1
|
Martin MU, Tay CM, Siew TW. Continuous Treatment with IncobotulinumtoxinA Despite Presence of BoNT/A Neutralizing Antibodies: Immunological Hypothesis and a Case Report. Toxins (Basel) 2024; 16:422. [PMID: 39453199 PMCID: PMC11510976 DOI: 10.3390/toxins16100422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Botulinum Neurotoxin A (BoNT/A) is a bacterial protein that has proven to be a valuable pharmaceutical in therapeutic indications and aesthetic medicine. One major concern is the formation of neutralizing antibodies (nAbs) to the core BoNT/A protein. These can interfere with the therapy, resulting in partial or complete antibody (Ab)-mediated secondary non-response (SNR) or immunoresistance. If titers of nAbs reach a level high enough that all injected BoNT/A molecules are neutralized, immunoresistance occurs. Studies have shown that continuation of treatment of neurology patients who had developed Ab-mediated partial SNR against complexing protein-containing (CPC-) BoNT/A was in some cases successful if patients were switched to complexing protein-free (CPF-) incobotulinumtoxinA (INCO). This seems to contradict the layperson's basic immunological understanding that repeated injection with the same antigen BoNT/A should lead to an increase in antigen-specific antibody titers. As such, we strive to explain how immunological memory works in general, and based on this, we propose a working hypothesis for this paradoxical phenomenon observed in some, but not all, neurology patients with immunoresistance. A critical factor is the presence of potentially immune-stimulatory components in CPC-BoNT/A products that can act as immunologic adjuvants and activate not only naïve, but also memory B lymphocyte responses. Furthermore, we propose that continuous injection of a BoN/TA formulation with low immunogenicity, e.g., INCO, may be a viable option for aesthetic patients with existing nAbs. These concepts are supported by a real-world case example of a patient with immunoresistance whose nAb levels declined with corresponding resumption of clinical response despite regular INCO injections.
Collapse
Affiliation(s)
| | | | - Tuck Wah Siew
- Radium Medical Aesthetics, 3 Temasek Boulevard #03-325/326/327/328, Suntec City Mall, Singapore 038983, Singapore
| |
Collapse
|
2
|
Roy K, Chakraborty M, Kumar A, Manna AK, Roy NS. The NFκB signaling system in the generation of B-cell subsets: from germinal center B cells to memory B cells and plasma cells. Front Immunol 2023; 14:1185597. [PMID: 38169968 PMCID: PMC10758606 DOI: 10.3389/fimmu.2023.1185597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
Memory B cells and antibody-secreting cells are the two prime effector B cell populations that drive infection- and vaccine-induced long-term antibody-mediated immunity. The antibody-mediated immunity mostly relies on the formation of specialized structures within secondary lymphoid organs, called germinal centers (GCs), that facilitate the interactions between B cells, T cells, and antigen-presenting cells. Antigen-activated B cells may proliferate and differentiate into GC-independent plasmablasts and memory B cells or differentiate into GC B cells. The GC B cells undergo proliferation coupled to somatic hypermutation of their immunoglobulin genes for antibody affinity maturation. Subsequently, affinity mature GC B cells differentiate into GC-dependent plasma cells and memory B cells. Here, we review how the NFκB signaling system controls B cell proliferation and the generation of GC B cells, plasmablasts/plasma cells, and memory B cells. We also identify and discuss some important unanswered questions in this connection.
Collapse
Affiliation(s)
- Koushik Roy
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Mainak Chakraborty
- Division of Immunology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Ashok Kumar
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Asit Kumar Manna
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Neeladri Sekhar Roy
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
3
|
Deficiency in TLR4 impairs regulatory B cells production induced by Schistosome soluble egg antigen. Mol Biochem Parasitol 2023; 253:111532. [PMID: 36450338 DOI: 10.1016/j.molbiopara.2022.111532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/12/2022] [Accepted: 11/26/2022] [Indexed: 11/29/2022]
Abstract
Regulatory B cells (Bregs) producing IL-10 have negative regulatory function. Several studies have shown the important roles for Toll-like receptor 2 (TLR2), TLR4, and TLR9 ligation in the development of Bregs. We have reported that Schistosome soluble egg antigen (SEA) induced the production of Bregs. However, it remains unclear whether such activation is via the TLR pathway. The present study showed that IL-10 and TLR4 mRNA expression in spleen B cells of significantly increased in C57BL/10 J mice spleen B cells following SEA stimulation. The level of secreted IL-10 and IL-10+ B cell proportion decreased in spleen B cells derived from TLR4-deficient C57BL/10ScNJ (TLR4-/-) mice following SEA or LPS stimulation compared with C57BL/10 J mice. The CD1dhiCD5+ B cells proportion decreased in spleen B cells of TLR4-/- mice following SEA stimulation compared with control mice. NF-κB, ERK, p38MAPK and JNK signal transduction inhibitors significantly suppressed IL-10 secretion in CD1dhiCD5+ B cells induced by SEA or LPS. The phosphorylation levels of IκBα, p65, ERK, JNK and p38 were increased in CD1dhiCD5+ B cell of C57BL/10 J mice treated with LPS or SEA. In conclusion, this study suggests that TLR4 plays a critical role in Bregs activation induced by SEA. And the TLR4-triggered NF-κB and MAPK pathways activation in CD1dhiCD5+ B cells stimulated with SEA. The findings elucidated the mechanism of SEA induction of CD1dhiCD5+ B cells and helped us to understand the immune regulation during Schistosoma japonicum infection.
Collapse
|
4
|
Liu R, King A, Tarlinton D, Heierhorst J. The ASCIZ-DYNLL1 Axis Is Essential for TLR4-Mediated Antibody Responses and NF-κB Pathway Activation. Mol Cell Biol 2021; 41:e0025121. [PMID: 34543116 PMCID: PMC8608018 DOI: 10.1128/mcb.00251-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022] Open
Abstract
Toll-like receptors (TLRs) and interleukin-1 (IL-1) receptors regulate immune and inflammatory responses by activating the NF-κB pathway. Here, we report that B-cell-specific loss of dynein light chain 1 (DYNLL1, LC8) or its designated transcription factor ASCIZ (ATMIN) leads to severely reduced in vivo antibody responses to TLR4-dependent but not T-cell-dependent antigens in mice. This defect was independent of DYNLL1's established roles in modulating BIM-dependent apoptosis and 53BP1-dependent antibody class-switch recombination. In B cells and fibroblasts, the ASCIZ-DYNLL1 axis was required for TLR4-, IL-1-, and CD40-mediated NF-κB pathway activation but dispensable for antigen receptor and tumor necrosis factor α (TNF-α) signaling. In contrast to previous reports that overexpressed DYNLL1 directly inhibits the phosphorylation and degradation of the NF-κB inhibitor IκBα, we found here that under physiological conditions, DYNLL1 is required for signal-specific activation of the NF-κB pathway upstream of IκBα. Our data identify DYNLL1 as a signal-specific regulator of the NF-κB pathway and indicate that it may act as a universal modulator of TLR4 (and IL-1) signaling with wide-ranging roles in inflammation and immunity.
Collapse
Affiliation(s)
- Rui Liu
- St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Ashleigh King
- St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - David Tarlinton
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Jörg Heierhorst
- St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine at St. Vincent’s Hospital, University of Melbourne Medical School, Fitzroy, Victoria, Australia
| |
Collapse
|
5
|
Wang S, Li Z, Ma Y, Liu Y, Lin CC, Li S, Zhan J, Ho CT. Immunomodulatory Effects of Green Tea Polyphenols. Molecules 2021; 26:molecules26123755. [PMID: 34203004 PMCID: PMC8234133 DOI: 10.3390/molecules26123755] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/03/2023] Open
Abstract
Green tea and its bioactive components, especially polyphenols, possess many health-promoting and disease-preventing benefits, especially anti-inflammatory, antioxidant, anticancer, and metabolic modulation effects with multi-target modes of action. However, the effect of tea polyphenols on immune function has not been well studied. Moreover, the underlying cellular and molecular mechanisms mediating immunoregulation are not well understood. This review summarizes the recent studies on the immune-potentiating effects and corresponding mechanisms of tea polyphenols, especially the main components of (-)-epigallocatechin-3-gallate (EGCG) and (-)-epicatechin-3-gallate (ECG). In addition, the benefits towards immune-related diseases, such as autoimmune diseases, cutaneous-related immune diseases, and obesity-related immune diseases, have been discussed.
Collapse
Affiliation(s)
- Shuzhen Wang
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Zhiliang Li
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Yuting Ma
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Yan Liu
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Chi-Chen Lin
- Institute of Biomedical Science, The iEGG and Animal Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan;
| | - Shiming Li
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
- Correspondence: (S.L.); (C.-T.H.)
| | - Jianfeng Zhan
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
- Correspondence: (S.L.); (C.-T.H.)
| |
Collapse
|
6
|
Giménez-Orenga K, Oltra E. Human Endogenous Retrovirus as Therapeutic Targets in Neurologic Disease. Pharmaceuticals (Basel) 2021; 14:495. [PMID: 34073730 PMCID: PMC8225122 DOI: 10.3390/ph14060495] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 01/16/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are ancient retroviral DNA sequences established into germline. They contain regulatory elements and encoded proteins few of which may provide benefits to hosts when co-opted as cellular genes. Their tight regulation is mainly achieved by epigenetic mechanisms, which can be altered by environmental factors, e.g., viral infections, leading to HERV activation. The aberrant expression of HERVs associates with neurological diseases, such as multiple sclerosis (MS) or amyotrophic lateral sclerosis (ALS), inflammatory processes and neurodegeneration. This review summarizes the recent advances on the epigenetic mechanisms controlling HERV expression and the pathogenic effects triggered by HERV de-repression. This article ends by describing new, promising therapies, targeting HERV elements, one of which, temelimab, has completed phase II trials with encouraging results in treating MS. The information gathered here may turn helpful in the design of new strategies to unveil epigenetic failures behind HERV-triggered diseases, opening new possibilities for druggable targets and/or for extending the use of temelimab to treat other associated diseases.
Collapse
Affiliation(s)
- Karen Giménez-Orenga
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - Elisa Oltra
- School of Medicine and Health Sciences, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
7
|
Lambrou GI, Hatziagapiou K, Vlahopoulos S. Inflammation and tissue homeostasis: the NF-κB system in physiology and malignant progression. Mol Biol Rep 2020; 47:4047-4063. [PMID: 32239468 DOI: 10.1007/s11033-020-05410-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023]
Abstract
Disruption of tissue function activates cellular stress which triggers a number of mechanisms that protect the tissue from further damage. These mechanisms involve a number of homeostatic modules, which are regulated at the level of gene expression by the transactivator NF-κB. This transcription factor shifts between activation and repression of discrete, cell-dependent gene expression clusters. Some of its target genes provide feedback to NF-κB itself, thereby strengthening the inflammatory response of the tissue and later terminating inflammation to facilitate restoration of tissue homeostasis. Disruption of key feedback modules for NF-κB in certain cell types facilitates the survival of clones with genomic aberrations, and protects them from being recognized and eliminated by the immune system, to enable thereby carcinogenesis.
Collapse
Affiliation(s)
- George I Lambrou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece
| | - Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece.
| |
Collapse
|
8
|
Tesi A, de Pretis S, Furlan M, Filipuzzi M, Morelli MJ, Andronache A, Doni M, Verrecchia A, Pelizzola M, Amati B, Sabò A. An early Myc-dependent transcriptional program orchestrates cell growth during B-cell activation. EMBO Rep 2019; 20:e47987. [PMID: 31334602 PMCID: PMC6726900 DOI: 10.15252/embr.201947987] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 12/18/2022] Open
Abstract
Upon activation, lymphocytes exit quiescence and undergo substantial increases in cell size, accompanied by activation of energy-producing and anabolic pathways, widespread chromatin decompaction, and elevated transcriptional activity. These changes depend upon prior induction of the Myc transcription factor, but how Myc controls them remains unclear. We addressed this issue by profiling the response to LPS stimulation in wild-type and c-myc-deleted primary mouse B-cells. Myc is rapidly induced, becomes detectable on virtually all active promoters and enhancers, but has no direct impact on global transcriptional activity. Instead, Myc contributes to the swift up- and down-regulation of several hundred genes, including many known regulators of the aforementioned cellular processes. Myc-activated promoters are enriched for E-box consensus motifs, bind Myc at the highest levels, and show enhanced RNA Polymerase II recruitment, the opposite being true at down-regulated loci. Remarkably, the Myc-dependent signature identified in activated B-cells is also enriched in Myc-driven B-cell lymphomas: hence, besides modulation of new cancer-specific programs, the oncogenic action of Myc may largely rely on sustained deregulation of its normal physiological targets.
Collapse
Affiliation(s)
- Alessandra Tesi
- Center for Genomic Science of IIT@SEMMFondazione Istituto Italiano di Tecnologia (IIT)MilanItaly
| | - Stefano de Pretis
- Center for Genomic Science of IIT@SEMMFondazione Istituto Italiano di Tecnologia (IIT)MilanItaly
| | - Mattia Furlan
- Center for Genomic Science of IIT@SEMMFondazione Istituto Italiano di Tecnologia (IIT)MilanItaly
| | - Marco Filipuzzi
- Department of Experimental OncologyEuropean Institute of Oncology (IEO)‐IRCCSMilanItaly
| | - Marco J Morelli
- Center for Genomic Science of IIT@SEMMFondazione Istituto Italiano di Tecnologia (IIT)MilanItaly
- Present address:
Center for Translational Genomics and BioinformaticsIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Adrian Andronache
- Center for Genomic Science of IIT@SEMMFondazione Istituto Italiano di Tecnologia (IIT)MilanItaly
- Present address:
Experimental Therapeutics Program of IFOM ‐ The FIRC Institute of Molecular OncologyMilanItaly
| | - Mirko Doni
- Department of Experimental OncologyEuropean Institute of Oncology (IEO)‐IRCCSMilanItaly
| | - Alessandro Verrecchia
- Department of Experimental OncologyEuropean Institute of Oncology (IEO)‐IRCCSMilanItaly
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMMFondazione Istituto Italiano di Tecnologia (IIT)MilanItaly
| | - Bruno Amati
- Department of Experimental OncologyEuropean Institute of Oncology (IEO)‐IRCCSMilanItaly
| | - Arianna Sabò
- Department of Experimental OncologyEuropean Institute of Oncology (IEO)‐IRCCSMilanItaly
| |
Collapse
|
9
|
Ji XB, Luo J, Feng XL, Xu QL, Man T, Zhao D, Li XF, Zhang GP, Chen PY. The immunomodulatory peptide bursopentin (BP5) enhances proliferation and induces sIgM expression in DT40 cells. Afr Health Sci 2018; 18:1292-1302. [PMID: 30766595 PMCID: PMC6354878 DOI: 10.4314/ahs.v18i4.50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In the recent past, many studies have been focused on extracts of BF and multiple biologically active factors and their effects on humoral immune system in chickens and birds. However, the mechanism of those immunomodulatory peptides on the B lineage cells proliferation and antibody production in chicken is fairly unknown. DT40 cell line, an avian leucosis virus-induced chicken pre-B cell line, expresses immunoglobulin M (IgM) isotype B cell reporter in the plasma membrane. There are many evidences suggesting that DT40 cells are best characterized as a bursal stem cell line. Because of the unique characteristics of DT40 cell line, it has been widely used to observe biological processes of pre-B lymphocyte cell within living cells. METHODS The chicken B cell line DT40 was cultured in Roswell Park Memorial Institute (RPMI) 1640 medium and cytotoxicity was studied. Also, effect of BP5 on cell proliferation and cell cycle distribution of DT40 cells was studied. Also, the effect of BP5 on sIgM mRNA expression was studied by using real-time PCR. OBJECTIVES To investigat the effects of Bursopentin (Cys-Lys-Arg-Val-Tyr, BP5) on a chicken promyelocyte cell line DT40, assays of cell proliferation, cell cycle distribution, detection of surface immunoglobulin G (sIgM) mRNA expression and gene microarray analysis were performed. RESULTS The results showed that BP5 displayed concentration-dependent effects on the proliferation, cell cycle, and sIgM mRNA expression in DT40 cells. And the analysis of expression profiles identified a signature set of 3022 genes (1254 up regulated genes, 1762 down regulated genes), which clearly discriminated the BP5-treated DT40 cells from control with high certainty (P≤0.02). The results of microarray analysis were confirmed by quantitative reverse transcription-polymerase chain reaction for 12 of the differentially expressed genes. CONCLUSION Theses findings showed the immuno-activity effect of BP5 on B lymphocyte and indicated that BP5 treatment regulated eight signaling pathways, in which Toll-like signaling pathway was the most significant enrichment pathway.
Collapse
Affiliation(s)
- Xiang-Bo Ji
- Division of Key Lab of Animal Disease Diagnosis and Immunology of China's Department of Agriculture, Nanjing Agriculture University, Nanjing 210095, China
- Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Jun Luo
- Key Labaratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiu-Li Feng
- Division of Key Lab of Animal Disease Diagnosis and Immunology of China's Department of Agriculture, Nanjing Agriculture University, Nanjing 210095, China
| | - Qiu-Liang Xu
- Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Teng Man
- Key Labaratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Dong Zhao
- Key Labaratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xin-Feng Li
- Division of Key Lab of Animal Disease Diagnosis and Immunology of China's Department of Agriculture, Nanjing Agriculture University, Nanjing 210095, China
| | - Gai-Ping Zhang
- Key Labaratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Pu-Yan Chen
- Division of Key Lab of Animal Disease Diagnosis and Immunology of China's Department of Agriculture, Nanjing Agriculture University, Nanjing 210095, China
| |
Collapse
|
10
|
Hocaoğlu M, Durmuş H, Özkan B, Yentür SP, Doğan Ö, Parman Y, Deymeer F, Saruhan-Direskeneli G. Increased costimulatory molecule expression of thymic and peripheral B cells and a sensitivity to IL-21 in myasthenia gravis. J Neuroimmunol 2018; 323:36-42. [PMID: 30196831 DOI: 10.1016/j.jneuroim.2018.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 01/08/2023]
Abstract
B cells may contribute to the pathogenesis of myasthenia gravis with anti-acetylcholine antibodies (AChR+ MG) by co-stimulation or selection of T cells. In this study, we investigated costimulatory molecules on B cells in the blood and in the thymus as well as by TLR9 and IL-21 stimulations in AChR+ MG patients with or without immunosuppressive treatment and controls. CD80 and CD86 expression on B cells was increased in the peripheral blood and in the thymus of untreated patients. CD86 was further amplified by IL-21. A role for activated B cells, active thymic environment and IL-21 is implicated in MG.
Collapse
Affiliation(s)
- Mehmet Hocaoğlu
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Hacer Durmuş
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Berker Özkan
- Department of Thoracic Surgery, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Sibel P Yentür
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Öner Doğan
- Department of Pathology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Yeşim Parman
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Feza Deymeer
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | | |
Collapse
|
11
|
Liu R, King A, Bouillet P, Tarlinton DM, Strasser A, Heierhorst J. Proapoptotic BIM Impacts B Lymphoid Homeostasis by Limiting the Survival of Mature B Cells in a Cell-Autonomous Manner. Front Immunol 2018; 9:592. [PMID: 29623080 PMCID: PMC5874283 DOI: 10.3389/fimmu.2018.00592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/09/2018] [Indexed: 01/30/2023] Open
Abstract
The proapoptotic BH3-only protein BIM (Bcl2l11) plays key roles in the maintenance of multiple hematopoietic cell types. In mice, germline knockout or conditional pan-hematopoietic deletion of Bim results in marked splenomegaly and significantly increased numbers of B cells. However, it has remained unclear whether these abnormalities reflect the loss of cell-intrinsic functions of BIM within the B lymphoid lineage and, if so, which stages in the lifecycle of B cells are most impacted by the loss of BIM. Here, we show that B lymphoid-specific conditional deletion of Bim during early development (i.e., in pro-B cells using Mb1-Cre) or during the final differentiation steps (i.e., in transitional B cells using Cd23-Cre) led to a similar >2-fold expansion of the mature follicular B cell pool. Notably, while the expansion of mature B cells was quantitatively similar in conditional and germline Bim-deficient mice, the splenomegaly was significantly attenuated after B lymphoid-specific compared to global Bim deletion. In vitro, conditional loss of Bim substantially increased the survival of mature B cells that were refractory to activation by lipopolysaccharide. Finally, we also found that conditional deletion of just one Bim allele by Mb1-Cre dramatically accelerated the development of Myc-driven B cell lymphoma, in a manner that was comparable to the effect of germline Bim heterozygosity. These data indicate that, under physiological conditions, BIM regulates B cell homeostasis predominantly by limiting the life span of non-activated mature B cells, and that it can have additional effects on developing B cells under pathological conditions.
Collapse
Affiliation(s)
- Rui Liu
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Ashleigh King
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.,Department of Medicine, St.Vincent's Health, The University of Melbourne, Fitzroy, VIC, Australia
| | - Philippe Bouillet
- Molecular Genetics of Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - David M Tarlinton
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Andreas Strasser
- Molecular Genetics of Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Jörg Heierhorst
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.,Department of Medicine, St.Vincent's Health, The University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
12
|
Braun RO, Python S, Summerfield A. Porcine B Cell Subset Responses to Toll-like Receptor Ligands. Front Immunol 2017; 8:1044. [PMID: 28890720 PMCID: PMC5574874 DOI: 10.3389/fimmu.2017.01044] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 08/11/2017] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptors (TLR) triggering of B cells are known to promote B cell expansion, differentiation of B cells into antibody-producing and memory cells, but the TLR responses of porcine B cells is poorly characterized. Therefore, this study investigated the response pattern of porcine B cell subsets to a large collection of TLR ligands and demonstrates that the TLR2 ligand Pam3Cys-SK4 and the TLR7/8 ligands gardiquimod and resiquimod are particularly efficient at inducing proliferation, CD25 and CCR7. This activation was also determined in B-cell subpopulations including a CD21+IgM+ subset, an IgG+ subset and two putative B1-like subsets, defined as CD21-IgMhighCD11R1+CD11c+CD14+ and CD21-IgMhigh CD11R1-CD11c+CD14- B cells. The latter two were larger and expressed higher levels of CD80/86 and spontaneous phospholipase C-γ2 phosphorylation. All porcine B-cell subsets were activated by TLR2, TLR7, and TLR9 ligands. Naïve and memory conventional B cells responded similar to TLR ligands. The CD11R1+ B1-like subset had the highest proliferative responses. While both B1-like subsets did not spontaneously secrete IgM, they were the only subsets to produce high level of TLR-induced IgM. Similar to polyclonal IgM responses, memory B cells were efficiently induced to produce specific antibodies by CpG oligodinucleotide, resiquimod, and to a weaker extend by Pam3Cys-SK4. Depletion of plasmacytoid dendritic cells (pDCs) enhanced TLR-induced antibodies. The same set of TLR ligands also induced CD40 on cDCs, pDCs, and monocytes with the exception of TLR4 ligand being unable to activate pDCs. Gardiquimod and resiquimod were particularly efficient at inducing CCR7 on pDCs. Porcine B cells expressed high levels of TLR7, but relatively little other TLR mRNA. Nevertheless, TLR2 on B cells was rapidly upregulated following stimulation, explaining the strong responses following stimulation. Subset-specific analysis of TLR expression demonstrated a comparable expression of TLR2, TLR7, and TLR9 in all B cell subsets, but TLR3 was restricted to B1-like cells, whereas TLR4 was only expressed on conventional B cells, although both at low levels. Altogether, our data describe porcine innate B1-like cells, and how different B cell subsets are involved in innate sensing.
Collapse
Affiliation(s)
- Roman Othmar Braun
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sylvie Python
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Vetsuisse Faculty, Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Zhu H, Liu X, Du J, Lei M, Ying S, Yan J, Yu J, Shi Z, Li H. The identification, characterization, and function of two TREMs genes in Chinese Yangzhou goose (Anas cygnoides). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 73:131-138. [PMID: 28344169 DOI: 10.1016/j.dci.2017.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 06/06/2023]
Abstract
Triggering receptor expressed on myeloid cells (TREM) is a cell-surface receptor primarily expressed on macrophages. Here, two novel TREM genes, AcTREM1 and AcTREM2, were identified from Anas cygnoides. AcTREM1 cDNA contained a putative signal peptide, two IG domains, and a transmembrane domain. The deduced AcTREM2 sequence also contained a signal peptide, an IG domain, and a transmembrane domain. qRT-PCR, fluorescence in situ hybridization, and immunofluorescence experiments showed that AcTREM1 and AcTREM2 were mainly expressed in the liver and spleen, and both genes and proteins were mainly distributed in cytoplasm. AcTREM1 expression in the liver and spleen was significantly upregulated following lipopolysaccharide (LPS) challenge at an early stage of infection and then decreased at a later stage. Changes in AcTREM2 expression were reciprocal to those of AcTREM1 in the liver and spleen after LPS challenge. Our results indicate that AcTREM1 and AcTREM2 participate in the antibacterial immunity of A. cygnoides.
Collapse
Affiliation(s)
- Huanxi Zhu
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaoqian Liu
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jie Du
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Mingming Lei
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shijia Ying
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Junshu Yan
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianning Yu
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhendan Shi
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Hui Li
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
14
|
Schweighoffer E, Nys J, Vanes L, Smithers N, Tybulewicz VLJ. TLR4 signals in B lymphocytes are transduced via the B cell antigen receptor and SYK. J Exp Med 2017; 214:1269-1280. [PMID: 28356391 PMCID: PMC5413329 DOI: 10.1084/jem.20161117] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/28/2016] [Accepted: 02/07/2017] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptors (TLRs) play an important role in immune responses to pathogens by transducing signals in innate immune cells in response to microbial products. TLRs are also expressed on B cells, and TLR signaling in B cells contributes to antibody-mediated immunity and autoimmunity. The SYK tyrosine kinase is essential for signaling from the B cell antigen receptor (BCR), and thus for antibody responses. Surprisingly, we find that it is also required for B cell survival, proliferation, and cytokine secretion in response to signaling through several TLRs. We show that treatment of B cells with lipopolysaccharide, the ligand for TLR4, results in SYK activation and that this is dependent on the BCR. Furthermore, we show that B cells lacking the BCR are also defective in TLR-induced B cell activation. Our results demonstrate that TLR4 signals through two distinct pathways, one via the BCR leading to activation of SYK, ERK, and AKT and the other through MYD88 leading to activation of NF-κB.
Collapse
Affiliation(s)
| | - Josquin Nys
- The Francis Crick Institute, London NW1 1AT, England, UK
| | - Lesley Vanes
- The Francis Crick Institute, London NW1 1AT, England, UK
| | - Nicholas Smithers
- Epinova DPU, Immuno-Inflammation Therapy Area Unit, GlaxoSmithKline, Stevenage SG1 2NY, England, UK
| | - Victor L J Tybulewicz
- The Francis Crick Institute, London NW1 1AT, England, UK .,Imperial College London, London W12 0NN, England, UK
| |
Collapse
|
15
|
Conte C, Roscini L, Sardella R, Mariucci G, Scorzoni S, Beccari T, Corte L. Toll Like Receptor 4 Affects the Cerebral Biochemical Changes Induced by MPTP Treatment. Neurochem Res 2017; 42:493-500. [PMID: 28108849 DOI: 10.1007/s11064-016-2095-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/17/2016] [Accepted: 10/27/2016] [Indexed: 02/06/2023]
Abstract
The etiology and pathogenesis of Parkinson's disease (PD) are still unclear. However, multiple lines of evidence suggest a critical role of the toll like receptor 4 (TLR4) in inflammatory response and neuronal death. Neuroinflammation may be associated with the misfolding and aggregation of proteins accompanied by a change in their secondary structure. Recent findings also suggest that biochemical perturbations in cerebral lipid content could contribute to the pathogenesis of central nervous system (CNS) disorders, including PD. Thus, it is of great importance to determine the biochemical changes that occur in PD. In this respect, Fourier Transform Infrared (FTIR) spectroscopy represents a useful tool to detect molecular alterations in biological systems in response to stress stimuli. By relying upon FTIR approach, this study was designed to elucidate the potential role of TLR4 in biochemical changes induced by methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin in a mouse model of PD. The analysis of the FTIR spectra was performed in different brain regions of both wild type (WT) and toll like receptor 4-deficient (TLR4-/-) mice. It revealed that each brain region exhibited a characteristic molecular fingerprint at baseline, with no significant differences between genotypes. Conversely, WT and TLR4-/- mice showed differential biochemical response to MPTP toxicity, principally related to lipid and protein composition. These differences appeared to be characteristic for each brain area. Furthermore, the present study showed that WT mice resulted more vulnerable than TLR4-/- animals to striatal dopamine (DA) depletion following MPTP treatment. These results support the hypothesis of a possible involvement of TLR4 in biochemical changes occurring in neurodegeneration.
Collapse
Affiliation(s)
- Carmela Conte
- Department of Pharmaceutical Sciences, Section of Biochemical and Health Sciences, University of Perugia, Via del Giochetto, 06123, Perugia, Italy.
| | - Luca Roscini
- Department of Pharmaceutical Sciences, Section of Biochemical and Health Sciences, University of Perugia, Via del Giochetto, 06123, Perugia, Italy
| | - Roccaldo Sardella
- Department of Pharmaceutical Sciences, Section of Biochemical and Health Sciences, University of Perugia, Via del Giochetto, 06123, Perugia, Italy
| | - Giuseppina Mariucci
- Department of Pharmaceutical Sciences, Section of Biochemical and Health Sciences, University of Perugia, Via del Giochetto, 06123, Perugia, Italy
| | - Stefania Scorzoni
- Department of Pharmaceutical Sciences, Section of Biochemical and Health Sciences, University of Perugia, Via del Giochetto, 06123, Perugia, Italy.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, Section of Biochemical and Health Sciences, University of Perugia, Via del Giochetto, 06123, Perugia, Italy
| | - Laura Corte
- Department of Pharmaceutical Sciences, Section of Biochemical and Health Sciences, University of Perugia, Via del Giochetto, 06123, Perugia, Italy
| |
Collapse
|
16
|
Krappmann D, Vincendeau M. Mechanisms of NF-κB deregulation in lymphoid malignancies. Semin Cancer Biol 2016; 39:3-14. [DOI: 10.1016/j.semcancer.2016.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/17/2022]
|
17
|
Chen L, Yu J. Modulation of Toll-like receptor signaling in innate immunity by natural products. Int Immunopharmacol 2016; 37:65-70. [PMID: 26899347 PMCID: PMC4916003 DOI: 10.1016/j.intimp.2016.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/23/2016] [Accepted: 02/03/2016] [Indexed: 12/14/2022]
Abstract
For centuries, natural products and their derivatives have provided a rich source of compounds for the development of new immunotherapies in the treatment of human disease. Many of these compounds are currently undergoing clinical trials, particularly as anti-oxidative, anti-microbial, and anti-cancer agents. However, the function and mechanism of natural products in how they interact with our immune system has yet to be extensively explored. Natural immune modulators may provide the key to control and ultimately defeat disorders affecting the immune system. They can either up- or down-regulate the immune response with few undesired adverse effects. In this review, we summarize the recent advancements made in utilizing natural products for immunomodulation and their important molecular targets, members of the Toll-like receptor (TLR) family, in the innate immune system.
Collapse
Affiliation(s)
- Luxi Chen
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA; The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital & Solove Research Center, Columbus, OH, USA.
| |
Collapse
|
18
|
Miernikiewicz P, Kłopot A, Soluch R, Szkuta P, Kęska W, Hodyra-Stefaniak K, Konopka A, Nowak M, Lecion D, Kaźmierczak Z, Majewska J, Harhala M, Górski A, Dąbrowska K. T4 Phage Tail Adhesin Gp12 Counteracts LPS-Induced Inflammation In Vivo. Front Microbiol 2016; 7:1112. [PMID: 27471503 PMCID: PMC4943950 DOI: 10.3389/fmicb.2016.01112] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/04/2016] [Indexed: 12/27/2022] Open
Abstract
Bacteriophages that infect Gram-negative bacteria often bind to the bacterial surface by interaction of specific proteins with lipopolysaccharide (LPS). Short tail fiber proteins (tail adhesin, gp12) mediate adsorption of T4-like bacteriophages to Escherichia coli, binding surface proteins or LPS. Produced as a recombinant protein, gp12 retains its ability to bind LPS. Since LPS is able to exert a major impact on the immune response in animals and in humans, we have tested LPS-binding phage protein gp12 as a potential modulator of the LPS-induced immune response. We have produced tail adhesin gp12 in a bacterial expression system and confirmed its ability to form trimers and to bind LPS in vitro by dynamic light scattering. This product had no negative effect on mammalian cell proliferation in vitro. Further, no harmful effects of this protein were observed in mice. Thus, gp12 was used in combination with LPS in a murine model, and it decreased the inflammatory response to LPS in vivo, as assessed by serum levels of cytokines IL-1 alpha and IL-6 and by histopathological analysis of spleen, liver, kidney and lungs. Thus, in future studies gp12 may be considered as a potential tool for modulating and specifically for counteracting LPS-related physiological effects in vivo.
Collapse
Affiliation(s)
- Paulina Miernikiewicz
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wroclaw, Poland
| | - Anna Kłopot
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wroclaw, Poland
| | - Ryszard Soluch
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wroclaw, Poland
| | - Piotr Szkuta
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wroclaw, Poland
| | - Weronika Kęska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wroclaw, Poland
| | - Katarzyna Hodyra-Stefaniak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wroclaw, Poland
| | - Agnieszka Konopka
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wroclaw, Poland
| | - Marcin Nowak
- Division of Pathomorphology and Veterinary Forensics, Department of Pathology, Wroclaw University of Environmental and Life Sciences Wrocław, Poland
| | - Dorota Lecion
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wroclaw, Poland
| | - Zuzanna Kaźmierczak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wroclaw, Poland
| | - Joanna Majewska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wroclaw, Poland
| | - Marek Harhala
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wroclaw, Poland
| | - Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wroclaw, Poland
| | - Krystyna Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wroclaw, Poland
| |
Collapse
|
19
|
Zhang LM, Liu JH, Xue CB, Li MQ, Xing S, Zhang X, He WT, Jiang FC, Lu X, Zhou P. Pharmacological inhibition of MyD88 homodimerization counteracts renal ischemia reperfusion-induced progressive renal injury in vivo and in vitro. Sci Rep 2016; 6:26954. [PMID: 27246399 PMCID: PMC4887891 DOI: 10.1038/srep26954] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 05/11/2016] [Indexed: 12/19/2022] Open
Abstract
The activation of innate immunity via myeloid differentiation factor 88 (MyD88) contributes to ischemia reperfusion (I/R) induced acute kidney injury (AKI) and chronic kidney injury. However, since there have not yet been any effective therapy, the exact pharmacological role of MyD88 in the prevention and treatment of renal ischemia reperfusion injury (IRI) is not known. We designed a small molecular compound, TJ-M2010-2, which inhibited MyD88 homodimerization. We used an established unilateral I/R mouse model. All mice undergoing 80 min ischemia through uninephrectomy died within five days without intervention. However, treatment with TJ-M2010-2 alone significantly improved the survival rate to 58.3%. Co-treatment of TJ-M2010-2 with the CD154 antagonist increased survival rates up to 100%. Twenty-eight days post-I/R of 60 min ischemia without nephrectomy, TJ-M2010-2 markedly attenuated renal interstitial and inhibited TGF-β1-induced epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells. Furthermore, TJ-M2010-2 remarkably inhibited TLR/MyD88 signaling in vivo and in vitro. In conclusion, our findings highlight the promising clinical potential of MyD88 inhibitor in preventing and treating acute or chronic renal I/R injuries, and the therapeutic functionality of dual-system inhibition strategy in IRI-induced AKI. Moreover, MyD88 inhibition ameliorates renal I/R injury-induced tubular interstitial fibrosis by suppressing EMT.
Collapse
Affiliation(s)
- Li-Min Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Health, and Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan 430030, China
| | - Jian-Hua Liu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Health, and Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan 430030, China
| | - Cheng-Biao Xue
- Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University; Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430071, China
| | | | - Shuai Xing
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Health, and Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan 430030, China
| | - Xue Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Health, and Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan 430030, China
| | - Wen-Tao He
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feng-Chao Jiang
- Academy of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xia Lu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Health, and Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan 430030, China
| | - Ping Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Health, and Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan 430030, China
| |
Collapse
|
20
|
Zavan B, do Amarante-Paffaro AM, Paffaro VA. alpha-actin down regulation and perforin loss in uterine natural killer cells from LPS-treated pregnant mice. Physiol Res 2016; 64:427-32. [PMID: 26066976 DOI: 10.33549/physiolres.932923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
One of the most abundant immunologic cell types in early decidua is the uterine natural killer (UNK) cell that despite the presence of cytoplasmic granules rich in perforin and granzymes does not degranulate in normal pregnancy. UNK cells are important producers of angiogenic factors that permit normal dilation of uterine arteries to provide increased blood flow for the growing feto-placental unit. Gram-negative bacteria lipopolysaccharide (LPS) administration can trigger an imbalance of pro-inflammatory and anti-inflammatory cytokines impairing the normal immune cells activity as well as uterine homeostasis. The present study aimed to evaluate by immunohistochemistry the reactivity of perforin and alpha-actin on UNK cell from LPS-treated pregnant mice. For the first time, we demonstrate that LPS injection in pregnant mice causes alpha-actin down regulation, concomitantly with perforin loss in UNK cells. This suggests that LPS alters UNK cell migration and activates cytotoxic granule release.
Collapse
Affiliation(s)
- B Zavan
- Biomedical Science Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil.
| | | | | |
Collapse
|
21
|
Too LK, McGregor IS, Baxter AG, Hunt NH. Altered behaviour and cognitive function following combined deletion of Toll-like receptors 2 and 4 in mice. Behav Brain Res 2016; 303:1-8. [PMID: 26774978 DOI: 10.1016/j.bbr.2016.01.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/05/2016] [Accepted: 01/09/2016] [Indexed: 10/22/2022]
Abstract
Activation of the immune system due to infection or aging is increasingly linked to impaired neuropsychological function. Toll-like receptors 2 and 4 (TLR2, TLR4) are well-characterised for their role in inflammatory events, and their combined activation has been implicated in neurological diseases. We therefore determined whether TLR2 and TLR4 double gene knockout (GKO) mice showed modified behaviour and cognitive function during a 16-day test sequence that employed the automated IntelliCage test system. The IntelliCage features a home cage environment in which groups of mice live and where water reward is gained through performing various tasks centred on drinking stations in each corner of the apparatus. All mice were tested twice, one month apart (the first sequence termed "R1"and the second "R2"). There were fewer corner visits and nosepokes in TLR2/4 GKO compared to wild-type mice during early exploration in R1, suggesting elevated neophobia in GKO mice. Reduced exploration persisted over subsequent test modules during the dark phase. TLR2/4 GKO mice also displayed increased corner visits during drinking sessions compared to non-drinking sessions, but this was not associated with increased drinking. In subsequent, more complex test modules, TLR2/4 GKO mice had unimpaired spatial learning, but showed markedly poorer performance in a visual discrimination reversal task compared to wild-type mice. These results indicated subtle impairments in behaviour and cognitive functions due to double deficiency in TLR2 and TLR4. These finding are highly relevant to understanding the combined actions of TLR2 and TLR4 on neurological status in a range of different disease conditions.
Collapse
Affiliation(s)
- Lay Khoon Too
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Iain S McGregor
- School of Psychology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Alan G Baxter
- Comparative Genomics Centre, James Cook University, Townsville, Queensland 4811, Australia
| | - Nicholas H Hunt
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
22
|
Feldman N, Rotter-Maskowitz A, Okun E. DAMPs as mediators of sterile inflammation in aging-related pathologies. Ageing Res Rev 2015; 24:29-39. [PMID: 25641058 DOI: 10.1016/j.arr.2015.01.003] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/29/2014] [Accepted: 01/19/2015] [Indexed: 12/20/2022]
Abstract
Accumulating evidence indicates that aging is associated with a chronic low-level inflammation, termed sterile-inflammation. Sterile-inflammation is a form of pathogen-free inflammation caused by mechanical trauma, ischemia, stress or environmental conditions such as ultra-violet radiation. These damage-related stimuli induce the secretion of molecular agents collectively termed danger-associated molecular patterns (DAMPs). DAMPs are recognized by virtue of specialized innate immune receptors, such as toll-like receptors (TLRs) and NOD-like receptor family, pyrin domain containing 3 (NLRP3). These receptors initiate signal transduction pathways, which typically drive inflammation in response to microbe-associated molecular patterns (MAMPs) and/or DAMPs. This review summarizes the current knowledge on DAMPs-mediated sterile-inflammation, its associated downstream signaling, and discusses the possibility that DAMPs activating TLRs or NLRP3 complex mediate sterile inflammation during aging and in aging-related pathologies.
Collapse
Affiliation(s)
- Noa Feldman
- The Mina and Everard Goodman Faculty of Life Sciences, The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Aviva Rotter-Maskowitz
- The Mina and Everard Goodman Faculty of Life Sciences, The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Eitan Okun
- The Mina and Everard Goodman Faculty of Life Sciences, The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
23
|
Ali MF, Driscoll CB, Walters PR, Limper AH, Carmona EM. β-Glucan-Activated Human B Lymphocytes Participate in Innate Immune Responses by Releasing Proinflammatory Cytokines and Stimulating Neutrophil Chemotaxis. THE JOURNAL OF IMMUNOLOGY 2015; 195:5318-26. [PMID: 26519534 DOI: 10.4049/jimmunol.1500559] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/29/2015] [Indexed: 01/20/2023]
Abstract
B lymphocytes play an essential regulatory role in the adaptive immune response through Ab production during infection. A less known function of B lymphocytes is their ability to respond directly to infectious Ags through stimulation of pattern recognition receptors expressed on their surfaces. β-Glucans are carbohydrates present in the cell wall of many pathogenic fungi that can be detected in the peripheral blood of patients during infection. They have been shown to participate in the innate inflammatory response, as they can directly activate peripheral macrophages and dendritic cells. However, their effect as direct stimulators of B lymphocytes has not been yet fully elucidated. The aim of this study was to examine the molecular mechanisms and cytokine profiles generated following β-glucan stimulation of B lymphocytes, compared with the well-established TLR-9 agonist CpG oligodeoxynucleotide (CpG), and study the participation of β-glucan-stimulated B cells in the innate immune response. In this article, we demonstrate that β-glucan-activated B lymphocytes upregulate proinflammatory cytokines (TNF-α, IL-6, and IL-8). Of interest, β-glucan, unlike CpG, had no effect on B lymphocyte proliferation or IgM production. When compared with CpG (TLR9 agonist), β-glucan-activated cells secreted significantly higher levels of IL-8. Furthermore, IL-8 secretion was partially mediated by Dectin-1 and required SYK, MAPKs, and the transcription factors NF-κB and AP-1. Moreover, we observed that conditioned media from β-glucan-stimulated B lymphocytes elicited neutrophil chemotaxis. These studies suggest that β-glucan-activated B lymphocytes have an important and novel role in fungal innate immune responses.
Collapse
Affiliation(s)
- Mohamed F Ali
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic and Foundation, Rochester, MN 55905; and
| | - Christopher B Driscoll
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic and Foundation, Rochester, MN 55905; and
| | - Paula R Walters
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic and Foundation, Rochester, MN 55905; and
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic and Foundation, Rochester, MN 55905; and Division of Pulmonary Critical Care and Internal Medicine, Department of Medicine, Mayo Clinic and Foundation, Rochester, MN 55905
| | - Eva M Carmona
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic and Foundation, Rochester, MN 55905; and Division of Pulmonary Critical Care and Internal Medicine, Department of Medicine, Mayo Clinic and Foundation, Rochester, MN 55905
| |
Collapse
|
24
|
Liu HY, Huang CM, Hung YF, Hsueh YP. The microRNAs Let7c and miR21 are recognized by neuronal Toll-like receptor 7 to restrict dendritic growth of neurons. Exp Neurol 2015; 269:202-12. [PMID: 25917529 DOI: 10.1016/j.expneurol.2015.04.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 11/25/2022]
Abstract
Inflammatory responses are known to play critical roles in the regulation of neurodevelopment and neurodegeneration. Although microglial cells are recognized as professional immune cells in brains, recent evidence suggests that neurons also express important receptors and regulators of innate immunity, including Toll-like receptor 7 (TLR7), which is a receptor for single-stranded RNAs (ssRNAs). Here, we report that neuronal TLR7 recognizes endogenous ligands such as the miRNAs Let7c and miR21 and plays a negative role in controlling neuronal growth in a cell-autonomous manner. We show here that hippocampal CA1 neurons in Tlr7(-/Y) mice had more complex dendritic arbors compared with those of wild-type littermates at postnatal (P) day 7, but not at P21. This observation strengthens a role of TLR7 in restricting neuronal growth during development. In cultured neurons, transient knockdown of Tlr7 promoted axonal and dendritic growth, supporting the cell-autonomous effect of TLR7 on neuronal growth. We observed perceptible levels of Let7c and miR21 in the exosomes of the neuronal cultures as well as in developing brains. Treatment with Let7c and miR21 restricted dendritic growth of wild-type neurons but not Tlr7(-/-) neurons. Our study suggests that neuronal TLR7 is activated by endogenous ligands and thus regulates neuronal morphology. Neuronal innate immune responses may influence neurodevelopment and neurodegeneration through the regulation of neuronal morphology.
Collapse
Affiliation(s)
- Hsin-Yu Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| | | | - Yun-Fen Hung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
25
|
Long noncoding RNA SPRY4-IT1 predicts poor patient prognosis and promotes tumorigenesis in gastric cancer. Tumour Biol 2015; 53:2016-2028. [PMID: 25835973 DOI: 10.1007/s12035-015-9142-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/12/2015] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer (GC) is the second common cause of cancer-related death worldwide. Long noncoding RNAs (lncRNAs) are emerging as novel regulators in the cancer paradigm. However, investigation of lncRNAs on GC is still in its infancy. In this study, we focused on lncRNA SPRY4 intronic transcript 1 (SPRY4-IT1) and investigated its expression pattern, clinical significance, biological function, and molecular mechanism in GC. SPRY4-IT1 expression was examined, and its correlation with clinicopathological characteristics and patient prognosis was analyzed. A series of assays were performed to understand the role of SPRY4-IT1 in GC. SPRY4-IT1 expression was elevated in GC tissues and cell lines, and SPRY4-IT1 levels were highly positively correlated with tumor size, invasion depth, distant metastasis, TNM stage, and reduced overall survival (OS) and disease-free survival (DFS). A multivariate analysis showed that SPRY4-IT1 expression is an independent prognostic factor of OS and DFS in patients with GC. Additionally, the results of in vitro assays showed that the suppression of SPRY4-IT1 expression in GC cell line MKN-45 significantly reduced cell proliferation, colony formation, and cell migration/invasion. Moreover, the tumorigenic effects of SPRY4-IT1 were partially mediated by the regulation of certain cyclins and matrix metalloproteinases (MMPs)-related genes. Our data suggest that SPRY4-IT1 plays a critical role in GC tumorigenesis and may represent a novel prognostic marker and potential therapeutic target in patients with GC.
Collapse
|
26
|
Nfkb1 activation by the E26 transformation-specific transcription factors PU.1 and Spi-B promotes Toll-like receptor-mediated splenic B cell proliferation. Mol Cell Biol 2015; 35:1619-32. [PMID: 25733685 DOI: 10.1128/mcb.00117-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/23/2015] [Indexed: 12/31/2022] Open
Abstract
Generation of antibodies against T-independent and T-dependent antigens requires Toll-like receptor (TLR) engagement on B cells for efficient responses. However, the regulation of TLR expression and responses in B cells is not well understood. PU.1 and Spi-B (encoded by Sfpi1 and Spib, respectively) are transcription factors of the E26 transformation-specific (ETS) family and are important for B cell development and function. It was found that B cells from mice knocked out for Spi-B and heterozygous for PU.1 (Sfpi1(+/-) Spib(-/-) [PUB] mice) proliferated poorly in response to TLR ligands compared to wild-type (WT) B cells. The NF-κB family member p50 (encoded by Nfkb1) is required for lipopolysaccharide (LPS) responsiveness in mice. PUB B cells expressed reduced Nfkb1 mRNA transcripts and p50 protein. The Nfkb1 promoter was regulated directly by PU.1 and Spi-B, as shown by reporter assays and chromatin immunoprecipitation analysis. Occupancy of the Nfkb1 promoter by PU.1 was reduced in PUB B cells compared to that in WT B cells. Finally, infection of PUB B cells with a retroviral vector encoding p50 substantially restored proliferation in response to LPS. We conclude that Nfkb1 transcriptional activation by PU.1 and Spi-B promotes TLR-mediated B cell proliferation.
Collapse
|
27
|
Interferon induction by RNA viruses and antagonism by viral pathogens. Viruses 2014; 6:4999-5027. [PMID: 25514371 PMCID: PMC4276940 DOI: 10.3390/v6124999] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/04/2014] [Accepted: 12/04/2014] [Indexed: 12/22/2022] Open
Abstract
Interferons are a group of small proteins that play key roles in host antiviral innate immunity. Their induction mainly relies on host pattern recognition receptors (PRR). Host PRR for RNA viruses include Toll-like receptors (TLR) and retinoic acid-inducible gene I (RIG-I) like receptors (RLR). Activation of both TLR and RLR pathways can eventually lead to the secretion of type I IFNs, which can modulate both innate and adaptive immune responses against viral pathogens. Because of the important roles of interferons, viruses have evolved multiple strategies to evade host TLR and RLR mediated signaling. This review focuses on the mechanisms of interferon induction and antagonism of the antiviral strategy by RNA viruses.
Collapse
|
28
|
Park HY, Go H, Song HR, Kim S, Ha GH, Jeon YK, Kim JE, Lee H, Cho H, Kang HC, Chung HY, Kim CW, Chung DH, Lee CW. Pellino 1 promotes lymphomagenesis by deregulating BCL6 polyubiquitination. J Clin Invest 2014; 124:4976-88. [PMID: 25295537 DOI: 10.1172/jci75667] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 09/04/2014] [Indexed: 12/13/2022] Open
Abstract
The signal-responsive E3 ubiquitin ligase pellino 1 (PELI1) regulates TLR and T cell receptor (TCR) signaling and contributes to the maintenance of autoimmunity; however, little is known about the consequence of mutations that result in upregulation of PELI1. Here, we developed transgenic mice that constitutively express human PELI1 and determined that these mice have a shorter lifespan due to tumor formation. Constitutive expression of PELI1 resulted in ligand-independent hyperactivation of B cells and facilitated the development of a wide range of lymphoid tumors, with prominent B cell infiltration observed across multiple organs. PELI1 directly interacted with the oncoprotein B cell chronic lymphocytic leukemia (BCL6) and induced lysine 63-mediated BCL6 polyubiquitination. In samples from patients with diffuse large B cell lymphomas (DLBCLs), PELI1 expression levels positively correlated with BCL6 expression, and PELI1 overexpression was closely associated with poor prognosis in DLBCLs. Together, these results suggest that increased PELI1 expression and subsequent induction of BCL6 promotes lymphomagenesis and that this pathway may be a potential target for therapeutic strategies to treat B cell lymphomas.
Collapse
|
29
|
Outer membrane protein A (OmpA) of Shigella flexneri 2a induces TLR2-mediated activation of B cells: involvement of protein tyrosine kinase, ERK and NF-κB. PLoS One 2014; 9:e109107. [PMID: 25286253 PMCID: PMC4186783 DOI: 10.1371/journal.pone.0109107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/02/2014] [Indexed: 12/29/2022] Open
Abstract
B cells are critically important in combating bacterial infections and their differentiation into plasma cells and memory cells aids bacterial clearance and long-lasting immunity conferred by essentially all vaccines. Outer membrane protein A (OmpA) of Shigella flexneri 2a has been demonstrated to induce the production of IgG and IgA in vivo following immunization of mice through intranasal route, but the direct involvement of B cells in OmpA-mediated immune regulation was not determined. Consequently, we investigated whether OmpA can modulate B cell functions and identified the molecular events involved in OmpA-induced B cell immune response in vitro. We show that OmpA of S. flexneri 2a activates B cells to produce protective cytokines, IL-6 and IL-10 as well as facilitates their differentiation into antibody secreting cells (ASCs). The immunostimulatory properties of OmpA are attributed to the increased surface expression of MHCII and CD86 on B cells. We also report here that B cell activation by OmpA is mediated strictly through recognition by TLR2, resulting in initiation of cascades of signal transduction events, involving increased phosphorylation of protein tyrosine kinases (PTKs), ERK and IκBα, leading to nuclear translocation of NF-κB. Importantly, a TLR2 antibody diminishes OmpA-induced upregulation of MHCII and CD86 on B cell surface as well as significantly inhibits B cell differentiation and cytokine secretion. Furthermore, we illustrate that B cell differentiation into ASCs and induction of cytokine secretion by OmpA are dependent on PTKs activity. Moreover, we identify that OmpA-induced B cell differentiation is entirely dependent on ERK pathway, whereas both NF-κB and ERK are essential for cytokine secretion by B cells. Overall, our data demonstrate that OmpA of S. flexneri 2a amplifies TLR signaling in B cells and triggers B cell immune response, which is critical for the development of an effective adaptive immunity to an optimal vaccine antigen.
Collapse
|
30
|
Lactobacillus helveticus SBT2171 inhibits lymphocyte proliferation by regulation of the JNK signaling pathway. PLoS One 2014; 9:e108360. [PMID: 25268890 PMCID: PMC4182466 DOI: 10.1371/journal.pone.0108360] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/29/2014] [Indexed: 12/18/2022] Open
Abstract
Lactobacillus helveticus SBT2171 (LH2171) is a lactic acid bacterium with high protease activity and used in starter cultures in the manufacture of cheese. We recently reported that consumption of cheese manufactured using LH2171 alleviated symptoms of dextran sodium sulfate (DSS)-induced colitis in mice. In this study, we have examined whether LH2171 itself exerts an inhibitory effect on the excessive proliferation of lymphocytes. We found that LH2171 inhibited the proliferation of LPS-stimulated mouse T and B cells, and the human lymphoma cell lines, Jurkat and BJAB. Cell cycle analysis showed an accumulation of LH2171-treated BJAB cells in the G2/M phase. Further, phosphorylation of c-Jun N-terminal kinase (JNK) and c-Jun was reduced by LH2171 in BJAB cells. Subsequently, expression of cell division cycle 2 (CDC2), regulated by the JNK signaling pathway and essential for G2/M phase progression, was inhibited by LH2171. It was also demonstrated that intraperitoneal administration of LH2171 strongly alleviated symptoms of collagen-induced arthritis (CIA) in mice. These findings suggest that LH2171 inhibits the proliferation of lymphocytes through a suppression of the JNK signaling pathway and exerts an immunosuppressive effect in vivo.
Collapse
|
31
|
Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. Nature 2014; 511:488-492. [PMID: 25043028 DOI: 10.1038/nature13537] [Citation(s) in RCA: 365] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 05/28/2014] [Indexed: 12/30/2022]
Abstract
The c-myc proto-oncogene product, Myc, is a transcription factor that binds thousands of genomic loci. Recent work suggested that rather than up- and downregulating selected groups of genes, Myc targets all active promoters and enhancers in the genome (a phenomenon termed 'invasion') and acts as a general amplifier of transcription. However, the available data did not readily discriminate between direct and indirect effects of Myc on RNA biogenesis. We addressed this issue with genome-wide chromatin immunoprecipitation and RNA expression profiles during B-cell lymphomagenesis in mice, in cultured B cells and fibroblasts. Consistent with long-standing observations, we detected general increases in total RNA or messenger RNA copies per cell (hereby termed 'amplification') when comparing actively proliferating cells with control quiescent cells: this was true whether cells were stimulated by mitogens (requiring endogenous Myc for a proliferative response) or by deregulated, oncogenic Myc activity. RNA amplification and promoter/enhancer invasion by Myc were separable phenomena that could occur without one another. Moreover, whether or not associated with RNA amplification, Myc drove the differential expression of distinct subsets of target genes. Hence, although having the potential to interact with all active or poised regulatory elements in the genome, Myc does not directly act as a global transcriptional amplifier. Instead, our results indicate that Myc activates and represses transcription of discrete gene sets, leading to changes in cellular state that can in turn feed back on global RNA production and turnover.
Collapse
|
32
|
Alves BN, Tsui R, Almaden J, Shokhirev MN, Davis-Turak J, Fujimoto J, Birnbaum H, Ponomarenko J, Hoffmann A. IκBε is a key regulator of B cell expansion by providing negative feedback on cRel and RelA in a stimulus-specific manner. THE JOURNAL OF IMMUNOLOGY 2014; 192:3121-32. [PMID: 24591377 DOI: 10.4049/jimmunol.1302351] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The transcription factor NF-κB is a regulator of inflammatory and adaptive immune responses, yet only IκBα was shown to limit NF-κB activation and inflammatory responses. We investigated another negative feedback regulator, IκBε, in the regulation of B cell proliferation and survival. Loss of IκBε resulted in increased B cell proliferation and survival in response to both antigenic and innate stimulation. NF-κB activity was elevated during late-phase activation, but the dimer composition was stimulus specific. In response to IgM, cRel dimers were elevated in IκBε-deficient cells, yet in response to LPS, RelA dimers also were elevated. The corresponding dimer-specific sequences were found in the promoters of hyperactivated genes. Using a mathematical model of the NF-κB-signaling system in B cells, we demonstrated that kinetic considerations of IκB kinase-signaling input and IκBε's interactions with RelA- and cRel-specific dimers could account for this stimulus specificity. cRel is known to be the key regulator of B cell expansion. We found that the RelA-specific phenotype in LPS-stimulated cells was physiologically relevant: unbiased transcriptome profiling revealed that the inflammatory cytokine IL-6 was hyperactivated in IκBε(-/-) B cells. When IL-6R was blocked, LPS-responsive IκBε(-/-) B cell proliferation was reduced to near wild-type levels. Our results provide novel evidence for a critical role for immune-response functions of IκBε in B cells; it regulates proliferative capacity via at least two mechanisms involving cRel- and RelA-containing NF-κB dimers. This study illustrates the importance of kinetic considerations in understanding the functional specificity of negative-feedback regulators.
Collapse
Affiliation(s)
- Bryce N Alves
- Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
The PARP1/ARTD1-Mediated Poly-ADP-Ribosylation and DNA Damage Repair in B Cell Diversification. Antibodies (Basel) 2014. [DOI: 10.3390/antib3010037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
34
|
Perron H, Dougier-Reynaud HL, Lomparski C, Popa I, Firouzi R, Bertrand JB, Marusic S, Portoukalian J, Jouvin-Marche E, Villiers CL, Touraine JL, Marche PN. Human endogenous retrovirus protein activates innate immunity and promotes experimental allergic encephalomyelitis in mice. PLoS One 2013; 8:e80128. [PMID: 24324591 PMCID: PMC3855614 DOI: 10.1371/journal.pone.0080128] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/30/2013] [Indexed: 01/07/2023] Open
Abstract
Multiple sclerosis (MS) is a complex multifactorial disease of the central nervous system (CNS) for which animal models have mainly addressed downstream immunopathology but not potential inducers of autoimmunity. In the absence of a pathogen known to cause neuroinflammation in MS, Mycobacterial lysate is commonly used in the form of complete Freund's adjuvant to induce autoimmunity to myelin proteins in Experimental Allergic Encephalomyelitis (EAE), an animal model for MS. The present study demonstrates that a protein from the human endogenous retrovirus HERV-W family (MSRV-Env) can be used instead of mycobacterial lysate to induce autoimmunity and EAE in mice injected with MOG, with typical anti-myelin response and CNS lesions normally seen in this model. MSRV-Env was shown to induce proinflammatory response in human macrophage cells through TLR4 activation pathway. The present results demonstrate a similar activation of murine dendritic cells and show the ability of MSRV-Env to trigger EAE in mice. In previous studies, MSRV-Env protein was reproducibly detected in MS brain lesions within microglia and perivascular macrophages. The present results are therefore likely to provide a model for MS, in which the upstream adjuvant triggering neuroinflammation is the one detected in MS active lesions. This model now allows pre-clinical studies with therapeutic agents targeting this endogenous retroviral protein in MS.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Cells, Cultured
- Central Nervous System
- Dendritic Cells
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Gene Expression
- Gene Products, env/administration & dosage
- Gene Products, env/immunology
- Humans
- Immunity, Innate/drug effects
- Lipopolysaccharide Receptors/genetics
- Lipopolysaccharide Receptors/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Myelin-Oligodendrocyte Glycoprotein/administration & dosage
- Peptide Fragments/administration & dosage
- Pregnancy Proteins/administration & dosage
- Pregnancy Proteins/immunology
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/immunology
- Toll-Like Receptor 4/deficiency
- Toll-Like Receptor 4/genetics
- Toll-Like Receptor 4/immunology
Collapse
Affiliation(s)
- Hervé Perron
- Geneuro, Plan-les-Ouates, Geneva, Switzerland
- Geneuro-Innovation, Lyon, France
- Université Lyon-1, Lyon, France
- * E-mail:
| | - Hei-Lanne Dougier-Reynaud
- Université Joseph Fourier, Grenoble, France
- Institut Albert Bonniot, UMR_S823, Université Joseph Fourier, Grenoble, France
- ImmunAlp, Gières, France
| | - Christina Lomparski
- Université Joseph Fourier, Grenoble, France
- Institut Albert Bonniot, UMR_S823, Université Joseph Fourier, Grenoble, France
| | - Iuliana Popa
- UMR CNRS 8612, University of Paris XI, Chatenay Malabry, France
| | | | | | - Suzana Marusic
- Hook laboratories, Lawrence, Massachusetts, United States of America
| | | | - Evelyne Jouvin-Marche
- Université Joseph Fourier, Grenoble, France
- Institut Albert Bonniot, UMR_S823, Université Joseph Fourier, Grenoble, France
| | - Christian L. Villiers
- Université Joseph Fourier, Grenoble, France
- Institut Albert Bonniot, UMR_S823, Université Joseph Fourier, Grenoble, France
| | | | - Patrice N. Marche
- Université Joseph Fourier, Grenoble, France
- Institut Albert Bonniot, UMR_S823, Université Joseph Fourier, Grenoble, France
| |
Collapse
|
35
|
Lu J, Yan M, Wang Y, Zhang J, Yang H, Tian FF, Zhou W, Zhang N, Li J. Altered expression of miR-146a in myasthenia gravis. Neurosci Lett 2013; 555:85-90. [DOI: 10.1016/j.neulet.2013.09.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 01/18/2023]
|
36
|
Kelly KJ, Liu Y, Zhang J, Goswami C, Lin H, Dominguez JH. Comprehensive genomic profiling in diabetic nephropathy reveals the predominance of proinflammatory pathways. Physiol Genomics 2013; 45:710-9. [PMID: 23757392 DOI: 10.1152/physiolgenomics.00028.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Despite advances in the treatment of diabetic nephropathy (DN), currently available therapies have not prevented the epidemic of progressive chronic kidney disease (CKD). The morbidity of CKD, and the inexorable increase in the prevalence of end-stage renal disease, demands more effective approaches to prevent and treat progressive CKD. We undertook next-generation sequencing in a rat model of diabetic nephropathy to study in depth the pathogenic alterations involved in DN with progressive CKD. We employed the obese, diabetic ZS rat, a model that develops diabetic nephropathy, characterized by progressive CKD, inflammation, and fibrosis, the hallmarks of human disease. We then used RNA-seq to examine the combined effects of renal cells and infiltrating inflammatory cells acting as a pathophysiological unit. The comprehensive systems biology analysis of progressive CKD revealed multiple interactions of altered genes that were integrated into morbid networks. These pathological gene assemblies lead to renal inflammation and promote apoptosis and cell cycle arrest in progressive CKD. Moreover, in what is clearly a major therapeutic challenge, multiple and redundant pathways were found to be linked to renal fibrosis, a major cause of kidney loss. We conclude that systems biology applied to progressive CKD in DN can be used to develop novel therapeutic strategies directed to restore critical anomalies in affected gene networks.
Collapse
Affiliation(s)
- K J Kelly
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | |
Collapse
|
37
|
Jie H, Lian L, Qu LJ, Zheng JX, Hou ZC, Xu GY, Song JZ, Yang N. Differential expression of Toll-like receptor genes in lymphoid tissues between Marek's disease virus-infected and noninfected chickens. Poult Sci 2013; 92:645-54. [PMID: 23436515 DOI: 10.3382/ps.2012-02747] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Toll-like receptors (TLR) are trans-membrane sensors recognizing invading microbes. Toll-like receptors play a central role in initiating immune responses against several pathogens. In this study, we investigated the response of TLR and downstream genes to Marek's disease virus (MDV) infection. Forty 1-d-old chicks were randomly divided into 2 groups, with 20 chicks infected with MDV and 20 chicks mock-infected. Four chickens were euthanized respectively from infected and age-matched noninfected groups at 4, 7, 14, 21, and 28 d postinfection (dpi). Bursas, spleens, and thymuses were removed. The differential expression of TLR genes, including TLR3, TLR5, TLR7, TLR15, and TLR21, and downstream genes of TLR7, including MyD88, TRAF3, TRAF6, IFNA, IFNB, and IL6, in lymphoid tissues of MDV-infected and noninfected chickens was determined by real-time PCR. The results showed that the change of TLR genes was different in 3 lymphoid tissues. Expression of TLR7 and MyD88 was upregulated at 14 dpi and downregulated at 28 dpi in MDV-infected compared with noninfected spleens. The TRAF6 and IFNB were upregulated, and TRAF3, IFNA, and IL6 genes showed increasing trends in MDV-infected compared with noninfected spleens at 14 dpi. The expression of TLR3 and TLR15 genes was downregulated in MDV-infected compared with noninfected spleens at 28 dpi. The results indicated that TLR7 and its downstream genes were a response to MDV infection at 14 dpi. However, the function of TLR was impaired when the infection entered the tumor transformation phase. In bursas, TLR3 and TLR15 genes were upregulated at 7 and 4 dpi, respectively. It indicated that TLR3 and TLR15 might be involved in response to MDV infection in bursa at early phases. However, no differential expression of TLR genes was observed between MDV-infected and noninfected thymuses, which indicated that the thymus had little response to MDV infection mediated by TLR.
Collapse
Affiliation(s)
- H Jie
- Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Wensveen FM, van Gisbergen KPJM, Eldering E. The fourth dimension in immunological space: how the struggle for nutrients selects high-affinity lymphocytes. Immunol Rev 2013; 249:84-103. [PMID: 22889217 DOI: 10.1111/j.1600-065x.2012.01156.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lymphocyte activation via the antigen receptor is associated with radical shifts in metabolism and changes in requirements for nutrients and cytokines. Concomitantly, drastic changes occur in the expression of pro-and anti-apoptotic proteins that alter the sensitivity of lymphocytes to limiting concentrations of key survival factors. Antigen affinity is a primary determinant for the capacity of activated lymphocytes to access these vital resources. The shift in metabolic needs and the variable access to key survival factors is used by the immune system to eliminate activated low-affinity cells and to generate an optimal high-affinity response. In this review, we focus on the control of apoptosis regulators in activated lymphocytes by nutrients, cytokines, and costimulation. We propose that the struggle among individual clones that leads to the formation of high-affinity effector cell populations is in effect an 'invisible' fourth signal required for effective immune responses.
Collapse
Affiliation(s)
- Felix M Wensveen
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
39
|
Yoon OK, Hsu TY, Im JH, Brem RB. Genetics and regulatory impact of alternative polyadenylation in human B-lymphoblastoid cells. PLoS Genet 2012; 8:e1002882. [PMID: 22916029 PMCID: PMC3420953 DOI: 10.1371/journal.pgen.1002882] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 06/20/2012] [Indexed: 11/18/2022] Open
Abstract
Gene expression varies widely between individuals of a population, and regulatory change can underlie phenotypes of evolutionary and biomedical relevance. A key question in the field is how DNA sequence variants impact gene expression, with most mechanistic studies to date focused on the effects of genetic change on regulatory regions upstream of protein-coding sequence. By contrast, the role of RNA 3'-end processing in regulatory variation remains largely unknown, owing in part to the challenge of identifying functional elements in 3' untranslated regions. In this work, we conducted a genomic survey of transcript ends in lymphoblastoid cells from genetically distinct human individuals. Our analysis mapped the cis-regulatory architecture of 3' gene ends, finding that transcript end positions did not fall randomly in untranslated regions, but rather preferentially flanked the locations of 3' regulatory elements, including miRNA sites. The usage of these transcript length forms and motifs varied across human individuals, and polymorphisms in polyadenylation signals and other 3' motifs were significant predictors of expression levels of the genes in which they lay. Independent single-gene experiments confirmed the effects of polyadenylation variants on steady-state expression of their respective genes, and validated the regulatory function of 3' cis-regulatory sequence elements that mediated expression of these distinct RNA length forms. Focusing on the immune regulator IRF5, we established the effect of natural variation in RNA 3'-end processing on regulatory response to antigen stimulation. Our results underscore the importance of two mechanisms at play in the genetics of 3'-end variation: the usage of distinct 3'-end processing signals and the effects of 3' sequence elements that determine transcript fate. Our findings suggest that the strategy of integrating observed 3'-end positions with inferred 3' regulatory motifs will prove to be a critical tool in continued efforts to interpret human genome variation.
Collapse
Affiliation(s)
- Oh Kyu Yoon
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Tiffany Y. Hsu
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Joo Hyun Im
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Rachel B. Brem
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
40
|
|
41
|
The impact of CDK inhibition in human malignancies associated with pronounced defects in apoptosis: advantages of multi-targeting small molecules. Future Med Chem 2012; 4:395-424. [DOI: 10.4155/fmc.12.12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Malignant cells in chronic lymphocytic leukemia (CLL) and related diseases are heterogeneous and consist primarily of long-lived resting cells in the periphery and a minor subset of dividing cells in proliferating centers. Both cell populations have different molecular signatures that play a major role in determining their sensitivity to therapy. Contemporary approaches to treating CLL are heavily reliant on cytotoxic chemotherapeutics. However, none of the current treatment regimens can be considered curative. Pharmacological CDK inhibitors have extended the repertoire of potential drugs for CLL. Multi-targeted CDK inhibitors affect CDKs involved in regulating both cell cycle progression and transcription. Their interference with transcriptional elongation represses anti-apoptotic proteins and, thus, promotes the induction of apoptosis. Importantly, there is evidence that treatment with CDK inhibitors can overcome resistance to therapy. The pharmacological CDK inhibitors have great potential for use in combination with other therapeutics and represent promising tools for the development of new curative treatments for CLL.
Collapse
|
42
|
Toll-like receptors in ischaemia and its potential role in the pathophysiology of muscle damage in critical limb ischaemia. Cardiol Res Pract 2012; 2012:121237. [PMID: 22454775 PMCID: PMC3290818 DOI: 10.1155/2012/121237] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/04/2011] [Indexed: 12/20/2022] Open
Abstract
Toll-like receptors (TLRs) are key receptors of the innate immune system which are expressed on immune and nonimmune cells. They are activated by both pathogen-associated molecular patterns and endogenous ligands. Activation of TLRs culminates in the release of proinflammatory cytokines, chemokines, and apoptosis. Ischaemia and ischaemia/reperfusion (I/R) injury are associated with significant inflammation and tissue damage. There is emerging evidence to suggest that TLRs are involved in mediating ischaemia-induced damage in several organs. Critical limb ischaemia (CLI) is the most severe form of peripheral arterial disease (PAD) and is associated with skeletal muscle damage and tissue loss; however its pathophysiology is poorly understood. This paper will underline the evidence implicating TLRs in the pathophysiology of cerebral, renal, hepatic, myocardial, and skeletal muscle ischaemia and I/R injury and discuss preliminary data that alludes to the potential role of TLRs in the pathophysiology of skeletal muscle damage in CLI.
Collapse
|
43
|
Farrar CA, Keogh B, McCormack W, O'Shaughnessy A, Parker A, Reilly M, Sacks SH. Inhibition of TLR2 promotes graft function in a murine model of renal transplant ischemia-reperfusion injury. FASEB J 2011; 26:799-807. [PMID: 22042224 DOI: 10.1096/fj.11-195396] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Toll-like receptors (TLRs) are important molecules involved in the activation of innate and subsequent development of adaptive immunity. TLRs are ligated by exogenous ligands from pathogens and by endogenous ligands released in inflammatory diseases. Activation of TLR leads to activation of NF-κB and release of proinflammatory cytokines, such as IL-6 and TNF-α. TLRs play an important role in the pathogenesis of renal diseases. Increased expression of TLRs have been associated with ischemic kidney damage, acute kidney injury, end-stage renal failure, acute renal transplant rejection, and delayed allograft function. OPN301 is a mouse anti-human TLR2 antibody that cross-reacts with mouse TLR2. We show that inhibition of TLR2 promotes graft function in an isograft model of renal transplantation. Recipient mice were treated intravenously with OPN301 before reperfusion of the transplanted kidney that had been subjected to 30 min of cold ischemia. After 5 d, the residual native kidney was removed, and renal transplant function was assessed 24 h later by measurement of blood urea nitrogen. Renal function in both saline- and isotype-treated mice was similar, with significant improvement in OPN301-treated mice (isotype-treated vs. OPN301-treated: 33.9±3.2 vs. 19.8±1.9 μM; P<0.01). The histopathological appearance corresponded with renal functional results. In OPN301-treated recipients, renal structure was well preserved, whereas in the saline-treated group, tubular injury was severe, with marked tubular thinning, epithelial shedding, cast formation and necrosis. Inhibition of TLR2 also leads to a decrease in C3d deposition, although it is unclear whether this is due directly to TLR2 inhibition or a decrease in renal inflammation. This study shows that inhibition of TLR2 with a therapeutic agent (OPN301) provides significant protection from ischemia/reperfusion injury in a model of kidney transplantation.
Collapse
Affiliation(s)
- Conrad A Farrar
- Medical Research Council Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King's College London School of Medicine at Guy's, King's College, and St. Thomas' Hospitals, Guy's Hospital, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
44
|
Nicotra L, Loram LC, Watkins LR, Hutchinson MR. Toll-like receptors in chronic pain. Exp Neurol 2011; 234:316-29. [PMID: 22001158 DOI: 10.1016/j.expneurol.2011.09.038] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/26/2011] [Accepted: 09/30/2011] [Indexed: 12/16/2022]
Abstract
Proinflammatory central immune signaling contributes significantly to the initiation and maintenance of heightened pain states. Recent discoveries have implicated the innate immune system, pattern recognition Toll-like receptors in triggering these proinflammatory central immune signaling events. These exciting developments have been complemented by the discovery of neuronal expression of Toll-like receptors, suggesting pain pathways can be activated directly by the detection of pathogen associated molecular patterns or danger associated molecular patterns. This review will examine the evidence to date implicating Toll-like receptors and their associated signaling components in heightened pain states. In addition, insights into the impact Toll-like receptors have on priming central immune signaling systems for heightened pain states will be discussed. The influence possible sex differences in Toll-like receptor signaling have for female pain and the recognition of small molecule xenobiotics by Toll-like receptors will also be reviewed.
Collapse
Affiliation(s)
- Lauren Nicotra
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, South Australia, 5005, Australia
| | | | | | | |
Collapse
|
45
|
Pinto A, Morello S, Sorrentino R. Lung cancer and Toll-like receptors. Cancer Immunol Immunother 2011; 60:1211-20. [PMID: 21789594 PMCID: PMC11029286 DOI: 10.1007/s00262-011-1057-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 05/28/2011] [Indexed: 01/11/2023]
Abstract
Lung carcinoma is one of the leading causes of death worldwide. It is a non-immunogenic cancer, resistant to immune surveillance. Toll-like receptors (TLRs) connect the innate to the adaptive immune system. Given that cancerous cells evade the immune system, the activation of TLRs could represent a potential target for cancer therapy. The induction of Th1-like and cytotoxic immunity by TLR signalling could lead to tumour cell death, resulting in tumour regression or arrest. However, basic research and clinical trials revealed that the activation of specific TLRs, such as TLR2, TLR4 and TLR9, do not have any anti-tumour activity in lung carcinoma. Increasing evidence suggests that TLRs are important regulators of tumour biology; however, little is known about their function in lung cancer. Thus, in order to develop new therapeutic approaches, further studies are needed to understand the connection between TLRs and lung cancer progression. This review focuses on the potential mechanisms by which TLR ligands can facilitate or not lung cancer and lung metastases establishment/progression.
Collapse
Affiliation(s)
- Aldo Pinto
- Pharmaceutical and Biomedical Sciences Department (FARMABIOMED), University of Salerno, 84084 Fisciano, Salerno Italy
| | - Silvana Morello
- Pharmaceutical and Biomedical Sciences Department (FARMABIOMED), University of Salerno, 84084 Fisciano, Salerno Italy
| | - Rosalinda Sorrentino
- Pharmaceutical and Biomedical Sciences Department (FARMABIOMED), University of Salerno, 84084 Fisciano, Salerno Italy
| |
Collapse
|
46
|
Okun E, Griffioen KJ, Mattson MP. Toll-like receptor signaling in neural plasticity and disease. Trends Neurosci 2011; 34:269-81. [PMID: 21419501 PMCID: PMC3095763 DOI: 10.1016/j.tins.2011.02.005] [Citation(s) in RCA: 400] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 02/14/2011] [Accepted: 02/14/2011] [Indexed: 01/03/2023]
Abstract
Toll-like receptors (TLRs) are a family of innate immune system receptors that respond to pathogen-derived and tissue damage-related ligands. TLR signaling in immune cells, glia and neurons can play roles in the pathogenesis of stroke, Alzheimer's disease (AD) and multiple sclerosis (MS). Recent findings suggest that TLR signaling also influences multiple dynamic processes in the developing and adult central nervous system including neurogenesis, axonal growth and structural plasticity. In addition, TLRs are implicated in the regulation of behaviors including learning, memory and anxiety. This review describes recently discovered and unexpected roles for TLRs in neuroplasticity, and the implications of these findings for future basic and translational research studies.
Collapse
Affiliation(s)
- Eitan Okun
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Biomedical Research Center, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
47
|
Hövelmeyer N, Reissig S, Xuan NT, Adams-Quack P, Lukas D, Nikolaev A, Schlüter D, Waisman A. A20 deficiency in B cells enhances B-cell proliferation and results in the development of autoantibodies. Eur J Immunol 2011; 41:595-601. [PMID: 21341261 DOI: 10.1002/eji.201041313] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 12/20/2010] [Accepted: 12/22/2010] [Indexed: 12/15/2022]
Abstract
A20/TNFAIP3 is an ubiquitin-editing enzyme, important for the regulation of the NF-κB pathway. Mutations in the TNFAIP3 gene have been linked to different human autoimmune disorders. In human B-cell lymphomas, the inactivation of A20 results in constitutive NF-κB activation. Recent studies demonstrate that in mice the germline inactivation of A20 leads to early lethality, due to inflammation in multiple organs of the body. In this report, we describe a new mouse strain allowing for the tissue-specific deletion of A20. We show that B-cell-specific deletion of A20 results in a dramatic reduction in marginal zone B cells. Furthermore, A20-deficient B cells display a hyperactive phenotype represented by enhanced proliferation upon activation. Finally, these mice develop higher levels of serum immunoglobulins, resulting in an excessive production of self-reactive autoantibodies.
Collapse
Affiliation(s)
- Nadine Hövelmeyer
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Colegio OR, Medzhitov R. TLR Signaling and Tumour-Associated Macrophages. TUMOUR-ASSOCIATED MACROPHAGES 2011. [PMCID: PMC7122207 DOI: 10.1007/978-1-4614-0662-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
|
49
|
Porta C, Riboldi E, Sica A. Mechanisms linking pathogens-associated inflammation and cancer. Cancer Lett 2010; 305:250-62. [PMID: 21093147 DOI: 10.1016/j.canlet.2010.10.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/29/2010] [Accepted: 10/14/2010] [Indexed: 02/07/2023]
Abstract
It has been estimated that chronic infections with viruses, bacteria and parasites are the causative agents of 8-17% of global cancers burden. Carcinogenesis associated with infections is a complex process, often mediated by chronic inflammatory conditions and accumulating evidence indicate that a smouldering inflammation is a component of the tumor microenvironment and represents the 7th hallmark of cancer. Selected infectious agents promote a cascade of events culminating in chronic inflammatory responses, thus predisposing target tissues to increased cancer susceptibility. A causal link also exists between an inflammatory microenvironment, consisting of inflammatory cells and mediators, and tumor progression. Tumor-Associated Macrophages (TAM) represent the major inflammatory population present in tumors, orchestrating various aspects of cancer, including: diversion and skewing of adaptive responses; cell growth; angiogenesis; matrix deposition and remodelling; construction of a metastatic niche and actual metastasis; response to hormones and chemotherapeutic agents. Recent studies on human and murine tumors indicate that TAM show a remarkable degree of plasticity and functional heterogeneity, during tumour development. In established tumors, TAM acquire an M2 polarized phenotype are engaged in immunosuppression and the promotion of tumor angiogenesis and metastasis. Being a first line of the innate defence mechanisms, macrophages are also equipped with pathogen-recognition receptors, to sense the presence of danger signals, including onco-pathogens. Here we discuss the evidence suggesting a causal relationship between selected infectious agents and the pro-tumoral reprogramming of inflammatory cells, as well as its significance in tumor development. Finally, we discuss the implications of this phenomenon for both cancer prevention and therapy.
Collapse
Affiliation(s)
- Chiara Porta
- DISCAFF, University of Piemonte Orientale A. Avogadro, via Bovio 6, Novara, Italy
| | | | | |
Collapse
|
50
|
Arranz L, De Castro NM, Baeza I, Maté I, Viveros MP, De la Fuente M. Environmental Enrichment Improves Age-Related Immune System Impairment: Long-Term Exposure Since Adulthood Increases Life Span in Mice. Rejuvenation Res 2010; 13:415-28. [DOI: 10.1089/rej.2009.0989] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lorena Arranz
- Department of Physiology (Animal Physiology II), Faculty of Biological Sciences, Madrid Complutense University, Madrid, Spain
| | - Nuria M. De Castro
- Department of Physiology (Animal Physiology II), Faculty of Biological Sciences, Madrid Complutense University, Madrid, Spain
| | - Isabel Baeza
- Department of Physiology (Animal Physiology II), Faculty of Biological Sciences, Madrid Complutense University, Madrid, Spain
| | - Ianire Maté
- Department of Physiology (Animal Physiology II), Faculty of Biological Sciences, Madrid Complutense University, Madrid, Spain
| | - Maria Paz Viveros
- Department of Physiology (Animal Physiology II), Faculty of Biological Sciences, Madrid Complutense University, Madrid, Spain
| | - Mónica De la Fuente
- Department of Physiology (Animal Physiology II), Faculty of Biological Sciences, Madrid Complutense University, Madrid, Spain
| |
Collapse
|