1
|
Paramasivam P, Choi SW, Poddar R, Paul S. Impairment of neuronal tyrosine phosphatase STEP worsens post-ischemic inflammation and brain injury under hypertensive condition. J Neuroinflammation 2024; 21:271. [PMID: 39438980 PMCID: PMC11515672 DOI: 10.1186/s12974-024-03227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Hypertension is associated with poor outcome and higher mortality in patients with ischemic stroke. The impairment of adaptive vascular mechanisms under hypertensive condition compromises collateral blood flow after arterial occlusion in patients with acute ischemic stroke resulting in hypoperfusion. The increased oxidative stress caused by hypoperfusion is thought to be a trigger for the rapid evolution of ischemic infarct volume under hypertensive condition. However, the cellular factors and pathways that contribute to the exacerbation of ischemic brain injury under hypertensive condition is not yet understood. The current study reveals that predisposition to hypertension leads to basal loss of function of the neuron-specific tyrosine phosphatase STEP, which plays a crucial role in neuroprotection against excitotoxic insult. The findings further show that a mild ischemic insult in hypertensive rats triggers an early onset and sustained activation of the neuronal extracellular signal regulated kinase (ERK MAPK), a member of the mitogen activated protein kinase family and a substrate of STEP. This leads to rapid increase in the activation of neuronal NF-κB, expression of neuronal cyclooxygenase-2 and subsequent biosynthesis of the pro-inflammatory mediator prostaglandin E2, resulting in rapid morphological transformation of microglia to the pro-inflammatory state and subsequent exacerbation of ischemic brain injury. Restoration of STEP signaling with intravenous administration of a STEP-derived peptide mimetic reduces the pro-inflammatory response in neurons, activation of microglia, and ischemic brain injury. The findings suggest that the basal loss of STEP function under hypertensive condition contributes to the exacerbation of ischemic brain injury by enhancing post-ischemic inflammatory response. The study not only presents a novel role of STEP in regulating neuroimmune communication but also highlights the therapeutic potential of a STEP-mimetic in mitigating ischemic brain damage under hypertensive condition.
Collapse
Affiliation(s)
- Prabu Paramasivam
- Department of Neurology, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Seong Won Choi
- Department of Neurology, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Ranjana Poddar
- Department of Neurology, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
2
|
Carnevale L, Perrotta M, Mastroiacovo F, Perrotta S, Migliaccio A, Fardella V, Pacella J, Fardella S, Pallante F, Carnevale R, Carnevale D, Lembo G. Advanced Magnetic Resonance Imaging to Define the Microvascular Injury Driven by Neuroinflammation in the Brain of a Mouse Model of Hypertension. Hypertension 2024; 81:636-647. [PMID: 38174566 DOI: 10.1161/hypertensionaha.123.21940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Hypertension is one of the main risk factors for dementia and cognitive impairment. METHODS We used the model of transverse aortic constriction to induce chronic pressure overload in mice. We characterized brain injury by advanced translational applications of magnetic resonance imaging. In parallel, we analyzed peripheral target organ damage induced by chronic pressure overload by ultrasonography. Microscopical characterization of brain vasculature was performed as well, together with the analysis of immune and inflammatory markers. RESULTS We identified a specific structural, microstructural, and functional brain injury. In particular, we highlighted a regional enlargement of the hypothalamus, microstructural damage in the white matter of the fimbria, and a reduction of the cerebral blood flow. A parallel analysis performed by confocal microscopy revealed a correspondent tissue damage evidenced by a reduction of cerebral capillary density, paired with loss of pericyte coverage. We assessed cognitive impairment and cardiac damage induced by hypertension to perform correlation analyses with the brain injury severity. At the mechanistic level, we found that CD8+T cells, producing interferon-γ, infiltrated the brain of hypertensive mice. By neutralizing this proinflammatory cytokine, we obtained a rescue of the phenotype, demonstrating their crucial role in establishing the microvascular damage. CONCLUSIONS Overall, we have used translational tools to comprehensively characterize brain injury in a mouse model of hypertension induced by chronic pressure overload. We have identified early cerebrovascular damage in hypertensive mice, sustained by CD8+IFN-γ+T lymphocytes, which fuel neuroinflammation to establish the injury of brain capillaries.
Collapse
Affiliation(s)
- Lorenzo Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS INM Neuromed, Pozzilli, Italy (L.C., M.P., F.M., S.P., A.M., V.F., J.P., S.F., F.P., R.C., D.C., G.L.)
| | - Marialuisa Perrotta
- Department of Angiocardioneurology and Translational Medicine, IRCCS INM Neuromed, Pozzilli, Italy (L.C., M.P., F.M., S.P., A.M., V.F., J.P., S.F., F.P., R.C., D.C., G.L.)
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy (M.P., D.C., G.L.)
| | - Francesco Mastroiacovo
- Department of Angiocardioneurology and Translational Medicine, IRCCS INM Neuromed, Pozzilli, Italy (L.C., M.P., F.M., S.P., A.M., V.F., J.P., S.F., F.P., R.C., D.C., G.L.)
| | - Sara Perrotta
- Department of Angiocardioneurology and Translational Medicine, IRCCS INM Neuromed, Pozzilli, Italy (L.C., M.P., F.M., S.P., A.M., V.F., J.P., S.F., F.P., R.C., D.C., G.L.)
| | - Agnese Migliaccio
- Department of Angiocardioneurology and Translational Medicine, IRCCS INM Neuromed, Pozzilli, Italy (L.C., M.P., F.M., S.P., A.M., V.F., J.P., S.F., F.P., R.C., D.C., G.L.)
| | - Valentina Fardella
- Department of Angiocardioneurology and Translational Medicine, IRCCS INM Neuromed, Pozzilli, Italy (L.C., M.P., F.M., S.P., A.M., V.F., J.P., S.F., F.P., R.C., D.C., G.L.)
| | - Jacopo Pacella
- Department of Angiocardioneurology and Translational Medicine, IRCCS INM Neuromed, Pozzilli, Italy (L.C., M.P., F.M., S.P., A.M., V.F., J.P., S.F., F.P., R.C., D.C., G.L.)
| | - Stefania Fardella
- Department of Angiocardioneurology and Translational Medicine, IRCCS INM Neuromed, Pozzilli, Italy (L.C., M.P., F.M., S.P., A.M., V.F., J.P., S.F., F.P., R.C., D.C., G.L.)
| | - Fabio Pallante
- Department of Angiocardioneurology and Translational Medicine, IRCCS INM Neuromed, Pozzilli, Italy (L.C., M.P., F.M., S.P., A.M., V.F., J.P., S.F., F.P., R.C., D.C., G.L.)
| | - Raimondo Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS INM Neuromed, Pozzilli, Italy (L.C., M.P., F.M., S.P., A.M., V.F., J.P., S.F., F.P., R.C., D.C., G.L.)
| | - Daniela Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS INM Neuromed, Pozzilli, Italy (L.C., M.P., F.M., S.P., A.M., V.F., J.P., S.F., F.P., R.C., D.C., G.L.)
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy (M.P., D.C., G.L.)
| | - Giuseppe Lembo
- Department of Angiocardioneurology and Translational Medicine, IRCCS INM Neuromed, Pozzilli, Italy (L.C., M.P., F.M., S.P., A.M., V.F., J.P., S.F., F.P., R.C., D.C., G.L.)
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy (M.P., D.C., G.L.)
| |
Collapse
|
3
|
Perrotta M, Carnevale D, Carnevale L. Mouse models of cerebral injury and cognitive impairment in hypertension. Front Aging Neurosci 2023; 15:1199612. [PMID: 37539342 PMCID: PMC10394515 DOI: 10.3389/fnagi.2023.1199612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Hypertension is a major risk factor for dementia, including both vascular and neurodegenerative etiologies. With the original aim of studying the effect of blood pressure elevation on canonical target organs of hypertension as the heart, the vasculature or the kidneys, several experimental models of hypertension have sprouted during the years. With the more recent interest of understanding the cerebral injury burden caused by hypertension, it is worth understanding how the main models of hypertension or localized cerebral hypertension stand in the field of hypertension-induced cerebral injury and cognitive impairment. With this review we will report main genetic, pharmacological and surgical models of cognitive impairment induced by hypertension, summarizing how each specific category and model can improve our understanding of the complex phenomenon of cognitive loss of vascular etiology.
Collapse
Affiliation(s)
- Marialuisa Perrotta
- Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
- Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Department of Angiocardioneurology and Translational Medicine, Pozzilli, Italy
| | - Daniela Carnevale
- Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
- Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Department of Angiocardioneurology and Translational Medicine, Pozzilli, Italy
| | - Lorenzo Carnevale
- Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Department of Angiocardioneurology and Translational Medicine, Pozzilli, Italy
| |
Collapse
|
4
|
Ben-Shabat M, Awad-Igbaria Y, Sela S, Gross B, Yagil Y, Yagil C, Palzur E. Predisposition to cortical neurodegenerative changes in brains of hypertension prone rats. J Transl Med 2023; 21:51. [PMID: 36707861 PMCID: PMC9881299 DOI: 10.1186/s12967-023-03916-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Substantial evidence suggests that hypertension is a significant risk factor for cognitive decline. However, it is unclear whether the genetic predisposition to hypertension is also associated with cellular dysfunction that promotes neurodegeneration. METHODS Changes in blood pressure were evaluated following dietary salt-loading or administration of a regular diet in Sabra Normotensive (SBN/y) and Sabra Hypertension-prone rats (SBH/y). We performed quantitative RT-PCR and immunofluorescence staining in brain cortical tissues before salt loading and 6 and 9 months after salt loading. To examine the expression of brain cortical proteins involved in the gene regulation (Histone Deacetylase-HDAC2; Histone Acetyltransferase 1-HAT1), stress response (Activating Transcription Factor 4-ATF4; Eukaryotic Initiation Factor 2- eIF2α), autophagy (Autophagy related 4A cysteine peptidase- Atg4a; light-chain 3-LC3A/B; mammalian target of rapamycin complex 1- mTORC1) and apoptosis (caspase-3). RESULTS Prior to salt loading, SBH/y compared to SBN/y expressed a significantly higher level of cortical HAT1 (protein), Caspase-3 (mRNA/protein), LC3A, and ATF4 (mRNA), lower levels of ATG4A (mRNA/protein), LC3A/B, HDAC2 (protein), as well as a lower density of cortical neurons. Following dietary salt loading, SBH/y but not SBN/y developed high blood pressure. In hypertensive SBH/y, there was significant upregulation of cortical HAT1 (protein), Caspase-3 (protein), and eIF2α ~ P (protein) and downregulation of HDAC2 (protein) and mTORC1 (mRNA), and cortical neuronal loss. CONCLUSIONS The present findings suggest that genetic predisposition to hypertension is associated in the brain cortex with disruption in autophagy, gene regulation, an abnormal response to cellular stress, and a high level of cortical apoptosis, and could therefore exacerbate cellular dysfunction and thereby promote neurodegeneration.
Collapse
Affiliation(s)
- Moti Ben-Shabat
- grid.415839.2Research Institute of Galilee Medical Center, Nahariya, Israel ,grid.22098.310000 0004 1937 0503Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel ,grid.415839.2Neurology Department, Galilee Medical Center, Nahariya, Israel
| | - Yaseen Awad-Igbaria
- grid.415839.2Research Institute of Galilee Medical Center, Nahariya, Israel ,grid.22098.310000 0004 1937 0503Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Shifra Sela
- grid.415839.2Research Institute of Galilee Medical Center, Nahariya, Israel ,grid.415839.2Neurology Department, Galilee Medical Center, Nahariya, Israel
| | - Bella Gross
- grid.415839.2Research Institute of Galilee Medical Center, Nahariya, Israel ,grid.415839.2Neurology Department, Galilee Medical Center, Nahariya, Israel
| | - Yoram Yagil
- Laboratory for Molecular Medicine, Barzilai University Medical Center, Ashkelon, Israel ,grid.7489.20000 0004 1937 0511Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheba, Israel
| | - Chana Yagil
- Laboratory for Molecular Medicine, Barzilai University Medical Center, Ashkelon, Israel ,grid.7489.20000 0004 1937 0511Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheba, Israel
| | - Eilam Palzur
- grid.415839.2Research Institute of Galilee Medical Center, Nahariya, Israel
| |
Collapse
|
5
|
Abstract
Hypertension affects a significant proportion of the adult and aging population and represents an important risk factor for vascular cognitive impairment and late-life dementia. Chronic high blood pressure continuously challenges the structural and functional integrity of the cerebral vasculature, leading to microvascular rarefaction and dysfunction, and neurovascular uncoupling that typically impairs cerebral blood supply. Hypertension disrupts blood-brain barrier integrity, promotes neuroinflammation, and may contribute to amyloid deposition and Alzheimer pathology. The mechanisms underlying these harmful effects are still a focus of investigation, but studies in animal models have provided significant molecular and cellular mechanistic insights. Remaining questions relate to whether adequate treatment of hypertension may prevent deterioration of cognitive function, the threshold for blood pressure treatment, and the most effective antihypertensive drugs. Recent advances in neurovascular biology, advanced brain imaging, and detection of subtle behavioral phenotypes have begun to provide insights into these critical issues. Importantly, a parallel analysis of these parameters in animal models and humans is feasible, making it possible to foster translational advancements. In this review, we provide a critical evaluation of the evidence available in experimental models and humans to examine the progress made and identify remaining gaps in knowledge.
Collapse
Affiliation(s)
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Daniela Carnevale
- Department of Molecular Medicine, “Sapienza” University of Rome, Italy
- Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
6
|
Hannawi Y, Ewees MG, Moore JT, Zweier JL. Characterizing CD38 Expression and Enzymatic Activity in the Brain of Spontaneously Hypertensive Stroke-Prone Rats. Front Pharmacol 2022; 13:881708. [PMID: 35712720 PMCID: PMC9194821 DOI: 10.3389/fphar.2022.881708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
Background: CD38 is a transmembrane glycoprotein that catabolizes nicotinamide adenine dinucleotide (NAD+) and is the main source for the age-dependent decrease in NAD+ levels. Increased CD38 enzymatic activity has been implicated in several neurological diseases. However, its role in the pathogenesis of cerebral small vessel disease (CSVD) remains unknown. We aimed to characterize CD38 expression and enzymatic activity in the brain of spontaneously hypertensive stroke-prone rats (SHRSP), a genetic model for hypertension and human CSVD, in comparison to age-matched normotensive Wistar Kyoto rats (WKY). Materials and Methods: Age-matched male 7- and 24-week-old WKY and SHRSP were studied. CD38 enzymatic activity was determined in the brain homogenate. Immunohistochemistry and Western Blotting (WB) were used to characterize CD38 expression and localize it in the different cell types within the brain. In addition, expression of nitric oxide synthase (NOS) isoforms and the levels of nitric oxide (NO), superoxide, nicotinamide dinucleotide (phosphate) NAD(P)H were measured the brain of in WKY and SHRSP. Results: CD38 expression and enzymatic activity were increased in SHRSP brains compared to age matched WKY starting at 7 weeks of age. CD38 expression was localized to the endothelial cells, astrocytes, and microglia. We also identified increased CD38 expression using WB with age in SHRSP and WKY. CD38 enzymatic activity was also increased in 24-week SHRSP compared to 7-week SHRSP. In association, we identified evidence of oxidative stress, reduced NO level, reduced NAD(P)H level and endothelial NOS expression in SHRSP compared to age matched WKY. NAD(P)H also decreased with age in WKY and SHRSP. Additionally, activation of astrocytes and microglia were present in SHRSP compared to WKY. Conclusions: CD38 is overexpressed, and its enzymatic activity is increased in SHRSP, a genetic model for marked hypertension and human CSVD. Our results suggest a potential role for CD38 enzymatic activation in the pathogenesis of CSVD and points to the need for future mechanistic and pharmacological studies.
Collapse
Affiliation(s)
- Yousef Hannawi
- Division of Cerebrovascular Diseases and Neurocritical Care, Department of Neurology, The Ohio State University, Columbus, OH, United States
| | - Mohamed G. Ewees
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Jordan T. Moore
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Jay L. Zweier
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
7
|
Abraham AJM, Bobby Z, Chaturvedula L, Vinayagam V, Jacob SE, Habeebullah S. Maternal Adverse Outcomes in Hypertensive Disorders of Pregnancy and Their Association with Serum Adiponectin and Redox Markers. Fetal Pediatr Pathol 2022; 41:1-17. [PMID: 32275184 DOI: 10.1080/15513815.2020.1745973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: Premature termination of pregnancy because of unmanageable maternal complications in hypertensive disorders of pregnancy (HDP) results in adverse neonatal outcome. Identification of biochemical derangements associated with maternal complications may help in the better medical management of the mother resulting in better neonatal outcomes. Method: Healthy pregnant women (C); pregnant women with gestational hypertension (GH), and preeclampsia (late [LP] and early [EP] onset) were studied. Maternal serum redox markers and adipokines were evaluated for their association with maternal complications. Results: Adiponectin levels were significantly raised in preeclampsia groups when compared with control and GH groups. Univariate and multivariate analysis confirmed that malondialdehyde (MDA) and total antioxidant status (TAS) were associated with eclampsia; adiponectin and TAS with HELLP syndrome; adiponectin, MDA and TAS with severe preeclampsia; and adiponectin with impaired renal function. Conclusion: We identified that increased serum adiponectin, MDA, and TAS were associated with adverse maternal outcomes.
Collapse
Affiliation(s)
- Angelin Jeba Malar Abraham
- Department of Biochemistry, Jawaharlal Institute of Post Graduate Medical Education and Research, Pondicherry, India
| | - Zachariah Bobby
- Department of Biochemistry, Jawaharlal Institute of Post Graduate Medical Education and Research, Pondicherry, India
| | - Latha Chaturvedula
- Department of Obstetrics and Gynecology, Jawaharlal Institute of Post Graduate Medical Education and Research, Pondicherry, India
| | - Vickneshwaran Vinayagam
- Department of Biochemistry, Jawaharlal Institute of Post Graduate Medical Education and Research, Pondicherry, India
| | - Sajini Elizabeth Jacob
- Department of Pathology, Jawaharlal Institute of Post Graduate Medical Education and Research, Pondicherry, India
| | - Syed Habeebullah
- Department of Obstetrics and Gynecology, Jawaharlal Institute of Post Graduate Medical Education and Research, Pondicherry, India
| |
Collapse
|
8
|
Oksuz M, Abitagaoglu S, Kaciroglu A, Koksal C, Ozturk BY, Erel O, Senat A, Erdogan Ari D. Effects of general anaesthesia and ultrasonography-guided interscalene block on pain and oxidative stress in shoulder arthroscopy: A randomised trial. Int J Clin Pract 2021; 75:e14948. [PMID: 34614288 DOI: 10.1111/ijcp.14948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND/AIM The aim of this study was to evaluate the effects of general anaesthesia and ultrasonography-guided interscalene block on pain and oxidative stress evaluated by thiol-disulphide balance and C-reactive protein levels in patients undergoing shoulder arthroscopy. MATERIALS AND METHODS A total of 42 patients aged 18-75 years who were scheduled to undergo shoulder arthroscopy were randomised into interscalene block group (Group-IB, n = 20) and general anaesthesia group (Group-GA, n = 22). All patients received patient-controlled analgesia during the postoperative period. Additional analgesics were administered to patients with a visual analogue scale score of >4. Native-thiol, total-thiol, disulphide and C-reactive protein levels were measured. Patients' visual analogue scale scores, morphine and additional analgesic consumption were recorded. A shift in thiol-disulphide balance towards decreased thiol and increased disulphide levels was regarded as an indicator of oxidative stress. RESULTS Pain level, morphine and additional analgesic consumption were higher in Group-GA. Native-thiol and total-thiol levels were higher in Group-IB postoperatively and also disulphide levels were lower at postoperative 18 hours. C-reactive protein levels were similar in both the groups. CONCLUSION Interscalene block induced less oxidative stress during the postoperative period, as evaluated by thiol-disulphide balance. In shoulder arthroscopy, interscalene block provides more stable haemodynamics perioperatively and facilitates better postoperative pain control.
Collapse
Affiliation(s)
- Murat Oksuz
- Anesthesiology and Reanimation Department, University of Health Sciences Sancaktepe Şehit Prof. Dr. İlhan Varank Health Application and Research Center, Istanbul, Turkey
| | - Suheyla Abitagaoglu
- Anesthesiology and Reanimation Department, University of Health Sciences Fatih Sultan Mehmet Health Application and Research Center, Istanbul, Turkey
| | - Ahmet Kaciroglu
- Anesthesiology and Reanimation Department, University of Health Sciences Fatih Sultan Mehmet Health Application and Research Center, Istanbul, Turkey
- Ministery of Health Bursa City Hospital, Bursa, Turkey
| | - Ceren Koksal
- Anesthesiology and Reanimation Department, University of Health Sciences Fatih Sultan Mehmet Health Application and Research Center, Istanbul, Turkey
| | - Burak Yagmur Ozturk
- Orthopedic Surgery Department, University of Health Sciences Fatih Sultan Mehmet Health Application and Research Center, Istanbul, Turkey
| | - Ozcan Erel
- Biochemistry Department, Yıldırım Beyazıt University, Ankara, Turkey
| | - Almila Senat
- Biochemistry Department, Yıldırım Beyazıt University, Ankara, Turkey
| | - Dilek Erdogan Ari
- Anesthesiology and Reanimation Department, University of Health Sciences Fatih Sultan Mehmet Health Application and Research Center, Istanbul, Turkey
| |
Collapse
|
9
|
Youwakim J, Girouard H. Inflammation: A Mediator Between Hypertension and Neurodegenerative Diseases. Am J Hypertens 2021; 34:1014-1030. [PMID: 34136907 DOI: 10.1093/ajh/hpab094] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 05/03/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Hypertension is the most prevalent and modifiable risk factor for stroke, vascular cognitive impairment, and Alzheimer's disease. However, the mechanistic link between hypertension and neurodegenerative diseases remains to be understood. Recent evidence indicates that inflammation is a common pathophysiological trait for both hypertension and neurodegenerative diseases. Low-grade chronic inflammation at the systemic and central nervous system levels is now recognized to contribute to the physiopathology of hypertension. This review speculates that inflammation represents a mediator between hypertension and neurodegenerative diseases, either by a decrease in cerebral blood flow or a disruption of the blood-brain barrier which will, in turn, let inflammatory cells and neurotoxic molecules enter the brain parenchyma. This may impact brain functions including cognition and contribute to neurodegenerative diseases. This review will thus discuss the relationship between hypertension, systemic inflammation, cerebrovascular functions, neuroinflammation, and brain dysfunctions. The potential clinical future of immunotherapies against hypertension and associated cerebrovascular risks will also be presented.
Collapse
Affiliation(s)
- Jessica Youwakim
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l’apprentissage (CIRCA); Montreal, QC, Canada
- Groupe de Recherche sur le Système Nerveux Central, Montreal, QC, Canada
| | - Hélène Girouard
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l’apprentissage (CIRCA); Montreal, QC, Canada
- Groupe de Recherche sur le Système Nerveux Central, Montreal, QC, Canada
- Centre de recherche de l’Institut Universitaire de Gériaterie de Montréal, Montreal, QC, Canada
| |
Collapse
|
10
|
Hsieh MH, Cui ZY, Yang AL, Nhu NT, Ting SY, Yu SH, Cheng YJ, Lin YY, Wu XB, Lee SD. Cerebral Cortex Apoptosis in Early Aged Hypertension: Effects of Epigallocatechin-3-Gallate. Front Aging Neurosci 2021; 13:705304. [PMID: 34456710 PMCID: PMC8397540 DOI: 10.3389/fnagi.2021.705304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to investigate cerebral cortex apoptosis on the early aged hypertension and the effects of green tea flavonoid epigallocatechin-3-gallate (EGCG). Twenty-four rats were divided into three groups: a control Wistar-Kyoto group (WKY, n = 8), a spontaneously early aged hypertensive group (SHR, n = 8), and an early aged hypertension with EGCG treatment group (SHR-EGCG, n = 8; daily oral EGCG 200 mg/kg-94%, 12 weeks). At 48 weeks old, blood pressures (BPs) were evaluated and cerebral cortexes were isolated for TUNEL assay and Western blotting. Systolic, diastolic, and mean blood pressure levels in the SHR-EGCG were reduced compared to the SHR. The percentage of neural cell deaths, the levels of cytosolic Endonuclease G, cytosolic AIF (Caspase-independent apoptotic pathway), Fas, Fas Ligand, FADD, Caspase-8 (Fas-mediated apoptotic pathway), t-Bid, Bax/Bcl-2, Bak/Bcl-xL, cytosolic Cytochrome C, Apaf-1, Caspase-9 (Mitochondrial-mediated apoptotic pathway), and Caspase-3 (Fas-mediated and Mitochondria-mediated apoptotic pathways) were increased in the SHR relative to WKY and reduced in SHR-EGCG relative to SHR. In contrast, the levels of Bcl-2, Bcl-xL, p-Bad, 14-3-3, Bcl-2/Bax, Bcl-xL/Bak, and p-Bad/Bad (Bcl-2 family-related pro-survival pathway), as well as Sirt1, p-PI3K/PI3K and p-AKT/AKT (Sirt1/PI3K/AKT-related pro-survival pathway), were reduced in SHR relative WKY and enhanced in SHR-EGCG relative to SHR. In conclusion, green tea flavonoid epigallocatechin-3-gallate (EGCG) might prevent neural apoptotic pathways and activate neural survival pathways, providing therapeutic effects on early aged hypertension-induced neural apoptosis.
Collapse
Affiliation(s)
- Min-Huang Hsieh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jen-Ai Hospital, Taichung, Taiwan
| | - Zhen-Yang Cui
- School of Rehabilitation Medicine, Weifang Medical University, Shandong, China
| | - Ai-Lun Yang
- Institute of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Nguyen Thanh Nhu
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam.,Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
| | - Shih-Ying Ting
- Department of Internal Medicine, Jen-Ai Hospital, Taichung, Taiwan
| | - Shao-Hong Yu
- College of Rehabilitation, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Yu-Jung Cheng
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
| | - Yi-Yuan Lin
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Xu-Bo Wu
- Department of Rehabilitation, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shin-Da Lee
- School of Rehabilitation Medicine, Weifang Medical University, Shandong, China.,Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan.,College of Rehabilitation, Shandong University of Traditional Chinese Medicine, Shandong, China.,Department of Rehabilitation, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Physical Therapy, Asia University, Taichung, Taiwan
| |
Collapse
|
11
|
Effect of genetic depletion of MMP-9 on neurological manifestations of hypertension-induced intracerebral hemorrhages in aged mice. GeroScience 2021; 43:2611-2619. [PMID: 34415518 PMCID: PMC8599521 DOI: 10.1007/s11357-021-00402-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/07/2021] [Indexed: 10/20/2022] Open
Abstract
Clinical and experimental studies show that hypertension induces intracerebral hemorrhages (ICH), including cerebral microhemorrhages in the aged brain, which contribute to the pathogenesis of vascular cognitive impairment (VCI). Previous studies showed that aging increased oxidative stress-mediated activation of matrix metalloproteinases (MMPs) that importantly contributes to the pathogenesis of ICHs. In particular, oxidative stress has been implicated in activation of MMP-9, which is known to be involved in the degradation of the extracellular matrix and cleavage of collagen IV, a key constituent of the basal membrane of cerebral vessels. To determine the role of MMP-9 activation in the genesis of ICHs, we induced hypertension in 20-month-old MMP-9 null and age-matched control mice by angiotensin II and L-NAME treatment. Contrary to our hypothesis, MMP-9 deficiency did not delay the onset or incidence of neurological consequences of hypertension-induced ICHs. Our results indicate that MMP-9 activation does not play a role in the age-related exacerbation of hypertension-induced ICH.
Collapse
|
12
|
Moti BS, Oz E, Olga A, Bella G, Shifra S, Eilam P. New Cortical Neurodegenerative Pathways in the Hypertensive Rat Brain. Cereb Cortex 2021; 31:5487-5496. [PMID: 34179944 DOI: 10.1093/cercor/bhab173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/20/2021] [Accepted: 05/25/2021] [Indexed: 11/12/2022] Open
Abstract
Hypertension is a risk factor for neurodegenerative diseases. We hypothesized that chronic hypertension underlies neurodegeneration. In this study, we examined the expression of brain cortical proteins involved in homeostasis, apoptosis, and brain functions in Spontaneously Hypertensive Rats (SHR) compared with normotensive Wistar-Kyoto (WKY) rats. We used paraffin-embedded brain sections of 8-month-old SHR and WKY rats, immunohistochemically stained and analyzed by image processing. In SHR, cytochrome c oxidase subunit 7A increased, indicative of hypoxia; heat shock protein 40, the chaperon for refolding proteins, decreased, leading to accumulation of misfolded proteins; the levels of both voltage-gated sodium channels, Na1.2, 1.6, decreased, reflecting attenuation of the action potential, causing axonal injury; autophagy-related protein 4A (Atg4a), an essential protein of autophagy, decreased, reducing the removal of misfolded proteins; demyelination, the hallmark of neurodegeneration, was shown; modulation of both histone deacetylases 2 and histone acetyltransferase 1 was shown, indicative of altered regulation of gene transcription; increased activated (cleaved) caspase-3, indicative of apoptosis. These new findings suggest that chronic hypertension induces hypoxia and oxidative stress, axonal injury, accelerates the accumulation of misfolded proteins and apoptosis, pathways preceding neurodegeneration.
Collapse
Affiliation(s)
- Ben Shabat Moti
- Galilee Medical Center, Research Institute, PO Box 21, Nahariya 22100, Israel.,The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Eliya Oz
- Galilee Medical Center, Research Institute, PO Box 21, Nahariya 22100, Israel.,The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Azrilin Olga
- Galilee Medical Center, Research Institute, PO Box 21, Nahariya 22100, Israel.,Neurology Department, Galilee Medical Center, Nahariya, Israel
| | - Gross Bella
- Galilee Medical Center, Research Institute, PO Box 21, Nahariya 22100, Israel.,The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.,Neurology Department, Galilee Medical Center, Nahariya, Israel
| | - Sela Shifra
- Galilee Medical Center, Research Institute, PO Box 21, Nahariya 22100, Israel.,The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Palzur Eilam
- Galilee Medical Center, Research Institute, PO Box 21, Nahariya 22100, Israel
| |
Collapse
|
13
|
de Montgolfier O, Thorin-Trescases N, Thorin E. Pathological Continuum From the Rise in Pulse Pressure to Impaired Neurovascular Coupling and Cognitive Decline. Am J Hypertens 2020; 33:375-390. [PMID: 32202623 PMCID: PMC7188799 DOI: 10.1093/ajh/hpaa001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/11/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
The "biomechanical hypothesis" stipulates that with aging, the cumulative mechanical damages to the cerebral microvasculature, magnified by risk factors for vascular diseases, contribute to a breach in cerebral homeostasis producing neuronal losses. In other words, vascular dysfunction affects brain structure and function, and leads to cognitive failure. This is gathered under the term Vascular Cognitive Impairment and Dementia (VCID). One of the main culprits in the occurrence of cognitive decline could be the inevitable rise in arterial pulse pressure due to the age-dependent stiffening of large conductance arteries like the carotids, which in turn, could accentuate the penetration of the pulse pressure wave deeper into the fragile microvasculature of the brain and damage it. In this review, we will discuss how and why the vascular and brain cells communicate and are interdependent, describe the deleterious impact of a vascular dysfunction on brain function in various neurodegenerative diseases and even of psychiatric disorders, and the potential chronic deleterious effects of the pulsatile blood pressure on the cerebral microcirculation. We will also briefly review data from antihypertensive clinical trial aiming at improving or delaying dementia. Finally, we will debate how the aging process, starting early in life, could determine our sensitivity to risk factors for vascular diseases, including cerebral diseases, and the trajectory to VCID.
Collapse
Affiliation(s)
- Olivia de Montgolfier
- Faculty of Medicine, Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | | | - Eric Thorin
- Faculty of Medicine, Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Faculty of Medicine, Department of Surgery, Université de Montréal, Montreal, Quebec, Canada
- Correspondence: Eric Thorin ()
| |
Collapse
|
14
|
Su SH, Wu YF, Lin Q, Wang DP, Hai J. URB597 protects against NLRP3 inflammasome activation by inhibiting autophagy dysfunction in a rat model of chronic cerebral hypoperfusion. J Neuroinflammation 2019; 16:260. [PMID: 31815636 PMCID: PMC6900848 DOI: 10.1186/s12974-019-1668-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/29/2019] [Indexed: 12/24/2022] Open
Abstract
Background Previous studies reported that URB597 (URB) had therapeutic potential for treating chronic cerebral hypoperfusion (CCH)-induced neuroinflammation and autophagy dysfunction. However, the interaction mechanisms underlying the CCH-induced abnormal excessive autophagy and neuroinflammation remain unknown. In this study, we investigated the roles of impaired autophagy in nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing (NLRP) 3 inflammasome activation in the rat hippocampus and the underlying mechanisms under the condition of induced CCH as well as the effect of URB treatment. Methods The CCH rat model was established by bilateral common carotid artery occlusion (BCCAo), and rats were randomly divided into 11 groups as follows: (1) sham-operated, (2) BCCAo; (3) BCCAo+autophagy inhibitor 3-methyladenine (3-MA), (4) BCCAo+lysosome inhibitor chloroquine (CQ), (5) BCCAo+microglial activation inhibitor minocycline, (6) BCCAo+ROS scavenger N-acetylcysteine (NAC), (7) BCCAo+URB, (8) BCCAo+URB+3-MA, (9) BCCAo+URB+CQ, (10) BCCAo+URB+minocycline, (11) BCCAo+URB+NAC. The cell localizations of LC3, p62, LAMP1, TOM20 and NLRP3 were assessed by immunofluorescence staining. The levels of autophagy-related proteins (LC3, p62, LAMP1, BNIP3 and parkin), NLRP3 inflammasome-related proteins (NLRP3, CASP1 and IL-1β), microglial marker (OX-42) and proinflammatory cytokines (iNOS and COX-2) were evaluated by western blotting, and proinflammatory cytokines (IL-1β and TNF-a) were determined by ELISA. Reactive oxygen species (ROS) were assessed by dihydroethidium staining. The mitochondrial ultrastructural changes were examined by electron microscopy. Results CCH induced microglial overactivation and ROS accumulation, promoting the activation of the NLRP3 inflammasome and the release of IL-1β. Blocked autophagy and mitophagy flux enhanced the activation of the NLRP3-CASP1 inflammasome pathway. However, URB alleviated impaired autophagy and mitophagy by decreasing mitochondrial ROS and microglial overactivation as well as restoring lysosomal function, which would further inhibit the activation of the NLRP3-CASP1 inflammasome pathway. Conclusion These findings extended previous studies indicating the function of URB in the mitigation of chronic ischemic injury of the brain.
Collapse
Affiliation(s)
- Shao-Hua Su
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China.
| | - Yi-Fang Wu
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Qi Lin
- Department of Pharmacy, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Da-Peng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Jian Hai
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China.
| |
Collapse
|
15
|
Washida K, Hattori Y, Ihara M. Animal Models of Chronic Cerebral Hypoperfusion: From Mouse to Primate. Int J Mol Sci 2019; 20:ijms20246176. [PMID: 31817864 PMCID: PMC6941004 DOI: 10.3390/ijms20246176] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/17/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022] Open
Abstract
Vascular cognitive impairment (VCI) or vascular dementia occurs as a result of brain ischemia and represents the second most common type of dementia after Alzheimer’s disease. To explore the underlying mechanisms of VCI, several animal models of chronic cerebral hypoperfusion have been developed in rats, mice, and primates. We established a mouse model of chronic cerebral hypoperfusion by narrowing the bilateral common carotid arteries with microcoils, eventually resulting in hippocampal atrophy. In addition, a mouse model of white matter infarct-related damage with cognitive and motor dysfunction has also been established by asymmetric common carotid artery surgery. Although most experiments studying chronic cerebral hypoperfusion have been performed in rodents because of the ease of handling and greater ethical acceptability, non-human primates appear to represent the best model for the study of VCI, due to their similarities in much larger white matter volume and amyloid β depositions like humans. Therefore, we also recently developed a baboon model of VCI through three-vessel occlusion (both the internal carotid arteries and the left vertebral artery). In this review, several animal models of chronic cerebral hypoperfusion, from mouse to primate, are extensively discussed to aid in better understanding of pathophysiology of VCI.
Collapse
Affiliation(s)
- Kazuo Washida
- Correspondence: ; Tel.: +81-6-6170-1070; Fax: +81-6-6170-1782
| | | | | |
Collapse
|
16
|
de Montgolfier O, Pinçon A, Pouliot P, Gillis MA, Bishop J, Sled JG, Villeneuve L, Ferland G, Lévy BI, Lesage F, Thorin-Trescases N, Thorin É. High Systolic Blood Pressure Induces Cerebral Microvascular Endothelial Dysfunction, Neurovascular Unit Damage, and Cognitive Decline in Mice. Hypertension 2019; 73:217-228. [PMID: 30571552 DOI: 10.1161/hypertensionaha.118.12048] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A chronic and gradual increase in pulse pressure (PP) is associated with cognitive decline and dementia in older individuals, but the mechanisms remain ill-defined. We hypothesized that a chronic elevation of PP would cause brain microvascular endothelial mechanical stress, damage the neurovascular unit, and ultimately induce cognitive impairment in mice, potentially contributing to the progression of vascular dementia and Alzheimer disease. To test our hypothesis, male control wild-type mice and Alzheimer disease model APP/PS1 (amyloid precursor protein/presenilin 1) mice were exposed to a transverse aortic constriction for 6 weeks, creating a PP overload in the right carotid (ipsilateral). We show that the transverse aortic constriction procedure associated with high PP induces a cascade of vascular damages in the ipsilateral parenchymal microcirculation: in wild-type mice, it impairs endothelial dilatory and blood brain barrier functions and causes microbleeds, a reduction in microvascular density, microvascular cell death by apoptosis, leading to severe hypoperfusion and parenchymal cell senescence. These damages were associated with brain inflammation and a significant reduction in learning and spatial memories. In APP/PS1 mice, that endogenously display severe cerebral vascular dysfunctions, microbleeds, parenchymal inflammation and cognitive dysfunction, transverse aortic constriction-induced high PP further aggravates cerebrovascular damage, Aβ (beta-amyloid) accumulation, and prevents learning. Our study, therefore, demonstrates that brain microvessels are vulnerable to a high PP and mechanical stress associated with transverse aortic constriction, promoting severe vascular dysfunction, disruption of the neurovascular unit, and cognitive decline. Hence, chronic elevated amplitude of the PP could contribute to the development and progression of vascular dementia including Alzheimer disease.
Collapse
Affiliation(s)
- Olivia de Montgolfier
- From the Department of Pharmacology and Physiology (O.d.M., A.P.), Université de Montréal, Quebec, Canada.,Montreal Heart Institute, Research Center, Quebec, Canada (O.d.M., A.P., M.-A.G., L.V., G.F., F.L., N.T.-T., E.T.)
| | - Anthony Pinçon
- From the Department of Pharmacology and Physiology (O.d.M., A.P.), Université de Montréal, Quebec, Canada.,Montreal Heart Institute, Research Center, Quebec, Canada (O.d.M., A.P., M.-A.G., L.V., G.F., F.L., N.T.-T., E.T.)
| | | | - Marc-Antoine Gillis
- Montreal Heart Institute, Research Center, Quebec, Canada (O.d.M., A.P., M.-A.G., L.V., G.F., F.L., N.T.-T., E.T.)
| | - Jonathan Bishop
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada (J.B., J.G.S.)
| | - John G Sled
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada (J.B., J.G.S.).,Department of Medical Biophysics, University of Toronto, Ontario, Canada (J.G.S.)
| | - Louis Villeneuve
- Montreal Heart Institute, Research Center, Quebec, Canada (O.d.M., A.P., M.-A.G., L.V., G.F., F.L., N.T.-T., E.T.)
| | - Guylaine Ferland
- Department of Nutrition (G.F.), Université de Montréal, Quebec, Canada.,Montreal Heart Institute, Research Center, Quebec, Canada (O.d.M., A.P., M.-A.G., L.V., G.F., F.L., N.T.-T., E.T.)
| | - Bernard I Lévy
- Institut des Vaisseaux et du Sang, Hôpital Lariboisière, Paris, France (B.I.L.)
| | - Frédéric Lesage
- Montreal Heart Institute, Research Center, Quebec, Canada (O.d.M., A.P., M.-A.G., L.V., G.F., F.L., N.T.-T., E.T.).,Ecole Polytechnique de Montréal, Quebec, Canada (P.P., F.L.)
| | - Nathalie Thorin-Trescases
- Montreal Heart Institute, Research Center, Quebec, Canada (O.d.M., A.P., M.-A.G., L.V., G.F., F.L., N.T.-T., E.T.)
| | - Éric Thorin
- Department of Surgery (E.T.), Université de Montréal, Quebec, Canada.,Montreal Heart Institute, Research Center, Quebec, Canada (O.d.M., A.P., M.-A.G., L.V., G.F., F.L., N.T.-T., E.T.)
| |
Collapse
|
17
|
Can Improving the Nutritional Content of Bread Enhance Cognition? Cognitive Outcomes from a Randomized Controlled Trial. JOURNAL OF COGNITIVE ENHANCEMENT 2019. [DOI: 10.1007/s41465-019-00149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Li C, Li Y, Zhao Z, Lv Y, Gu B, Zhao L. Aerobic exercise regulates synaptic transmission and reactive oxygen species production in the paraventricular nucleus of spontaneously hypertensive rats. Brain Res 2019; 1712:82-92. [PMID: 30735639 DOI: 10.1016/j.brainres.2019.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
Aerobic exercise lowers blood pressure in patients with hypertension, but the underlying mechanisms remain incompletely understood. The hypothalamic paraventricular nucleus (PVN) plays a key role in the control of sympathetic outflow and cardiovascular tone. We examined whether chronic aerobic exercise altered synaptic transmission and reactive oxygen species (ROS) production in the PVN. In the present study, spontaneously hypertensive rats (SHRs) were subjected to exercise training for 8 weeks, five times per week, with Wistar Kyoto (WKY) rats as the cohort control. Miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs) were recorded from the PVN in ex vivo hypothalamic slice preparations obtained after the last training, and biomarkers of oxidative stress and physical indexes were observed. The mean frequency and amplitude, as well as the rise time and the decay time constant of mIPSCs, significantly decreased in 20-wk-old SHRs compared to WKY 20-wk-old controls. In contrast to mIPSCs, only the mean mEPSC frequency was higher, and there were no other changes in mEPSCs in comparison to the control group. SHRs exhibited higher ROS, 8-OHdG, and MDA; and lower SOD1, SOD2, CAT, Ogg1, and SOD and CAT activity in the PVN. These SHRs also had a significant increase in heart rate, blood pressure and sympathetic nerve activity, and higher levels of norepinephrine (NE). Exercise training ameliorated all these abnormalities, resulting in an increase in the mean frequency, amplitude and kinetics of mIPSCs, accompanied by a decrease in the mean frequency of mEPSCs in the PVN. This study demonstrates that moderate intensity, high frequency exercise training induces a selective enhancement of inhibitory synaptic transmission in the PVN, which may dampen sympathetic activity and reduce blood pressure in hypertension. These changes may be due to antioxidant-related adaptations in the PVNs of SHRs.
Collapse
Affiliation(s)
- Cui Li
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Yan Li
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Ziqi Zhao
- College of Life Science, University of Chinese Academy of Science, Beijing, China
| | - Yuanyuan Lv
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Boya Gu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Li Zhao
- Department of Exercise Physiology, Beijing Sport University, Beijing, China; Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China.
| |
Collapse
|
19
|
Song YJ, Dai CX, Li M, Cui MM, Ding X, Zhao XF, Wang CL, Li ZL, Guo MY, Fu YY, Wen XR, Qi DS, Wang YL. The potential role of HO-1 in regulating the MLK3-MKK7-JNK3 module scaffolded by JIP1 during cerebral ischemia/reperfusion in rats. Behav Brain Res 2019; 359:528-535. [PMID: 30412737 DOI: 10.1016/j.bbr.2018.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 01/01/2023]
Abstract
Heme oxygenase (HO-1), which may be induced by Cobaltic protoporphyrin IX chloride (CoPPIX) or Rosiglitazone (Ros), is a neuroprotective agent that effectively reduces ischemic stroke. Previous studies have shown that the neuroprotective mechanisms of HO-1 are related to JNK signaling. The expression of HO-1 protects cells from death through the JNK signaling pathway. This study aimed to ascertain whether the neuroprotective effect of HO-1 depends on the assembly of the MLK3-MKK7-JNK3 signaling module scaffolded by JIP1 and further influences the JNK signal transmission through HO-1. Prior to the ischemia-reperfusion experiment, CoPPIX was injected through the lateral ventricle for 5 consecutive days or Ros was administered via intraperitoneal administration in the week prior to transient ischemia. Our results demonstrated that HO-1 could inhibit the assembly of the MLK3-MKK7-JNK3 signaling module scaffolded by JIP1 and could ultimately diminish the phosphorylation of JNK3. Furthermore, the inhibition of JNK3 phosphorylation downregulated the level of p-c-Jun and elevated neuronal cell death in the CA1 of the hippocampus. Taken together, these findings suggested that HO-1 could ameliorate brain injury by regulating the MLK3-MKK7-JNK3 signaling module, which was scaffolded by JIP1 and JNK signaling during cerebral ischemia/reperfusion.
Collapse
Affiliation(s)
- Yuan-Jian Song
- Jiangsu Key Laboratory of Brain Disease Bioinformatics, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China; Department of Genetics, Research Facility Center for Morphology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Chun-Xiao Dai
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Man Li
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Miao-Miao Cui
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Xin Ding
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Xiao-Fang Zhao
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Cai-Lin Wang
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Zhen-Ling Li
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Meng-Yuan Guo
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Yan-Yan Fu
- Jiangsu Key Laboratory of Brain Disease Bioinformatics, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China; Department of Genetics, Research Facility Center for Morphology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Xiang-Ru Wen
- Jiangsu Key Laboratory of Brain Disease Bioinformatics, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China; School of Basic Education Science, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
| | - Da-Shi Qi
- Jiangsu Key Laboratory of Brain Disease Bioinformatics, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China; Department of Genetics, Research Facility Center for Morphology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
| | - Yu-Lan Wang
- Jiangsu Key Laboratory of Brain Disease Bioinformatics, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China; Department of Anatomy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
| |
Collapse
|
20
|
Physical exercise prevents memory impairment in an animal model of hypertension through modulation of CD39 and CD73 activities and A2A receptor expression. J Hypertens 2019; 37:135-143. [DOI: 10.1097/hjh.0000000000001845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Estato V, Stipursky J, Gomes F, Mergener TC, Frazão-Teixeira E, Allodi S, Tibiriçá E, Barbosa HS, Adesse D. The Neurotropic Parasite Toxoplasma gondii Induces Sustained Neuroinflammation with Microvascular Dysfunction in Infected Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2674-2687. [PMID: 30121257 DOI: 10.1016/j.ajpath.2018.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 06/28/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022]
Abstract
Toxoplasmosis is one of the leading parasitic diseases worldwide. Some data suggest that chronic acquired toxoplasmosis could be linked to behavioral alterations in humans. The parasite infects neurons, forming immunologically silent cysts. Cerebral microcirculation homeostasis is determinant to brain functions, and pathologic states can alter capillarity or blood perfusion, leading to neurodegeneration and cognitive deficits. Albino mice were infected with Toxoplasma gondii (ME49 strain) and analyzed after 10, 40, and 180 days. Infected mice presented decreased cerebral blood flow at 10 and 40 days post infection (dpi), which were restored at 180 dpi, as shown by laser speckle contrast imaging. Intravital microscopy demonstrated that infection led to significant capillary rarefaction, accompanied by neuroinflammation, with microglial activation and increased numbers of rolling and adherent leukocytes to the wall of cerebral capillaries. Acetylcholine-induced vasodilation was altered at all time points, and blood brain barrier permeability was evident in infected animals at 40 dpi. Infection reduced angiogenesis, with a decreased number of isolectin B4-stained blood vessels and a decrease in length and branching of laminin-stained capillaries. Sulfadiazine reduced parasite load and partially repaired microvascular damages. We conclude that T. gondii latent infection causes a harmful insult in the brain, promoting neuroinflammation and microcirculatory dysfunction in the brain, with decreased angiogenesis and can contribute to a neurodegenerative process.
Collapse
Affiliation(s)
- Vanessa Estato
- Laboratório de Investigação Cardiovascular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Produtos Naturais, Departamento de Produtos Naturais, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joice Stipursky
- Laboratório de Neurobiologia Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiana Gomes
- Laboratório de Investigação Cardiovascular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tally C Mergener
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Edwards Frazão-Teixeira
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvana Allodi
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo Tibiriçá
- Laboratório de Investigação Cardiovascular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helene S Barbosa
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Adesse
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
22
|
Thorin-Trescases N, de Montgolfier O, Pinçon A, Raignault A, Caland L, Labbé P, Thorin E. Impact of pulse pressure on cerebrovascular events leading to age-related cognitive decline. Am J Physiol Heart Circ Physiol 2018; 314:H1214-H1224. [PMID: 29451817 DOI: 10.1152/ajpheart.00637.2017] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aging is a modern concept: human life expectancy has more than doubled in less than 150 yr in Western countries. Longer life span, however, reveals age-related diseases, including cerebrovascular diseases. The vascular system is a prime target of aging: the "wear and tear" of large elastic arteries exposed to a lifelong pulsatile pressure causes arterial stiffening by fragmentation of elastin fibers and replacement by stiffer collagen. This arterial stiffening increases in return the amplitude of the pulse pressure (PP), its wave penetrating deeper into the microcirculation of low-resistance, high-flow organs such as the brain. Several studies have associated peripheral arterial stiffness responsible for the sustained increase in PP, with brain microvascular diseases such as cerebral small vessel disease, cortical gray matter thinning, white matter atrophy, and cognitive dysfunction in older individuals and prematurely in hypertensive and diabetic patients. The rarefaction of white matter is also associated with middle cerebral artery pulsatility that is strongly dependent on PP and artery stiffness. PP and brain damage are likely associated, but the sequence of mechanistic events has not been established. Elevated PP promotes endothelial dysfunction that may slowly develop in parallel with the accumulation of proinflammatory senescent cells and oxidative stress, generating cerebrovascular damage and remodeling, as well as brain structural changes. Here, we review data suggesting that age-related increased peripheral artery stiffness may promote the penetration of a high PP to cerebral microvessels, likely causing functional, structural, metabolic, and hemodynamic alterations that could ultimately promote neuronal dysfunction and cognitive decline.
Collapse
Affiliation(s)
| | - Olivia de Montgolfier
- Montreal Heart Institute, Research Center , Montreal, Quebec , Canada.,Department of Pharmacology, Faculty of Medicine, Université de Montréal , Montreal, Quebec , Canada
| | - Anthony Pinçon
- Montreal Heart Institute, Research Center , Montreal, Quebec , Canada.,Department of Pharmacology, Faculty of Medicine, Université de Montréal , Montreal, Quebec , Canada
| | - Adeline Raignault
- Montreal Heart Institute, Research Center , Montreal, Quebec , Canada
| | - Laurie Caland
- Montreal Heart Institute, Research Center , Montreal, Quebec , Canada.,Department of Pharmacology, Faculty of Medicine, Université de Montréal , Montreal, Quebec , Canada
| | - Pauline Labbé
- Montreal Heart Institute, Research Center , Montreal, Quebec , Canada.,Department of Pharmacology, Faculty of Medicine, Université de Montréal , Montreal, Quebec , Canada
| | - Eric Thorin
- Montreal Heart Institute, Research Center , Montreal, Quebec , Canada.,Department of Pharmacology, Faculty of Medicine, Université de Montréal , Montreal, Quebec , Canada.,Department of Surgery, Faculty of Medicine, Université de Montréal , Montreal, Quebec , Canada
| |
Collapse
|
23
|
Giugliano G, Salemme A, De Longis S, Perrotta M, D'Angelosante V, Landolfi A, Izzo R, Trimarco V. Effects of a new nutraceutical combination on cognitive function in hypertensive patients. IMMUNITY & AGEING 2018; 15:7. [PMID: 29445414 PMCID: PMC5803913 DOI: 10.1186/s12979-017-0113-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/28/2017] [Indexed: 11/24/2022]
Abstract
Background Chronic increased arterial blood pressure has been associated with executive dysfunction, slowing of attention and mental processing speed, and later with memory deficits. Due to the absence of a concrete therapeutic approach to this pathophysiological process, in the last decades there has been an increasing interest in the use of nutraceuticals, especially those with antioxidant properties, which own strong neuroprotective potential, that may help to improve cognitive function and to delay the onset of dementia. Results We evaluated the effects of the treatment with a new nutraceutical preparation containing different molecules with potent antioxidant properties (AkP05, IzzeK®) and placebo on a cohort of thirty-six hypertensive patients. At baseline, neuropsychological evaluation, arterial stiffness and biochemical parameters of the subjects were comparable. After 6 months of treatment, there was a significant reduction of the augmentation index in the AkP05-treated group. Moreover, the measurement of cognitive function, evaluated with MoCA test and Word Match Testing, showed a significant improvement in patients receiving the active treatment. In addition, the group treated with nutraceutical reached a better Stroop test score, while subjects that received placebo did not showed any improvement. Finally, a positive relationship between SBP variation and the psychometric assessment with the EQ-VAS scale was observed only in the active treatment group. Conclusions In this study, we demonstrated that the therapy with a new nutraceutical preparation is able to significantly increase the scores of important neuropsychological tests in hypertensive patients already on satisfactory blood pressure control. Although future studies are needed to better characterize the molecular mechanisms involved, these results candidate the new nutraceutical combination as a possible therapeutic strategy to support the cerebrovascular functions and delay the onset of dementia in hypertensive patients.
Collapse
Affiliation(s)
- Giuseppe Giugliano
- 1Hypertension Research Center; Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | | | - Sara De Longis
- 3Hypertension Research Center; Department of Translational Medical Sciences, Federico II University, via Pansini 5, 80131 Naples, Italy
| | - Marialuisa Perrotta
- 4Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Pozzilli, Isernia Italy
| | - Valentina D'Angelosante
- 4Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Pozzilli, Isernia Italy
| | - Alessandro Landolfi
- 4Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Pozzilli, Isernia Italy
| | - Raffaele Izzo
- 3Hypertension Research Center; Department of Translational Medical Sciences, Federico II University, via Pansini 5, 80131 Naples, Italy
| | - Valentina Trimarco
- 5Hypertension Research Center; Department of Neurosciences, Federico II University, Naples, Italy
| |
Collapse
|
24
|
Alterations of Ocular Hemodynamics Impair Ophthalmic Vascular and Neuroretinal Function. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:818-827. [PMID: 29309745 DOI: 10.1016/j.ajpath.2017.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 11/20/2022]
Abstract
Hypertension is associated with numerous diseases, but its direct impact on the ocular circulation and neuroretinal function remains unclear. Herein, mouse eyes were challenged with different levels of hemodynamic insult via transverse aortic coarctation, which increased blood pressure and flow velocity by 50% and 40%, respectively, in the right common carotid artery, and reduced those parameters by 30% and 40%, respectively, in the left common carotid artery. Blood velocity in the right central retinal artery gradually increased up to 40% at 4 weeks of transverse aortic coarctation, and the velocity in the left central retinal artery gradually decreased by 20%. The fundus and retinal architecture were unaltered by hemodynamic changes. Endothelium-dependent vasodilations to acetylcholine and adenosine were reduced only in right (hypertensive) ophthalmic arteries. Increased cellularity in the nerve fiber/ganglion cell layers, enhanced glial fibrillary acidic protein expression, and elevated superoxide level were found only in hypertensive retinas. The electroretinogram showed decreased scotopic b-waves in the hypertensive eyes and decreased scotopic oscillatory potentials in both hypertensive and hypotensive eyes. In conclusion, hypertension sustained for 4 weeks causes ophthalmic vascular dysfunction, retinal glial cell activation, oxidative stress, and neuroretinal impairment. Although ophthalmic vasoregulation is insensitive to hypotensive insult, the ocular hypoperfusion causes neuroretinal dysfunction.
Collapse
|
25
|
Hooghiemstra AM, Bertens AS, Leeuwis AE, Bron EE, Bots ML, Brunner-La Rocca HP, de Craen AJM, van der Geest RJ, Greving JP, Kappelle LJ, Niessen WJ, van Oostenbrugge RJ, van Osch MJP, de Roos A, van Rossum AC, Biessels GJ, van Buchem MA, Daemen MJAP, van der Flier WM. The Missing Link in the Pathophysiology of Vascular Cognitive Impairment: Design of the Heart-Brain Study. Cerebrovasc Dis Extra 2017; 7:140-152. [PMID: 29017156 PMCID: PMC5730112 DOI: 10.1159/000480738] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 08/18/2017] [Indexed: 12/13/2022] Open
Abstract
Background Hemodynamic balance in the heart-brain axis is increasingly recognized as a crucial factor in maintaining functional and structural integrity of the brain and thereby cognitive functioning. Patients with heart failure (HF), carotid occlusive disease (COD), and vascular cognitive impairment (VCI) present themselves with complaints attributed to specific parts of the heart-brain axis, but hemodynamic changes often go beyond the part of the axis for which they primarily seek medical advice. The Heart-Brain Study hypothesizes that the hemodynamic status of the heart and the brain is an important but underestimated cause of VCI. We investigate this by studying to what extent hemodynamic changes contribute to VCI and what the mechanisms involved are. Here, we provide an overview of the design and protocol. Methods The Heart-Brain Study is a multicenter cohort study with a follow-up measurement after 2 years among 645 participants (175 VCI, 175 COD, 175 HF, and 120 controls). Enrollment criteria are the following: 1 of the 3 diseases diagnosed according to current guidelines, age ≥50 years, no magnetic resonance contraindications, ability to undergo cognitive testing, and independence in daily life. A core clinical dataset is collected including sociodemographic factors, cardiovascular risk factors, detailed neurologic, cardiac, and medical history, medication, and a physical examination. In addition, we perform standardized neuropsychological testing, cardiac, vascular and brain MRI, and blood sampling. In subsets of participants we assess Alzheimer biomarkers in cerebrospinal fluid, and assess echocardiography and 24-hour blood pressure monitoring. Follow-up measurements after 2 years include neuropsychological testing, brain MRI, and blood samples for all participants. We use centralized state-of-the-art storage platforms for clinical and imaging data. Imaging data are processed centrally with automated standardized pipelines. Results and Conclusions The Heart-Brain Study investigates relationships between (cardio-)vascular factors, the hemodynamic status of the heart and the brain, and cognitive impairment. By studying the complete heart-brain axis in patient groups that represent components of this axis, we have the opportunity to assess a combination of clinical and subclinical manifestations of disorders of the heart, vascular system and brain, with hemodynamic status as a possible binding factor.
Collapse
Affiliation(s)
- Astrid M Hooghiemstra
- Alzheimer Center & Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Anne Suzanne Bertens
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Anna E Leeuwis
- Alzheimer Center & Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Esther E Bron
- Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Michiel L Bots
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Anton J M de Craen
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Rob J van der Geest
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jacoba P Greving
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - L Jaap Kappelle
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wiro J Niessen
- Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands.,Imaging Physics, Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | | | - Matthias J P van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Albert de Roos
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Albert C van Rossum
- Department of Cardiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Geert Jan Biessels
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mark A van Buchem
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Mat J A P Daemen
- Department of Pathology, Academic Medical Center, Amsterdam, the Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center & Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands.,Department of Epidemiology, VU University Medical Center, Amsterdam, the Netherlands
| | | |
Collapse
|
26
|
Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, Keep RF, Shi Y. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 2017; 163-164:144-171. [PMID: 28987927 DOI: 10.1016/j.pneurobio.2017.10.001] [Citation(s) in RCA: 623] [Impact Index Per Article: 77.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/30/2017] [Accepted: 10/02/2017] [Indexed: 01/06/2023]
Abstract
The blood-brain barrier (BBB) plays a vital role in regulating the trafficking of fluid, solutes and cells at the blood-brain interface and maintaining the homeostatic microenvironment of the CNS. Under pathological conditions, such as ischemic stroke, the BBB can be disrupted, followed by the extravasation of blood components into the brain and compromise of normal neuronal function. This article reviews recent advances in our knowledge of the mechanisms underlying BBB dysfunction and recovery after ischemic stroke. CNS cells in the neurovascular unit, as well as blood-borne peripheral cells constantly modulate the BBB and influence its breakdown and repair after ischemic stroke. The involvement of stroke risk factors and comorbid conditions further complicate the pathogenesis of neurovascular injury by predisposing the BBB to anatomical and functional changes that can exacerbate BBB dysfunction. Emphasis is also given to the process of long-term structural and functional restoration of the BBB after ischemic injury. With the development of novel research tools, future research on the BBB is likely to reveal promising potential therapeutic targets for protecting the BBB and improving patient outcome after ischemic stroke.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | | | - Ling Zhu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael V L Bennett
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
27
|
de Brito Alves JL, de Oliveira JMD, Ferreira DJS, Barros MADV, Nogueira VO, Alves DS, Vidal H, Leandro CG, Lagranha CJ, Pirola L, da Costa-Silva JH. Maternal protein restriction induced-hypertension is associated to oxidative disruption at transcriptional and functional levels in the medulla oblongata. Clin Exp Pharmacol Physiol 2017; 43:1177-1184. [PMID: 27612187 DOI: 10.1111/1440-1681.12667] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/31/2016] [Accepted: 09/06/2016] [Indexed: 01/11/2023]
Abstract
Maternal protein restriction during pregnancy and lactation predisposes the adult offspring to sympathetic overactivity and arterial hypertension. Although the underlying mechanisms are poorly understood, dysregulation of the oxidative balance has been proposed as a putative trigger of neural-induced hypertension. The aim of the study was to evaluate the association between the oxidative status at transcriptional and functional levels in the medulla oblongata and maternal protein restriction induced-hypertension. Wistar rat dams were fed a control (normal protein; 17% protein) or a low protein ((Lp); 8% protein) diet during pregnancy and lactation, and male offspring was studied at 90 days of age. Direct measurements of baseline arterial blood pressure (ABP) and heart rate (HR) were recorded in awakened offspring. In addition, quantitative RT-PCR was used to assess the mRNA expression of superoxide dismutase 1 (SOD1) and 2 (SOD2), catalase (CAT), glutathione peroxidase (GPx), Glutamatergic receptors (Grin1, Gria1 and Grm1) and GABA(A)-receptor-associated protein like 1 (Gabarapl1). Malondialdehyde (MDA) levels, CAT and SOD activities were examined in ventral and dorsal medulla. Lp rats exhibited higher ABP. The mRNA expression levels of SOD2, GPx and Gabarapl1 were down regulated in medullary tissue of Lp rats (P<.05, t test). In addition, we observed that higher MDA levels were associated to decreased SOD (approximately 45%) and CAT (approximately 50%) activities in ventral medulla. Taken together, our data suggest that maternal protein restriction induced-hypertension is associated with medullary oxidative dysfunction at transcriptional level and with impaired antioxidant capacity in the ventral medulla.
Collapse
Affiliation(s)
- José L de Brito Alves
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil.,Carmen (Cardiology, Metabolism and Nutrition) Laboratory, INSERM U1060, South Lyon Medical Faculty, Lyon-1 University, Oullins, France
| | - Jéssica M D de Oliveira
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil
| | - Diorginis J S Ferreira
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil
| | - Monique A de V Barros
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil
| | - Viviane O Nogueira
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil
| | - Débora S Alves
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil
| | - Hubert Vidal
- Carmen (Cardiology, Metabolism and Nutrition) Laboratory, INSERM U1060, South Lyon Medical Faculty, Lyon-1 University, Oullins, France
| | - Carol G Leandro
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil
| | - Cláudia J Lagranha
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil
| | - Luciano Pirola
- Carmen (Cardiology, Metabolism and Nutrition) Laboratory, INSERM U1060, South Lyon Medical Faculty, Lyon-1 University, Oullins, France
| | - João H da Costa-Silva
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil
| |
Collapse
|
28
|
Su SH, Wu YF, Lin Q, Hai J. Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 ameliorate neuroinflammatory responses in chronic cerebral hypoperfusion model by blocking NF-κB pathways. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:1189-1200. [PMID: 28825114 DOI: 10.1007/s00210-017-1417-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/10/2017] [Indexed: 12/17/2022]
Abstract
The present study explored the protective effects of cannabinoid receptor agonist WIN55,212-2 (WIN) and fatty acid amide hydrolase inhibitor URB597 (URB) against neuroinflammation in rats with chronic cerebral hypoperfusion (CCH). Activated microglia, astrocytes, and nuclear factor kappa B (NF-κB) p65-positive cells were measured by immunofluorescence. Reactive oxygen species (ROS) was assessed by dihydroethidium staining. The protein levels of cluster of differentiation molecule 11b (OX-42), glial fibrillary acidic protein (GFAP), NF-κB p65, inhibitor of kappa B alpha (IκB-a), IκB kinase a/β (IKK a/β), phosphorylated IKK a/β (p-IKK a/β), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, and interleukin-1β (IL-1β) were examined by western blotting or enzyme-linked immunosorbent assay. All the protein levels of OX-42, GFAP, TNF-a, IL-1β, COX-2, and iNOS are increased in CCH rats. WIN and URB downregulated the levels of OX-42, GFAP, TNF-α, IL-1β, COX-2 and iNOS and inhibited CCH-induced ROS accumulation in CCH rats, indicating that WIN and URB might exert their neuroprotective effects by inhibiting the neuroinflammatory response. In addition, the NF-κB signaling pathway was activated by CCH in frontal cortex and hippocampus, while the aforementioned changes were reversed by WIN and URB treatment. These findings suggest that WIN and URB treatment ameliorated CCH-induced neuroinflammation through inhibition of the classical pathway of NF-κB activation, resulting in mitigation of chronic ischemic injury.
Collapse
Affiliation(s)
- Shao-Hua Su
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Yi-Fang Wu
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Qi Lin
- Department of Pharmacy, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jian Hai
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China.
| |
Collapse
|
29
|
Preeclampsia and the brain: neural control of cardiovascular changes during pregnancy and neurological outcomes of preeclampsia. Clin Sci (Lond) 2017; 130:1417-34. [PMID: 27389588 DOI: 10.1042/cs20160108] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/13/2016] [Indexed: 02/07/2023]
Abstract
Preeclampsia (PE) is a form of gestational hypertension that complicates ∼5% of pregnancies worldwide. Over 70% of the fatal cases of PE are attributed to cerebral oedema, intracranial haemorrhage and eclampsia. The aetiology of PE originates from abnormal remodelling of the maternal spiral arteries, creating an ischaemic placenta that releases factors that drive the pathophysiology. An initial neurological outcome of PE is the absence of the autonomically regulated cardiovascular adaptations to pregnancy. PE patients exhibit sympathetic overactivation, in comparison with both normotensive pregnant and hypertensive non-pregnant females. Moreover, PE diminishes baroreceptor reflex sensitivity (BRS) beyond that observed in healthy pregnancy. The absence of the cardiovascular adaptations to pregnancy, combined with sympathovagal imbalance and a blunted BRS leads to life-threatening neurological outcomes. Behaviourally, the increased incidences of maternal depression, anxiety and post-traumatic stress disorder (PTSD) in PE are correlated to low fetal birth weight, intrauterine growth restriction (IUGR) and premature birth. This review addresses these neurological consequences of PE that present in the gravid female both during and after the index pregnancy.
Collapse
|
30
|
Hypertension-induced synapse loss and impairment in synaptic plasticity in the mouse hippocampus mimics the aging phenotype: implications for the pathogenesis of vascular cognitive impairment. GeroScience 2017; 39:385-406. [PMID: 28664509 DOI: 10.1007/s11357-017-9981-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/30/2017] [Indexed: 12/22/2022] Open
Abstract
Strong epidemiological and experimental evidence indicates that hypertension has detrimental effects on the cerebral microcirculation and thereby promotes accelerated brain aging. Hypertension is an independent risk factor for both vascular cognitive impairment (VCI) and Alzheimer's disease (AD). However, the pathophysiological link between hypertension-induced cerebromicrovascular injury (e.g., blood-brain barrier disruption, increased microvascular oxidative stress, and inflammation) and cognitive decline remains elusive. The present study was designed to characterize neuronal functional and morphological alterations induced by chronic hypertension and compare them to those induced by aging. To achieve that goal, we induced hypertension in young C57BL/6 mice by chronic (4 weeks) infusion of angiotensin II. We found that long-term potentiation (LTP) of performant path synapses following high-frequency stimulation of afferent fibers was decreased in hippocampal slices obtained from hypertensive mice, mimicking the aging phenotype. Hypertension and advanced age were associated with comparable decline in synaptic density in the stratum radiatum of the mouse hippocampus. Hypertension, similar to aging, was associated with changes in mRNA expression of several genes involved in regulation of neuronal function, including down-regulation of Bdnf, Homer1, and Dlg4, which may have a role in impaired synaptic plasticity. Collectively, hypertension impairs synaptic plasticity, reduces synaptic density, and promotes dysregulation of genes involved in synaptic function in the mouse hippocampus mimicking the aging phenotype. These hypertension-induced neuronal alterations may impair establishment of memories in the hippocampus and contribute to the pathogenesis and clinical manifestation of both vascular cognitive impairment (VCI) and Alzheimer's disease (AD).
Collapse
|
31
|
Role of Brain Biomarker in Predicting Clinical Outcome in Hypertensive Cerebrovascular Ischemic Stroke. Indian J Clin Biochem 2017; 33:178-183. [PMID: 29651208 DOI: 10.1007/s12291-017-0664-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/09/2017] [Indexed: 02/08/2023]
Abstract
This study was undertaken to evaluate the role of serum neuron specific enolase (NSE) in prediction of disability and neurological worsening in hypertensive ischemic cerebrovascular stroke. 80 hypertensive ischemic stroke patients diagnosed by a neurologist as per WHO definition along with radiological findings suggestive of cerebrovascular stroke and differentiating from hemorrhagic stroke and 60 controls having essential hypertension coming to hospital because of regular checkup or headache but with no neurological disease were included in the study. Neurological disability was assessed by NIHSS at the time of admission (within 72 h from the onset of stroke) and on 7th day after admission and cases were categorized into mild, moderate and severe disability. Venous blood samples were drawn within 72 h from the onset of symptoms. The samples were processed as per the laboratory protocol. The serum NSE samples were analyzed using an enzyme immunoassay based on the sandwich technique. We observed raised serum NSE in hypertensive ischemic stroke (17.4 ± 5.4 ng/ml) with significant association between different hypertensive groups than in hypertensive controls (9.1 ± 0.75 ng/ml). Greater degree of disability was observed in hypertensive stroke patients with raised serum NSE and hypertensive patients with mean serum NSE level of 22.9 ± 3.6 ng/ml and dyslipidemia had greater probability of neurological worsening as compared to those with mean serum NSE level of 12.7 ± 1.2 ng/ml. Serum NSE levels can serve as a peripheral indicator of neuronal damage and assist in the prediction of disability and clinical outcome in hypertensive cerebrovascular ischemic stroke patients.
Collapse
|
32
|
Hypertension and Dementia: Epidemiological and Experimental Evidence Revealing a Detrimental Relationship. Int J Mol Sci 2016; 17:347. [PMID: 27005613 PMCID: PMC4813208 DOI: 10.3390/ijms17030347] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/20/2016] [Accepted: 02/29/2016] [Indexed: 02/07/2023] Open
Abstract
Hypertension and dementia represent two major public health challenges worldwide, notably in the elderly population. Although these two conditions have classically been recognized as two distinct diseases, mounting epidemiological, clinical and experimental evidence suggest that hypertension and dementia are strictly intertwined. Here, we briefly report how hypertension profoundly affects brain homeostasis, both at the structural and functional level. Chronic high blood pressure modifies the cerebral vasculature, increasing the risk of Aβ clearance impairment. The latter, excluding genetic etiologies, is considered one of the main causes of Aβ deposition in the brain. Studies have shown that hypertension induces cerebral arterial stiffening and microvascular dysfunction, thus contributing to dementia pathophysiology. This review examines the existing and the updated literature which has attempted to explain and clarify the relationship between hypertension and dementia at the pathophysiological level.
Collapse
|
33
|
Li Y, Liu J, Gao D, Wei J, Yuan H, Niu X, Zhang Q. Age-related changes in hypertensive brain damage in the hippocampi of spontaneously hypertensive rats. Mol Med Rep 2016; 13:2552-60. [PMID: 26846626 PMCID: PMC4768967 DOI: 10.3892/mmr.2016.4853] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 01/06/2016] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to investigate the age-related alterations in hypertensive brain damage in the hippocampi of spontaneously hypertensive rats (SHR) and the underlying mechanisms. Aging resulted in a significant increase in the number of activated astrocytes and apoptotic cells in the SHR group, which was accompanied by increased expression of oxidative stress markers (iNOS and gp47phox) and apoptotic regulatory proteins (Bax and caspase-3). In addition, the expression of PPAR-γ and Bcl-2 were progressively reduced with increasing age in the SHR group. The 32 and 64-week-old SHRs exhibited significantly increased numbers of apoptotic cells, oxidative stress markers and pro-apoptotic proteins compared with age-matched WKY rats, which was accompanied by reduced expression of PPAR-γ. Compared with the 16 and 32-week-old WKY group, the 64-week-old WKY rats exhibited increased oxidative stress and pro-apoptotic markers, and increased levels apoptotic cells. In conclusion, the present study indicated that both aging and hypertension enhanced brain damage and oxidative stress injury in the hippocampi of SHRs, indicated by an increased presence of apoptotic cells and astrocytes. In addition, reduced expression of PPAR-γ may contribute to the age-related brain damage in SHRs.
Collapse
Affiliation(s)
- Yali Li
- Department of Rehabilitation, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jian Liu
- Department of Physiology, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Dengfeng Gao
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jin Wei
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Haifeng Yuan
- Department of Rehabilitation, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaolin Niu
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Qiaojun Zhang
- Department of Rehabilitation, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
34
|
Posterior Reversible Encephalopathy Syndrome After Transplantation: a Review. Mol Neurobiol 2015; 53:6897-6909. [PMID: 26666662 DOI: 10.1007/s12035-015-9560-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 11/29/2015] [Indexed: 12/29/2022]
Abstract
Posterior reversible encephalopathy syndrome (PRES) is a rare neurological disease. Recently, an increase in the number of transplantations has led to more cases being associated with PRES than what was previously reported. Calcineurin inhibitors (CNIs) are major risk factors for PRES in posttransplantation patients. The mechanisms of the development of PRES remain to be unclear. The typical clinical symptoms of PRES include seizures, acute encephalopathy syndrome, and visual symptoms. The hyperintense signal on fluid-attenuated inversion recovery image is the characteristic of the imaging appearance in these patients. In addition, other abnormal signals distributed in multiple locations are also reported in some atypical cases. Unfortunately, PRES is often not recognized or diagnosed too late due to complicated differential diagnoses, such as ischemic stroke, progressive multifocal leukoencephalopathy, and neurodegenerative diseases. Thus, this review emphasizes the importance of considering the possibility of PRES when neurological disturbances appear after solid organ transplantation or hematopoietic cell transplantation. Moreover, this review demonstrates the molecular mechanisms of PRES associated with CNIs after transplantation, which aims to help clinicians further understand PRES in the transplantation era.
Collapse
|
35
|
Phosphodiesterase-4 inhibitors ameliorates cognitive deficits in deoxycorticosterone acetate induced hypertensive rats via cAMP/CREB signaling system. Brain Res 2015; 1622:279-91. [PMID: 26168894 DOI: 10.1016/j.brainres.2015.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 12/17/2022]
Abstract
Phosphodiesterase-4 (PDE-4) inhibitors promote memory by blocking the degradation of cAMP. Existing evidence also shows that neuronal survival and plasticity are dependent on the phosphorylation of cAMP-response element-binding protein. In this regard, PDE-4 inhibitors have also been shown to reverse pharmacologically and genetically induced memory impairment in animal models. In the present study, the authors examined the effect of both rolipram and roflumilast (PDE-4 inhibitors) on the impairment of learning and memory observed in hypertensive rats. Deoxycorticosterone acetate (DOCA) salt hypertensive model was used to induce learning and memory deficits. The mRNA expression of different PDE-4 subtypes along with the protein levels of pCREB and BDNF in the hippocampus was quantified. Systolic blood pressure was significantly increased in DOCA salt hypertensive rats when compared to sham operated rats. This effect was reversed by clonidine, an α2 receptor agonist, while PDE-4 inhibitors did not. PDE-4 inhibitors significantly improved the time-induced memory deficits in object recognition task (ORT). In DOCA salt hypertensive rats, the gene expression of PDE-4B and PDE-4D was significantly increased. Furthermore, both pCREB and BDNF showed decreased levels of expression in hypertensive rats in comparison to sham operated rats. Repeated administration of PDE-4 inhibitors significantly decreased both PDE-4B and PDE-4D with an increase in the expression of pCREB and BDNF in hypersensitive rats. Also, rolipram, roflumilast and roflumilast N-oxide showed a linear increase in the plasma and brain concentrations after ORT. Our present findings suggested that PDE-4 inhibitors ameliorate hypertension-induced learning impairment via cAMP/CREB signaling that regulates BDNF expression downstream in the rat hippocampus.
Collapse
|
36
|
Mohammadi MT, Dehghani GA. Acute hypertension induces brain injury and blood–brain barrier disruption through reduction of claudins mRNA expression in rat. Pathol Res Pract 2014; 210:985-90. [DOI: 10.1016/j.prp.2014.05.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 05/05/2014] [Accepted: 05/15/2014] [Indexed: 12/23/2022]
|
37
|
Moghaddasi M, Javanmard SH, Reisi P, Tajadini M, Taati M. The effect of regular exercise on antioxidant enzyme activities and lipid peroxidation levels in both hippocampi after occluding one carotid in rat. J Physiol Sci 2014; 64:325-32. [PMID: 24923383 PMCID: PMC10717253 DOI: 10.1007/s12576-014-0322-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 05/23/2014] [Indexed: 12/23/2022]
Abstract
Regular exercise has beneficial effects on cerebrovascular diseases; however, its biochemical mechanisms are not fully known. The purpose of this study was to determine antioxidant enzyme activities and lipid peroxidation of both hippocampi after applying exercise followed by occluding one common carotid. Wistar rats were divided into four groups of control, exercise, hypoperfusion and exercise-hypoperfusion (exe-hypo). In the exercise and exe-hypo groups, the rats were forced to run on a treadmill for 1 h a day for 2 months. The right common carotid of the animals in the (exe-hypo) group was occluded after the cessation of exercise. Surgery without occlusion of the carotid was applied on the control (without exercise) and exercise groups. All animals were sacrificed 1 and 24 h after surgery. The levels of malondialdehyde (MDA) and antioxidant enzyme activities in the hippocampi were measured. A significant interaction was observed between the exercise and hypoperfusion in both hippocampi (p<0.05). In comparison with the control group, there was significant elevation of catalase activity in the right and left hippocampus of the hypo group at 24 h (p<0.0001). Regarding the differences between the hemispheres, there was a significant increase in MDA and decrease in catalase activity in the left hippocampus in hypoperfusion group, but the exercise in the exe-hypo group succeeded in abolishing these alterations which were caused by hypoperfusion, This study shows that exercise pre-conditioning prevents some alterations in brain oxidant-antioxidant status which are induced by cerebral hypoperfusion. Further studies are needed in order to clarify the mechanism of exercise.
Collapse
Affiliation(s)
- Mehrnoush Moghaddasi
- Razi Herbal Medicines Research Center, Department of Physiology, School of Medicine, Lorestan University of Medical Sciences, 381351698, Khorramabad, Iran,
| | | | | | | | | |
Collapse
|
38
|
Li H, Guo Q, Inoue T, Polito VA, Tabuchi K, Hammer RE, Pautler RG, Taffet GE, Zheng H. Vascular and parenchymal amyloid pathology in an Alzheimer disease knock-in mouse model: interplay with cerebral blood flow. Mol Neurodegener 2014; 9:28. [PMID: 25108425 PMCID: PMC4132280 DOI: 10.1186/1750-1326-9-28] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/05/2014] [Indexed: 12/31/2022] Open
Abstract
Background Accumulation and deposition of β-amyloid peptides (Aβ) in the brain is a central event in the pathogenesis of Alzheimer’s disease (AD). Besides the parenchymal pathology, Aβ is known to undergo active transport across the blood–brain barrier and cerebral amyloid angiopathy (CAA) is a prominent feature in the majority of AD. Although impaired cerebral blood flow (CBF) has been implicated in faulty Aβ transport and clearance, and cerebral hypoperfusion can exist in the pre-clinical phase of Alzheimer’s disease (AD), it is still unclear whether it is one of the causal factors for AD pathogenesis, or an early consequence of a multi-factor condition that would lead to AD at late stage. To study the potential interaction between faulty CBF and amyloid accumulation in clinical-relevant situation, we generated a new amyloid precursor protein (APP) knock-in allele that expresses humanized Aβ and a Dutch mutation in addition to Swedish/London mutations and compared this line with an equivalent knock-in line but in the absence of the Dutch mutation, both crossed onto the PS1M146V knock-in background. Results Introduction of the Dutch mutation results in robust CAA and parenchymal Aβ pathology, age-dependent reduction of spatial learning and memory deficits, and CBF reduction as detected by fMRI. Direct manipulation of CBF by transverse aortic constriction surgery on the left common carotid artery caused differential changes in CBF in the anterior and middle region of the cortex, where it is reduced on the left side and increased on the right side. However these perturbations in CBF resulted in the same effect: both significantly exacerbate CAA and amyloid pathology. Conclusions Our study reveals a direct and positive link between vascular and parenchymal Aβ; both can be modulated by CBF. The new APP knock-in mouse model recapitulates many symptoms of AD including progressive vascular and parenchymal Aβ pathology and behavioral deficits in the absence of APP overexpression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
39
|
Vascular aspects of cognitive impairment and dementia. J Cereb Blood Flow Metab 2013; 33:1696-706. [PMID: 24022624 PMCID: PMC3824191 DOI: 10.1038/jcbfm.2013.159] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/05/2013] [Accepted: 08/12/2013] [Indexed: 01/03/2023]
Abstract
Hypertension and stroke are highly prevalent risk factors for cognitive impairment and dementia. Alzheimer's disease (AD) and vascular dementia (VaD) are the most common forms of dementia, and both conditions are preceded by a stage of cognitive impairment. Stroke is a major risk factor for the development of vascular cognitive impairment (VCI) and VaD; however, stroke may also predispose to AD. Hypertension is a major risk factor for stroke, thus linking hypertension to VCI and VaD, but hypertension is also an important risk factor for AD. Reducing these two major, but modifiable, risk factors-hypertension and stroke-could be a successful strategy for reducing the public health burden of cognitive impairment and dementia. Intake of long-chain omega-3 polyunsaturated fatty acids (LC-n3-FA) and the manipulation of factors involved in the renin-angiotensin system (e.g. angiotensin II or angiotensin-converting enzyme) have been shown to reduce the risk of developing hypertension and stroke, thereby reducing dementia risk. This paper will review the research conducted on the relationship between hypertension, stroke, and dementia and also on the impact of LC-n3-FA or antihypertensive treatments on risk factors for VCI, VaD, and AD.
Collapse
|
40
|
Bink DI, Ritz K, Aronica E, van der Weerd L, Daemen MJAP. Mouse models to study the effect of cardiovascular risk factors on brain structure and cognition. J Cereb Blood Flow Metab 2013; 33:1666-84. [PMID: 23963364 PMCID: PMC3824184 DOI: 10.1038/jcbfm.2013.140] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/24/2013] [Accepted: 07/16/2013] [Indexed: 12/13/2022]
Abstract
Recent clinical data indicates that hemodynamic changes caused by cardiovascular diseases such as atherosclerosis, heart failure, and hypertension affect cognition. Yet, the underlying mechanisms of the resulting vascular cognitive impairment (VCI) are poorly understood. One reason for the lack of mechanistic insights in VCI is that research in dementia primarily focused on Alzheimer's disease models. To fill in this gap, we critically reviewed the published data and various models of VCI. Typical findings in VCI include reduced cerebral perfusion, blood-brain barrier alterations, white matter lesions, and cognitive deficits, which have also been reported in different cardiovascular mouse models. However, the tests performed are incomplete and differ between models, hampering a direct comparison between models and studies. Nevertheless, from the currently available data we conclude that a few existing surgical animal models show the key features of vascular cognitive decline, with the bilateral common carotid artery stenosis hypoperfusion mouse model as the most promising model. The transverse aortic constriction and myocardial infarction models may be good alternatives, but these models are as yet less characterized regarding the possible cerebral changes. Mixed models could be used to study the combined effects of different cardiovascular diseases on the deterioration of cognition during aging.
Collapse
Affiliation(s)
- Diewertje I Bink
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Katja Ritz
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- SEIN—Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mat JAP Daemen
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Takemori K, Murakami T, Kometani T, Ito H. Possible involvement of oxidative stress as a causative factor in blood-brain barrier dysfunction in stroke-prone spontaneously hypertensive rats. Microvasc Res 2013; 90:169-72. [PMID: 23978333 DOI: 10.1016/j.mvr.2013.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/13/2013] [Accepted: 08/14/2013] [Indexed: 01/19/2023]
Abstract
To elucidate the pathogenic roles of oxidative stress on blood-brain-barrier (BBB) dysfunction, we compared the chronological changes of oxidative stress in blood and cerebral tissue between stroke-prone spontaneously hypertensive rats (SHRSP) and normotensive Wistar-Kyoto rats (WKY). Plasma and tissue oxidative stress was assayed by the diacron-reactive oxygen metabolite (d-ROM) test using 8-hydroxy-2'-deoxyguanosine (8-OHdG) as a reference oxidative stress marker. The plasma and cerebral cortex d-ROM levels increased in SHRSP after 16weeks of age, but not in WKY. There were no significant differences in 8-OHdG or lipid peroxidation markers between SHRSP and WKY. Antioxidant capacity, as estimated by the biological antioxidant potential test, was similar between SHRSP and WKY at all ages examined. The changes in plasma and tissue d-ROM levels coincided with changes in glucose transporter-1 and aquaporin-4 expression, as functional constituents of the BBB. These results indicate that plasma oxidative stress increases before the onset of tissue damage, and plays an important role in BBB dysfunction rather than decreases in antioxidant capacity. The plasma d-ROM test appears to be useful for predicting vasogenic cerebral edema in severe hypertension.
Collapse
Affiliation(s)
- Kumiko Takemori
- Department of Food Science and Nutrition, Faculty of Agriculture, Kinki University, Nara, Japan.
| | | | | | | |
Collapse
|
42
|
Bellis A, Trimarco B. Pharmacological approach to cardiovascular risk in metabolic syndrome. J Cardiovasc Med (Hagerstown) 2013; 14:403-9. [DOI: 10.2459/jcm.0b013e32835dbd0d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Oxidative stress is related to the deleterious effects of heme oxygenase-1 in an in vivo neuroinflammatory rat model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:264935. [PMID: 23533686 PMCID: PMC3606782 DOI: 10.1155/2013/264935] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 01/08/2023]
Abstract
Heme oxygenase-1 (HO-1) induction is associated with beneficial or deleterious effects depending on the experimental conditions adopted and the neurodegenerative rodent models used. The present study aimed first to evaluate the effects of cerebral HO-1 induction in an in vivo rat model of neuroinflammation by intrastriatal injection of quinolinic acid (QA) and secondly to explore the role played by reactive oxygen species (ROS) and free iron (Fe2+) derived from heme catabolism promoted by HO-1. Chronic I.P. treatment with the HO-1 inductor and substrate hemin was responsible for a significant dose-related increase of cerebral HO-1 production. Brain tissue loss, microglial activation, and neuronal death were significantly higher in rats receiving QA plus hemin (H-QA) versus QA and controls. Significant increase of ROS production in H-QA rat brain was inhibited by the specific HO-1 inhibitor ZnPP which supports the idea that ROS level augmentation in hemin-treated animals is a direct consequence of HO-1 induction. The cerebral tissue loss and ROS level in hemin-treated rats receiving the iron chelator deferoxamine were significantly decreased, demonstrating the involvement of Fe2+in brain ROS production. Therefore, the deleterious effects of HO-1 expression in this in vivo neuroinflammatory model were linked to a hyperproduction of ROS, itself promoted by free iron liberation.
Collapse
|
44
|
Abstract
While both cardiac dysfunction and progressive loss of cognitive function are prominent features of an ageing population, surprisingly few studies have addressed the link between the function of the heart and brain. Recent literature indicates that autoregulation of cerebral flow is not able to protect the brain from hypoperfusion when cardiac output is reduced or atherosclerosis is prominent. This suggests a close link between cardiac function and large vessel atherosclerosis on the one hand and brain perfusion and cognitive functioning on the other. Mechanistically, the presence of vascular pathology leads to chronic cerebral hypoperfusion, blood brain barrier breakdown and inflammation that most likely precede neuronal death and neurodegeneration. Animal models to study the effects of chronic cerebral hypoperfusion are available, but they have not yet been combined with cardiovascular models.
Collapse
|
45
|
Porte Y, Morel JL. Learning on Jupiter, learning on the Moon: the dark side of the G-force. Effects of gravity changes on neurovascular unit and modulation of learning and memory. Front Behav Neurosci 2012; 6:64. [PMID: 23015785 PMCID: PMC3449275 DOI: 10.3389/fnbeh.2012.00064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/06/2012] [Indexed: 12/14/2022] Open
Abstract
On earth, gravity vector conditions the development of all living beings by physically imposing an axis along which to build their organism. Thus, during their whole life, they have to fight against this force not only to maintain their architectural organization but also to coordinate the communication between organs and keep their physiology in a balanced steady-state. In space, astronauts show physiological, psychological, and cognitive deregulations, ranging from bone decalcification or decrease of musculature, to depressive-like disorders, and spatial disorientation. Nonetheless, they are confronted to a great amount of physical changes in their environment such as solar radiations, loss of light-dark cycle, lack of spatial landmarks, confinement, and obviously a dramatic decrease of gravity force. It is thus very hard to selectively discriminate the strict role of gravity level alterations on physiological, and particularly cerebral, dysfunction. To this purpose, it is important to design autonomous models and apparatuses for behavioral phenotyping utilizable under modified gravity environments. Our team actually aims at working on this area of research.
Collapse
Affiliation(s)
- Yves Porte
- Université de Bordeaux Bordeaux, France ; Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives Talence, France
| | | |
Collapse
|
46
|
Li Y, Duan Z, Gao D, Huang S, Yuan H, Niu X. The new role of LOX-1 in hypertension induced neuronal apoptosis. Biochem Biophys Res Commun 2012; 425:735-40. [PMID: 22885180 DOI: 10.1016/j.bbrc.2012.07.143] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 07/26/2012] [Indexed: 02/07/2023]
Abstract
Lectin-like oxidized low-density lipoprotein (oxLDL) receptor-1 (LOX-1) was originally identified as a receptor for oxLDL predominantly expressed in endothelial cells. Recently up-regulation of LOX-1 has been implicated in oxidative stress and cell apoptosis in many cell types. However, LOX-1 expression in neurons or regulation of neuronal apoptosis by LOX-1 has not been reported. To investigate the possible roles of LOX-1 in hypertension induced brain damage, we examined the distribution of LOX-1 in cortex and hippocampus and compared its expression in 32-week-old SHR and WKY rats. Immunofluorescence revealed that LOX-1 positive cells were located principally at the cortex involved in sensory information processing and were mainly expressed in neurons. We also found up-regulated mRNA expression of LOX-1, Bax and caspase-3 and down-regulated mRNA expression of Bcl-2 in SHR group. Compared with WKY group, SHR group showed increased LOX-1 positive cells and TUNEL positive cells. Furthermore, double-labeling method indicated that LOX-1 expression was colocalized with TUNEL positive cells, which means that LOX-1 expression was involved in hypertension related cell apoptosis. These findings indicated that LOX-1 expression was up-regulated in the cortex of SHR and its expression has implication in neuronal apoptosis. Elevated Bax/Bcl-2 ratio may be involved under this event.
Collapse
Affiliation(s)
- Yali Li
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | |
Collapse
|
47
|
Role of Cytosolic Calcium-Dependent Phospholipase A2 in Alzheimer's Disease Pathogenesis. Mol Neurobiol 2012; 45:596-604. [DOI: 10.1007/s12035-012-8279-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/08/2012] [Indexed: 12/13/2022]
|
48
|
Wu DM, Lu J, Zheng YL, Zhang YQ, Hu B, Cheng W, Zhang ZF, Li MQ. Small interfering RNA-mediated knockdown of protein kinase C zeta attenuates domoic acid-induced cognitive deficits in mice. Toxicol Sci 2012; 128:209-22. [PMID: 22474074 DOI: 10.1093/toxsci/kfs124] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Accumulated evidence indicates that domoic acid (DA)-induced excitatory neuronal injury is associated with excessive reactive oxygen species (ROS) production. Protein kinase C zeta (PKC-ζ)/nicotinamide adenine dinucleotide phosphate (NOX) signaling regulates ROS levels and is involved in various neurodegenerative disorders including excitoneurotoxicity. Our previous studies have demonstrated that ROS-induced activation of the stress-activated protein kinase/c-jun-N-terminal kinase (SAPK/JNK) pathway plays a key role in the pathogenesis of cognitive deficits induced by DA. However, the precise biological mechanisms underlying these effects are not well understood. In this study, we investigate whether the PKC-ζ mediates DA-induced cognitive deficits and further explored the potential molecular processes. DA treatment significantly increased the expression of PI3K p85α, and PKC-ζ in the hippocampus of mice, which promoted the p47phox phosphorylation and expression, enhanced NOX activity, and increased the levels of ROS and protein carbonyls. In turn, the abnormal ROS levels in the hippocampus of DA-treated mice activated SAPK/JNK pathway, decreased FoxO1 phosphorylation, stimulated the nuclear translocation of FoxO1, activated FasL/Fas signaling, and promoted the activation of caspase-8 and caspase-3, which resulted in neuron apoptosis and cognitive deficits in mice. However, PKC-ζ knockdown reversed these changes in mice. It was further demonstrated that FoxO1 was a downstream target of SAPK/JNK signaling by FoxO1 small interfering RNA and SP600125 (an inhibitor of SAPK/JNK pathway) treatment. Additionally, SP600125 treatment or FoxO1 knockdown also blocked FasL/Fas signaling-dependent apoptosis and improved DA-induced cognitive deficits in the hippocampus of mice. These results suggest that PKC-ζ could be a possible target for the prevention or treatment of cognitive deficits in excitotoxic and other brain disorders.
Collapse
Affiliation(s)
- Dong-mei Wu
- Department of Environmental Engineering, School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu Province 221008, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Yassin LS, Fukui C, Pereira PCD, Olandoski M, Aveles PR, Pinto SC, Resnauer C, Nakao LS, Morimoto II. Efeito da administração de uma dieta enteral com antioxidantes sobre as concentrações plasmáticas de tióis totais, carbonilas de proteínas e malondialdeído após acidente vascular cerebral. REV NUTR 2012. [DOI: 10.1590/s1415-52732012000200007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJETIVO: Avaliar o efeito da administração de uma dieta enteral industrializada com antioxidantes sobre as concentrações plasmáticas de tióis totais, carbonilas de proteínas e malondialdeído em pacientes após acidente vascular cerebral. MÉTODOS: A amostra foi constituída de 14 pacientes de um hospital geral que iniciaram nutrição enteral 48 horas após o evento. Falência múltipla, insuficiência hepática, obesidade mórbida e diabetes Mellitus associados foram critérios de exclusão. A dieta industrializada ofertada por gotejamento contínuo, com uso de bombas infusoras, continha mix de carotenoides, vitaminas C, E e minerais Se, Zn e Cu em sua formulação. As amostras de sangue foram coletadas antes do início da administração da dieta e após cinco dias de início da dieta enteral, somente de pacientes que tivessem recebido o volume necessário para completar o gasto energético total. Tióis plasmáticos e carbonilas de proteína foram determinados por meio do Reagente de Ellman e pela reação com dinitrofenilhidrazina respectivamente. O malondialdeído foi obtido pela determinação de substâncias reativas do ácido tiobarbitúrico. RESULTADOS: A média de idade foi M=70,3, DP=14,1 anos. Todos receberam acima de 100% da Dietary Reference Intakes para nutrientes antioxidantes, que não ultrapassaram os limites superiores toleráveis de ingestão. Não houve alteração da concentração de tióis, mas houve aumento da formação de carbonilas de proteínas (p=0,034). Nos pacientes entubados, esse marcador mostrou-se significativamente maior (p=0,048) após administração da dieta. Não houve diferença nas concentrações de malondialdeído após a oferta de antioxidantes dietéticos. CONCLUSÃO: A análise de biomarcadores não demonstrou redução do estresse oxidativo após administração de dieta enteral industrializada com antioxidantes.
Collapse
|
50
|
Lu J, Wu DM, Zheng YL, Hu B, Cheng W, Zhang ZF. Purple sweet potato color attenuates domoic acid-induced cognitive deficits by promoting estrogen receptor-α-mediated mitochondrial biogenesis signaling in mice. Free Radic Biol Med 2012; 52:646-659. [PMID: 22178976 DOI: 10.1016/j.freeradbiomed.2011.11.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 11/04/2011] [Accepted: 11/09/2011] [Indexed: 11/28/2022]
Abstract
Recent findings suggest that endoplasmic reticulum stress may be involved in the pathogenesis of domoic acid-induced neurodegeneration. Purple sweet potato color, a class of naturally occurring anthocyanins, has beneficial health and biological effects. Recent studies have also shown that anthocyanins have estrogenic activity and can enhance estrogen receptor-α expression. In this study, we evaluated the effect of purple sweet potato color on cognitive deficits induced by hippocampal mitochondrial dysfunction in domoic acid-treated mice and explored the potential mechanisms underlying this effect. Our results showed that the oral administration of purple sweet potato color to domoic acid-treated mice significantly improved their behavioral performance in a step-through passive avoidance task and a Morris water maze task. These improvements were mediated, at least in part, by a stimulation of estrogen receptor-α-mediated mitochondrial biogenesis signaling and by decreases in the expression of p47phox and gp91phox. Decreases in reactive oxygen species and protein carbonylation were also observed, along with a blockade of the endoplasmic reticulum stress pathway. Furthermore, purple sweet potato color significantly suppressed endoplasmic reticulum stress-induced apoptosis, which prevented neuron loss and restored the expression of memory-related proteins. However, knockdown of estrogen receptor-α using short hairpin RNA only partially blocked the neuroprotective effects of purple sweet potato color in the hippocampus of mice cotreated with purple sweet potato color and domoic acid, indicating that purple sweet potato color acts through multiple pathways. These results suggest that purple sweet potato color could be a possible candidate for the prevention and treatment of cognitive deficits in excitotoxic and other brain disorders.
Collapse
Affiliation(s)
- Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province, People's Republic of China
| | - Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province, People's Republic of China; School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province, People's Republic of China
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province, People's Republic of China.
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province, People's Republic of China
| | - Wei Cheng
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province, People's Republic of China
| | - Zi-Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province, People's Republic of China
| |
Collapse
|