show that several of these genes are unlinked to the putative A. lyrata SRK, Aly13. These genes have much lower nonsynonymous and synonymous polymorphism than Aly13 in the S-domains within natural populations, and differentiation between populations is higher, consistent with balancing selection at the Aly13 locus. One gene (Aly8) is linked to Aly13 and has high diversity. No departures from neutrality were detected for any of the loci. Comparing different loci within A. lyrata, sites corresponding to hypervariable regions in the Brassica S-loci (SLG and SRK) and in comparable regions of Aly13 have greater replacement site divergence than the rest of the S-domain. This suggests that the high polymorphism in these regions of incompatibility loci is due to balancing selection acting on sites within or near these regions, combined with low selective constraints.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Arabidopsis/genetics
- Base Sequence/genetics
- Cloning, Molecular
- Evolution, Molecular
- Genes, Plant
- Genetic Linkage
- Genetic Variation
- Genetics, Population
- Genome, Plant
- Haplotypes
- Linkage Disequilibrium
- Molecular Sequence Data
- Phylogeny
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Polymorphism, Genetic
- Recombination, Genetic
- Selection, Genetic
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Ashworth Laboratories, King's Buildings, West Mains Road, Edinburgh EH9 3JT, Scotland, UK.
| | | | | | | | | |
Collapse
|
17
|
Charlesworth D. Effects of inbreeding on the genetic diversity of populations. Philos Trans R Soc Lond B Biol Sci 2003; 358:1051-70. [PMID: 12831472 PMCID: PMC1693193 DOI: 10.1098/rstb.2003.1296] [Citation(s) in RCA: 306] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The study of variability within species is important to all biologists who use genetic markers. Since the discovery of molecular variability among normal individuals, data have been collected from a wide range of organisms, and it is important to understand the major factors affecting diversity levels and patterns. Comparisons of inbreeding and outcrossing populations can contribute to this understanding, and therefore studying plant populations is important, because related species often have different breeding systems. DNA sequence data are now starting to become available from suitable plant and animal populations, to measure and compare variability levels and test predictions.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Cell, Animal and Population Biology (ICAPB), University of Edinburgh, Ashworth Laboratory, King's Buildings, West Mains Road, Edinburgh EH9 3JT, UK.
| |
Collapse
|
18
|
Abstract
We studied the effect of multilocus balancing selection on neutral nucleotide variability at linked sites by simulating a model where diallelic polymorphisms are maintained at an arbitrary number of selected loci by means of symmetric overdominance. Different combinations of alleles define different genetic backgrounds that subdivide the population and strongly affect variability. Several multilocus fitness regimes with different degrees of epistasis and gametic disequilibrium are allowed. Analytical results based on a multilocus extension of the structured coalescent predict that the expected linked neutral diversity increases exponentially with the number of selected loci and can become extremely large. Our simulation results show that although variability increases with the number of genetic backgrounds that are maintained in the population, it is reduced by random fluctuations in the frequencies of those backgrounds and does not reach high levels even in very large populations. We also show that previous results on balancing selection in single-locus systems do not extend to the multilocus scenario in a straightforward way. Different patterns of linkage disequilibrium and of the frequency spectrum of neutral mutations are expected under different degrees of epistasis. Interestingly, the power to detect balancing selection using deviations from a neutral distribution of allele frequencies seems to be diminished under the fitness regime that leads to the largest increase of variability over the neutral case. This and other results are discussed in the light of data from the Mhc.
Collapse
Affiliation(s)
- Arcadio Navarro
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom.
| | | |
Collapse
|
19
|
Abstract
Molecular population genetics is entering a new era dominated by studies of genomic polymorphism. Some of the theory that will be needed to analyze data generated by such studies is already available, but much more work is needed. Furthermore, population genetics is becoming increasingly relevant to other fields of biology, for example to genetic epidemiology, because of disease gene mapping in general populations.
Collapse
Affiliation(s)
- Magnus Nordborg
- Department of Biological Sciences, University of Southern California, 835 W 37th St, SHS 172, Los Angeles, California 90089-1340, USA.
| | | |
Collapse
|
20
|
Abstract
This paper describes a new approach to modeling population structure for genes under strong balancing selection of the type seen in plant self-incompatibility systems and the major histocompatibility complex (MHC) system of vertebrates. Simple analytic solutions for the number of alleles maintained at equilibrium and the expected proportion of alleles shared between demes at various levels are derived and checked against simulation results. The theory accurately captures the dynamics of allele number in a subdivided population and identifies important values of m (migration rate) at which allele number and distribution change qualitatively. Starting from a panmictic population, as migration among demes decreases a qualitative change in dynamics is seen at approximately m(crit) approximately equal to the square root of(s/4piNT) where NT is the total population size and s is a measure of the strength of selection. At this point, demes can no longer maintain their panmictic allele number, due to increasing isolation from the total population. Another qualitative change occurs at a migration rate on the same order of magnitude as the mutation rate, mu. At this point, the demes are highly differentiated for allele complement, and the total number of alleles in the population is increased. Because in general u << m<(crit) at intermediate migration rates slightly fewer alleles may be maintained in the total population than are maintained at panmixia. Within this range, total allele number may not be the best indicator of whether a population is effectively panmictic, and some caution should be used when interpreting samples from such populations. The theory presented here can help to analyze data from genes under balancing selection in subdivided populations.
Collapse
Affiliation(s)
- C A Muirhead
- Department of Integrative Biology, University of California, Berkeley 94720-3140, USA.
| |
Collapse
|
21
|
Watanabe M, Hatakeyama K, Takada Y, Hinata K. Molecular aspects of self-incompatibility in Brassica species. PLANT & CELL PHYSIOLOGY 2001; 42:560-5. [PMID: 11427674 DOI: 10.1093/pcp/pce075] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Many flowering plants possess self-incompatibility (SI) systems to prevent inbreeding. SI in Brassica species is controlled by a single S locus with multiple alleles. In recent years, much progress has been made in determining the male and female S determinant in Brassica species. In the female, a gain-of-function experiment clearly demonstrated that SRK was the sole S determinant, and that SLG enhanced the SI recognition process. By contrast, the male S determinant (termed SP11/SCR) was identified in the course of genome analysis of S locus to be a small cysteine-rich protein, which was classified as a pollen coat protein. This SP11/SCR may function as a ligand for the S domain of SRK in the SI recognition reaction of Brassica species.
Collapse
Affiliation(s)
- M Watanabe
- Laboratory of Plant Breeding, Faculty of Agriculture, Iwate University, Morioka, 020-8550 Japan.
| | | | | | | |
Collapse
|
22
|
|
23
|
Affiliation(s)
- D R McCarty
- Horticultural Sciences Department, University of Florida, Gainesville 32611, USA.
| | | |
Collapse
|
24
|
McCubbin AG, Wang X, Kao TH. Identification of self-incompatibility (S-) locus linked pollen cDNA markers in Petunia inflata. Genome 2000. [DOI: 10.1139/g00-019] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Solanaceous type self-incompatibility (SI) is controlled by a single polymorphic locus, termed the S-locus. The only gene at the S-locus that has been characterized thus far is the S-RNase gene, which controls pistil function, but not pollen function, in SI interactions between pistil and pollen. One approach to identifying additional genes (including the pollen S-gene, which controls pollen function in SI) at the S-locus and to study the structural organization of the S-locus is chromosome walking from the S-RNase gene. However, the presence of highly repetitive sequences in its flanking regions has made this approach difficult so far. Here, we used RNA differential display to identify pollen cDNAs of Petunia inflata, a self-incompatible solanaceous species, which exhibited restriction fragment length polymorphism (RFLP) for at least one of the three S-haplotypes (S1, S2, and S3) examined. We found that the genes corresponding to 10 groups of pollen cDNAs are genetically tightly linked to the S-RNase gene. These cDNA markers will expedite the mapping and cloning of the chromosomal region of the Solanaceae S-locus by providing multiple starting points.Key words: Petunia inflata, pollen cDNAs, self-incompatibility, S-linked cDNA markers, S-locus.
Collapse
|
25
|
Filatov DA, Charlesworth D. DNA polymorphism, haplotype structure and balancing selection in the Leavenworthia PgiC locus. Genetics 1999; 153:1423-34. [PMID: 10545470 PMCID: PMC1460830 DOI: 10.1093/genetics/153.3.1423] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A study of DNA polymorphism and divergence was conducted for the cytosolic phosphoglucose isomerase (PGI:E.C.5.3.1.9) gene of five species of the mustard genus Leavenworthia: Leavenworthia stylosa, L. alabamica, L. crassa, L. uniflora, and L. torulosa. Sequences of an internal 2.3-kb PgiC gene region spanning exons 6-16 were obtained from 14 L. stylosa plants from two natural populations and from one to several plants for each of the other species. The level of nucleotide polymorphism in L. stylosa PgiC gene was quite high (pi = 0.051, theta = 0.052). Although recombination is estimated to be high in this locus, extensive haplotype structure was observed for the entire 2.3-kb region. The L. stylosa sequences fall into at least two groups, distinguished by the presence of several indels and nucleotide substitutions, and one of the three charge change nucleotide replacements within the region sequenced correlates with the haplotypes. The differences between the haplotypes are older than between the species, and the haplotypes are still segregating in at least two of five species studied. There is no evidence of recent or ancient population subdivision that could maintain distinct haplotypes. The age of the haplotypes and the results of Kelly's Z(nS) and Wall's B and Q tests with recombination suggest that the haplotypes are maintained due to balancing selection at or near this locus.
Collapse
Affiliation(s)
- D A Filatov
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom.
| | | |
Collapse
|
26
|
Abstract
In Brassica species, self-incompatibility is controlled genetically by haplotypes involving two known genes, SLG and SRK, and possibly an as yet unknown gene controlling pollen incompatibility types. Alleles at the incompatibility loci are maintained by frequency-dependent selection, and diversity at SLG and SRK appears to be very ancient, with high diversity at silent and replacement sites, particularly in certain "hypervariable" portions of the genes. It is important to test whether recombination occurs in these genes before inferences about function of different parts of the genes can be made from patterns of diversity within their sequences. In addition, it has been suggested that, to maintain the relationship between alleles within a given S-haplotype, recombination is suppressed in the S-locus region. The high diversity makes many population genetic measures of recombination inapplicable. We have analyzed linkage disequilibrium within the SLG gene of two Brassica species, using published coding sequences. The results suggest that intragenic recombination has occurred in the evolutionary history of these alleles. This is supported by patterns of synonymous nucleotide diversity within both the SLG and SRK genes, and between domains of the SRK gene. Finally, clusters of linkage disequilibrium within the SLG gene suggest that hypervariable regions are under balancing selection, and are not merely regions of relaxed selective constraint.
Collapse
Affiliation(s)
- P Awadalla
- Institute of Cell, Animal, and Population Biology, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom.
| | | |
Collapse
|