1
|
Osipovich AB, Dudek KD, Trinh LT, Kim LH, Shrestha S, Cartailler JP, Magnuson MA. ZFP92, a KRAB domain zinc finger protein enriched in pancreatic islets, binds to B1/Alu SINE transposable elements and regulates retroelements and genes. PLoS Genet 2023; 19:e1010729. [PMID: 37155670 PMCID: PMC10166502 DOI: 10.1371/journal.pgen.1010729] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/02/2023] [Indexed: 05/10/2023] Open
Abstract
Repressive KRAB domain-containing zinc-finger proteins (KRAB-ZFPs) are abundant in mammalian genomes and contribute both to the silencing of transposable elements (TEs) and to the regulation of developmental stage- and cell type-specific gene expression. Here we describe studies of zinc finger protein 92 (Zfp92), an X-linked KRAB-ZFP that is highly expressed in pancreatic islets of adult mice, by analyzing global Zfp92 knockout (KO) mice. Physiological, transcriptomic and genome-wide chromatin binding studies indicate that the principal function of ZFP92 in mice is to bind to and suppress the activity of B1/Alu type of SINE elements and modulate the activity of surrounding genomic entities. Deletion of Zfp92 leads to changes in expression of select LINE and LTR retroelements and genes located in the vicinity of ZFP92-bound chromatin. The absence of Zfp92 leads to altered expression of specific genes in islets, adipose and muscle that result in modest sex-specific alterations in blood glucose homeostasis, body mass and fat accumulation. In islets, Zfp92 influences blood glucose concentration in postnatal mice via transcriptional effects on Mafb, whereas in adipose and muscle, it regulates Acacb, a rate-limiting enzyme in fatty acid metabolism. In the absence of Zfp92, a novel TE-Capn11 fusion transcript is overexpressed in islets and several other tissues due to de-repression of an IAPez TE adjacent to ZFP92-bound SINE elements in intron 3 of the Capn11 gene. Together, these studies show that ZFP92 functions both to repress specific TEs and to regulate the transcription of specific genes in discrete tissues.
Collapse
Affiliation(s)
- Anna B. Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Karrie D. Dudek
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Linh T. Trinh
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Lily H. Kim
- College of Arts and Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Shristi Shrestha
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jean-Philippe Cartailler
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Mark A. Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
2
|
Suriyaprom K, Pheungruang B, Tungtrongchitr R, Sroijit OUY. Relationships of apelin concentration and APLN T-1860C polymorphism with obesity in Thai children. BMC Pediatr 2020; 20:455. [PMID: 32998691 PMCID: PMC7526109 DOI: 10.1186/s12887-020-02350-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/15/2020] [Indexed: 01/22/2023] Open
Abstract
Background Childhood obesity represents a serious global health crisis. Apelin and its receptor system are widely distributed throughout the central nervous system and have been demonstrated to serve a role modulating feeding behaviour and energy homeostasis. The purposes of this study were to examine apelin concentrations and anthropometric-cardiometabolic parameters in obese and non-obese children and to identify associations of APLN T-1860C and APLNR G212A polymorphisms with apelin levels and obesity among Thai children. Methods This case-control study included an analysis of 325 Thai children: 198 children with obesity and 127 healthy non-obese children. Anthropometric-cardiometabolic variables and apelin concentration were measured. Genotyping of APLN T-1860C and APLNR G212A was performed using the polymerase chain reaction-restriction fragment length polymorphism technique. Results The obese group had significantly lower apelin and HDL-C levels but significantly higher triglycerides and glucose (TyG) index values, TG/HDL-C ratio and TC/HDL-C ratio than the non-obese group (p < 0.01). Apelin level was negatively correlated with body size phenotypes and cardiometabolic parameters (p < 0.05). The APLN T-1860C polymorphism (OR = 4.39, 95% CI = 1.25–15.28) and apelin concentration (OR = 0.45, 95% CI = 0.23–0.92) were significantly associated with obesity among female children (p < 0.05) only, after adjusting for potential covariates. However, the APLNR G212A polymorphism showed no significant relationship with apelin concentration or obesity. Conclusion These findings in Thai children suggest that apelin concentrations are related to obesity and cardiometabolic parameters. Furthermore, the APLN T-1860C polymorphism may influence susceptibility to obesity among female children.
Collapse
Affiliation(s)
- Kanjana Suriyaprom
- Faculty of Medical Technology, Rangsit University, Paholyothin Road, Mueang Pathum Thani district, Pathum Thani, 12000, Thailand.
| | - Banchamaphon Pheungruang
- Department of Tropical Nutrition & Food Science, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
| | - Rungsunn Tungtrongchitr
- Department of Tropical Nutrition & Food Science, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
| | - Orn-Uma Y Sroijit
- Faculty of Medical Technology, Rangsit University, Paholyothin Road, Mueang Pathum Thani district, Pathum Thani, 12000, Thailand
| |
Collapse
|
3
|
Zhou B, Gao W, Lv J, Yu C, Wang S, Liao C, Pang Z, Cong L, Dong Z, Wu F, Wang H, Wu X, Jiang G, Wang X, Wang B, Cao W, Li L. Genetic and Environmental Influences on Obesity-Related Phenotypes in Chinese Twins Reared Apart and Together. Behav Genet 2015; 45:427-37. [DOI: 10.1007/s10519-015-9711-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/30/2015] [Indexed: 10/23/2022]
|
4
|
Go MJ, Hwang JY, Park TJ, Kim YJ, Oh JH, Kim YJ, Han BG, Kim BJ. Genome-wide association study identifies two novel Loci with sex-specific effects for type 2 diabetes mellitus and glycemic traits in a korean population. Diabetes Metab J 2014; 38:375-87. [PMID: 25349825 PMCID: PMC4209352 DOI: 10.4093/dmj.2014.38.5.375] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 12/31/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Until recently, genome-wide association study (GWAS)-based findings have provided a substantial genetic contribution to type 2 diabetes mellitus (T2DM) or related glycemic traits. However, identification of allelic heterogeneity and population-specific genetic variants under consideration of potential confounding factors will be very valuable for clinical applicability. To identify novel susceptibility loci for T2DM and glycemic traits, we performed a two-stage genetic association study in a Korean population. METHODS We performed a logistic analysis for T2DM, and the first discovery GWAS was analyzed for 1,042 cases and 2,943 controls recruited from a population-based cohort (KARE, n=8,842). The second stage, de novo replication analysis, was performed in 1,216 cases and 1,352 controls selected from an independent population-based cohort (Health 2, n=8,500). A multiple linear regression analysis for glycemic traits was further performed in a total of 14,232 nondiabetic individuals consisting of 7,696 GWAS and 6,536 replication study participants. A meta-analysis was performed on the combined results using effect size and standard errors estimated for stage 1 and 2, respectively. RESULTS A combined meta-analysis for T2DM identified two new (rs11065756 and rs2074356) loci reaching genome-wide significance in CCDC63 and C12orf51 on the 12q24 region. In addition, these variants were significantly associated with fasting plasma glucose and homeostasis model assessment of β-cell function. Interestingly, two independent single nucleotide polymorphisms were associated with sex-specific stratification in this study. CONCLUSION Our study showed a strong association between T2DM and glycemic traits. We further observed that two novel loci with multiple diverse effects were highly specific to males. Taken together, these findings may provide additional insights into the clinical assessment or subclassification of disease risk in a Korean population.
Collapse
Affiliation(s)
- Min Jin Go
- Division of Structural and Functional Genomics, Center for Genome Science, Korea National Institute of Health, Cheongwon, Korea
| | - Joo-Yeon Hwang
- Division of Structural and Functional Genomics, Center for Genome Science, Korea National Institute of Health, Cheongwon, Korea
| | - Tae-Joon Park
- Division of Structural and Functional Genomics, Center for Genome Science, Korea National Institute of Health, Cheongwon, Korea
| | - Young Jin Kim
- Division of Structural and Functional Genomics, Center for Genome Science, Korea National Institute of Health, Cheongwon, Korea
| | - Ji Hee Oh
- Division of Structural and Functional Genomics, Center for Genome Science, Korea National Institute of Health, Cheongwon, Korea
| | - Yeon-Jung Kim
- Division of Structural and Functional Genomics, Center for Genome Science, Korea National Institute of Health, Cheongwon, Korea
| | - Bok-Ghee Han
- Division of Structural and Functional Genomics, Center for Genome Science, Korea National Institute of Health, Cheongwon, Korea
| | - Bong-Jo Kim
- Division of Structural and Functional Genomics, Center for Genome Science, Korea National Institute of Health, Cheongwon, Korea
| |
Collapse
|
5
|
Liu AY, Gu D, Hixson JE, Rao DC, Shimmin LC, Jaquish CE, Liu DP, He J, Kelly TN. Genome-wide linkage and regional association study of obesity-related phenotypes: the GenSalt study. Obesity (Silver Spring) 2014; 22:545-56. [PMID: 23526746 PMCID: PMC3795915 DOI: 10.1002/oby.20469] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/11/2013] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To identify chromosomal regions harboring quantitative trait loci for waist circumference (WC) and body mass index (BMI). DESIGN AND METHODS A genome-wide linkage scan and regional association study WC and BMI among 633 Chinese families was conducted. RESULTS A significant linkage signal for WC was observed at 22q13.31-22q13.33 in the overall analysis (LOD = 3.13). Follow-up association study of 22q13.31-13.33 revealed an association between the TBC1D22A gene marker rs16996195 and WC (false discovery rate [FDR]-Q < 0.05). In gender-stratified analysis, suggestive linkage signals were attained for WC at 2p24.3-2q12.2 and 22q13.33 among females (LOD = 2.54 and 2.15, respectively). Among males, 6q12-6q13 was suggestively linked to BMI (LOD = 2.03). Single marker association analyses at these regions identified male-specific relationships of six single nucleotide polymorphisms (SNPs) at 2p24.3-2q12.2 (rs100955, rs13020676, rs13014034, rs12990515, rs17024325, and rs2192712) and five SNPs at 6q12-6q13 (rs7747318, rs7767301, rs12197115, rs12203049, and rs9454847) with the obesity-related phenotypes (all FDR-Q < 0.05). At chromosome 6q12-6q13, markers rs7755450 and rs11758293 predicted BMI in females (both FDR-Q < 0.05). CONCLUSIONS Genomic regions on chromosomes 2, 6, and 22 which may harbor important obesity-susceptibility loci were described. Follow-up study of these regions revealed several novel variants associated with obesity related traits. Future work to confirm these promising findings is warranted.
Collapse
Affiliation(s)
- Angela Y Liu
- Department of Epidemiology, University of North Carolina at Chapel Hill School of Global Public Health, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Cornes BK, Medland SE, Ferreira MAR, Morley KI, Duffy DL, Heijmans BT, Montgomery GW, Martin NG. Sex-Limited Genome-Wide Linkage Scan for Body Mass Index in an Unselected Sample of 933 Australian Twin Families. Twin Res Hum Genet 2012. [DOI: 10.1375/twin.8.6.616] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractGenes involved in pathways regulating body weight may operate differently in men and women. To determine whether sex-limited genes influence the obesity-related phenotype body mass index (BMI), we have conducted a general non- scalar sex-limited genome-wide linkage scan using variance components analysis in Mx (Neale, 2002). BMI measurements and genotypic data were available for 2053 Australian female and male adult twins and their siblings from 933 families. Clinical measures of BMI were available for 64.4% of these individuals, while only self-reported measures were available for the remaining participants. The mean age of participants was 39.0 years of age (SD 12.1 years). The use of a sex-limited linkage model identified areas on the genome where quantitative trait loci (QTL) effects differ between the sexes, particularly on chromosome 8 and 20, providing us with evidence that some of the genes responsible for BMI may have different effects in men and women. Our highest linkage peak was observed at 12q24 (–log10p = 3.02), which was near the recommended threshold for suggestive linkage (–log10p = 3.13). Previous studies have found evidence for a quantitative trait locus on 12q24 affecting BMI in a wide range of populations, and candidate genes for non- insulin-dependent diabetes mellitus, a consequence of obesity, have also been mapped to this region. We also identified many peaks near a –log10p of 2 (threshold for replicating an existing finding) in many areas across the genome that are within regions previously identified by other studies, as well as in locations that harbor genes known to influence weight regulation.
Collapse
|
7
|
Voruganti VS, Diego VP, Haack K, Cole SA, Blangero J, Göring HHH, Laston S, Wenger CR, Ebbesson SOE, Fabsitz RR, Devereux RB, Howard BV, Umans JG, MacCluer JW, Comuzzie AG. A QTL for genotype by sex interaction for anthropometric measurements in Alaskan Eskimos (GOCADAN Study) on chromosome 19q12-13. Obesity (Silver Spring) 2011; 19:1840-6. [PMID: 21527897 PMCID: PMC3525327 DOI: 10.1038/oby.2011.78] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Variation in anthropometric measurements due to sexual dimorphism can be the result of genotype by sex interactions (G×S). The purpose of this study was to examine the sex-specific genetic architecture in anthropometric measurements in Alaskan Eskimos from the Genetics of Coronary Artery Disease in Alaska Natives (GOCADAN) study. Maximum likelihood-based variance components decomposition methods, implemented in SOLAR, were used for G×S analyses. Anthropometric measurements included BMI, waist circumference (WC), waist/height ratio, percent body fat (%BF), and subscapular and triceps skinfolds. Except for WC, mean values of all phenotypes were significantly different in men and women (P < 0.05). All anthropometric measures were significantly heritable (P < 0.001). In a preliminary analysis not allowing for G×S interaction, evidence of linkage was detected between markers D19S414 and D19S220 on chromosome 19 for WC (logarithm of odds (lod) = 3.5), %BF (lod = 1.7), BMI (lod = 2.4), waist/height ratio (lod = 2.5), subscapular (lod = 2.1), and triceps skinfolds (lod = 1.9). In subsequent analyses which allowed for G×S interaction, linkage was again found between these traits and the same two markers on chromosome 19 with significantly improved lod scores for: WC (lod = 4.5), %BF (lod = 3.8), BMI (lod = 3.5), waist/height ratio (lod = 3.2), subscapular (lod = 3.0), and triceps skinfolds (lod = 2.9). These results support the evidence of a G×S interaction in the expression of genetic effects resulting in sexual dimorphism in anthropometric phenotypes and identify the chromosome 19q12-13 region as important for adiposity-related traits in Alaskan Eskimos.
Collapse
Affiliation(s)
- V Saroja Voruganti
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Song YM, Lee K, Sung J, Kim YS, Lee JY. Sex-specific relationships between adiposity and anthropometric measures and carotid intima-media thickness in Koreans: the Healthy Twin Study. Eur J Clin Nutr 2011; 66:39-46. [PMID: 21878958 DOI: 10.1038/ejcn.2011.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND/OBJECTIVES Increased adiposity, shorter stature, shorter leg length and carotid intima-media thickening are associated with cardiovascular (CV) disease. This study aimed to evaluate the sex-specific phenotypic and genetic associations between adiposity and anthropometric measures and carotid intima-media thickness (IMT). SUBJECTS/METHODS We measured IMT at common carotid artery (CCA-IMT), carotid bifurcation and internal carotid artery (ICA-IMT) using B-mode ultrasound, and adiposity and anthropometric measures, including body mass index (BMI), height, leg length, waist circumference (WC), waist-to-hip ratio and percentage of body fat; we also assessed conventional CV risk factors among 706 Korean adults from the Healthy Twin Study. The associations were analyzed using quantitative genetic and linear mixed analyses. RESULTS In linear mixed analyses, BMI and WC had independent associations with the IMT at CCA-IMT and ICA-IMT and CCA-IMT, respectively, after adjusting for age and conventional CV risk factors in men. By comparison, in women, adiposity and anthropometric measures were associated with carotid IMT only before adjusting for the covariates. In men, there were significant genetic correlations between BMI and CCA-IMT (ρ(G)=0.32±0.11), BMI and ICA-IMT (ρ(G)=0.35±0.11) and WC and ICA-IMT (ρ(G)=0.32±0.13) after adjusting for covariates, whereas in women the cross-trait genetic correlations were no longer significant after adjusting for the covariates. CONCLUSIONS In this Korean twins and families, we found sex-specific associations between adiposity and anthropometric measures and the IMT at each segment of the carotid artery, and BMI and WC in men can be indicators predicting carotid intima-media thickening regardless of age and CV risk factors.
Collapse
Affiliation(s)
- Y-M Song
- Department of Family Medicine, Samsung Medical Center and Center for Clinical Research, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
9
|
Feinberg AP, Irizarry RA, Fradin D, Aryee MJ, Murakami P, Aspelund T, Eiriksdottir G, Harris TB, Launer L, Gudnason V, Fallin MD. Personalized epigenomic signatures that are stable over time and covary with body mass index. Sci Transl Med 2010; 2:49ra67. [PMID: 20844285 DOI: 10.1126/scitranslmed.3001262] [Citation(s) in RCA: 242] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The epigenome consists of non-sequence-based modifications, such as DNA methylation, that are heritable during cell division and that may affect normal phenotypes and predisposition to disease. Here, we have performed an unbiased genome-scale analysis of ~4 million CpG sites in 74 individuals with comprehensive array-based relative methylation (CHARM) analysis. We found 227 regions that showed extreme interindividual variability [variably methylated regions (VMRs)] across the genome, which are enriched for developmental genes based on Gene Ontology analysis. Furthermore, half of these VMRs were stable within individuals over an average of 11 years, and these VMRs defined a personalized epigenomic signature. Four of these VMRs showed covariation with body mass index consistently at two study visits and were located in or near genes previously implicated in regulating body weight or diabetes. This work suggests an epigenetic strategy for identifying patients at risk of common disease.
Collapse
Affiliation(s)
- Andrew P Feinberg
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chiu YF, Chuang LM, Kao HY, Shih KC, Lin MW, Lee WJ, Quertermous T, Curb JD, Chen I, Rodriguez BL, Hsiung CA. Sex-specific genetic architecture of human fatness in Chinese: the SAPPHIRe Study. Hum Genet 2010; 128:501-13. [PMID: 20725740 DOI: 10.1007/s00439-010-0877-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 08/11/2010] [Indexed: 01/02/2023]
Abstract
To dissect the genetic architecture of sexual dimorphism in obesity-related traits, we evaluated the sex-genotype interaction, sex-specific heritability and genome-wide linkages for seven measurements related to obesity. A total of 1,365 non-diabetic Chinese subjects from the family study of the Stanford Asia-Pacific Program of Hypertension and Insulin Resistance were used to search for quantitative trait loci (QTLs) responsible for the obesity-related traits. Pleiotropy and co-incidence effects from the QTLs were also examined using the bivariate linkage approach. We found that sex-specific differences in heritability and the genotype-sex interaction effects were substantially significant for most of these traits. Several QTLs with strong linkage evidence were identified after incorporating genotype by sex (G × S) interactions into the linkage mapping, including one QTL for hip circumference [maximum LOD score (MLS) = 4.22, empirical p = 0.000033] and two QTLs: for BMI on chromosome 12q with MLS 3.37 (empirical p = 0.0043) and 3.10 (empirical p = 0.0054). Sex-specific analyses demonstrated that these linkage signals all resulted from females rather than males. Most of these QTLs for obesity-related traits replicated the findings in other ethnic groups. Bivariate linkage analyses showed several obesity traits were influenced by a common set of QTLs. All regions with linkage signals were observed in one gender, but not in the whole sample, suggesting the genetic architecture of obesity-related traits does differ by gender. These findings are useful for further identification of the liability genes for these phenotypes through candidate genes or genome-wide association analysis.
Collapse
Affiliation(s)
- Y-F Chiu
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, 35 Keyan Rd, Zhunan, Miaoli 350, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
A unique genetic defect on chromosome 3 is responsible for juvenile obesity in the Berlin Fat Mouse. Int J Obes (Lond) 2010; 34:1706-14. [PMID: 20498659 DOI: 10.1038/ijo.2010.97] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE This study aimed at the mapping and estimation of genetic and sex effects contributing to the obese phenotype of the Berlin Fat Mouse Inbred line 860 (BFMI860). This mouse line is predisposed for juvenile obesity. BFMI860 mice accumulate 24% total fat mass at 10 weeks of age under a standard maintenance diet. DESIGN A total of 471 mice of a (BFMI860 x C57BL/6NCrl) F₂ intercross population were fed a standard maintenance diet and were analysed for body composition at 10 weeks when they finished their rapid growth phase. RESULTS The most striking result was the identification of a novel obesity locus on chromosome 3 (Chr 3) at 40 Mb, explaining 39% of the variance of total fat mass in the F₂ population under a standard diet. This locus was named jObes1 (juvenile obesity 1). The BFMI860 allele effect was recessive. Males and females homozygous at jObes1 had on average 3.0 and 3.3 g more total fat mass at 10 weeks than the other two genotype classes, respectively. The effect was evident in all white adipose tissues, brown adipose tissue and also in liver. The position of the Chr 3 effect is syntenic to an obesity locus in humans. Additional loci for total fat mass and different white adipose tissue weights with minor effects were detected on mouse Chr 5 and 6. Another locus on Chr 4 had influence especially on liver weight. Many loci including jObes1 affected males and females to a different extent. CONCLUSION The major locus on Chr 3 for juvenile obesity and its interaction with sex is unique and makes the BFMI860 mice an interesting resource for the discovery of novel genetic factors predisposing obesity, which might also contribute to obesity in humans. The results suggested that metabolic and regulatory pathways differed between the sexes.
Collapse
|
12
|
Powerful bivariate genome-wide association analyses suggest the SOX6 gene influencing both obesity and osteoporosis phenotypes in males. PLoS One 2009; 4:e6827. [PMID: 19714249 PMCID: PMC2730014 DOI: 10.1371/journal.pone.0006827] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 08/04/2009] [Indexed: 01/21/2023] Open
Abstract
Background Current genome-wide association studies (GWAS) are normally implemented in a univariate framework and analyze different phenotypes in isolation. This univariate approach ignores the potential genetic correlation between important disease traits. Hence this approach is difficult to detect pleiotropic genes, which may exist for obesity and osteoporosis, two common diseases of major public health importance that are closely correlated genetically. Principal Findings To identify such pleiotropic genes and the key mechanistic links between the two diseases, we here performed the first bivariate GWAS of obesity and osteoporosis. We searched for genes underlying co-variation of the obesity phenotype, body mass index (BMI), with the osteoporosis risk phenotype, hip bone mineral density (BMD), scanning ∼380,000 SNPs in 1,000 unrelated homogeneous Caucasians, including 499 males and 501 females. We identified in the male subjects two SNPs in intron 1 of the SOX6 (SRY-box 6) gene, rs297325 and rs4756846, which were bivariately associated with both BMI and hip BMD, achieving p values of 6.82×10−7 and 1.47×10−6, respectively. The two SNPs ranked at the top in significance for bivariate association with BMI and hip BMD in the male subjects among all the ∼380,000 SNPs examined genome-wide. The two SNPs were replicated in a Framingham Heart Study (FHS) cohort containing 3,355 Caucasians (1,370 males and 1,985 females) from 975 families. In the FHS male subjects, the two SNPs achieved p values of 0.03 and 0.02, respectively, for bivariate association with BMI and femoral neck BMD. Interestingly, SOX6 was previously found to be essential to both cartilage formation/chondrogenesis and obesity-related insulin resistance, suggesting the gene's dual role in both bone and fat. Conclusions Our findings, together with the prior biological evidence, suggest the SOX6 gene's importance in co-regulation of obesity and osteoporosis.
Collapse
|
13
|
Basu A, Tang H, Arnett D, Gu CC, Mosley T, Kardia S, Luke A, Tayo B, Cooper R, Zhu X, Risch N. Admixture mapping of quantitative trait loci for BMI in African Americans: evidence for loci on chromosomes 3q, 5q, and 15q. Obesity (Silver Spring) 2009; 17:1226-31. [PMID: 19584881 PMCID: PMC2929755 DOI: 10.1038/oby.2009.24] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Obesity is a heritable trait and a major risk factor for highly prevalent common diseases such as hypertension and type 2 diabetes. Previously we showed that BMI was positively correlated with African ancestry among the African Americans (AAs) in the US National Heart, Lung, and Blood Institute's Family Blood Pressure Program (FBPP). In a set of 1,344 unrelated AAs, using Individual Ancestry (IA) estimates at 284 marker locations across the genome, we now present a quantitative admixture mapping analysis of BMI. We used a set of unrelated individuals from Nigeria to represent the African ancestral population and the European American (EA) in the FBPP as the European ancestral population. The analysis was based on a common set of 284 microsatellite markers genotyped in all three groups. We considered the quantitative trait, BMI, as the response variable in a regression analysis with the marker location specific excess European ancestry as the explanatory variable. After suitably adjusting for different covariates such as sex, age, and network, we found strong evidence for a positive association with European ancestry at chromosome locations 3q29 and 5q14 and a negative association on chromosome 15q26. To our knowledge, this is the largest quantitative admixture mapping effort in terms of sample size and marker locus involvement for the trait. These results suggest that these regions may harbor genes influencing BMI in the AA population.
Collapse
Affiliation(s)
- Analabha Basu
- Institute for Human Genetics, Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
McCarthy JJ, Somji A, Weiss LA, Steffy B, Vega R, Barrett-Connor E, Talavera G, Glynne R. Polymorphisms of the scavenger receptor class B member 1 are associated with insulin resistance with evidence of gene by sex interaction. J Clin Endocrinol Metab 2009; 94:1789-96. [PMID: 19276229 PMCID: PMC2684479 DOI: 10.1210/jc.2008-2800] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Genetic variation in diabetes-associated genes cumulatively explain little of the overall heritability of this trait. We sought to determine whether polymorphisms of the scavenger receptor class B, member I (SCARB1), an estrogen-regulated chromosome 12q24 positional candidate diabetes gene, were associated with type 2 diabetes or insulin resistance in a sex-specific fashion. METHODS We evaluated 34 haplotype-tagged single-nucleotide polymorphisms (SNPs) of SCARB1 for their association with type 2 diabetes and measures of insulin resistance in two populations: a clinic-based sample of 444 Mexican-American women from Proyecto SALSA and a community-based sample of 830 white women from the Rancho Bernardo Study. RESULTS We identified significant associations between a tagged SNP in intron 9, rs9919713, and fasting glucose in the SALSA population (P = 2.3 x 10(-4)). In the Rancho Bernardo Study, the same SNP also showed significant association with the related traits homeostasis model assessment for insulin resistance (P = 3.0 x 10(-4)), fasting glucose (P = 1.1 x 10(-3)), and type 2 diabetes (P = 9.0 x 10(-3)). In men from the Rancho Bernardo population, the opposite effect was found (genotype by sex interaction in the Rancho Bernardo population P < 10(-3) for insulin resistance). CONCLUSIONS Our data support an association between SCARB1 variants and insulin resistance, especially in women, with evidence of significant gene by sex interaction. These findings warrant further investigation in additional populations and prompt exploration of a role for SR-BI in the development of insulin resistance.
Collapse
Affiliation(s)
- Jeanette J McCarthy
- Graduate School of Public Health, San Diego State University, San Diego, California 92182, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Gueorguiev M, Lecoeur C, Meyre D, Benzinou M, Mein CA, Hinney A, Vatin V, Weill J, Heude B, Hebebrand J, Grossman AB, Korbonits M, Froguel P. Association studies on ghrelin and ghrelin receptor gene polymorphisms with obesity. Obesity (Silver Spring) 2009; 17:745-54. [PMID: 19165163 DOI: 10.1038/oby.2008.589] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ghrelin exerts a stimulatory effect on appetite and regulates energy homeostasis. Ghrelin gene variants have been shown to be associated with metabolic traits, although there is evidence suggesting linkage and association with obesity and the ghrelin receptor (GHSR). We hypothesized that these genes are good candidates for susceptibility to obesity. Direct sequencing identified 12 ghrelin single-nucleotide polymorphisms (SNPs) and 8 GHSR SNPs. The 10 common SNPs were genotyped in 1,275 obese subjects and in 1,059 subjects from a general population cohort of European origin. In the obesity case-control study, the GHSR SNP rs572169 was found to be associated with obesity (P = 0.007 in additive model, P = 0.001 in dominant model, odds ratio (OR) 1.73, 95% confidence interval (1.23-2.44)). The ghrelin variant, g.A265T (rs4684677), showed an association with obesity (P = 0.009, BMI adjusted for age and sex) in obese families. The ghrelin variant, g.A-604G (rs27647), showed an association with insulin levels at 2-h post-oral glucose tolerance test (OGTT) (P = 0.009) in obese families. We found an association between the eating behavior "overeating" and the GHSR SNP rs2232169 (P = 0.02) in obese subjects. However, none of these associations remained significant when corrected for multiple comparisons. Replication of the nominal associations with obesity could not be confirmed in a German genome-wide association (GWA) study for rs4684677 and rs572169 polymorphisms. Our data suggest that common polymorphisms in ghrelin and its receptor genes are not major contributors to the development of polygenic obesity, although common variants may alter body weight and eating behavior and contribute to insulin resistance, in particular in the context of early-onset obesity.
Collapse
Affiliation(s)
- Maria Gueorguiev
- Department of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ortega-Alonso A, Sipilä S, Kujala UM, Kaprio J, Rantanen T. Genetic Influences on Change in BMI from Middle to Old Age: A 29-Year Follow-up Study of Twin Sisters. Behav Genet 2008; 39:154-64. [DOI: 10.1007/s10519-008-9245-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 11/21/2008] [Indexed: 11/28/2022]
|
17
|
Choquette AC, Lemieux S, Tremblay A, Chagnon YC, Bouchard C, Vohl MC, Pérusse L. Evidence of a quantitative trait locus for energy and macronutrient intakes on chromosome 3q27.3: the Quebec Family Study. Am J Clin Nutr 2008; 88:1142-8. [PMID: 18842805 DOI: 10.1093/ajcn/88.4.1142] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Little is known about the genes influencing dietary energy and nutrient intakes, despite evidence that these intakes are influenced by genetic factors. OBJECTIVE We aimed to identify, by using a genome-wide linkage analysis, chromosomal regions harboring genes that affect energy and macronutrient intakes. DESIGN Energy, carbohydrate, lipid, and protein intakes were assessed in 836 subjects from 217 families by using a 3-d dietary record. A total of 443 markers were genotyped and tested for linkage; age- and sex-adjusted energy and macronutrient intakes were expressed in grams and as percentages of total energy intake. Regression-based (Haseman-Elston) and variance-component (MERLIN) methods were applied to test for linkage with dietary data. A maximum of 454 sibpairs from 217 nuclear families were available for analysis. RESULTS The genome scan provided suggestive evidence (P < or = 0.0023) for the presence of 6 quantitative trait linkages influencing total caloric and macronutrient intakes in the Québec Family Study. Of these, multiple linkages were found on chromosome 3q27.3, in a region harboring the adiponectin gene, at marker D3S1262 for energy [logarithm of odds (LOD): 2.24], carbohydrate (LOD: 2.00), and lipid (LOD: 1.65) intakes. The peak linkages for carbohydrate, lipid, and protein intakes were found on chromosomes 1p32.2 (LOD: 2.39), 1p35.2 (LOD: 2.41), and 10p15.3 (LOD: 2.72), respectively. The linkage results remained significant after adjustment for body mass index, which suggested that the genes underlying these quantitative trait linkages influence dietary intake independent of body size. CONCLUSION The linkage on chromosome 3q27.3 with energy, lipid, and carbohydrate intakes suggests that this region of the genome may harbor genes that influence energy and macronutrient intakes in humans.
Collapse
Affiliation(s)
- Anne C Choquette
- Division of Kinesiology, Department of Social and Preventive Medicine, Faculty of Medicine, Laval University, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Cai G, Cole SA, Butte NF, Voruganti VS, Comuzzie AG. Genome-wide scan revealed genetic loci for energy metabolism in Hispanic children and adolescents. Int J Obes (Lond) 2008; 32:579-85. [PMID: 18317473 DOI: 10.1038/ijo.2008.20] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Genome-wide scans were conducted in search for genetic locations linked to energy expenditure and substrate oxidation in children. DESIGN Pedigreed data of 1030 Hispanic children and adolescents were from the Viva La Familia Study which was designed to investigate genetic and environmental risk factors for the development of obesity in Hispanic families. A respiratory calorimeter was used to measure 24-h total energy expenditure (TEE), basal metabolic rate (BMR), sleep metabolic rate (SMR), 24-h respiratory quotient (24RQ), basal metabolic respiratory quotient (BMRQ) and sleep respiratory quotient (SRQ). Protein, fat and carbohydrate oxidation (PROOX, FATOX and CHOOX, respectively) were also estimated. All participants were genotyped for 384 single tandem repeat markers spaced an average of 10 cM apart. Computer program SOLAR was used to perform the genetic linkage analyses. RESULTS Significant linkage for TEE was detected on chromosome 1 near marker D1S2841, with a logarithm of the odds (LOD) score of 4.0. SMR, BMRQ and PROOX were associated with loci on chromosome 18, 17 and 9, respectively, with LOD scores of 4.88, 3.17 and 4.55, respectively. A genome-wide scan of SMR per kg fat-free mass (SpFFM) peaked in the same region as SMR on chromosome 18 (LOD, 5.24). Suggestive linkage was observed for CHOOX and FATOX. Several candidate genes were found in the above chromosomal regions including leptin receptor (LEPR). CONCLUSION Regions on chromosomes 1, 9, 17 and 18 harbor genes affecting variation in energy expenditure and substrate oxidation in Hispanic children and adolescents.
Collapse
Affiliation(s)
- G Cai
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
19
|
Shriner D, Baye TM, Padilla MA, Zhang S, Vaughan LK, Loraine AE. Commonality of functional annotation: a method for prioritization of candidate genes from genome-wide linkage studies. Nucleic Acids Res 2008; 36:e26. [PMID: 18263617 PMCID: PMC2275105 DOI: 10.1093/nar/gkn007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Linkage studies of complex traits frequently yield multiple linkage regions covering hundreds of genes. Testing each candidate gene from every region is prohibitively expensive and computational methods that simplify this process would benefit genetic research. We present a new method based on commonality of functional annotation (CFA) that aids dissection of complex traits for which multiple causal genes act in a single pathway or process. CFA works by testing individual Gene Ontology (GO) terms for enrichment among candidate gene pools, performs multiple hypothesis testing adjustment using an estimate of independent tests based on correlation of GO terms, and then scores and ranks genes annotated with significantly-enriched terms based on the number of quantitative trait loci regions in which genes bearing those annotations appear. We evaluate CFA using simulated linkage data and show that CFA has good power despite being conservative. We apply CFA to published linkage studies investigating age-of-onset of Alzheimer's disease and body mass index and obtain previously known and new candidate genes. CFA provides a new tool for studies in which causal genes are expected to participate in a common pathway or process and can easily be extended to utilize annotation schemes in addition to the GO.
Collapse
Affiliation(s)
- Daniel Shriner
- Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
20
|
Seda O, Tremblay J, Gaudet D, Brunelle PL, Gurau A, Merlo E, Pilote L, Orlov SN, Boulva F, Petrovich M, Kotchen TA, Cowley AW, Hamet P. Systematic, genome-wide, sex-specific linkage of cardiovascular traits in French Canadians. Hypertension 2008; 51:1156-62. [PMID: 18259002 DOI: 10.1161/hypertensionaha.107.105247] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The sexual dimorphism of cardiovascular traits, as well as susceptibility to a variety of related diseases, has long been recognized, yet their sex-specific genomic determinants are largely unknown. We systematically assessed the sex-specific heritability and linkage of 539 hemodynamic, metabolic, anthropometric, and humoral traits in 120 French-Canadian families from the Saguenay-Lac-St-Jean region of Quebec, Canada. We performed multipoint linkage analysis using microsatellite markers followed by peak-wide linkage scan based on Affymetrix Human Mapping 50K Array Xba240 single nucleotide polymorphism genotypes in 3 settings, including the entire sample and then separately in men and women. Nearly one half of the traits were age and sex independent, one quarter were both age and sex dependent, and one eighth were exclusively age or sex dependent. Sex-specific phenotypes are most frequent in heart rate and blood pressure categories, whereas sex- and age-independent determinants are predominant among humoral and biochemical parameters. Twenty sex-specific loci passing multiple testing criteria were corroborated by 2-point single nucleotide polymorphism linkage. Several resting systolic blood pressure measurements showed significant genotype-by-sex interaction, eg, male-specific locus at chromosome 12 (male-female logarithm of odds difference: 4.16; interaction P=0.0002), which was undetectable in the entire population, even after adjustment for sex. Detailed interrogation of this locus revealed a 220-kb block overlapping parts of TAO-kinase 3 and SUDS3 genes. In summary, a large number of complex cardiovascular traits display significant sexual dimorphism, for which we have demonstrated genomic determinants at the haplotype level. Many of these would have been missed in a traditional, sex-adjusted setting.
Collapse
Affiliation(s)
- Ondrej Seda
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal-Technôpole Angus, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Voruganti VS, Lopez-Alvarenga JC, Nath SD, Rainwater DL, Bauer R, Cole SA, Maccluer JW, Blangero J, Comuzzie AG. Genetics of variation in HOMA-IR and cardiovascular risk factors in Mexican-Americans. J Mol Med (Berl) 2008; 86:303-11. [PMID: 18204828 DOI: 10.1007/s00109-007-0273-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 08/31/2007] [Accepted: 09/24/2007] [Indexed: 12/15/2022]
Abstract
Insulin resistance is a major biochemical defect underlying the pathogenesis of cardiovascular disease (CVD). Mexican-Americans are known to have an unfavorable cardiovascular profile. Thus, the aim of this study was to investigate the genetic effect on variation in HOMA-IR and to evaluate its genetic correlations with other phenotypes related to risk of CVD in Mexican-Americans. The homeostatic model assessment method (HOMA-IR) is one of several approaches that are used to measure insulin resistance and was used here to generate a quantitative phenotype for genetic analysis. For 644 adults who had participated in the San Antonio Family Heart Study (SAFHS), estimates of genetic contribution were computed using a variance components method implemented in SOLAR. Traits that exhibited significant heritabilities were body mass index (BMI) (h (2) = 0.43), waist circumference (h (2) = 0.48), systolic blood pressure (h (2) = 0.30), diastolic blood pressure (h (2) = 0.21), pulse pressure (h (2) = 0.32), triglycerides (h (2) = 0.51), LDL cholesterol (h (2) = 0.31), HDL cholesterol (h (2) = 0.24), C-reactive protein (h (2) = 0.17), and HOMA-IR (h (2) = 0.33). A genome-wide scan for HOMA-IR revealed significant evidence of linkage on chromosome 12q24 (close to PAH (phenylalanine hydroxylase), LOD = 3.01, p < 0.001). Bivariate analyses demonstrated significant genetic correlations (p < 0.05) of HOMA-IR with BMI (rho (G) = 0.36), waist circumference (rho (G) = 0.47), pulse pressure (rho (G) = 0.39), and HDL cholesterol (rho (G) = -0.18). Identification of significant linkage for HOMA-IR on chromosome 12q replicates previous family-based studies reporting linkage of phenotypes associated with type 2 diabetes in the same chromosomal region. Significant genetic correlations between HOMA-IR and phenotypes related to CVD risk factors suggest that a common set of gene(s) influence the regulation of these phenotypes.
Collapse
Affiliation(s)
- V Saroja Voruganti
- Southwest Foundation for Biomedical Research, San Antonio, TX 78245-0549, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
North KE, Franceschini N, Borecki IB, Gu CC, Heiss G, Province MA, Arnett DK, Lewis CE, Miller MB, Myers RH, Hunt SC, Freedman BI. Genotype-by-sex interaction on fasting insulin concentration: the HyperGEN study. Diabetes 2007; 56:137-42. [PMID: 17192475 DOI: 10.2337/db06-0624] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent studies have demonstrated the importance of sex effects on the underlying genetic architecture of insulin-related traits. To explore sex-specific genetic effects on fasting insulin, we tested for genotype-by-sex interaction and conducted linkage analysis of fasting insulin in Hypertension Genetic Epidemiology Network families. Hypertensive siblings and their first-degree relatives were recruited from five field centers. We performed a genome scan for quantitative trait loci influencing fasting insulin among 1,505 European Americans and 1,616 African Americans without diabetes. Sex-stratified linear regression models, adjusted for race, center, and age, were explored. The Mammalian Genotyping Service typed 391 microsatellite markers, spaced roughly 9 cM. Variance component linkage analysis was performed in SOLAR using ethnic-specific marker allele frequencies and multipoint IBDs calculated in MERLIN. We detected a quantitative trait locus influencing fasting insulin in female subjects (logarithm of odds [LOD] = 3.4) on chromosome 2 at 95 cM (between GATA69E12 and GATA71G04) but not in male subjects (LOD = 0.0, P for interaction = 0.007). This sex-specific signal at 2p13.2 was detected in both European-American (LOD = 2.1) and African-American (LOD = 1.2) female subjects. Our findings overlap with several other linkage reports of insulin-related traits and demonstrate the importance of considering complex context-dependent interactions in the search for insulin-related genes.
Collapse
Affiliation(s)
- Kari E North
- Department of Epidemiology, University of North Carolina Chapel Hill, Bank of America Center, 137 E. Franklin St., Suite 306, Chapel Hill, NC 27514, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Elbers CC, Onland-Moret NC, Franke L, Niehoff AG, van der Schouw YT, Wijmenga C. A strategy to search for common obesity and type 2 diabetes genes. Trends Endocrinol Metab 2007; 18:19-26. [PMID: 17126559 DOI: 10.1016/j.tem.2006.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 11/01/2006] [Accepted: 11/14/2006] [Indexed: 12/24/2022]
Abstract
Worldwide, the incidence of type 2 diabetes is rising rapidly, mainly because of the increase in the incidence of obesity, which is an important risk factor for this condition. Both obesity and type 2 diabetes are complex genetic traits but they also share some nongenetic risk factors. Hence, it is tempting to speculate that the susceptibility to type 2 diabetes and obesity might also partly be due to shared genes. By comparing all of the published genome scans for type 2 diabetes and obesity, five overlapping chromosomal regions for both diseases (encompassing 612 candidate genes) have been identified. By analysing these five susceptibility loci for type 2 diabetes and obesity, using six freely available bioinformatics tools for disease gene identification, 27 functional candidate genes have been pinpointed that are involved in eating behaviour, metabolism and inflammation. These genes might reveal a molecular link between the two disorders.
Collapse
Affiliation(s)
- Clara C Elbers
- Complex Genetics Section, Department of Biomedical Genetics, University Medical Centre Utrecht, PO Box 85060, 3508 AB Utrecht, the Netherlands
| | | | | | | | | | | |
Collapse
|
24
|
Diego VP, Rainwater DL, Wang XL, Cole SA, Curran JE, Johnson MP, Jowett JBM, Dyer TD, Williams JT, Moses EK, Comuzzie AG, Maccluer JW, Mahaney MC, Blangero J. Genotype x adiposity interaction linkage analyses reveal a locus on chromosome 1 for lipoprotein-associated phospholipase A2, a marker of inflammation and oxidative stress. Am J Hum Genet 2007; 80:168-77. [PMID: 17160904 PMCID: PMC1785310 DOI: 10.1086/510497] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 10/24/2006] [Indexed: 12/30/2022] Open
Abstract
Because obesity leads to a state of chronic, low-grade inflammation and oxidative stress, we hypothesized that the contribution of genes to variation in a biomarker of these two processes may be influenced by the degree of adiposity. We tested this hypothesis using samples from the San Antonio Family Heart Study that were assayed for activity of lipoprotein-associated phospholipase A(2) (Lp-PLA(2)), a marker of inflammation and oxidative stress. Using an approach to model discrete genotypexenvironment (GxE) interaction, we assigned individuals to one of two discrete diagnostic states (or "adiposity environments"): nonobese or obese, according to criteria suggested by the World Health Organization. We found a genomewide maximum LOD of 3.39 at 153 cM on chromosome 1 for Lp-PLA(2). Significant GxE interaction for Lp-PLA(2) at the genomewide maximum (P=1.16 x 10(-4)) was also found. Microarray gene-expression data were analyzed within the 1-LOD interval of the linkage signal on chromosome 1. We found two transcripts--namely, for Fc gamma receptor IIA and heat-shock protein (70 kDa)--that were significantly associated with Lp-PLA(2) (P<.001 for both) and showed evidence of cis-regulation with nominal LOD scores of 2.75 and 13.82, respectively. It would seem that there is a significant genetic response to the adiposity environment in this marker of inflammation and oxidative stress. Additionally, we conclude that GxE interaction analyses can improve our ability to identify and localize quantitative-trait loci.
Collapse
Affiliation(s)
- Vincent P Diego
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX, 78245-0549, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Stone S, Abkevich V, Russell DL, Riley R, Timms K, Tran T, Trem D, Frank D, Jammulapati S, Neff CD, Iliev D, Gress R, He G, Frech GC, Adams TD, Skolnick MH, Lanchbury JS, Gutin A, Hunt SC, Shattuck D. TBC1D1 is a candidate for a severe obesity gene and evidence for a gene/gene interaction in obesity predisposition. Hum Mol Genet 2006; 15:2709-20. [PMID: 16893906 DOI: 10.1093/hmg/ddl204] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The molecular etiology of obesity predisposition is largely unknown. Here, we present evidence that genetic variation in TBC1D1 confers risk for severe obesity in females. We identified a coding variant (R125W) in TBC1D1 that segregated with the disease in 4p15-14-linked obesity pedigrees. In cases derived from pedigrees with the strongest linkage evidence, the variant was significantly associated with obesity (P=0.000007) and chromosomes carrying R125W accounted for the majority of the evidence that originally linked 4p15-14 with the disease. In addition, by selecting families that segregated R125W with obesity, we were able to generate highly significant linkage evidence for an obesity predisposition locus at 4q34-35. This result provides additional and confirming evidence that R125W affects obesity susceptibility, delimits the location of an obesity gene at 4q34-35 and identifies a gene/gene interaction that influences the risk for obesity predisposition. Finally, although the function of TBC1D1 is unknown, the protein is structurally similar to a known regulator of insulin-mediated Glut4 translocation.
Collapse
Affiliation(s)
- Steven Stone
- Myriad Genetics, Inc., Salt City, UT 84108, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Franceschini N, MacCluer JW, Göring HHH, Cole SA, Rose KM, Almasy L, Diego V, Laston S, Lee ET, Howard BV, Best LG, Fabsitz RR, Roman MJ, North KE. A quantitative trait loci-specific gene-by-sex interaction on systolic blood pressure among American Indians: the Strong Heart Family Study. Hypertension 2006; 48:266-70. [PMID: 16818806 DOI: 10.1161/01.hyp.0000231651.91523.7e] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Age-adjusted systolic blood pressure is higher in males than females. Genetic factors may account for this sex-specific variation. To localize sex-specific quantitative trait loci (QTL) influencing blood pressure, we conducted a genome scan of systolic blood pressure, in males and females, separately and combined, and tested for aggregate and QTL-specific genotype-by-sex interaction in American Indian participants of the Strong Heart Family Study. Blood pressure was measured 3 times and the average of the last 2 measures was used for analyses. Systolic blood pressure was adjusted for age and antihypertensive treatment within study center. We performed variance component linkage analysis in the full sample and stratified by sex among 1168 females and 726 males. Marker allele frequencies were derived using maximum likelihood estimates based on all individuals, and multipoint identity-by-descent sharing was estimated using Loki. We detected suggestive evidence of a QTL influencing systolic blood pressure on chromosome 17 at 129 cM between markers D17S784 and D17S928 (logarithm of odds [LOD] = 2.4). This signal substantially improved when accounting for QTL-specific genotype-by-sex interaction (P = 0.04), because we observed an LOD score of 3.3 for systolic blood pressure in women on chromosome 17 at 136 cM. The magnitude of the linkage signal on chromosome 17q25.3 was slightly attenuated when participants taking antihypertensive medications were excluded, although suggestive evidence for linkage was still identified (LOD = 2.8 in women). Accounting for interaction with sex improved our ability to detect QTLs and demonstrated the importance of considering genotype-by-sex interaction in our search for blood pressure genes.
Collapse
Affiliation(s)
- Nora Franceschini
- Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, Bank of America Center, Chapel Hill, NC 27514-3628, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Pérusse L, Bouchard C. The human obesity gene map: the 2005 update. Obesity (Silver Spring) 2006; 14:529-644. [PMID: 16741264 DOI: 10.1038/oby.2006.71] [Citation(s) in RCA: 704] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This paper presents the 12th update of the human obesity gene map, which incorporates published results up to the end of October 2005. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTL) from animal cross-breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2005, 176 human obesity cases due to single-gene mutations in 11 different genes have been reported, 50 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 244 genes that, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 408. The number of human obesity QTLs derived from genome scans continues to grow, and we now have 253 QTLs for obesity-related phenotypes from 61 genome-wide scans. A total of 52 genomic regions harbor QTLs supported by two or more studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably, with 426 findings of positive associations with 127 candidate genes. A promising observation is that 22 genes are each supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. The electronic version of the map with links to useful publications and relevant sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808-4124, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Gene by sex interaction in the etiology of coronary heart disease and the preceding metabolic syndrome. Nutr Metab Cardiovasc Dis 2006; 17:153-61. [PMID: 17306735 DOI: 10.1016/j.numecd.2006.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 01/05/2006] [Accepted: 01/09/2006] [Indexed: 11/24/2022]
Abstract
BACKGROUND Despite decades of research, the genetic basis of coronary heart disease and its metabolic risk factors is poorly understood. Few studies consider that sex may modify the effect of gene variants on disease. Investigation of gene by sex interaction may help to elucidate underlying genetic susceptibilities and explain the sexual dimorphism of these complex traits. AIMS The aim of this review is to summarize evidence for gene by sex interaction in the etiology of coronary heart disease and the metabolic syndrome. DATA SYNTHESIS Published literature was examined in the areas of familial aggregation of coronary heart disease; heritability of body mass, insulin resistance, hypertension and dyslipidemia; genome-wide linkage analysis in humans and rodents; and large-scale genetic association studies. Possible mechanisms of gene by sex interaction are discussed including X-linked inheritance, confounding by risk factors and the effect of sex hormones. CONCLUSIONS The strongest evidence for gene by sex interaction in relation to coronary heart disease and the metabolic syndrome is in the etiology of body mass, insulin resistance and possibly dyslipidemia. Genetic studies of these traits would benefit from taking sex differences into account. Alternative mechanisms underlying gene by sex interaction, besides obvious sex hormone differences, should be considered.
Collapse
|
29
|
Atwood LD, Heard-Costa NL, Fox CS, Jaquish CE, Cupples LA. Sex and age specific effects of chromosomal regions linked to body mass index in the Framingham Study. BMC Genet 2006; 7:7. [PMID: 16438729 PMCID: PMC1386701 DOI: 10.1186/1471-2156-7-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 01/26/2006] [Indexed: 11/21/2022] Open
Abstract
Background Previously, we reported significant linkage of body mass index (BMI) to chromosomes 6 and 11 across six examinations, covering 28 years, of the Framingham Heart Study. These results were on all individuals available at each exam, thus the sample size varied from exam to exam. To remove any effect of sample size variation we have now constructed six subsets; for each exam individuals were only included if they were measured at every exam, i.e. for each exam, included individuals comprise the intersection of the original six exams. This strategy preferentially removed older individuals who died before reaching the sixth exam, thus the intersection datasets are smaller (n = 1114) and significantly younger than the full datasets. We performed variance components linkage analysis on these intersection datasets and on their sex-specific subsets. Results Results from the sex-specific genome scans revealed 11 regions in which a sex-specific maximum lodscore was at least 2.0 for at least one dataset. Randomization tests indicated that all 11 regions had significant (p < 0.05) differences in sex-specific maximum lodscores for at least three datasets. The strongest sex-specific linkage was for men on chromosome 16 with maximum lodscores 2.70, 3.00, 3.42, 3.61, 2.56 and 1.93 for datasets 1–6 respectively. Results from the full genome scans revealed that linked regions on chromosomes 6 and 11 remained significantly and consistently linked in the intersection datasets. Surprisingly, the maximum lodscore on chromosome 10 for dataset 1 increased from 0.97 in the older original dataset to 4.23 in the younger smaller intersection dataset. This difference in maximum lodscores was highly significant (p < 0.0001), implying that the effect of this chromosome may vary with age. Age effects may also exist for the linked regions on chromosomes 6 and 11. Conclusion Sex specific effects of chromosomal regions on BMI are common in the Framingham study. Some evidence also exists for age-specific effects of chromosomal regions.
Collapse
Affiliation(s)
- Larry D Atwood
- Department of Neurology, Boston University School of Medicine, Boston, MA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | | | - Caroline S Fox
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA
| | | | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| |
Collapse
|