1
|
Shih CC, Chen PY, Chen MF, Lee TJF. Differential blockade by huperzine A and donepezil of sympathetic nicotinic acetylcholine receptor-mediated nitrergic neurogenic dilations in porcine basilar arteries. Eur J Pharmacol 2019; 868:172851. [PMID: 31836535 DOI: 10.1016/j.ejphar.2019.172851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 10/25/2022]
Abstract
Nicotinic acetylcholine receptor activation on the perivascular sympathetic nerves via axo-axonal interaction mechanism causes norepinephrine release, which triggers the neurogenic nitrergic relaxation in basilar arteries to meet the need of a brain. Donepezil and huperzine A, which are the cholinesterase inhibitors used for Alzheimer's disease therapy, exert controversial effects on nicotinic acetylcholine receptors. Therefore, we investigated how donepezil and huperzine A via the axo-axonal interaction regulate the neurogenic vasodilation of isolated porcine basilar arteries and define their action on different subtypes of the nicotinic acetylcholine receptor by using blood vessel myography, calcium imaging, and electrophysiological techniques. Both nicotine (100 μM) and transmural nerve stimulation (TNS, 8 Hz) induce NO-mediated dilation in the arteries. Nicotine-induced vasodilations were concentration-dependently inhibited by huperzine A and donepezil, with the former being 30 fold less potent than the latter. Both cholinesterase inhibitors weakly and equally decreased TNS-elicited nitrergic vasodilations. Neither huperzine A nor donepezil affected isoproterenol (a β adrenoceptor-agonist)- or sodium nitroprusside (a NO donor)-induced vasodilation. Further, huperzine A was less potent than donepezil in inhibiting nicotine-elicited calcium influxes in rodent superior cervical ganglionic neurons and inward currents in α7- and α3β2-nicotinic acetylcholine receptor-expressing Xenopus oocytes. In conclusion, huperzine A may exert less harmful effect over donepezil on maintaining brainstem circulation and on the nicotinic acetylcholine receptor-associated cognition deficits during treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Cheng-Chan Shih
- Institute of Pharmacology & Toxicology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Po-Yi Chen
- Cardiovascular Research Center and Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Institute of Pharmacology & Toxicology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Mei-Fang Chen
- Cardiovascular Research Center and Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Tzu Chi University of Science and Technology, Hualien, Taiwan.
| | - Tony J F Lee
- Cardiovascular Research Center and Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
2
|
Zhao L, Xiao Y, Xiu J, Tan LC, Guan ZZ. Protection against the Neurotoxic Effects of β-Amyloid Peptide on Cultured Neuronal Cells by Lovastatin Involves Elevated Expression of α7 Nicotinic Acetylcholine Receptors and Activating Phosphorylation of Protein Kinases. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1081-1093. [DOI: 10.1016/j.ajpath.2017.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/27/2017] [Accepted: 11/28/2017] [Indexed: 12/25/2022]
|
3
|
Li Y, Luo D, Chen X, Li J, Yan L, Li T, Zhao Y, Liu, H, Ji X, Ma X. Involvement of Arachidonic Acid Metabolites Pathway and Nicotinic Acetylcholine Receptors (nAChRs) on Nicotine-induced Contractions (or Relaxations) in the Basilar Artery. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2017.1.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Abstract
Scenic view at high altitude is a pleasure to the eyes, but it has some shortcoming effects as well. High altitude can be divided into different categories, i.e., high altitude (3000-5000 ft), very high altitude (5000-8000 ft), and extreme altitude (above 8000 ft). Much of the population resides at high altitude, and others go there for tourism. Military personnel are also posted there to defend boundaries. As we ascent to high altitude, partial pressure of oxygen reduces, whereas concentration remains the same; this reduces the availability of oxygen to different body parts. This pathophysiological condition is known as hypobaric hypoxia (HH) which leads to oxidative stress and further causes cognitive dysfunction in some cases. Hypoxia causes neurodegeneration in different brain regions; however, the hippocampus is found to be more prone in comparison to other brain regions. As the hippocampus is affected most, therefore, spatial memory is impaired most during such condition. This chapter will give a brief review of the damaging effect of high altitude on cognition and also throw light on possible herbal interventions at high altitude, which can improve cognitive performance as well as provide protection against the deteriorating effect of hypobaric hypoxia at high altitude.
Collapse
Affiliation(s)
- Vishal Jain
- Vallabhbhai Patel Chest Institute, Delhi University, Delhi, 110007, India.
| |
Collapse
|
5
|
Inhibition by ketamine and amphetamine analogs of the neurogenic nitrergic vasodilations in porcine basilar arteries. Toxicol Appl Pharmacol 2016; 305:75-82. [DOI: 10.1016/j.taap.2016.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/24/2016] [Accepted: 05/29/2016] [Indexed: 10/21/2022]
|
6
|
Manukhina EB, Downey HF, Shi X, Mallet RT. Intermittent hypoxia training protects cerebrovascular function in Alzheimer's disease. Exp Biol Med (Maywood) 2016; 241:1351-63. [PMID: 27190276 DOI: 10.1177/1535370216649060] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a leading cause of death and disability among older adults. Modifiable vascular risk factors for AD (VRF) include obesity, hypertension, type 2 diabetes mellitus, sleep apnea, and metabolic syndrome. Here, interactions between cerebrovascular function and development of AD are reviewed, as are interventions to improve cerebral blood flow and reduce VRF. Atherosclerosis and small vessel cerebral disease impair metabolic regulation of cerebral blood flow and, along with microvascular rarefaction and altered trans-capillary exchange, create conditions favoring AD development. Although currently there are no definitive therapies for treatment or prevention of AD, reduction of VRFs lowers the risk for cognitive decline. There is increasing evidence that brief repeated exposures to moderate hypoxia, i.e. intermittent hypoxic training (IHT), improve cerebral vascular function and reduce VRFs including systemic hypertension, cardiac arrhythmias, and mental stress. In experimental AD, IHT nearly prevented endothelial dysfunction of both cerebral and extra-cerebral blood vessels, rarefaction of the brain vascular network, and the loss of neurons in the brain cortex. Associated with these vasoprotective effects, IHT improved memory and lessened AD pathology. IHT increases endothelial production of nitric oxide (NO), thereby increasing regional cerebral blood flow and augmenting the vaso- and neuroprotective effects of endothelial NO. On the other hand, in AD excessive production of NO in microglia, astrocytes, and cortical neurons generates neurotoxic peroxynitrite. IHT enhances storage of excessive NO in the form of S-nitrosothiols and dinitrosyl iron complexes. Oxidative stress plays a pivotal role in the pathogenesis of AD, and IHT reduces oxidative stress in a number of experimental pathologies. Beneficial effects of IHT in experimental neuropathologies other than AD, including dyscirculatory encephalopathy, ischemic stroke injury, audiogenic epilepsy, spinal cord injury, and alcohol withdrawal stress have also been reported. Further research on the potential benefits of IHT in AD and other brain pathologies is warranted.
Collapse
Affiliation(s)
- Eugenia B Manukhina
- University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA Institute of General Pathology and Pathophysiology, Moscow 125315, Russian Federation
| | - H Fred Downey
- University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | - Xiangrong Shi
- University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | - Robert T Mallet
- University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| |
Collapse
|
7
|
Simvastatin prevents β-amyloid25–35-impaired neurogenesis in hippocampal dentate gyrus through α7nAChR-dependent cascading PI3K-Akt and increasing BDNF via reduction of farnesyl pyrophosphate. Neuropharmacology 2015; 97:122-32. [DOI: 10.1016/j.neuropharm.2015.05.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 05/17/2015] [Accepted: 05/19/2015] [Indexed: 02/06/2023]
|
8
|
Chen T, Wang C, Sha S, Zhou L, Chen L, Chen L. Simvastatin Enhances Spatial Memory and Long-Term Potentiation in Hippocampal CA1 via Upregulation of α7 Nicotinic Acetylcholine Receptor. Mol Neurobiol 2015. [DOI: 10.1007/s12035-015-9344-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Takatori S, Fujiwara H, Hagimori K, Hashikawa-Hobara N, Yokomizo A, Takayama F, Tangsucharit P, Ono N, Kawasaki H. Nicotine facilitates reinnervation of phenol-injured perivascular adrenergic nerves in the rat mesenteric resistance artery. Eur J Pharmacol 2015; 748:1-9. [DOI: 10.1016/j.ejphar.2014.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 01/19/2023]
|
10
|
Wu CYC, Lee RHC, Chen PY, Tsai APY, Chen MF, Kuo JS, Lee TJF. L-type calcium channels in sympathetic α3β2-nAChR-mediated cerebral nitrergic neurogenic vasodilation. Acta Physiol (Oxf) 2014; 211:544-58. [PMID: 24825168 DOI: 10.1111/apha.12315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/22/2013] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
Abstract
AIM Nicotine stimulation of α3β2-nicotinic acetylcholine receptors (α3β2-nAChRs) located on sympathetic nerves innervating basilar arteries causes calcium-dependent noradrenaline release, leading to activation of parasympathetic nitrergic nerves and dilation of basilar arteries. This study aimed to investigate the major subtype of calcium channels located on cerebral peri-vascular sympathetic nerves, which is involved in nicotine-induced α3β2-nAChR-mediated nitrergic vasodilation in basilar arteries. METHODS Nicotine- and transmural nerve stimulation (TNS)-induced dilation of isolated porcine basilar arteries was examined using in vitro tissue bath. Nicotine-induced calcium influx, nicotine-induced noradrenaline release and nicotine-induced inward currents were evaluated in rat superior cervical ganglion (SCG) neurones, peri-vascular sympathetic nerves of porcine basilar arteries and α3β2-nAChRs-expressing oocytes respectively. mRNA and protein expression of Cav 1.2 and Cav 1.3 channels were detected by RT-PCR, Western blotting and immunohistochemistry. RESULTS Nicotine-induced vasodilation was not affected by ω-agatoxin TK (selective P/Q-type calcium channel blocker) or ω-conotoxin GVIA (N-type calcium channel blocker). The vasodilation, however, was inhibited by nicardipine (L-type calcium channel blocker) in concentrations which did not affect TNS-induced vasodilation, suggesting the specific blockade. Nicardipine concentration-dependently inhibited nicotine-induced calcium influx in rat SCG neurones and reduced nicotine-induced noradrenaline release from peri-vascular sympathetic nerves of porcine basilar arteries. Nicardipine (10 μm), which significantly blocked nicotine-induced vasorelaxation by 70%, did not appreciably affect nicotine-induced inward currents in α3β2-nAChRs-expressing oocytes. Furthermore, the mRNAs and proteins of Cav 1.2 and Cav 1.3 channels were expressed in porcine SCG and peri-vascular nerve terminals. CONCLUSION The sympathetic neuronal calcium influx through L-type calcium channels is modulated by α3β2-nAChRs. This calcium influx causes noradrenaline release, initiating sympathetic-parasympathetic (axo-axonal) interaction-induced nitrergic dilation of porcine basilar arteries.
Collapse
Affiliation(s)
- C. Y.-C. Wu
- Institute of Pharmacology & Toxicology; Tzu Chi University; Hualien Taiwan
- Center for Vascular Medicine; College of Life Sciences; Tzu Chi University; Hualien Taiwan
| | - R. H.-C. Lee
- Center for Vascular Medicine; College of Life Sciences; Tzu Chi University; Hualien Taiwan
- Institute of Medical Sciences; College of Medicine; Tzu Chi University; Hualien Taiwan
| | - P.-Y. Chen
- Institute of Pharmacology & Toxicology; Tzu Chi University; Hualien Taiwan
- Department of Medical Research; Buddhist Tzu Chi General Hospital; Hualien Taiwan
| | - A. P.-Y. Tsai
- Institute of Pharmacology & Toxicology; Tzu Chi University; Hualien Taiwan
- Center for Vascular Medicine; College of Life Sciences; Tzu Chi University; Hualien Taiwan
| | - M.-F. Chen
- Center for Vascular Medicine; College of Life Sciences; Tzu Chi University; Hualien Taiwan
- Department of Medical Research; Buddhist Tzu Chi General Hospital; Hualien Taiwan
| | - J.-S. Kuo
- Center for Vascular Medicine; College of Life Sciences; Tzu Chi University; Hualien Taiwan
- Institute of Medical Sciences; College of Medicine; Tzu Chi University; Hualien Taiwan
| | - T. J.-F. Lee
- Institute of Pharmacology & Toxicology; Tzu Chi University; Hualien Taiwan
- Center for Vascular Medicine; College of Life Sciences; Tzu Chi University; Hualien Taiwan
- Institute of Medical Sciences; College of Medicine; Tzu Chi University; Hualien Taiwan
- Department of Medical Research; Buddhist Tzu Chi General Hospital; Hualien Taiwan
- Department of Life Sciences; Tzu Chi University; Hualien Taiwan. Department of Pharmacology; Southern Illinois University School of Medicine; Springfield IL USA
| |
Collapse
|
11
|
Memantine inhibits α3β2-nAChRs-mediated nitrergic neurogenic vasodilation in porcine basilar arteries. PLoS One 2012; 7:e40326. [PMID: 22792283 PMCID: PMC3390354 DOI: 10.1371/journal.pone.0040326] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 06/06/2012] [Indexed: 11/19/2022] Open
Abstract
Memantine, an NMDA receptor antagonist used for treatment of Alzheimer’s disease (AD), is known to block the nicotinic acetylcholine receptors (nAChRs) in the central nervous system (CNS). In the present study, we examined by wire myography if memantine inhibited α3β2-nAChRs located on cerebral perivascular sympathetic nerve terminals originating in the superior cervical ganglion (SCG), thus, leading to inhibition of nicotine-induced nitrergic neurogenic dilation of isolated porcine basilar arteries. Memantine concentration-dependently blocked nicotine-induced neurogenic dilation of endothelium-denuded basilar arteries without affecting that induced by transmural nerve stimulation, sodium nitroprusside, or isoproterenol. Furthermore, memantine significantly inhibited nicotine-elicited inward currents in Xenopous oocytes expressing α3β2-, α7- or α4β2-nAChR, and nicotine-induced calcium influx in cultured rat SCG neurons. These results suggest that memantine is a non-specific antagonist for nAChR. By directly inhibiting α3β2-nAChRs located on the sympathetic nerve terminals, memantine blocks nicotine-induced neurogenic vasodilation of the porcine basilar arteries. This effect of memantine is expected to reduce the blood supply to the brain stem and possibly other brain regions, thus, decreasing its clinical efficacy in the treatment of Alzheimer’s disease.
Collapse
|
12
|
Chang HH, Lee YC, Chen MF, Kuo JS, Lee TJF. Sympathetic activation increases basilar arterial blood flow in normotensive but not hypertensive rats. Am J Physiol Heart Circ Physiol 2012; 302:H1123-30. [DOI: 10.1152/ajpheart.01016.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The close apposition between sympathetic and parasympathetic nerve terminals in the adventitia of cerebral arteries provides morphological evidence that sympathetic nerve activation causes parasympathetic nitrergic vasodilation via a sympathetic-parasympathetic interaction mechanism. The decreased parasympathetic nerve terminals in basilar arteries (BA) of spontaneously hypertensive rat (SHR) and renovascular hypertensive rats (RHR) compared with Wistar-Kyoto rats (WKY), therefore, would diminish this axo-axonal interaction-mediated neurogenic vasodilation in hypertension. Increased basilar arterial blood flow (BABF) via axo-axonal interaction during sympathetic activation was, therefore, examined in anesthetized rats by laser-Doppler flowmetry. Electrical stimulation (ES) of sympathetic nerves originating in superior cervical ganglion (SCG) and topical nicotine (10–30 μM) onto BA of WKY significantly increased BABF. Both increases were inhibited by tetrodotoxin, 7-nitroindazole (neuronal nitric oxide synthase inhibitor), and ICI-118,551 (β2-adrenoceptor antagonist), but not by atenolol (β1-adrenoceptor antagonist). Topical norepinephrine onto BA also increased BABF, which was abolished by atenolol combined with 7-nitroindazole or ICI-118,551. Similar results were found in prehypertensive SHR. However, in adult SHR and RHR, ES of sympathetic nerves or topical nicotine caused minimum or no increase of BABF. It is concluded that excitation of sympathetic nerves to BA in WKY causes parasympathetic nitrergic vasodilation with increased BABF. This finding indicates an endowed functional neurogenic mechanism for increasing the BABF or brain stem blood flow in coping with increased local sympathetic activities in acutely stressful situations such as the “fight-or-flight response.” This increased blood flow in defensive mechanism diminishes in genetic and nongenetic hypertensive rats due most likely to decreased parasympathetic nitrergic nerve terminals.
Collapse
Affiliation(s)
- Hsi-Hsien Chang
- Institute of Medical Sciences, College of Medicine,
- Department of Life Sciences, and
- Center for Vascular Medicine, College of Life Sciences, Tzu Chi University, Hualien, Taiwan
| | - Yuan-Chieh Lee
- Center for Vascular Medicine, College of Life Sciences, Tzu Chi University, Hualien, Taiwan
- Departments of 4Ophthalmology and
| | - Mei-Fang Chen
- Center for Vascular Medicine, College of Life Sciences, Tzu Chi University, Hualien, Taiwan
- Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan; and
| | - Jon-Son Kuo
- Institute of Medical Sciences, College of Medicine,
- Center for Vascular Medicine, College of Life Sciences, Tzu Chi University, Hualien, Taiwan
| | - Tony J. F. Lee
- Institute of Medical Sciences, College of Medicine,
- Department of Life Sciences, and
- Center for Vascular Medicine, College of Life Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois
| |
Collapse
|
13
|
Chen MF, Huang YC, Long C, Yang HI, Lee HC, Chen PY, Hoffer BJ, Lee TJF. Bimodal effects of fluoxetine on cerebral nitrergic neurogenic vasodilation in porcine large cerebral arteries. Neuropharmacology 2011; 62:1651-8. [PMID: 22155207 DOI: 10.1016/j.neuropharm.2011.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 11/18/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
Abstract
Fluoxetine-induced relaxation of the smooth muscle of small cerebral arteries is thought beneficial in treating mental disorders. The present study was designed to examine effect of fluoxetine on neurogenic nitrergic vasodilation in large cerebral arteries, using in vitro tissue myography, techniques of electrophysiology, calcium imaging and biochemistry. In isolated porcine endothelium-denuded basilar arteries in the presence of U-46619-induced active muscle tone, fluoxetine in low concentration (<0.03 μM) significantly enhanced nicotine- and choline-induced relaxations. The vasorelaxation, however, was blocked by higher concentration of fluoxetine (>0.3 μM) with maximum inhibition at 3 μM. At this concentration, fluoxetine did not affect the basal tone or vasorelaxations induced by transmural nerve stimulation, sodium nitroprusside, or isoproterenol. Furthermore, fluoxetine exclusively blocked nicotine-induced inward currents and calcium influx in cultured neurons of rat superior cervical ganglion and Xenopus oocytes expressing human α7-, α3β2-, or α4β2-nicotinic acetylcholine receptors (nAChRs). In addition, fluoxetine at 0.03 μM and 3 μM significantly enhanced and blocked, respectively, nicotine-induced norepinephrine (NE) release from cerebral perivascular sympathetic nerves. These results indicate that fluoxetine via axo-axonal interaction mechanism exhibits bimodal effects on nAChR-mediated neurogenic nitrergic dilation of basilar arteries. Fluoxetine in high concentrations decreases while in low concentrations it increases neurogenic vasodilation. These results from in vitro experimentation suggest that optimal concentrations of fluoxetine which increase or minimally affect neurogenic vasodilation indicative of regional cerebral blood flow may be important consideration in treating mental disorders.
Collapse
Affiliation(s)
- Mei-Fang Chen
- Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Si ML, Long C, Chen MF, Lee TJF. Estrogen prevents β-amyloid inhibition of sympathetic α7-nAChR-mediated nitrergic neurogenic dilation in porcine basilar arteries. Acta Physiol (Oxf) 2011; 203:13-23. [PMID: 21073661 DOI: 10.1111/j.1748-1716.2010.02224.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AIM β-amyloid peptides (Aβs) have been shown to block cerebral nitrergic neurogenic vasodilation by blocking sympathetic α7-nAChRs, and that oestrogen prevents Aβ-induced neurotoxicity. We examined whether Aβ-inhibition of α7-nAChR-mediated cerebral nitrergic vasodilation was prevented by oestrogen. METHODS Effects of Aβ and 17β-oestradiol on neurogenic nitrergic vasodilation in isolated porcine basilar arteries were examined using wire-myography. Drug effects on nicotine- and choline-induced calcium influx and inward currents in porcine cultured superior cervical ganglion (SCG) were investigated using confocal microscopy and patch-clamp techniques respectively. RESULTS Precontracted endothelium-denuded basilar arteries relaxed exclusively upon transmural nerve stimulation (TNS, 8 Hz), and applications of nicotine (100 μm) or choline (1 mm), which was sensitive to nitro-L-arginine (L-NNA, 30 μm) and tetrodotoxin (0.3 μm). The relaxation induced by nicotine and choline but not that by TNS was blocked reversibly by Aβ(1-40) in a concentration-dependent manner. Aβ(1-40) also reversibly blocked nicotine- and choline-induced increase of calcium influx and inward currents in the SCG neurons. Aβ inhibition of nicotine- and choline-induced α7-nAChR-mediated nitrergic vasodilation and inward currents was prevented by 17β-oestradiol (10 μm), but not by α-oestradiol (10 μm) or testosterone (10 μm). CONCLUSION These results provide further evidence supporting that Aβ is an antagonist for the α7-nAChR found on post-ganglionic sympathetic adrenergic nerve terminals originating in the SCG. Aβ can cause constriction of cerebral arteries with possible decreased regional cerebral blood flow by blocking sympathetic nerve-mediated release of nitric oxide from the perivascular nitrergic nerves. This effect of Aβ can be prevented by endogenous oestrogen but not testosterone.
Collapse
Affiliation(s)
- M-L Si
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, USA
| | | | | | | |
Collapse
|
15
|
Lee TJF, Chang HH, Lee HC, Chen PY, Lee YC, Kuo JS, Chen MF. Axo-axonal interaction in autonomic regulation of the cerebral circulation. Acta Physiol (Oxf) 2011; 203:25-35. [PMID: 21159131 DOI: 10.1111/j.1748-1716.2010.02231.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Noradrenaline (NE) and acetylcholine (ACh) released from the sympathetic and parasympathetic neurones in cerebral blood vessels were suggested initially to be the respective vasoconstricting and dilating transmitters. Both substances, however, are extremely weak post-synaptic transmitters. Compelling evidence indicates that nitric oxide (NO) which is co-released with ACh from same parasympathetic nerves is the major transmitter for cerebral vasodilation, and its release is inhibited by ACh. NE released from the sympathetic nerve, acting on presynaptic β2-adrenoceptors located on the neighbouring parasympathetic nitrergic nerves, however, facilitates NO release with enhanced vasodilation. This axo-axonal interaction mediating NE transmission is supported by close apposition between sympathetic and parasympathetic nerve terminals, and has been shown in vivo at the base of the brain and the cortical cerebral circulation. This result reveals the physiological need for increased regional cerebral blood flow in 'fight-or-flight response' during acute stress. Furthermore, α7- and α3β2-nicotinic ACh receptors (nAChRs) on sympathetic nerve terminals mediate release of NE, leading to cerebral nitrergic vasodilation. α7-nAChR-mediated but not α3β2-nAChR-mediated cerebral nitrergic vasodilation is blocked by β-amyloid peptides (Aβs). This may provide an explanation for cerebral hypoperfusion seen in patients with Alzheimer's disease. α7- and α3β2-nAChR-mediated nitrergic vasodilation is blocked by cholinesterase inhibitors (ChEIs) which are widely used for treating Alzheimer's disease, leading to possible cerebral hypoperfusion. This may contribute to the limitation of clinical use of ChEIs. ChEI blockade of nAChR-mediated dilation like that by Aβs is prevented by statins pretreatment, suggesting that efficacy of ChEIs may be improved by concurrent use of statins.
Collapse
Affiliation(s)
- T J F Lee
- College of Life Sciences, Institute of Life Science, Tzu Chi University, Hualien, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Kox M, Pompe JC, Peters E, Vaneker M, van der Laak JW, van der Hoeven JG, Scheffer GJ, Hoedemaekers CW, Pickkers P. α7 nicotinic acetylcholine receptor agonist GTS-21 attenuates ventilator-induced tumour necrosis factor-α production and lung injury. Br J Anaesth 2011; 107:559-66. [PMID: 21771746 DOI: 10.1093/bja/aer202] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Mechanical ventilation (MV) induces an inflammatory response that can lead to lung injury. The vagus nerve can limit the inflammatory response through the cholinergic anti-inflammatory pathway. We evaluated the effects of stimulation of the cholinergic anti-inflammatory pathway with the selective partial α7 nicotinic acetylcholine receptor (α7nAChR) agonist GTS-21 on inflammation and lung injury induced by MV using clinically relevant ventilator settings. Furthermore, we investigated whether altering endogenous cholinergic signalling, by administration of the non-specific nAChR antagonist mecamylamine and the peripherally acting acetylcholinesterase inhibitor neostigmine, modulates the MV-induced inflammatory response. METHODS C57BL6 mice were injected i.p. with either the selective α7nAChR agonist GTS-21 (8 mg kg(-1)), the acetylcholinesterase inhibitor neostigmine (80 μg kg(-1)), the nAChR antagonist mecamylamine (1 mg kg(-1)), or a placebo; followed by 4 h of MV (8 ml kg(-1), 1.5 cm H(2)O PEEP). RESULTS MV resulted in release of cytokines in plasma and lungs compared with unventilated mice. Lung and plasma levels of tumour necrosis factor (TNF)-α, but not of interleukin-10, were lower in GTS-21-treated animals compared with placebo (P<0.05). In addition, GTS-21 lowered the alveolar-arterial gradient, indicating improved lung function (P=0.04). Neither neostigmine nor mecamylamine had an effect on MV-induced inflammation or lung function. CONCLUSIONS MV with clinically relevant ventilator settings results in pulmonary and systemic inflammation. Stimulation of the cholinergic anti-inflammatory pathway with GTS-21 attenuates MV-induced release of TNF-α, which was associated with reduced lung injury. Modulation of endogenous cholinergic signalling did not affect the MV-induced inflammatory response. Selective stimulation of the cholinergic anti-inflammatory pathway may represent new treatment options for MV-induced lung injury.
Collapse
Affiliation(s)
- M Kox
- Department of Intensive Care Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 10, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lee RHC, Liu YQ, Chen PY, Liu CH, Chen MF, Lin HW, Kuo JS, Premkumar LS, Lee TJF. Sympathetic α₃β₂-nAChRs mediate cerebral neurogenic nitrergic vasodilation in the swine. Am J Physiol Heart Circ Physiol 2011; 301:H344-54. [PMID: 21536845 DOI: 10.1152/ajpheart.00172.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The α(7)-nicotinic ACh receptor (α(7)-nAChR) on sympathetic neurons innervating basilar arteries of pigs crossed bred between Landrace and Yorkshire (LY) is known to mediate nicotine-induced, β-amyloid (Aβ)-sensitive nitrergic neurogenic vasodilation. Preliminary studies, however, demonstrated that nicotine-induced cerebral vasodilation in pigs crossbred among Landrace, Yorkshire, and Duroc (LYD) was insensitive to Aβ and α-bungarotoxin (α-BGTX). We investigated nAChR subtype on sympathetic neurons innervating LYD basilar arteries. Nicotine-induced relaxation of porcine isolated basilar arteries was examined by tissue bath myography, inward currents on nAChR-expressing oocytes by two-electrode voltage recording, and mRNA and protein expression in the superior cervical ganglion (SCG) and middle cervical ganglion (MCG) by reverse transcription PCR and Western blotting. Nicotine-induced basilar arterial relaxation was not affected by Aβ, α-BGTX, and α-conotoxin IMI (α(7)-nAChR antagonists), or α-conotoxin AuIB (α(3)β(4)-nAChR antagonist) but was inhibited by tropinone and tropane (α(3)-containing nAChR antagonists) and α-conotoxin MII (selective α(3)β(2)-nAChR antagonist). Nicotine-induced inward currents in α(3)β(2)-nAChR-expressing oocytes were inhibited by α-conotoxin MII but not by α-BGTX, Aβ, or α-conotoxin AuIB. mRNAs of α(3)-, α(7)-, β(2)-, and β(4)-subunits were expressed in both SCGs and MCGs with significantly higher mRNAs of α(3)-, β(2)-, and β(4)-subunits than that of α(7)-subunit. The Aβ-insensitive sympathetic α(3)β(2)-nAChR mediates nicotine-induced cerebral nitrergic neurogenic vasodilation in LYD pigs. The different finding from Aβ-sensitive α(7)-nAChR in basilar arteries of LY pigs may offer a partial explanation for different sensitivities of individuals to Aβ in causing diminished cerebral nitrergic vasodilation in diseases involving Aβ.
Collapse
Affiliation(s)
- Reggie Hui-Chao Lee
- Institutes of Medical Sciences, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Muthuraju S, Maiti P, Solanki P, Sharma AK, Pati S, Singh SB, Prasad D, Ilavazhagan G. Possible role of cholinesterase inhibitors on memory consolidation following hypobaric hypoxia of rats. Int J Neurosci 2011; 121:279-88. [PMID: 21348795 DOI: 10.3109/00207454.2011.556279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
High altitude (HA) generates a deleterious effect known as hypobaric hypoxia (HBH). This causes severe physiological and psychological changes such as acute mountain sickness (AMS) and cognitive functions in terms of learning and memory. The present study has evaluated the effect of cholinesterase inhibitors on memory consolidation following HBH. Adult male Sprague Dawley rats (80-90 days old) with an average body weight of 250 ± 25 g were used. Rats were assessed memory consolidation by using Morris water maze (MWM) for 8 days. After assessment of memory consolidation, rats were then exposed to HBH in stimulated chamber for 7 days at 6,100 m. After exposure to HBH, the memory consolidation of rats has been assessed in MWM. The results showed that there was memory consolidation impairment in HBH-exposed rats as compared to normoxic rats in terms of time spent in quaradents, rings, and counters. The rats which have been treated with physostigmine (PHY) and galantamine (GAL) showed better time spent in quaradents, rings, and counters as compared with hypoxic rats. In conclusion, the cholinesterase inhibitors could ameliorate the impairment of memory consolidation following HBH.
Collapse
Affiliation(s)
- Sangu Muthuraju
- Neurobiology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Ministry of Defence, Government of India, Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Tanaka KI, Yagi T, Shimakoshi R, Azuma K, Nanba T, Ogo H, Tamura A, Asanuma M. Effects of galantamine on l-NAME-induced behavioral impairment in Y-maze task in mice. Neurosci Lett 2009; 462:235-8. [DOI: 10.1016/j.neulet.2009.07.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 07/01/2009] [Accepted: 07/09/2009] [Indexed: 10/20/2022]
|
20
|
Endogenous methyl palmitate modulates nicotinic receptor-mediated transmission in the superior cervical ganglion. Proc Natl Acad Sci U S A 2008; 105:19526-31. [PMID: 19057014 DOI: 10.1073/pnas.0810262105] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nitric oxide (NO) is identified as the endothelium-derived relaxing factor and a neurotransmitter with a superfusion bioassay cascade technique. By using a similar technique with rat superior cervical ganglion (SCG) as donor tissue and rabbit endothelium-denuded aortic ring as detector tissue, we report here that a vasodilator, which is more potent than NO, is released in the SCG upon field electrical stimulation (FES) or addition of nicotine. Release of this vasodilator was enhanced by arginine analogs, including N(omega)-nitro-l-arginine (a NO synthase inhibitor), suggesting that it is not NO. Analysis by gas chromatography/mass spectrometry identified 2 saturated fatty acids, palmitic acid methyl ester (PAME) and stearic acid methyl ester (SAME), being released from the SCG upon FES in the presence of arginine analogs. Exogenous PAME but not SAME induced significant aortic dilation (EC(50) = 0.19 nM), indicating that PAME is the potent vasodilator. Release of PAME and SAME was significantly diminished in chronically decentralized SCG but not denervated SCG, suggesting the preganglionic origin. Furthermore, release of both fatty acids was calcium- and myosin light chain kinase-dependent, suggesting that both were released from axoplasmic vesicular stores. Electrophysiological studies further demonstrated that PAME but not SAME inhibited nicotine-induced inward currents in cultured SCG and the alpha7-nicotinic acetylcholine receptor-expressing Xenopus oocytes. Endogenous PAME appears to play a role in modulation of the autonomic ganglionic transmission and to complement the vasodilator effect of NO.
Collapse
|
21
|
El-Mas MM, El-gowilly SM, Gohar EY, Ghazal ARM. Pharmacological characterization of cellular mechanisms of the renal vasodilatory effect of nicotine in rats. Eur J Pharmacol 2008; 588:294-300. [DOI: 10.1016/j.ejphar.2008.04.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Revised: 02/12/2008] [Accepted: 04/23/2008] [Indexed: 11/16/2022]
|
22
|
Liu KK, Chen MF, Chen PY, Lee TJF, Cheng CL, Chang CC, Ho YP, Chao JI. Alpha-bungarotoxin binding to target cell in a developing visual system by carboxylated nanodiamond. NANOTECHNOLOGY 2008; 19:205102. [PMID: 21825732 DOI: 10.1088/0957-4484/19/20/205102] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Biological molecules conjugating with nanoparticles are valuable for applications including bio-imaging, bio-detection, and bio-sensing. Nanometer-sized diamond particles have excellent electronic and chemical properties for bio-conjugation. In this study, we manipulated the carboxyl group produced on the surface of nanodiamond (carboxylated nanodiamond, cND) for conjugating with alpha-bungarotoxin (α-BTX), a neurotoxin derived from Bungarus multicinctus with specific blockade of alpha7-nicotinic acetylcholine receptor (α7-nAChR). The electrostatic binding of cND-α-BTX was mediated by the negative charge of the cND and the positive charge of the α-BTX in physiological pH conditions. Sodium dodecyl sulfate-polyacrylamide gel analysis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI/TOF-MS) spectra displayed that α-BTX proteins were conjugated with cND particles via non-covalent bindings. The green fluorescence of the cND particles combining with the red fluorescence of tetramethylrhodamine-labeled α-BTX presented a yellow color at the same location, which indicated that α-BTX proteins were conjugated with cND particles. Xenopus laevis's oocytes expressed the human α7-nAChR proteins by microinjection with α7-nAChR mRNA. The cND-α-BTX complexes were bound to α7-nAChR locating on the cell membrane of oocytes and human lung A549 cancer cells analyzed by laser scanning confocal microscopy. The choline-evoked α7-nAChR-mediated inward currents of the oocytes were blocked by cND-α-BTX complexes in a concentration-dependent manner using two-electrode voltage-clamp recording. Furthermore, the fluorescence intensity of cND-α-BTX binding on A549 cells could be quantified by flow cytometry. These results indicate that cND-conjugated α-BTX still preserves its biological activity in blocking the function of α7-nAChR, and provide a visual system showing the binding of α-BTX to α7-nAChR.
Collapse
Affiliation(s)
- Kuang-Kai Liu
- Institute of Pharmacology and Toxicology, Tzu Chi University, Hualien 970, Taiwan. Biomedical Nanotechnology Laboratory, Tzu Chi University, Hualien 970, Taiwan. Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Mozayan M, Lee TJF. Statins prevent cholinesterase inhibitor blockade of sympathetic alpha7-nAChR-mediated currents in rat superior cervical ganglion neurons. Am J Physiol Heart Circ Physiol 2007; 293:H1737-44. [PMID: 17557921 DOI: 10.1152/ajpheart.00269.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Statins are reported to be beneficial in treating a multitude of disorders including dementia due to Alzheimer disease (AD) and vascular dementia (VaD) with varying, yet-to-be determined mechanisms of actions. Although cholinesterase inhibitors (ChEIs) are still recommended as the primary drug of choice for AD and related diseases, their efficacy is frequently questioned. We recently reported that alpha7-neuronal acetylcholine nicotinic receptor (alpha7-nAChR)-mediated neurogenic vasodilation of porcine cerebral arteries was blocked by ChEIs, and this blockade was prevented by statin pretreatment. The exact mechanism of interaction between ChEIs and statins remains unclear. Activation of alpha7-nAChRs located on perivascular postganglionic sympathetic nerve terminals releases norepinephrine, which then acts on presynaptic beta(2)-adrenoceptors located on neighboring nitrergic nerve terminals, resulting in nitric oxide release and vasodilation. The present study, therefore, was designed to determine whether interaction of ChEIs and statins occurs at the alpha7-nAChR level. We examined effects of concurrent application of ChEIs and statins on alpha7-nAChR-mediated inward currents in primary neuronal cultures of rat superior cervical ganglion cells, the origin of the perivascular sympathetic innervation to the cerebral arteries. The results indicated that physostigmine, neostigmine, and galantamine inhibited choline- and nicotine-induced whole cell currents in a concentration-dependent manner. This inhibition, which was noncompetitive in nature, was prevented by concurrent application of mevastatin and lovastatin in a concentration-dependent manner. These results suggest that statins protect alpha7-nAChR function directly at the receptor level. Since alpha7-nAChR is neuroprotective, having beneficial effects on memory and cerebral vascular function, its functional inhibition by ChEIs may explain in part the limitation of its effectiveness in AD and VaD therapy. Protection of alpha7-nAChR function from ChEI inhibition by concurrent administration of statins may provide an alternative strategy in improving the efficacy of AD and VaD therapy.
Collapse
Affiliation(s)
- Mansoor Mozayan
- Department of Pharmacology, Southern Illinois University School of Medicine, PO Box 19629; Springfield, IL 62794-9629, USA
| | | |
Collapse
|