1
|
Baddenhausen S, Lutz B, Hofmann C. Cannabinoid type-1 receptor signaling in dopaminergic Engrailed-1 expressing neurons modulates motivation and depressive-like behavior. Front Mol Neurosci 2024; 17:1379889. [PMID: 38660383 PMCID: PMC11042029 DOI: 10.3389/fnmol.2024.1379889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
The endocannabinoid system comprises highly versatile signaling functions within the nervous system. It is reported to modulate the release of several neurotransmitters, consequently affecting the activity of neuronal circuits. Investigations have highlighted its roles in numerous processes, including appetite-stimulating characteristics, particularly for palatable food. Moreover, endocannabinoids are shown to fine-tune dopamine-signaled processes governing motivated behavior. Specifically, it has been demonstrated that excitatory and inhibitory inputs controlled by the cannabinoid type 1 receptor (CB1) regulate dopaminergic neurons in the mesocorticolimbic pathway. In the present study, we show that mesencephalic dopaminergic (mesDA) neurons in the ventral tegmental area (VTA) express CB1, and we investigated the consequences of specific deletion of CB1 in cells expressing the transcription factor Engrailed-1 (En1). To this end, we validated a new genetic mouse line EN1-CB1-KO, which displays a CB1 knockout in mesDA neurons beginning from their differentiation, as a tool to elucidate the functional contribution of CB1 in mesDA neurons. We revealed that EN1-CB1-KO mice display a significantly increased immobility time and shortened latency to the first immobility in the forced swim test of adult mice. Moreover, the maximal effort exerted to obtain access to chocolate-flavored pellets was significantly reduced under a progressive ratio schedule. In contrast, these mice do not differ in motor skills, anhedonia- or anxiety-like behavior compared to wild-type littermates. Taken together, these findings suggest a depressive-like or despair behavior in an inevitable situation and a lack of motivation to seek palatable food in EN1-CB1-KO mice, leading us to propose that CB1 plays an important role in the physiological functions of mesDA neurons. In particular, our data suggest that CB1 directly modifies the mesocorticolimbic pathway implicated in depressive-like/despair behavior and motivation. In contrast, the nigrostriatal pathway controlling voluntary movement seems to be unaffected.
Collapse
Affiliation(s)
- Sarah Baddenhausen
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Clementine Hofmann
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
2
|
Gupta S, Bharatha A, Cohall D, Rahman S, Haque M, Azim Majumder MA. Aerobic Exercise and Endocannabinoids: A Narrative Review of Stress Regulation and Brain Reward Systems. Cureus 2024; 16:e55468. [PMID: 38440201 PMCID: PMC10910469 DOI: 10.7759/cureus.55468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/06/2024] Open
Abstract
Aerobic exercise is a widely adopted practice, not solely for enhancing fitness and reducing the risk of various diseases but also for its ability to uplift mood and aid in addressing depression and anxiety disorders. Within the scope of this narrative review, we seek to consolidate current insights into the endocannabinoid-mediated regulation of stress and the brain's reward mechanism resulting from engaging in aerobic exercise. A comprehensive search was conducted across Medline, SPORTDiscus, Pubmed, and Scopus, encompassing data available until November 30, 2023. This review indicates that a bout of aerobic exercise, particularly of moderate intensity, markedly augments circulating levels of endocannabinoids - N-arachidonoyl-ethanolamine (AEA) and 2-acylglycerol (2-AG), that significantly contributes to mood elevation and reducing stress in healthy individuals. The current understanding of how aerobic exercise impacts mental health and mood improvement is still unclear. Moderate and high-intensity aerobic exercise modulates stress through a negative feedback mechanism targeting both the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system, thereby facilitating stress regulation crucial role in endocannabinoid synthesis, ultimately culminating in the orchestration of negative feedback across multiple tiers of the HPA axis, coupled with its influence over cortical and subcortical brain structures. The endocannabinoid has been observed to govern the release of neurotransmitters from diverse neuronal populations, implying a universal mechanism that fine-tunes neuronal activity and consequently modulates both emotional and stress-related responses. Endocannabinoids further assume a pivotal function within brain reward mechanisms, primarily mediated by CB1 receptors distributed across diverse cerebral centers. Notably, these endocannabinoids partake in natural reward processes, as exemplified in aerobic exercise, by synergizing with the dopaminergic reward system. The genesis of this reward pathway can be traced to the ventral tegmental area, with dopamine neurons predominantly projecting to the nucleus accumbens, thereby inciting dopamine release in response to rewarding stimuli.
Collapse
Affiliation(s)
- Subir Gupta
- Physiology, Faculty of Medical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, BRB
| | - Ambadasu Bharatha
- Pharmacology, Faculty of Medical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, BRB
| | - Damian Cohall
- Pharmacology, Faculty of Medical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, BRB
| | - Sayeeda Rahman
- Pharmacology, School of Medicine, American University of Integrative Sciences, Bridgetown, BRB
| | - Mainul Haque
- Pharmacology and Therapeutics, Karnavati Scientific Research Center (KSRC) School of Dentistry, Karnavati University, Gandhinagar, IND
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Md Anwarul Azim Majumder
- Medical Education, Faculty of Medical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, BRB
| |
Collapse
|
3
|
Salazar J, Duran P, Garrido B, Parra H, Hernández M, Cano C, Añez R, García-Pacheco H, Cubillos G, Vasquez N, Chacin M, Bermúdez V. Weight Regain after Metabolic Surgery: Beyond the Surgical Failure. J Clin Med 2024; 13:1143. [PMID: 38398456 PMCID: PMC10888585 DOI: 10.3390/jcm13041143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/20/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Patients undergoing metabolic surgery have factors ranging from anatomo-surgical, endocrine metabolic, eating patterns and physical activity, mental health and psychological factors. Some of the latter can explain the possible pathophysiological neuroendocrine, metabolic, and adaptive mechanisms that cause the high prevalence of weight regain in postbariatric patients. Even metabolic surgery has proven to be effective in reducing excess weight in patients with obesity; some of them regain weight after this intervention. In this vein, several studies have been conducted to search factors and mechanisms involved in weight regain, to stablish strategies to manage this complication by combining metabolic surgery with either lifestyle changes, behavioral therapies, pharmacotherapy, endoscopic interventions, or finally, surgical revision. The aim of this revision is to describe certain aspects and mechanisms behind weight regain after metabolic surgery, along with preventive and therapeutic strategies for this complication.
Collapse
Affiliation(s)
- Juan Salazar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Pablo Duran
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Bermary Garrido
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Heliana Parra
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Marlon Hernández
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Roberto Añez
- Departamento de Endocrinología y Nutrición, Hospital Quirónsalud, 28009 Madrid, Spain
| | - Henry García-Pacheco
- Facultad de Medicina, Departamento de Cirugía, Universidad del Zulia, Hospital General del Sur, Dr. Pedro Iturbe, Maracaibo 4004, Venezuela
- Unidad de Cirugía para Obesidad y Metabolismo (UCOM), Maracaibo 4004, Venezuela
| | | | | | - Maricarmen Chacin
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080001, Colombia
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080001, Colombia
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080001, Colombia
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080001, Colombia
| |
Collapse
|
4
|
Horton KKA, Campanaro CK, Clifford C, Nethery DE, Strohl KP, Jacono FJ, Dick TE. Cannabinoid Receptor mRNA Expression in Central and Peripheral Tissues in a Rodent Model of Peritonitis. Cannabis Cannabinoid Res 2023; 8:510-526. [PMID: 35446129 PMCID: PMC10249742 DOI: 10.1089/can.2021.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Our laboratory investigates changes in the respiratory pattern during systemic inflammation in various rodent models. The endogenous cannabinoid system (ECS) regulates cytokine production and mitigates inflammation. Inflammation not only affects cannabinoid (CB) 1 and CB2 receptor gene expression (Cnr1 and Cnr2), but also increases the predictability of the ventilatory pattern. Objectives: Our primary objective was to track ventilatory pattern variability and transcription of Cnr1 and Cnr2 mRNA, and of Il1b, Il6, and tumor necrosis factor-alpha (Tnfa) mRNAs at multiple time points in central and peripheral tissues during systemic inflammation induced by peritonitis. Methods: In male Sprague Dawley rats (n=24), we caused peritonitis by implanting a fibrin clot containing either 0 or 25×106 Escherichia coli intraperitoneally. We recorded breathing with whole-animal plethysmography at baseline and 1 h before euthanasia. We euthanized the rats at 3, 6, or 12 h after inoculation and harvested the pons, medulla, lung, and heart for gene expression analysis. Results: With peritonitis, Cnr1 mRNA more than Cnr2 mRNA was correlated to Il1b, Il6, and Tnfa mRNAs in medulla, pons, and lung and changed oppositely in the pons, medulla, and lung. These changes were associated with increased predictability of ventilatory pattern. Specifically, nonlinear complexity index correlated with increased Cnr1 mRNA in the pons and medulla, and coefficient of variation for cycle duration correlated with Cnr1 and Cnr2 mRNAs in the lung. Conclusion: The mRNAs for ECS receptors varied with time during the central and peripheral inflammatory response to peritonitis. These changes occurred in the brainstem, which contains the network that generates breathing pattern and thus, may participate in ventilatory pattern changes during systemic inflammation.
Collapse
Affiliation(s)
- Kofi-Kermit A. Horton
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Cara K. Campanaro
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Caitlyn Clifford
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - David E. Nethery
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kingman P. Strohl
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Frank J. Jacono
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Thomas E. Dick
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Garella R, Cassioli E, Chellini F, Tani A, Rossi E, Idrizaj E, Guasti D, Comeglio P, Palmieri F, Parigi M, Vignozzi L, Baccari MC, Ricca V, Sassoli C, Castellini G, Squecco R. Defining the Molecular Mechanisms of the Relaxant Action of Adiponectin on Murine Gastric Fundus Smooth Muscle: Potential Translational Perspectives on Eating Disorder Management. Int J Mol Sci 2023; 24:ijms24021082. [PMID: 36674598 PMCID: PMC9867455 DOI: 10.3390/ijms24021082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Adiponectin (ADPN), a hormone produced by adipose tissue, facilitates gastric relaxation and can be a satiety signal in the network connecting peripheral organs and the central nervous system for feeding behavior control. Here, we performed preclinical research by morpho-functional analyses on murine gastric fundus smooth muscle to add insights into the molecular mechanisms underpinning ADPN action. Moreover, we conducted a clinical study to evaluate the potential use of ADPN as a biomarker for eating disorders (ED) based on the demonstrated gastric alterations and hormone level fluctuations that are often associated with ED. The clinical study recruited patients with ED and healthy controls who underwent blood draws for ADPN dosage and psychopathology evaluation tests. The findings of this basic research support the ADPN relaxant action, as indicated by the smooth muscle cell membrane pro-relaxant effects, with mild modifications of contractile apparatus and slight inhibitory effects on gap junctions. All of these actions engaged the ADPN/nitric oxide/guanylate cyclase pathway. The clinical data failed to unravel a correlation between ADPN levels and the considered ED, thus negating the potential use of ADPN as a valid biomarker for ED management for the moment. Nevertheless, this adipokine can modulate physiological eating behavior, and its effects deserve further investigation.
Collapse
Affiliation(s)
- Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy
| | - Emanuele Cassioli
- Department of Health Sciences, Psychiatry Unit, University of Florence, 50134 Firenze, Italy
| | - Flaminia Chellini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy
| | - Eleonora Rossi
- Department of Health Sciences, Psychiatry Unit, University of Florence, 50134 Firenze, Italy
| | - Eglantina Idrizaj
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy
| | - Daniele Guasti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy
| | - Paolo Comeglio
- Department of Experimental Clinical and Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Francesco Palmieri
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy
| | - Martina Parigi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy
| | - Linda Vignozzi
- Department of Experimental Clinical and Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Maria Caterina Baccari
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy
| | - Valdo Ricca
- Department of Health Sciences, Psychiatry Unit, University of Florence, 50134 Firenze, Italy
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy
| | - Giovanni Castellini
- Department of Health Sciences, Psychiatry Unit, University of Florence, 50134 Firenze, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy
- Correspondence: ; Tel.: +39-055-2751632
| |
Collapse
|
6
|
Sunil M, Karimi P, Leong R, Zuniga-Villanueva G, Ratcliffe EM. Therapeutic Effects of Medicinal Cannabinoids on the Gastrointestinal System in Pediatric Patients: A Systematic Review. Cannabis Cannabinoid Res 2022; 7:769-776. [PMID: 36219741 DOI: 10.1089/can.2022.0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Changes in cannabis legalization have generated interest in medicinal cannabinoids for therapeutic uses, including those that target the gastrointestinal (GI) tract. These effects are mediated through interactions with the endocannabinoid system. Given the increasing societal awareness of the therapeutic potential of cannabinoids, it is important to ensure pediatric representation in clinical studies investigating cannabinoid use. This systematic review aims to assess the efficacy of medicinal cannabinoids in treating GI symptoms in pediatric patients. A literature search of Medline, Embase, CINAHL, Web of Science, and the Cochrane Library was performed from inception until June 23, 2020. Study design, patient characteristics, type, dose and duration of medicinal cannabinoid therapy, and GI outcomes were extracted. From 7303 records identified, 5 studies met all inclusion criteria. Included studies focused on chemotherapy-induced nausea, inflammatory bowel disease, and GI symptoms associated with severe complex motor disorders. Results varied based on the symptom being treated, the type of cannabinoid, and the patient population. Medicinal cannabinoids may have a potential role in treating specific GI symptoms in specific patient populations. The limited number and heterogenicity of included studies highlight the demand for future research to distinguish effects among different cannabinoid types and patient populations and to examine drug interactions. As interest increases, higher quality studies are needed to understand the efficacy of cannabinoids as a pediatric GI treatment and whether these benefits outweigh the associated risks (Registration Number: PROSPERO CRD42020202486).
Collapse
Affiliation(s)
- Maria Sunil
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Parsa Karimi
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Russell Leong
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Gregorio Zuniga-Villanueva
- Division of Palliative Medicine, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada.,Department of Pediatrics, Tecnológico de Monterrey, Monterrey, Mexico
| | - Elyanne M Ratcliffe
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.,Division of Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada.,Michael G. DeGroote Centre for Medicinal Cannabis Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
7
|
Costa AC, Joaquim HPG, Pedrazzi JFC, Pain ADO, Duque G, Aprahamian I. Cannabinoids in Late Life Parkinson's Disease and Dementia: Biological Pathways and Clinical Challenges. Brain Sci 2022; 12:brainsci12121596. [PMID: 36552056 PMCID: PMC9775654 DOI: 10.3390/brainsci12121596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
The use of cannabinoids as therapeutic drugs has increased among aging populations recently. Age-related changes in the endogenous cannabinoid system could influence the effects of therapies that target the cannabinoid system. At the preclinical level, cannabidiol (CBD) induces anti-amyloidogenic, antioxidative, anti-apoptotic, anti-inflammatory, and neuroprotective effects. These findings suggest a potential therapeutic role of cannabinoids to neurodegenerative disorders such as Parkinson's disease (PD) and Alzheimer. Emerging evidence suggests that CBD and tetrahydrocannabinol have neuroprotective therapeutic-like effects on dementias. In clinical practice, cannabinoids are being used off-label to relieve symptoms of PD and AD. In fact, patients are using cannabis compounds for the treatment of tremor, non-motor symptoms, anxiety, and sleep assistance in PD, and managing responsive behaviors of dementia such as agitation. However, strong evidence from clinical trials is scarce for most indications. Some clinicians consider cannabinoids an alternative for older adults bearing Parkinson's disease and Alzheimer's dementia with a poor response to first-line treatments. In our concept and experience, cannabinoids should never be considered a first-line treatment but could be regarded as an adjuvant therapy in specific situations commonly seen in clinical practice. To mitigate the risk of adverse events, the traditional dogma of geriatric medicine, starting with a low dose and proceeding with a slow titration regime, should also be employed with cannabinoids. In this review, we aimed to address preclinical evidence of cannabinoids in neurodegenerative disorders such as PD and AD and discuss potential off-label use of cannabinoids in clinical practice of these disorders.
Collapse
Affiliation(s)
- Alana C. Costa
- Laboratory of Neuroscience (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-903, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo 05403-010, Brazil
| | - Helena P. G. Joaquim
- Department of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - João F. C. Pedrazzi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo 05403-903, Brazil
| | - Andreia de O. Pain
- Group of Investigation on Multimorbidity and Mental Health in Aging (GIMMA), Geriatrics Division, Department of Internal Medicine, Jundiaí Medical School, Jundiaí 13202-550, Brazil
| | - Gustavo Duque
- Division of Geriatric Medicine, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Ivan Aprahamian
- Group of Investigation on Multimorbidity and Mental Health in Aging (GIMMA), Geriatrics Division, Department of Internal Medicine, Jundiaí Medical School, Jundiaí 13202-550, Brazil
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands
- Correspondence:
| |
Collapse
|
8
|
Chivite M, Comesaña S, Calo J, Soengas JL, Conde-Sieira M. Endocannabinoid receptors are involved in enhancing food intake in rainbow trout. Horm Behav 2022; 146:105277. [PMID: 36356457 DOI: 10.1016/j.yhbeh.2022.105277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
The mechanisms involved in hedonic regulation of food intake, including endocannabinoid system (ECs) are scarcely known in fish. We recently demonstrate in rainbow trout the presence of a rewarding response mediated by ECs in hypothalamus and telencephalon when fish fed a lipid-enriched diet, and that central administration of main agonists of ECs namely AEA or 2-AG exert a bimodal effect on feed intake in fish with low doses inducing an increase that disappears with the high dose of both endocannabinoids (EC). To assess the precise involvement of the different receptors of the ECs (CNR1, TRPV1, and GPR55) in this response we injected intracerebroventricularly AEA or 2-AG in the absence/presence of specific receptor antagonists (AM251, capsazepine, and ML193; respectively). The presence of antagonists clearly counteracts the effect of EC supporting the specificity of EC action inducing changes not only in ECs but also in GABA and glutamate metabolism ultimately leading to the increase observed in food intake response.
Collapse
Affiliation(s)
- Mauro Chivite
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain
| | - Sara Comesaña
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain
| | - Jessica Calo
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain
| | - José L Soengas
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain
| | - Marta Conde-Sieira
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain.
| |
Collapse
|
9
|
An Alkaloid from a Highly Invasive Seaweed Increases the Voracity and Reproductive Output of a Model Fish Species. Mar Drugs 2022; 20:md20080513. [PMID: 36005516 PMCID: PMC9410225 DOI: 10.3390/md20080513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
The invasive macroalga Caulerpa cylindracea has spread widely in the Mediterranean Sea, becoming a favorite food item for native fish for reasons yet unknown. By using a combination of behavioral, morphological, and molecular approaches, herein we provide evidence that the bisindole alkaloid caulerpin, a major secondary metabolite of C. cylindracea, significantly increases food intake in the model fish Danio rerio, influencing the regulation of genes involved in the orexigenic pathway. In addition, we found that the compound improves fish reproductive performance by affecting the hypothalamus-pituitary-gonadal axis. The obtained results pave the way for the possible valorization of C. cylindracea as a sustainable source of a functional feed additive of interest to face critical challenges both in aquaculture and in human nutrition.
Collapse
|
10
|
Ruiz-Tejada A, Neisewander J, Katsanos CS. Regulation of Voluntary Physical Activity Behavior: A Review of Evidence Involving Dopaminergic Pathways in the Brain. Brain Sci 2022; 12:brainsci12030333. [PMID: 35326289 PMCID: PMC8946175 DOI: 10.3390/brainsci12030333] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
Physical activity leads to well-established health benefits. Current efforts to enhance physical activity have targeted mainly socioeconomic factors. However, despite these efforts, only a small number of adults engage in regular physical activity to the point of meeting current recommendations. Evidence collected in rodent models and humans establish a strong central nervous system component that regulates physical activity behavior. In particular, dopaminergic pathways in the central nervous system are among the best-characterized biological mechanisms to date with respect to regulating reward, motivation, and habit formation, which are critical for establishing regular physical activity. Herein, we discuss evidence for a role of brain dopamine in the regulation of voluntary physical activity behavior based on selective breeding and pharmacological studies in rodents, as well as genetic studies in both rodents and humans. While these studies establish a role of dopamine and associated mechanisms in the brain in the regulation of voluntary physical activity behavior, there is clearly need for more research on the underlying biology involved in motivation for physical activity and the formation of a physical activity habit. Such knowledge at the basic science level may ultimately be translated into better strategies to enhance physical activity levels within the society.
Collapse
|
11
|
Abolghasemi A, Manca C, Iannotti FA, Shen M, Leblanc N, Lacroix S, Martin C, Flamand N, Di Marzo V, Silvestri C. Assessment of the Effects of Dietary Vitamin D Levels on Olanzapine-Induced Metabolic Side Effects: Focus on the Endocannabinoidome-Gut Microbiome Axis. Int J Mol Sci 2021; 22:12361. [PMID: 34830242 PMCID: PMC8620071 DOI: 10.3390/ijms222212361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
Vitamin D deficiency is associated with poor mental health and dysmetabolism. Several metabolic abnormalities are associated with psychotic diseases, which can be compounded by atypical antipsychotics that induce weight gain and insulin resistance. These side-effects may be affected by vitamin D levels. The gut microbiota and endocannabinoidome (eCBome) are significant regulators of both metabolism and mental health, but their role in the development of atypical antipsychotic drug metabolic side-effects and their interaction with vitamin D status is unknown. We studied the effects of different combinations of vitamin D levels and atypical antipsychotic drug (olanzapine) exposure on whole-body metabolism and the eCBome-gut microbiota axis in female C57BL/6J mice under a high fat/high sucrose (HFHS) diet in an attempt to identify a link between the latter and the different metabolic outputs induced by the treatments. Olanzapine exerted a protective effect against diet-induced obesity and insulin resistance, largely independent of dietary vitamin D status. These changes were concomitant with olanzapine-mediated decreases in Trpv1 expression and increases in the levels of its agonists, including various N-acylethanolamines and 2-monoacylglycerols, which are consistent with the observed improvement in adiposity and metabolic status. Furthermore, while global gut bacteria community architecture was not altered by olanzapine, we identified changes in the relative abundances of various commensal bacterial families. Taken together, changes of eCBome and gut microbiota families under our experimental conditions might contribute to olanzapine and vitamin D-mediated inhibition of weight gain in mice on a HFHS diet.
Collapse
Affiliation(s)
- Armita Abolghasemi
- Centre de Recherche, l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (A.A.); (C.M.); (M.S.); (N.L.); (S.L.); (C.M.); (N.F.); (V.D.M.)
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Joint International Unit between the National Research Council (CNR) of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Université Laval, Québec, QC G1V 0A6, Canada
| | - Claudia Manca
- Centre de Recherche, l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (A.A.); (C.M.); (M.S.); (N.L.); (S.L.); (C.M.); (N.F.); (V.D.M.)
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Joint International Unit between the National Research Council (CNR) of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Université Laval, Québec, QC G1V 0A6, Canada
| | - Fabio A. Iannotti
- Joint International Unit between the National Research Council (CNR) of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Institute of Biomolecular Chemistry, National Council of Research (Consiglio Nazionale delle Ricerche), 80087 Pozzuoli, Italy;
| | - Melissa Shen
- Centre de Recherche, l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (A.A.); (C.M.); (M.S.); (N.L.); (S.L.); (C.M.); (N.F.); (V.D.M.)
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Nadine Leblanc
- Centre de Recherche, l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (A.A.); (C.M.); (M.S.); (N.L.); (S.L.); (C.M.); (N.F.); (V.D.M.)
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada
| | - Sébastien Lacroix
- Centre de Recherche, l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (A.A.); (C.M.); (M.S.); (N.L.); (S.L.); (C.M.); (N.F.); (V.D.M.)
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada
| | - Cyril Martin
- Centre de Recherche, l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (A.A.); (C.M.); (M.S.); (N.L.); (S.L.); (C.M.); (N.F.); (V.D.M.)
| | - Nicolas Flamand
- Centre de Recherche, l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (A.A.); (C.M.); (M.S.); (N.L.); (S.L.); (C.M.); (N.F.); (V.D.M.)
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Vincenzo Di Marzo
- Centre de Recherche, l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (A.A.); (C.M.); (M.S.); (N.L.); (S.L.); (C.M.); (N.F.); (V.D.M.)
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Joint International Unit between the National Research Council (CNR) of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Université Laval, Québec, QC G1V 0A6, Canada
- Joint International Unit between the National Research Council (CNR) of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Institute of Biomolecular Chemistry, National Council of Research (Consiglio Nazionale delle Ricerche), 80087 Pozzuoli, Italy;
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada
- École de Nutrition, Faculté des Sciences de L’agriculture et de L’alimentation (FSAA), Université Laval, Québec, QC G1V 0A6, Canada
- Centre Nutrition, Santé et Société (NUTRISS), Université Laval, Québec, QC G1V 0A6, Canada
| | - Cristoforo Silvestri
- Centre de Recherche, l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (A.A.); (C.M.); (M.S.); (N.L.); (S.L.); (C.M.); (N.F.); (V.D.M.)
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Joint International Unit between the National Research Council (CNR) of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Université Laval, Québec, QC G1V 0A6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada
- Centre Nutrition, Santé et Société (NUTRISS), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
12
|
Joaquim HPG, Costa AC, Pereira CAC, Talib LL, Bilt MMV, Loch AA, Gattaz WF. Plasmatic endocannabinoids are decreased in subjects with ultra-high risk of psychosis. Eur J Neurosci 2021; 55:1079-1087. [PMID: 34716624 DOI: 10.1111/ejn.15509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 11/27/2022]
Abstract
The onset of frank psychosis is usually preceded by a prodromal phase characterized by attenuated psychotic symptoms. Currently, research on schizophrenia prodromal phase (ultra-high risk for psychosis [UHR]) has focused on the risk of developing psychosis, on the transition to full blown psychosis and on its prediction. Neurobiological differences between UHR individuals who fully recover (remitters) versus those who show persistent/progressive prodromal symptoms (nonremitters) have been little explored. The endocannabinoid system constitutes a neuromodulatory system that plays a major role in brain development, synaptic plasticity, emotional behaviours and cognition. It comprises two cannabinoid receptors (CB1/CB2), two endocannabinoid ligands, arachidonylethanolamide (AEA) and 2-arachidonoylglycerol (2AG) along with their inactivation enzymes. Despite much evidence that the endocannabinoid system is imbalanced during psychosis, very little is known about it in UHR. Therefore, we aimed to quantify the plasma endocannabinoid levels in UHR and healthy controls (HC) and verify if these metabolites could differentiate between remitters and nonremitters. Circulating concentrations of AEA (p = .003) and 2AG (p < .001) were lower in UHR when compared with HC, with no difference between remitters and nonremitters. Regarding clinical evolution, it was observed that out of 91 UHRs initially considered, 16 had psychiatric complaints (3 years of follow-up). Considering those subjects, there were weak correlations between clinical parameters and plasma concentrations of endocannabinoids. Our results suggest that the endocannabinoids are imbalanced before frank psychosis and that changes can be seen in plasma of UHR individuals. These molecules proved to be potential biomarkers to identify individuals in the prodromal phase of psychosis.
Collapse
Affiliation(s)
- Helena P G Joaquim
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Alana C Costa
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Cícero A C Pereira
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Leda L Talib
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Martinus M V Bilt
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Alexandre A Loch
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Wagner F Gattaz
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| |
Collapse
|
13
|
van Ackern I, Kuhla A, Kuhla B. A Role for Peripheral Anandamide and 2-Arachidonoylglycerol in Short-Term Food Intake and Orexigenic Hypothalamic Responses in a Species with Continuous Nutrient Delivery. Nutrients 2021; 13:3587. [PMID: 34684588 PMCID: PMC8540326 DOI: 10.3390/nu13103587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/27/2021] [Accepted: 10/09/2021] [Indexed: 12/19/2022] Open
Abstract
The endocannabinoid system (ECS) plays a pivotal role in the complex control and regulation of food intake. Pharmacological ECS activation could improve health in energy-deficient stages by increasing food intake, at least in intermittent feeders. However, knowledge of the mechanism regulating appetite in species with continued nutrient delivery is incomplete. The objectives of this pilot study were to investigate the effect of the intraperitoneal (i.p.) administration of the endocannabinoids (ECs) anandamide (AEA) and 2-arachidonoylglycerol (2-AG) on food intake, plasma EC concentrations and hypothalamic orexigenic signaling, and to study how the circulatory EC tone changes in response to short-term food deprivation in dairy cows, a species with continuous nutrient delivery. The administration of EC resulted in higher food intake during the first hour after treatment. Plasma AEA concentrations were significantly increased 2.5 h after AEA injection, whereas plasma 2-AG concentrations remained unchanged 2.5 h after 2-AG injection. The hypothalamic immunoreactivity of cannabinoid receptor 1, agouti-related protein, and orexin-A was not affected by either treatment; however, neuropeptide Y and agouti-related protein mRNA abundances were downregulated in the arcuate nucleus of AEA-treated animals. Short-term food deprivation increased plasma 2-AG, while plasma AEA remained unchanged. In conclusion, i.p.-administered 2-AG and AEA increase food intake in the short term, but only AEA accumulates in the circulation. However, plasma 2-AG concentrations are more responsive to food deprivation than AEA.
Collapse
Affiliation(s)
- Isabel van Ackern
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology ‘Oskar Kellner’, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| | - Angela Kuhla
- Rostock University Medical Center, Institute for Experimental Surgery, Schillingallee 69a, 18057 Rostock, Germany;
| | - Björn Kuhla
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology ‘Oskar Kellner’, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| |
Collapse
|
14
|
Bariani MV, Correa F, Rubio APD, Wolfson ML, Schander JA, Cella M, Aisemberg J, Franchi AM. Maternal obesity reverses the resistance to LPS-induced adverse pregnancy outcome and increases female offspring metabolic alterations in cannabinoid receptor 1 knockout mice. J Nutr Biochem 2021; 96:108805. [PMID: 34147601 DOI: 10.1016/j.jnutbio.2021.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022]
Abstract
Maternal overnutrition negatively impacts the offspring's health leading to an increased risk of developing chronic diseases or metabolic syndrome in adulthood. What we eat affects the endocannabinoid system (eCS) activity, which in turn modulates lipogenesis and fatty acids utilization in hepatic, muscle, and adipose tissues. This study aimed to evaluate the transgenerational effect of maternal obesity on cannabinoid receptor 1 knock-out (CB1 KO) animals in combination with a postnatal obesogenic diet on the development of metabolic disturbances on their offspring. CB1 KO mice were fed a control diet (CD) or a high-fat diet (HFD; 33% more energy from fat) for 3 months. Offspring born to control and obese mothers were also fed with CD or HFD. We observed that pups born to an HFD-fed mother presented higher postnatal weight, lower hepatic fatty acid amide hydrolase activity, and increased blood cholesterol levels when compared to the offspring born to CD-fed mothers. When female mice born to HFD-fed CB1 KO mothers were exposed to an HFD, they gained more weight, presented elevated blood cholesterol levels, and more abdominal adipose tissue accumulation than control-fed adult offspring. The eCS is involved in several reproductive physiological processes. Interestingly, we showed that CB1 KO mice in gestational day 15 presented resistance to LPS-induced deleterious effects on pregnancy outcome, which was overcome when these mice were obese. Our results suggest that an HFD in CB1 receptor-deficient mice contributes to a "nutritional programming" of the offspring resulting in increased susceptibility to metabolic challenges both perinatally and during adulthood.
Collapse
Affiliation(s)
- María Victoria Bariani
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando Correa
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Paula Domínguez Rubio
- Departamento de Química Biológica. Intendente Güiraldes, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Biológica. Intendente Güiraldes, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Manuel Luis Wolfson
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Aylen Schander
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maximiliano Cella
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Aisemberg
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Ana María Franchi
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
15
|
Analgesic and Anticancer Activity of Benzoxazole Clubbed 2-Pyrrolidinones as Novel Inhibitors of Monoacylglycerol Lipase. Molecules 2021; 26:molecules26082389. [PMID: 33924091 PMCID: PMC8074287 DOI: 10.3390/molecules26082389] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Ten benzoxazole clubbed 2-pyrrolidinones (11–20) as human monoacylglycerol lipase inhibitors were designed on the criteria fulfilling the structural requirements and on the basis of previously reported inhibitors. The designed, synthesized, and characterized compounds (11–20) were screened against monoacylglycerol lipase (MAGL) in order to find potential inhibitors. Compounds 19 (4-NO2 derivative) and 20 (4-SO2NH2 derivative), with an IC50 value of 8.4 and 7.6 nM, were found most active, respectively. Both of them showed micromolar potency (IC50 value above 50 µM) against a close analogue, fatty acid amide hydrolase (FAAH), therefore considered as selective inhibitors of MAGL. Molecular docking studies of compounds 19 and 20 revealed that carbonyl of 2-pyrrolidinone moiety sited at the oxyanion hole of catalytic site of the enzyme stabilized with three hydrogen bonds (~2 Å) with Ala51, Met123, and Ser122, the amino acid residues responsible for the catalytic function of the enzyme. Remarkably, the physiochemical and pharmacokinetic properties of compounds 19 and 20, computed by QikProp, were found to be in the qualifying range as per the proposed guideline for good orally bioactive CNS drugs. In formalin-induced nociception test, compound 20 reduced the pain response in acute and late stages in a dose-dependent manner. They significantly demonstrated the reduction in pain response, having better potency than the positive control gabapentin (GBP), at 30 mg/kg dose. Compounds 19 and 20 were submitted to NCI, USA, for anticancer activity screening. Compounds 19 (NSC: 778839) and 20 (NSC: 778842) were found to have good anticancer activity on SNB-75 cell line of CNS cancer, exhibiting 35.49 and 31.88% growth inhibition (% GI), respectively.
Collapse
|
16
|
Functional Fine-Tuning of Metabolic Pathways by the Endocannabinoid System-Implications for Health and Disease. Int J Mol Sci 2021; 22:ijms22073661. [PMID: 33915889 PMCID: PMC8036872 DOI: 10.3390/ijms22073661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) employs a huge network of molecules (receptors, ligands, and enzymatic machinery molecules) whose interactions with other cellular networks have still not been fully elucidated. Endogenous cannabinoids are molecules with the primary function of control of multiple metabolic pathways. Maintenance of tissue and cellular homeostasis by functional fine-tuning of essential metabolic pathways is one of the key characteristics of the ECS. It is implicated in a variety of physiological and pathological states and an attractive pharmacological target yet to reach its full potential. This review will focus on the involvement of ECS in glucose and lipid metabolism, food intake regulation, immune homeostasis, respiratory health, inflammation, cancer and other physiological and pathological states will be substantiated using freely available data from open-access databases, experimental data and literature review. Future directions should envision capturing its diversity and exploiting pharmacological options beyond the classical ECS suspects (exogenous cannabinoids and cannabinoid receptor monomers) as signaling through cannabinoid receptor heteromers offers new possibilities for different biochemical outcomes in the cell.
Collapse
|
17
|
Sallam NA, Borgland SL. Insulin and endocannabinoids in the mesolimbic system. J Neuroendocrinol 2021; 33:e12965. [PMID: 33856071 DOI: 10.1111/jne.12965] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 12/31/2022]
Abstract
Easy access to palatable food and an abundance of food-related cues exacerbate non-homeostatic feeding. The metabolic and economical sequelae of non-homeostatic feeding outweigh those of homeostatic feeding and contribute significantly to the global obesity pandemic. The mesolimbic dopamine system is the primary central circuit that governs the motivation to consume food. Insulin and endocannabinoids (eCBs) are two major, presumably opposing, players in regulating homeostatic and non-homeostatic feeding centrally and peripherally. Insulin is generally regarded as a postprandial satiety signal, whereas eCBs mainly function as pre-prandial orexinergic signals. In this review, we discuss the effects of insulin and eCB-mediated actions within the mesolimbic pathways. We propose that insulin and eCBs have regional- and time course-dependent roles. We discuss their mechanisms of actions in the ventral tegmental area and nucleus accumbens, as well as how their mechanisms converge to finely tune dopaminergic activity and food intake.
Collapse
Affiliation(s)
- Nada A Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
18
|
Myers MN, Zachut M, Tam J, Contreras GA. A proposed modulatory role of the endocannabinoid system on adipose tissue metabolism and appetite in periparturient dairy cows. J Anim Sci Biotechnol 2021; 12:21. [PMID: 33663611 PMCID: PMC7934391 DOI: 10.1186/s40104-021-00549-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
To sustain the nutrient demands of rapid fetal growth, parturition, and milk synthesis, periparturient dairy cows mobilize adipose tissue fatty acid stores through lipolysis. This process induces an inflammatory response within AT that is resolved as lactation progresses; however, excessive and protracted lipolysis compounds the risk for metabolic and inflammatory diseases. The suppression of lipolytic action and inflammation, along with amplification of adipogenesis and lipogenesis, serve as prospective therapeutic targets for improving the health of periparturient dairy cows. Generally, the activation of cannabinoid receptors by endocannabinoids enhances adipogenesis and lipogenesis, suppresses lipolysis, and increases appetite in mammals. These biological effects of activating the endocannabinoid system open the possibility of harnessing the endocannabinoid system through nutritional intervention in dairy herds as a potential tool to improve dairy cows' health, although much is still to be revealed in this context. This review summarizes the current knowledge surrounding the components of the endocannabinoid system, elaborates on the metabolic effects of its activation, and explores the potential to modulate its activity in periparturient dairy cows.
Collapse
Affiliation(s)
- Madison N Myers
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization / Volcani Center, 7505101, Rishon LeZion, Israel.
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 9112001, Jerusalem, Israel
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
19
|
Rana T, Behl T, Sehgal A, Mehta V, Singh S, Kumar R, Bungau S. Integrating Endocannabinoid Signalling In Depression. J Mol Neurosci 2021; 71:2022-2034. [PMID: 33471311 DOI: 10.1007/s12031-020-01774-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022]
Abstract
Depression is a common mental disorder and is the leading cause of suicide globally. Because of the significant diversity in mental disorders, accurate diagnosis is difficult. Hence, the investigation of novel biomarkers is a key research perspective in psychotherapy to enable an individually tailored treatment approach. The prefrontal cortex (PFC) is a vital cortical region whose circuitry has been implicated in the development of depressive disorder. The endocannabinoid system (ECS) has garnered increasing attention because of its involvement in several diverse physiological brain processes including regulation of emotional, motivational and cognitive functions. The current review article explores the function of the key elements of the ECS as a biomarker in depressive disorder. The activity of endocannabinoids is thought to be moderated by the CB1 receptors in the central nervous system (CNS). Variations in the concentration of endocannabinoids and the binding affinity of CB1 receptors and their density have been identified in the PFC of persons with depression. Such discoveries support our theory that alteration in endocannabinoid function leads to the pathophysiological features of depressive disorders. Moreover, evidence from animal and human studies has revealed that dysfunction in endocannabinoid signalling can produce depression-like behaviours; therefore, improvement of endocannabinoid signalling may represent a new therapeutic approach for the management of depressive disorders.
Collapse
Affiliation(s)
- Tarapati Rana
- Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India.,Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Vineet Mehta
- Distt. Shimla, Government College of Pharmacy, Himachal Pradesh, Rohru, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ravinder Kumar
- Cardiovascular Research Institute, Icahn School of Medicine, New York, USA
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
20
|
Díaz-Rúa A, Chivite M, Velasco C, Comesaña S, Soengas JL, Conde-Sieira M. Periprandial response of central cannabinoid system to different feeding conditions in rainbow trout Oncorhynchus mykiss. Nutr Neurosci 2020; 25:1265-1276. [DOI: 10.1080/1028415x.2020.1853412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Adrián Díaz-Rúa
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, Vigo, Spain
| | - Mauro Chivite
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, Vigo, Spain
| | - Cristina Velasco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, Vigo, Spain
| | - Sara Comesaña
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, Vigo, Spain
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, Vigo, Spain
| | - Marta Conde-Sieira
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
21
|
Boyer C, Cussonneau L, Brun C, Deval C, Pais de Barros JP, Chanon S, Bernoud-Hubac N, Daira P, Evans AL, Arnemo JM, Swenson JE, Gauquelin-Koch G, Simon C, Blanc S, Combaret L, Bertile F, Lefai E. Specific shifts in the endocannabinoid system in hibernating brown bears. Front Zool 2020; 17:35. [PMID: 33292302 PMCID: PMC7681968 DOI: 10.1186/s12983-020-00380-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/20/2020] [Indexed: 01/30/2023] Open
Abstract
In small hibernators, global downregulation of the endocannabinoid system (ECS), which is involved in modulating neuronal signaling, feeding behavior, energy metabolism, and circannual rhythms, has been reported to possibly drive physiological adaptation to the hibernating state. In hibernating brown bears (Ursus arctos), we hypothesized that beyond an overall suppression of the ECS, seasonal shift in endocannabinoids compounds could be linked to bear’s peculiar features that include hibernation without arousal episodes and capacity to react to external disturbance. We explored circulating lipids in serum and the ECS in plasma and metabolically active tissues in free-ranging subadult Scandinavian brown bears when both active and hibernating. In winter bear serum, in addition to a 2-fold increase in total fatty acid concentration, we found significant changes in relative proportions of circulating fatty acids, such as a 2-fold increase in docosahexaenoic acid C22:6 n-3 and a decrease in arachidonic acid C20:4 n-6. In adipose and muscle tissues of hibernating bears, we found significant lower concentrations of 2-arachidonoylglycerol (2-AG), a major ligand of cannabinoid receptors 1 (CB1) and 2 (CB2). Lower mRNA level for genes encoding CB1 and CB2 were also found in winter muscle and adipose tissue, respectively. The observed reduction in ECS tone may promote fatty acid mobilization from body fat stores, and favor carbohydrate metabolism in skeletal muscle of hibernating bears. Additionally, high circulating level of the endocannabinoid-like compound N-oleoylethanolamide (OEA) in winter could favor lipolysis and fatty acid oxidation in peripheral tissues. We also speculated on a role of OEA in the conservation of an anorexigenic signal and in the maintenance of torpor during hibernation, while sustaining the capacity of bears to sense stimuli from the environment.
Collapse
Affiliation(s)
- Christian Boyer
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Laura Cussonneau
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Charlotte Brun
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | - Christiane Deval
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | | | - Stéphanie Chanon
- Université de Lyon, INSERM, INRAE, INSA, Functional Lipidomic Plateform, Lyon, France
| | | | - Patricia Daira
- Université de Lyon, INSERM, INRAE, INSA, Functional Lipidomic Plateform, Lyon, France
| | - Alina L Evans
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, NO-2480, Koppang, Norway
| | - Jon M Arnemo
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, NO-2480, Koppang, Norway.,Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Jon E Swenson
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | | | - Chantal Simon
- Université de Lyon, INSERM, INRAE, INSA, Functional Lipidomic Plateform, Lyon, France
| | - Stéphane Blanc
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | - Lydie Combaret
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Fabrice Bertile
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | - Etienne Lefai
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France.
| |
Collapse
|
22
|
Tagliamonte S, Gill CIR, Pourshahidi LK, Slevin MM, Price RK, Ferracane R, Lawther R, O'Connor G, Vitaglione P. Endocannabinoids, endocannabinoid-like molecules and their precursors in human small intestinal lumen and plasma: does diet affect them? Eur J Nutr 2020; 60:2203-2215. [PMID: 33104865 PMCID: PMC8137602 DOI: 10.1007/s00394-020-02398-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/24/2020] [Indexed: 01/29/2023]
Abstract
PURPOSE To determine the small intestinal concentration of endocannabinoids (ECs), N-acylethanolamines (NAEs) and their precursors N-acylphosphatidylethanolamines (NAPEs) in humans. To identify relationships between those concentrations and habitual diet composition as well as individual inflammatory status. METHODS An observational study was performed involving 35 participants with an ileostomy (18W/17M, aged 18-70 years, BMI 17-40 kg/m2). Overnight fasting samples of ileal fluid and plasma were collected and ECs, NAEs and NAPEs concentrations were determined by LC-HRMS. Dietary data were estimated from self-reported 4-day food diaries. RESULTS Regarding ECs, N-arachidonoylethanolamide (AEA) was not detected in ileal fluids while 2-arachidonoylglycerol (2-AG) was identified in samples from two participants with a maximum concentration of 129.3 µg/mL. In contrast, mean plasma concentration of AEA was 2.1 ± 0.06 ng/mL and 2-AG was 4.9 ± 1.05 ng/mL. NAEs concentrations were in the range 0.72-17.6 µg/mL in ileal fluids and 0.014-0.039 µg/mL in plasma. NAPEs concentrations were in the range 0.3-71.5 µg/mL in ileal fluids and 0.19-1.24 µg/mL in plasma being more abundant in participants with obesity than normal weight and overweight. Significant correlations between the concentrations of AEA, OEA and LEA in biological fluids with habitual energy or fat intakes were identified. Plasma PEA positively correlated with serum C-reactive protein. CONCLUSION We quantified ECs, NAEs and NAPEs in the intestinal lumen. Fat and energy intake may influence plasma and intestinal concentrations of these compounds. The luminal concentrations reported would allow modulation of the homeostatic control of food intake via activation of GPR119 receptors located on the gastro-intestinal mucosa. CLINICAL TRIAL REGISTRY NUMBER AND WEBSITE NCT04143139; www.clinicaltrials.gov .
Collapse
Affiliation(s)
- Silvia Tagliamonte
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, 80055, Portici, NA, Italy
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - L Kirsty Pourshahidi
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Mary M Slevin
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Ruth K Price
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Rosalia Ferracane
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, 80055, Portici, NA, Italy
| | - Roger Lawther
- Altnagelvin Area Hospital, Western Health and Social Care Trust, Glenshane Road, Londonderry, UK
| | - Gloria O'Connor
- Altnagelvin Area Hospital, Western Health and Social Care Trust, Glenshane Road, Londonderry, UK
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, 80055, Portici, NA, Italy.
| |
Collapse
|
23
|
Cannabinoidomics - An analytical approach to understand the effect of medical Cannabis treatment on the endocannabinoid metabolome. Talanta 2020; 219:121336. [PMID: 32887067 DOI: 10.1016/j.talanta.2020.121336] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/22/2022]
Abstract
Increasing evidence for the therapeutic potential of Cannabis in numerous pathological and physiological conditions has led to a surge of studies investigating the active compounds in different chemovars and their mechanisms of action, as well as their efficacy and safety. The biological effects of Cannabis have been attributed to phytocannabinoid modulation of the endocannabinoid system. In-vitro and in-vivo studies have shown that pure phytocannabinoids can alter the levels of endocannabinoids and other cannabimimetic lipids. However, it is not yet understood whether whole Cannabis extracts exert variable effects on the endocannabinoid metabolome, and whether these effects vary between tissues. To address these challenges, we have developed and validated a novel analytical approach, termed "cannabinoidomics," for the simultaneous extraction and analysis of both endogenous and plant cannabinoids from different biological matrices. In the methodological development liquid chromatography high resolution tandem mass spectrometry (LC/HRMS/MS) was used to identify 57 phytocannabinoids, 15 major phytocannabinoid metabolites, and 78 endocannabinoids and cannabimimetic lipids in different biological matrices, most of which have no analytical standards. In the validation process, spiked cannabinoids were quantified with acceptable selectivity, repeatability, reproducibility, sensitivity, and accuracy. The power of this analytical method is demonstrated by analysis of serum and four different sections of mouse brains challenged with three different cannabidiol (CBD)-rich extracts. The results demonstrate that variations in the minor phytocannabinoid contents of the different extracts may lead to varied effects on endocannabinoid concentrations, and on the CBD metabolite profile in the peripheral and central systems. We also show that the Cannabis challenge significantly decreases the levels of several endocannabinoids in specific brain sections compared to the control group. This effect is extract-specific and suggests the importance of minor, other-than CBD, phytocannabinoid or non-phytocannabinoid compounds.
Collapse
|
24
|
Gewehr MCF, Silverio R, Rosa-Neto JC, Lira FS, Reckziegel P, Ferro ES. Peptides from Natural or Rationally Designed Sources Can Be Used in Overweight, Obesity, and Type 2 Diabetes Therapies. Molecules 2020; 25:E1093. [PMID: 32121443 PMCID: PMC7179135 DOI: 10.3390/molecules25051093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/18/2022] Open
Abstract
Overweight and obesity are among the most prominent health problems in the modern world, mostly because they are either associated with or increase the risk of other diseases such as type 2 diabetes, hypertension, and/or cancer. Most professional organizations define overweight and obesity according to individual body-mass index (BMI, weight in kilograms divided by height squared in meters). Overweight is defined as individuals with BMI from 25 to 29, and obesity as individuals with BMI ≥30. Obesity is the result of genetic, behavioral, environmental, physiological, social, and cultural factors that result in energy imbalance and promote excessive fat deposition. Despite all the knowledge concerning the pathophysiology of obesity, which is considered a disease, none of the existing treatments alone or in combination can normalize blood glucose concentration and prevent debilitating complications from obesity. This review discusses some new perspectives for overweight and obesity treatments, including the use of the new orally active cannabinoid peptide Pep19, the advantage of which is the absence of undesired central nervous system effects usually experienced with other cannabinoids.
Collapse
Affiliation(s)
- Mayara C. F. Gewehr
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Renata Silverio
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil;
| | - José Cesar Rosa-Neto
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Fabio S. Lira
- Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente 19060-900, Brazil;
| | - Patrícia Reckziegel
- Department of Pharmacology, National Institute of Pharmacology and Molecular Biology (INFAR), Federal University of São Paulo (UNIFESP), São Paulo 05508-000, Brazil;
| | - Emer S. Ferro
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| |
Collapse
|
25
|
Baxter BA, Parker KD, Nosler MJ, Rao S, Craig R, Seiler C, Ryan EP. Metabolite profile comparisons between ascending and descending colon tissue in healthy adults. World J Gastroenterol 2020; 26:335-352. [PMID: 31988593 PMCID: PMC6969882 DOI: 10.3748/wjg.v26.i3.335] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/11/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity is a risk factor for colorectal cancer, yet metabolic distinctions between healthy right and left colon tissue, before cancer is diagnosed, remains largely unknown. This study compared right-ascending and left-descending colon tissue metabolomes to identify differences from the stool metabolome in normal weight, overweight, and obese adults.
AIM To examine right and left colon tissue metabolites according to body mass index that may serve as mechanistic targets for interventions and biomarkers for colon cancer risk.
METHODS Global, non-targeted metabolomics was applied to assess right-ascending and left-descending colon tissue collected from healthy adults undergoing screening colonoscopies to test the hypothesis that BMI differentially impacts colon tissue metabolite profiles. The colon tissue and stool metabolome of healthy adults (n = 24) was analyzed for metabolite signatures and metabolic pathway networks implicated in progression of colorectal cancer.
RESULTS Ascending and descending colon contained 504 host, food, and microbiota-derived metabolites from normal weight, overweight and obese adults grouped according to body mass index. Amino acids, lipids, and nucleotides were among the chemical types that further differentiated from the stool metabolite profiles. Normal weight adults had 46 significantly different metabolites between ascending and descending colon tissue locations, whereas there were 37 metabolite differences in overweight and 28 metabolite differences for obese adults (P < 0.05). Obese adults had trimethylamine N-oxide, endocannabinoids and monoacylglycerols with different relative abundances identified between ascending and descending colon. Primary and secondary bile acids, vitamins, and fatty acids also showed marked relative abundance differences in colon tissue from overweight/obese adults.
CONCLUSION There were metabolite profile differences between right-ascending and left-descending colon tissue in healthy adults. Colon lipids and other metabolites in obese and overweight adults were distinguished from normal weight participants and associated with gut inflammation, nutrient absorption, and products of microbiota metabolism.
Collapse
Affiliation(s)
- Bridget A Baxter
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Fort Collins, CO 80523, United States
| | - Kristopher D Parker
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Fort Collins, CO 80523, United States
| | - Michael J Nosler
- University of Colorado Health Gastroenterology Clinic, Fort Collins, CO 80524, United States
| | - Sangeeta Rao
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Rebecca Craig
- Harmony Surgery Center, Fort Collins, CO 80528, United States
| | - Catherine Seiler
- Director of Clinical Operations, Harmony Surgery Center, Fort Collins, CO 80523, United States
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Fort Collins, CO 80523, United States
| |
Collapse
|
26
|
Marciello F, Monteleone AM, Cascino G, Monteleone P. Neuroendocrine Correlates of Binge Eating. BINGE EATING 2020:165-180. [DOI: 10.1007/978-3-030-43562-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Green CL, Soltow QA, Mitchell SE, Derous D, Wang Y, Chen L, Han JDJ, Promislow DEL, Lusseau D, Douglas A, Jones DP, Speakman JR. The Effects of Graded Levels of Calorie Restriction: XIII. Global Metabolomics Screen Reveals Graded Changes in Circulating Amino Acids, Vitamins, and Bile Acids in the Plasma of C57BL/6 Mice. J Gerontol A Biol Sci Med Sci 2019; 74:16-26. [PMID: 29718123 PMCID: PMC6298180 DOI: 10.1093/gerona/gly058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Indexed: 12/15/2022] Open
Abstract
Calorie restriction (CR) remains the most robust intervention to extend life span and improve health span. Using a global mass spectrometry–based metabolomics approach, we identified metabolites that were significantly differentially expressed in the plasma of C57BL/6 mice, fed graded levels of calorie restriction (10% CR, 20% CR, 30% CR, and 40% CR) compared with mice fed ad libitum for 12 hours a day. The differential expression of metabolites increased with the severity of CR. Pathway analysis revealed that graded CR had an impact on vitamin E and vitamin B levels, branched chain amino acids, aromatic amino acids, and fatty acid pathways. The majority of amino acids correlated positively with fat-free mass and visceral fat mass, indicating a strong relationship with body composition and vitamin E metabolites correlated with stomach and colon size, which may allude to the beneficial effects of investing in gastrointestinal organs with CR. In addition, metabolites that showed a graded effect, such as the sphinganines, carnitines, and bile acids, match our previous study on liver, which suggests not only that CR remodels the metabolome in a way that promotes energy efficiency, but also that some changes are conserved across tissues.
Collapse
Affiliation(s)
- Cara L Green
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Quinlyn A Soltow
- Division of Pulmonary, Allergy and Critical Care Medicine, Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, Georgia
| | - Sharon E Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Davina Derous
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Yingchun Wang
- State Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China
| | - Luonan Chen
- Key laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, China
| | - Jing-Dong J Han
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
| | - Daniel E L Promislow
- Department of Pathology, Seattle.,Department of Biology, University of Washington, Seattle
| | - David Lusseau
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, Georgia
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK.,State Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China
| |
Collapse
|
28
|
El-Atawneh S, Hirsch S, Hadar R, Tam J, Goldblum A. Prediction and Experimental Confirmation of Novel Peripheral Cannabinoid-1 Receptor Antagonists. J Chem Inf Model 2019; 59:3996-4006. [PMID: 31433190 DOI: 10.1021/acs.jcim.9b00577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Small molecules targeting peripheral CB1 receptors have therapeutic potential in a variety of disorders including obesity-related, hormonal, and metabolic abnormalities, while avoiding the psychoactive effects in the central nervous system. We applied our in-house algorithm, iterative stochastic elimination, to produce a ligand-based model that distinguishes between CB1R antagonists and random molecules by physicochemical properties only. We screened ∼2 million commercially available molecules and found that about 500 of them are potential candidates to antagonize the CB1R. We applied a few criteria for peripheral activity and narrowed that set down to 30 molecules, out of which 15 could be purchased. Ten out of those 15 showed good affinity to the CB1R and two of them with nanomolar affinities (Ki of ∼400 nM). The eight molecules with top affinities were tested for activity: two compounds were pure antagonists, and five others were inverse agonists. These molecules are now being examined in vivo for their peripheral versus central distribution and subsequently will be tested for their effects on obesity in small animals.
Collapse
|
29
|
Role of Cannabinoid Receptor Type 1 in Insulin Resistance and Its Biological Implications. Int J Mol Sci 2019; 20:ijms20092109. [PMID: 31035653 PMCID: PMC6540410 DOI: 10.3390/ijms20092109] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 01/01/2023] Open
Abstract
Endogenous cannabinoids (ECs) are lipid-signaling molecules that specifically bind to cannabinoid receptor types 1 and 2 (CB1R and CB2R) and are highly expressed in central and many peripheral tissues under pathological conditions. Activation of hepatic CB1R is associated with obesity, insulin resistance, and impaired metabolic function, owing to increased energy intake and storage, impaired glucose and lipid metabolism, and enhanced oxidative stress and inflammatory responses. Additionally, blocking peripheral CB1R improves insulin sensitivity and glucose metabolism and also reduces hepatic steatosis and body weight in obese mice. Thus, targeting EC receptors, especially CB1R, may provide a potential therapeutic strategy against obesity and insulin resistance. There are many CB1R antagonists, including inverse agonists and natural compounds that target CB1R and can reduce body weight, adiposity, and hepatic steatosis, and those that improve insulin sensitivity and reverse leptin resistance. Recently, the use of CB1R antagonists was suspended due to adverse central effects, and this caused a major setback in the development of CB1R antagonists. Recent studies, however, have focused on development of antagonists lacking adverse effects. In this review, we detail the important role of CB1R in hepatic insulin resistance and the possible underlying mechanisms, and the therapeutic potential of CB1R targeting is also discussed.
Collapse
|
30
|
Jacobson MR, Watts JJ, Boileau I, Tong J, Mizrahi R. A systematic review of phytocannabinoid exposure on the endocannabinoid system: Implications for psychosis. Eur Neuropsychopharmacol 2019; 29:330-348. [PMID: 30635160 DOI: 10.1016/j.euroneuro.2018.12.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 07/17/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022]
Abstract
Cannabis, the most widely used illicit drug worldwide, produces psychoactive effects through its component cannabinoids, which act on the endocannabinoid system. Research on how cannabinoid exposure affects the endocannabinoid system is limited. Substantial evidence indicates cannabis use as a risk factor for psychosis, and the mechanism(s) by which this is occurring is/are currently unknown. Here, we conduct the first review of the effects of exogenous cannabinoids on the endocannabinoid system in humans with and without psychotic disorders. The most well established finding is the down-regulation of cannabinoid CB1 receptors (CB1R) after chronic and recent cannabis exposure, but it remains uncertain whether this effect is present in cannabis users with schizophrenia. We highlight where cannabis exposure affects the endocannabinoid system in a pattern that may mirror what is seen in psychosis, and how further research can push this field forward. In these times of changing cannabis legislation, research highlighting the biological effects of cannabinoids is greatly needed.
Collapse
Affiliation(s)
- Maya R Jacobson
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario M5T 1R8, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, 1 King's College Circle, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Jeremy J Watts
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario M5T 1R8, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, 1 King's College Circle, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Isabelle Boileau
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario M5T 1R8, Canada; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, 250 College St., Toronto, Ontario M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College St., Toronto, Ontario M5T 1R8, Canada; Institute of Medical Science, Faculty of Medicine, 1 King's College Circle, University of Toronto, Ontario M5S 1A8, Canada.
| | - Junchao Tong
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario M5T 1R8, Canada; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, 250 College St., Toronto, Ontario M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College St., Toronto, Ontario M5T 1R8, Canada.
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario M5T 1R8, Canada; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, 250 College St., Toronto, Ontario M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College St., Toronto, Ontario M5T 1R8, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, 1 King's College Circle, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Institute of Medical Science, Faculty of Medicine, 1 King's College Circle, University of Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
31
|
Affiliation(s)
- Jing Wang
- Key Laboratory of Orthopedics Disease of Gansu Province, the Second Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| |
Collapse
|
32
|
The role of fatty acids and their endocannabinoid-like derivatives in the molecular regulation of appetite. Mol Aspects Med 2018; 64:45-67. [DOI: 10.1016/j.mam.2018.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 02/07/2023]
|
33
|
Alharthi N, Christensen P, Hourani W, Ortori C, Barrett DA, Bennett AJ, Chapman V, Alexander SPH. n-3 polyunsaturated N-acylethanolamines are CB 2 cannabinoid receptor-preferring endocannabinoids. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1433-1440. [PMID: 30591150 DOI: 10.1016/j.bbalip.2018.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/18/2018] [Accepted: 08/04/2018] [Indexed: 12/16/2022]
Abstract
Anandamide, the first identified endogenous cannabinoid and TRPV1 agonist, is one of a series of endogenous N-acylethanolamines, NAEs. We have generated novel assays to quantify the levels of multiple NAEs in biological tissues and their rates of hydrolysis through fatty acid amide hydrolase. This range of NAEs was also tested in rapid response assays of CB1, CB2 cannabinoid and TRPV1 receptors. The data indicate that PEA, SEA and OEA are not endocannabinoids or endovanilloids, and that the higher endogenous levels of these metabolites compared to polyunsaturated analogues are a correlate of their slow rates of hydrolysis. The n-6 NAEs (AEA, docosatetraenoyl and docosapentaenoyl derivatives) activated both CB1 and CB2 receptors, as well as TRPV1 channels, suggesting them to be 'genuine' endocannabinoids and 'endovanilloids'. The n-3 NAEs (eicosapentaenoyl, docosapentaenoyl and docosahexaenoyl derivatives) activated CB2 receptors and some n-3 NAEs (docosapentaenoyl and docosahexaenoyl derivatives) also activated TRPV1 channels, but failed to activate the CB1 receptor. We hypothesise that the preferential activation of CB2 receptors by n-3 PUFA NAEs contributes, at least in some part, to their broad anti-inflammatory profile.
Collapse
Affiliation(s)
- Nahed Alharthi
- School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, England, United Kingdom of Great Britain and Northern Ireland
| | - Peter Christensen
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, England, United Kingdom of Great Britain and Northern Ireland
| | - Wafa Hourani
- School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, England, United Kingdom of Great Britain and Northern Ireland
| | - Catherine Ortori
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, England, United Kingdom of Great Britain and Northern Ireland
| | - David A Barrett
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, England, United Kingdom of Great Britain and Northern Ireland
| | - Andrew J Bennett
- School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, England, United Kingdom of Great Britain and Northern Ireland
| | - Victoria Chapman
- School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, England, United Kingdom of Great Britain and Northern Ireland
| | - Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, England, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
34
|
Ruz-Maldonado I, Pingitore A, Liu B, Atanes P, Huang GC, Baker D, Alonso FJ, Bermúdez-Silva FJ, Persaud SJ. LH-21 and abnormal cannabidiol improve β-cell function in isolated human and mouse islets through GPR55-dependent and -independent signalling. Diabetes Obes Metab 2018; 20:930-942. [PMID: 29205751 DOI: 10.1111/dom.13180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/15/2017] [Accepted: 11/30/2017] [Indexed: 12/20/2022]
Abstract
AIMS To examine the effects of Abn-CBD (GPR55 agonist) and LH-21 (CB1 antagonist) on human and mouse islet function, and to determine signalling via GPR55 using islets from GPR55-/- mice. MATERIALS AND METHODS Islets isolated from human organ donors and mice were incubated in the absence or presence of Abn-CBD or LH-21, and insulin secretion, [Ca2+ ]i, cAMP, apoptosis, β-cell proliferation and CREB and AKT phosphorylation were examined using standard techniques. RESULTS Abn-CBD potentiated glucose-stimulated insulin secretion and elevated [Ca2+ ]i in human islets and islets from both GPR55+/+ and GPR55-/- mice. LH-21 also increased insulin secretion and [Ca2+ ]i in human islets and GPR55+/+ mouse islets, but concentrations of LH-21 up to 0.1 μM were ineffective in islets from GPR55-/- mice. Neither ligand affected basal insulin secretion or islet cAMP levels. Abn-CBD and LH-21 reduced cytokine-induced apoptosis in human islets and GPR55+/+ mouse islets, and these effects were suppressed after GPR55 deletion. They also increased β-cell proliferation: the effects of Abn-CBD were preserved in islets from GPR55-/- mice, while those of LH-21 were abolished. Abn-CBD and LH-21 increased AKT phosphorylation in mouse and human islets. CONCLUSIONS This study showed that Abn-CBD and LH-21 improve human and mouse islet β-cell function and viability. Use of islets from GPR55-/- mice suggests that designation of Abn-CBD and LH-21 as a GPR55 agonist and a CB1 antagonist, should be revised.
Collapse
Affiliation(s)
- Inmaculada Ruz-Maldonado
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Attilio Pingitore
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Bo Liu
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Patricio Atanes
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Guo Cai Huang
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - David Baker
- Blizard Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | - Francisco José Alonso
- Canceromics Laboratory, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto de Biomedicina de Málaga (IBIMA), Universidad de Málaga, Malaga, Spain
| | - Francisco Javier Bermúdez-Silva
- Unidad de Gestión Clínica Intercentros de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Malaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Malaga, Spain
| | - Shanta J Persaud
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW The current serotonin-based biological model of suicidal behavior (SB) may be too simplistic. There is emerging evidence that other biomarkers and biological systems may be involved in SB pathophysiology. The literature on the endocannabinoid (EC) systems and SB is limited. The objective of the present article is to review all available information on the relationship between cannabinoid receptors (CB1 and CB2 receptors), and SB and/or psychological pain. RECENT FINDINGS Our review is limited by the small number and heterogeneity of studies identified: (1) an autopsy study describing elevated levels of CB1 receptor activity in the prefrontal cortex and suicide in both depression and alcoholism and (2) studies supporting the involvement of both CB1 and CB2 receptors in the regulation of neuropathic pain and stress-induced analgesia. We conclude that cannabinoid receptors, particularly CB1 receptors, may become promising targets for the development of novel therapeutic tools for the treatment of SB.
Collapse
|
36
|
Seillier A, Giuffrida A. The cannabinoid transporter inhibitor OMDM-2 reduces social interaction: Further evidence for transporter-mediated endocannabinoid release. Neuropharmacology 2018; 130:1-9. [DOI: 10.1016/j.neuropharm.2017.11.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/07/2017] [Accepted: 11/17/2017] [Indexed: 02/01/2023]
|
37
|
Pati S, Krishna S, Lee JH, Ross MK, de La Serre CB, Harn DA, Wagner JJ, Filipov NM, Cummings BS. Effects of high-fat diet and age on the blood lipidome and circulating endocannabinoids of female C57BL/6 mice. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:26-39. [PMID: 28986283 DOI: 10.1016/j.bbalip.2017.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/17/2017] [Accepted: 09/24/2017] [Indexed: 01/06/2023]
Abstract
Alterations in lipid metabolism play a significant role in the pathogenesis of obesity-associated disorders, and dysregulation of the lipidome across multiple diseases has prompted research to identify novel lipids indicative of disease progression. To address the significant gap in knowledge regarding the effect of age and diet on the blood lipidome, we used shotgun lipidomics with electrospray ionization-mass spectrometry (ESI-MS). We analyzed blood lipid profiles of female C57BL/6 mice following high-fat diet (HFD) and low-fat diet (LFD) consumption for short (6weeks), long (22weeks), and prolonged (36weeks) periods. We examined endocannabinoid levels, plasma esterase activity, liver homeostasis, and indices of glucose tolerance and insulin sensitivity to compare lipid alterations with metabolic dysregulation. Multivariate analysis indicated differences in dietary blood lipid profiles with the most notable differences after 6weeks along with robust alterations due to age. HFD altered phospholipids, fatty acyls, and glycerolipids. Endocannabinoid levels were affected in an age-dependent manner, while HFD increased plasma esterase activity at all time points, with the most pronounced effect at 6weeks. HFD-consumption also altered liver mRNA levels of PPARα, PPARγ, and CD36. These findings indicate an interaction between dietary fat consumption and aging with widespread effects on the lipidome, which may provide a basis for identification of female-specific obesity- and age-related lipid biomarkers.
Collapse
Affiliation(s)
- Sumitra Pati
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
| | - Saritha Krishna
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States
| | - Jung Hwa Lee
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39759, United States
| | - Matthew K Ross
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39759, United States
| | - Claire B de La Serre
- Department of Foods and Nutrition, College of Family and Consumer Sciences, University of Georgia, Athens, GA 30602, United States
| | - Donald A Harn
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States
| | - John J Wagner
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States; Interdisciplinary Toxicology Program, University of, Georgia, Athens, GA 30602, United States
| | - Nikolay M Filipov
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States; Interdisciplinary Toxicology Program, University of, Georgia, Athens, GA 30602, United States.
| | - Brian S Cummings
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States; Interdisciplinary Toxicology Program, University of, Georgia, Athens, GA 30602, United States.
| |
Collapse
|
38
|
Piazza PV, Cota D, Marsicano G. The CB1 Receptor as the Cornerstone of Exostasis. Neuron 2017; 93:1252-1274. [PMID: 28334603 DOI: 10.1016/j.neuron.2017.02.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 01/07/2023]
Abstract
The type-1 cannabinoid receptor (CB1) is the main effector of the endocannabinoid system (ECS), which is involved in most brain and body functions. In this Perspective, we provide evidence indicating that CB1 receptor functions are key determinants of bodily coordinated exostatic processes. First, we will introduce the concepts of endostasis and exostasis as compensation or accumulation for immediate or future energy needs and discuss how exostasis has been necessary for the survival of species during evolution. Then, we will argue how different specific biological functions of the CB1 receptor in the body converge to provide physiological exostatic processes. Finally, we will introduce the concept of proactive evolution-induced diseases (PEIDs), which helps explain the seeming paradox that an evolutionary-selected physiological function can become the cause of epidemic pathological conditions, such as obesity. We propose here a possible unifying theory of CB1 receptor functions that can be tested by future experimental studies.
Collapse
Affiliation(s)
- Pier Vincenzo Piazza
- INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France; University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France.
| | - Daniela Cota
- INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France; University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France
| | - Giovanni Marsicano
- INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France; University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France.
| |
Collapse
|
39
|
Abstract
The maintenance of the body weight at a stable level is a major determinant in keeping the higher animals and mammals survive. Th e body weight depends on the balance between the energy intake and energy expenditure. Increased food intake over the energy expenditure of prolonged time period results in an obesity. Th e obesity has become an important worldwide health problem, even at low levels. The obesity has an evil effect on the health and is associated with a shorter life expectancy. A complex of central and peripheral physiological signals is involved in the control of the food intake. Centrally, the food intake is controlled by the hypothalamus, the brainstem, and endocannabinoids and peripherally by the satiety and adiposity signals. Comprehension of the signals that control food intake and energy balance may open a new therapeutic approaches directed against the obesity and its associated complications, as is the insulin resistance and others. In conclusion, the present review summarizes the current knowledge about the complex system of the peripheral and central regulatory mechanisms of food intake and their potential therapeutic implications in the treatment of obesity.
Collapse
|
40
|
Ketcherside A, Noble LJ, McIntyre CK, Filbey FM. Cannabinoid Receptor 1 Gene by Cannabis Use Interaction on CB1 Receptor Density. Cannabis Cannabinoid Res 2017; 2:202-209. [PMID: 29082317 PMCID: PMC5628563 DOI: 10.1089/can.2017.0007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Because delta-9-tetrahydrocannabinol (THC), the primary psychoactive ingredient in cannabis, binds to cannabinoid 1 (CB1) receptors, levels of CB1 protein could serve as a potential biomarker for response to THC. To date, available techniques to characterize CB1 expression and function in vivo are limited. In this study, we developed an assay to quantify CB1 in lymphocytes to determine how it relates to cannabis use in 58 daily cannabis users compared with 47 nonusers. Furthermore, we tested whether CB1 levels are associated with mutations in a single nucleotide polymorphism known to regulate CB1 functioning (i.e., rs2023239). Methods: Total protein concentration was analyzed through the Pierce BCA Protein assay kit. CB1 protein was quantified through CNR1 enzyme-linked immunosorbent assay (ELISA) kit from MyBioSource. CB1 concentration and total protein concentration were quantified and used to calculate a ratio of CB1 to total protein. Results: Inherent levels of peripheral lymphocyte CB1 were sufficient for quantification through ELISA without protein amplification. We found a group×genotype interaction such that users with the G allele had greater CB1 concentration than users with the A/A genotype, and a trend-level difference between genotypes in nonusers. Conclusions: This study demonstrates a minimally invasive technique of CB1 quantification that holds promise for the use of CB1 protein concentration, along with rs2023239 genotype, as a potential biomarker for susceptibility to cannabis use. These results suggest a gene (rs2023239 G)×environment (cannabis use) effect on CB1 density.
Collapse
Affiliation(s)
- Ariel Ketcherside
- Center for BrainHealth, University of Texas at Dallas, Dallas, Texas.,The School of Behavior and Brain Science, University of Texas at Dallas, Dallas, Texas
| | - Lindsey J Noble
- The School of Behavior and Brain Science, University of Texas at Dallas, Dallas, Texas
| | - Christa K McIntyre
- The School of Behavior and Brain Science, University of Texas at Dallas, Dallas, Texas
| | - Francesca M Filbey
- Center for BrainHealth, University of Texas at Dallas, Dallas, Texas.,The School of Behavior and Brain Science, University of Texas at Dallas, Dallas, Texas
| |
Collapse
|
41
|
Freitas HR, Isaac AR, Malcher-Lopes R, Diaz BL, Trevenzoli IH, De Melo Reis RA. Polyunsaturated fatty acids and endocannabinoids in health and disease. Nutr Neurosci 2017; 21:695-714. [PMID: 28686542 DOI: 10.1080/1028415x.2017.1347373] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are lipid derivatives of omega-3 (docosahexaenoic acid, DHA, and eicosapentaenoic acid, EPA) or of omega-6 (arachidonic acid, ARA) synthesized from membrane phospholipids and used as a precursor for endocannabinoids (ECs). They mediate significant effects in the fine-tune adjustment of body homeostasis. Phyto- and synthetic cannabinoids also rule the daily life of billions worldwide, as they are involved in obesity, depression and drug addiction. Consequently, there is growing interest to reveal novel active compounds in this field. Cloning of cannabinoid receptors in the 90s and the identification of the endogenous mediators arachidonylethanolamide (anandamide, AEA) and 2-arachidonyglycerol (2-AG), led to the characterization of the endocannabinoid system (ECS), together with their metabolizing enzymes and membrane transporters. Today, the ECS is known to be involved in diverse functions such as appetite control, food intake, energy balance, neuroprotection, neurodegenerative diseases, stroke, mood disorders, emesis, modulation of pain, inflammatory responses, as well as in cancer therapy. Western diet as well as restriction of micronutrients and fatty acids, such as DHA, could be related to altered production of pro-inflammatory mediators (e.g. eicosanoids) and ECs, contributing to the progression of cardiovascular diseases, diabetes, obesity, depression or impairing conditions, such as Alzheimer' s disease. Here we review how diets based in PUFAs might be linked to ECS and to the maintenance of central and peripheral metabolism, brain plasticity, memory and learning, blood flow, and genesis of neural cells.
Collapse
Affiliation(s)
- Hércules Rezende Freitas
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Alinny Rosendo Isaac
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | | | - Bruno Lourenço Diaz
- c Laboratory of Inflammation, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Isis Hara Trevenzoli
- d Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Ricardo Augusto De Melo Reis
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| |
Collapse
|
42
|
Oleoylethanolamide: A fat ally in the fight against obesity. Physiol Behav 2017; 176:50-58. [PMID: 28254531 DOI: 10.1016/j.physbeh.2017.02.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 01/24/2023]
|
43
|
Simon V, Cota D. MECHANISMS IN ENDOCRINOLOGY: Endocannabinoids and metabolism: past, present and future. Eur J Endocrinol 2017; 176:R309-R324. [PMID: 28246151 DOI: 10.1530/eje-16-1044] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/10/2017] [Accepted: 02/27/2017] [Indexed: 12/14/2022]
Abstract
The endocannabinoid system (ECS), including cannabinoid type 1 and type 2 receptors (CB1R and CB2R), endogenous ligands called endocannabinoids and their related enzymatic machinery, is known to have a role in the regulation of energy balance. Past information generated on the ECS, mainly focused on the involvement of this system in the central nervous system regulation of food intake, while at the same time clinical studies pointed out the therapeutic efficacy of brain penetrant CB1R antagonists like rimonabant for obesity and metabolic disorders. Rimonabant was removed from the market in 2009 and its obituary written due to its psychiatric side effects. However, in the meanwhile a number of investigations had started to highlight the roles of the peripheral ECS in the regulation of metabolism, bringing up new hope that the ECS might still represent target for treatment. Accordingly, peripherally restricted CB1R antagonists or inverse agonists have shown to effectively reduce body weight, adiposity, insulin resistance and dyslipidemia in obese animal models. Very recent investigations have further expanded the possible toolbox for the modulation of the ECS, by demonstrating the existence of endogenous allosteric inhibitors of CB1R, the characterization of the structure of the human CB1R, and the likely involvement of CB2R in metabolic disorders. Here we give an overview of these findings, discussing what the future may hold in the context of strategies targeting the ECS in metabolic disease.
Collapse
MESH Headings
- Allosteric Regulation/drug effects
- Animals
- Anti-Obesity Agents/adverse effects
- Anti-Obesity Agents/pharmacology
- Anti-Obesity Agents/therapeutic use
- Cannabinoid Receptor Antagonists/adverse effects
- Cannabinoid Receptor Antagonists/pharmacology
- Cannabinoid Receptor Antagonists/therapeutic use
- Drug Inverse Agonism
- Endocannabinoids/metabolism
- Energy Intake/drug effects
- Energy Metabolism/drug effects
- Humans
- Models, Biological
- Obesity/drug therapy
- Obesity/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Vincent Simon
- INSERM and University of BordeauxNeurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France
| | - Daniela Cota
- INSERM and University of BordeauxNeurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France
| |
Collapse
|
44
|
Lau BK, Cota D, Cristino L, Borgland SL. Endocannabinoid modulation of homeostatic and non-homeostatic feeding circuits. Neuropharmacology 2017; 124:38-51. [PMID: 28579186 DOI: 10.1016/j.neuropharm.2017.05.033] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 02/03/2023]
Abstract
The endocannabinoid system has emerged as a key player in the control of eating. Endocannabinoids, including 2-arachidonoylglycerol (2-AG) and anandamide (AEA), modulate neuronal activity via cannabinoid 1 receptors (CB1Rs) in multiple nuclei of the hypothalamus to induce or inhibit food intake depending on nutritional and hormonal status, suggesting that endocannabinoids may act in the hypothalamus to integrate different types of signals informing about the animal's energy needs. In the mesocorticolimbic system, (endo)cannabinoids modulate synaptic transmission to promote dopamine release in response to palatable food. In addition, (endo)cannabinoids act within the nucleus accumbens to increase food's hedonic impact; although this effect depends on activation of CB1Rs at excitatory, but not inhibitory inputs in the nucleus accumbens. While hyperactivation of the endocannabinoid system is typically associated with overeating and obesity, much evidence has emerged in recent years suggesting a more complicated system than first thought - endocannabinoids promote or suppress feeding depending on cell and input type, or modulation by various neuronal or hormonal signals. This review presents our latest knowledge of the endocannabinoid system in non-homeostatic and homeostatic feeding circuits. In particular, we discuss the functional role and cellular mechanism of action by endocannabinoids within the hypothalamus and mesocorticolimbic system, and how these are modulated by neuropeptide signals related to feeding. In light of recent advances and complexity in the field, we review cannabinoid-based therapeutic strategies for the treatment of obesity and how peripheral restriction of CB1R antagonists may provide a different mechanism of weight loss without the central adverse effects. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
Affiliation(s)
- Benjamin K Lau
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada
| | - Daniela Cota
- INSERM U1215, Université de Bordeaux, NeuroCentre Magendie, 146, rue Léo Saignat, 33077 Bordeaux, France
| | - Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry of CNR, Viale Campi Flegrei, 34, 80078 Pozzuoli, Napoli, Italy
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
45
|
Marino S, Idris AI. Emerging therapeutic targets in cancer induced bone disease: A focus on the peripheral type 2 cannabinoid receptor. Pharmacol Res 2017; 119:391-403. [PMID: 28274851 DOI: 10.1016/j.phrs.2017.02.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/26/2017] [Accepted: 02/27/2017] [Indexed: 12/17/2022]
Abstract
Skeletal complications are a common cause of morbidity in patients with primary bone cancer and bone metastases. The type 2 cannabinoid (Cnr2) receptor is implicated in cancer, bone metabolism and pain perception. Emerging data have uncovered the role of Cnr2 in the regulation of tumour-bone cell interactions and suggest that agents that target Cnr2 in the skeleton have potential efficacy in the reduction of skeletal complications associated with cancer. This review aims to provide an overview of findings relating to the role of Cnr2 receptor in the regulation of skeletal tumour growth, osteolysis and bone pain, and highlights the many unanswered questions and unmet needs. This review argues that development and testing of peripherally-acting, tumour-, Cnr2-selective ligands in preclinical models of metastatic cancer will pave the way for future research that will advance our knowledge about the basic mechanism(s) by which the endocannabinoid system regulate cancer metastasis, stimulate the development of a safer cannabis-based therapy for the treatment of cancer and provide policy makers with powerful tools to assess the science and therapeutic potential of cannabinoid-based therapy. Thus, offering the prospect of identifying selective Cnr2 ligands, as novel, alternative to cannabis herbal extracts for the treatment of advanced cancer patients.
Collapse
Affiliation(s)
- Silvia Marino
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK.
| | - Aymen I Idris
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK.
| |
Collapse
|
46
|
Gertsch J. Cannabimimetic phytochemicals in the diet - an evolutionary link to food selection and metabolic stress adaptation? Br J Pharmacol 2017; 174:1464-1483. [PMID: 27891602 DOI: 10.1111/bph.13676] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/05/2016] [Accepted: 11/13/2016] [Indexed: 12/21/2022] Open
Abstract
The endocannabinoid system (ECS) is a major lipid signalling network that plays important pro-homeostatic (allostatic) roles not only in the nervous system but also in peripheral organs. There is increasing evidence that there is a dietary component in the modulation of the ECS. Cannabinoid receptors in hominids co-evolved with diet, and the ECS constitutes a feedback loop for food selection and energy metabolism. Here, it is postulated that the mismatch of ancient lipid genes of hunter-gatherers and pastoralists with the high-carbohydrate diet introduced by agriculture could be compensated for via dietary modulation of the ECS. In addition to the fatty acid precursors of endocannabinoids, the potential role of dietary cannabimimetic phytochemicals in agriculturist nutrition is discussed. Dietary secondary metabolites from vegetables and spices able to enhance the activity of cannabinoid-type 2 (CB2 ) receptors may provide adaptive metabolic advantages and counteract inflammation. In contrast, chronic CB1 receptor activation in hedonic obese individuals may enhance pathophysiological processes related to hyperlipidaemia, diabetes, hepatorenal inflammation and cardiometabolic risk. Food able to modulate the CB1 /CB2 receptor activation ratio may thus play a role in the nutrition transition of Western high-calorie diets. In this review, the interplay between diet and the ECS is highlighted from an evolutionary perspective. The emerging potential of cannabimimetic food as a nutraceutical strategy is critically discussed. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland
| |
Collapse
|
47
|
Gaetani S, Romano A, Provensi G, Ricca V, Lutz T, Passani MB. Eating disorders: from bench to bedside and back. J Neurochem 2016; 139:691-699. [PMID: 27649625 DOI: 10.1111/jnc.13848] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Silvana Gaetani
- Department of Physiology and Pharmacology “V. Erspamer”; Sapienza University of Rome; Rome Italy
| | - Adele Romano
- Department of Physiology and Pharmacology “V. Erspamer”; Sapienza University of Rome; Rome Italy
| | - Gustavo Provensi
- Department of Neuroscience, Psychology, Drug Discovery and Child Health (NEUROFARBA); University of Florence; Florence Italy
| | - Valdo Ricca
- Department of Neuroscience, Psychology, Drug Discovery and Child Health (NEUROFARBA); University of Florence; Florence Italy
| | - Thomas Lutz
- Institute of Veterinary Physiology; Vetsuisse Faculty University of Zurich; Zurich Switzerland
- Center of Integrative Human Physiology; University of Zurich; Zurich Switzerland
| | | |
Collapse
|
48
|
Yuan D, Wu Z, Wang Y. Evolution of the diacylglycerol lipases. Prog Lipid Res 2016; 64:85-97. [PMID: 27568643 DOI: 10.1016/j.plipres.2016.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/24/2016] [Accepted: 08/24/2016] [Indexed: 01/31/2023]
Abstract
Diacylglycerol lipases (DGLs) mainly catalyze "on-demand" biosynthesis of bioactive monoacylglycerols (MAGs) with different long fatty acyl chains, including 2-arachidonoylglycerol (2-AG), 2-linoleoylglycerol (2-LG), 2-oleoylglycerol (2-OG) and 2-palmitoylglycerol (2-PG). Enzymatic characterization of DGLs, their expression and distribution, and functional features has been elucidated from microorganisms to mammals in some extent. In mammals, biosynthesis, degradation and metabolism of these bioactive lipids intertwine and form a complicated biochemical pathway to affect the mammal neuromodulation of central nervous system and also other physiological processes in most peripheral organs and non-nervous tissue cells, and yet we still do not know if the neuromodulatory role of mammal DGL and MAGs is similar to invertebrates. Tracing the evolutionary history of DGLs from microorganisms to vertebrates will be an essential method to infer DGL and MAG research in organisms. In this review, we give an exhaustive explanation of the ancestral origin, divergence and evolutionary pattern through systemic searching of DGL orthologs in different species. Finally, we also summarize our recent work on the structural and functional studies of DGL in order to explore usage of DGLs in industry and the development of inhibitors for clinical intervention.
Collapse
Affiliation(s)
- Dongjuan Yuan
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, People's Republic of China; College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Yonghua Wang
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, People's Republic of China.
| |
Collapse
|
49
|
Fede C, Albertin G, Petrelli L, Sfriso MM, Biz C, De Caro R, Stecco C. Expression of the endocannabinoid receptors in human fascial tissue. Eur J Histochem 2016; 60:2643. [PMID: 27349320 PMCID: PMC4933831 DOI: 10.4081/ejh.2016.2643] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 11/30/2022] Open
Abstract
Cannabinoid receptors have been localized in the central and peripheral nervous system as well as on cells of the immune system, but recent studies on animal tissue gave evidence for the presence of cannabinoid receptors in different types of tissues. Their presence was supposed also in myofascial tissue, suggesting that the endocannabinoid system may help resolve myofascial trigger points and relieve symptoms of fibromyalgia. However, until now the expression of CB1 (cannabinoid receptor 1) and CB2 (cannabinoid receptor 2) in fasciae has not yet been established. Small samples of fascia were collected from volunteers patients during orthopedic surgery. For each sample were done a cell isolation, immunohistochemical investigation (CB1 and CB2 antibodies) and real time RT-PCR to detect the expression of CB1 and CB2. Both cannabinoid receptors are expressed in human fascia and in human fascial fibroblasts culture cells, although to a lesser extent than the control gene. We can assume that the expression of mRNA and protein of CB1 and CB2 receptors in fascial tissue are concentrated into the fibroblasts. This is the first demonstration that the fibroblasts of the muscular fasciae express CB1 and CB2. The presence of these receptors could help to provide a description of cannabinoid receptors distribution and to better explain the role of fasciae as pain generator and the efficacy of some fascial treatments. Indeed the endocannabinoid receptors of fascial fibroblasts can contribute to modulate the fascial fibrosis and inflammation.
Collapse
|
50
|
Association between plasma endocannabinoids and appetite in hemodialysis patients: A pilot study. Nutr Res 2016; 36:658-62. [PMID: 27333956 DOI: 10.1016/j.nutres.2016.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 11/24/2022]
Abstract
Uremia-associated anorexia may be related to altered levels of long chain n-6 and n-3 polyunsaturated fatty acid (PUFA) derived circulating endocannabinoids (EC) and EC-like compounds that are known to mediate appetite. Our study's hypothesis was that such molecules are associated with appetite in patients with end-stage renal disease. A cross-sectional observational study was performed in 20 chronic hemodialysis patients (9 females, 11 males) and 10 healthy female controls in whom appetite was assessed using the Simplified Nutritional Appetite Questionnaire (SNAQ) and blood drawn in the fasting (and when applicable) pre-dialysis state. Blood levels of PUFA and EC were also measured. Higher blood levels of the long chain n-6 fatty acid 20:4n6 (arachidonic acid) and lower levels of the long chain n-3 fatty acid 20:5n3 (eicosapentaenoic acid) were observed in female hemodialysis patients compared to controls. No differences were observed between male and female patients. In female study participants strong correlations between specific EC-like compounds and total SNAQ scores were noted, including with the n-6 PUFA derived linoleoyl ethanolamide (L-EA; ρ=-0.60, P<.01) and the n-3 PUFA derived docosahexaenoyl ethanolamide (DH-EA; ρ=0.63, P<.01). The L-EA:DH-EA ratio was most strongly associated with the SNAQ score (ρ=-0.74, P≤.001), and its questions associated with appetite (ρ=-0.69, P≤.01) and satiety (ρ=-0.81, P≤.001). These findings support a link between circulating EC and appetite in hemodialysis patients.
Collapse
|