1
|
Ndreu L, Carlsson J, Ponting DJ, Niklasson IB, Stéen EJL, McHugh L, O’Boyle NM, Luthman K, Karlberg AT, Karlsson I. Bioactivation of cinnamic alcohol in a reconstructed human epidermis model and evaluation of sensitizing potency of the identified metabolites. FRONTIERS IN TOXICOLOGY 2024; 6:1398852. [PMID: 39050368 PMCID: PMC11266153 DOI: 10.3389/ftox.2024.1398852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
Background Cinnamic alcohol is a natural compound, widely used in fragrances, which can cause allergic contact dermatitis. Cinnamic alcohol lacks intrinsic reactivity and autoxidation or metabolic activation is necessary for it to act as a sensitizer. Methods Bioactivation of cinnamic alcohol was explored using human liver microsomes, human liver S9 and SkinEthic™ Reconstructed Human Epidermis. A targeted multiple reaction monitoring mass spectrometry method was employed to study and quantify cinnamic alcohol along with eight potential phase I or phase II metabolites. The reconstructed human epidermis model, treated with cinnamic alcohol, was also analyzed with a non-targeted high-resolution mass spectrometry method to identify metabolites not included in the targeted method. Results Two metabolites identified with the targeted method, namely, pOH-cinnamic alcohol and pOH-cinnamic aldehyde, have not previously been identified in a metabolic in vitro system. Their reactivity toward biologically relevant nucleophiles was investigated and compared to their sensitizing potency in vivo in the murine local lymph node assay (LLNA). According to the LLNA, the pOH-cinnamic alcohol is non-sensitizing and pOH-cinnamic aldehyde is a moderate sensitizer. This makes pOH-cinnamic aldehyde less sensitizing than cinnamic aldehyde, which has been found to be a strong sensitizer in the LLNA. This difference in sensitizing potency was supported by the reactivity experiments. Cinnamic sulfate, previously proposed as a potential reactive metabolite of cinnamic alcohol, was not detected in any of the incubations. In addition, experiments examining the reactivity of cinnamic sulfate toward a model peptide revealed no evidence of adduct formation. The only additional metabolite that could be identified with the non-targeted method was a dioxolan derivative. Whether or not this metabolite, or one of its precursors, could contribute to the sensitizing potency of cinnamic alcohol would need further investigation. Discussion Cinnamic alcohol is one of the most common fragrance allergens and as it is more effective to patch test with the actual sensitizer than with the prohapten itself, it is important to identify metabolites with sensitizing potency. Further, improved knowledge of metabolic transformations occurring in the skin can improve prediction models for safety assessment of skin products.
Collapse
Affiliation(s)
- Lorena Ndreu
- Department of Environmental Science, Exposure, and Effect, Stockholm University, Stockholm, Sweden
| | - Josefine Carlsson
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - David J. Ponting
- Department of Chemistry and Molecular Biology, Dermatochemistry and Skin Allergy, University of Gothenburg, Gothenburg, Sweden
| | - Ida B. Niklasson
- Department of Chemistry and Molecular Biology, Dermatochemistry and Skin Allergy, University of Gothenburg, Gothenburg, Sweden
| | - E. Johanna L. Stéen
- Department of Chemistry and Molecular Biology, Medicinal Chemistry, University of Gothenburg, Gothenburg, Sweden
| | - Lukas McHugh
- Department of Environmental Science, Exposure, and Effect, Stockholm University, Stockholm, Sweden
| | - Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Panoz Institute and Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Kristina Luthman
- Department of Chemistry and Molecular Biology, Medicinal Chemistry, University of Gothenburg, Gothenburg, Sweden
| | - Ann-Therese Karlberg
- Department of Chemistry and Molecular Biology, Dermatochemistry and Skin Allergy, University of Gothenburg, Gothenburg, Sweden
| | - Isabella Karlsson
- Department of Environmental Science, Exposure, and Effect, Stockholm University, Stockholm, Sweden
| |
Collapse
|
2
|
Ahn J, Avonto C, Pandey P, Khan SI, Khan IA, Roberts DW, Chittiboyina AG. Chemistry of Isoeugenol and Its Oxidation Products: Mechanism and Kinetics of Isoeugenol as a Skin Sensitizer. Chem Res Toxicol 2023; 36:747-756. [PMID: 37042673 PMCID: PMC12083750 DOI: 10.1021/acs.chemrestox.2c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Structurally similar phytochemical compounds may elicit markedly different skin sensitization responses. Eugenol and isoeugenol are natural phenylpropanoids found in various essential oils are frequently used as fragrance ingredients in consumer products due to their pleasing aromatic properties. Both compounds are also skin sensitizers with isoeugenol being a stronger sensitizer than eugenol. The most commonly accepted mechanisms for haptenation by eugenol involve formation of a quinone methide or an ortho-quinone intermediate. The mechanism for the increased skin response to isoeugenol remains elusive, although quinone methide intermediates have been proposed. The recent identification of diastereomeric 7,4'-oxyneolignans as electrophilic, thiol-depleting isoeugenol derivatives has revived interest in the possible role of elusive reactive intermediates associated with the isoeugenol's haptenation process. In the present work, integrated non-animal skin sensitization methods were performed to determine the ability of syn-7,4'-oxyneolignan to promote haptenation and activation of further molecular pathways in keratinocytes and dendritic cells, confirming it as a candidate skin sensitizer. Kinetic NMR spectroscopic studies using dansyl cysteamine (DCYA) confirmed the first ordered nature of the nucleophilic addition for the syn-7,4'-oxyneolignan. Computational studies reaffirmed the "syn" stereochemistry of the isolated 7,4'-oxyneolignans along with that of their corresponding DCYA adducts and provided evidence for the preferential stereoselectivity. A plausible rationale for isoeugenol's strong skin sensitization is proposed based on the formation of a hydroxy quinone methide as a reactive intermediate rather than the previously assumed quinone methide.
Collapse
Affiliation(s)
- Jongmin Ahn
- National Center for Natural Products Research, Research Institute of Pharmaceutical Science, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
- Natural Product Research Center & Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Cristina Avonto
- National Center for Natural Products Research, Research Institute of Pharmaceutical Science, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
- Firmenich Inc., 250 Plainsboro Road, Plainsboro Township, New Jersey 08536, United States
| | - Pankaj Pandey
- National Center for Natural Products Research, Research Institute of Pharmaceutical Science, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Shabana I Khan
- National Center for Natural Products Research, Research Institute of Pharmaceutical Science, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Ikhlas A Khan
- National Center for Natural Products Research, Research Institute of Pharmaceutical Science, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - David W Roberts
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England, U.K
| | - Amar G Chittiboyina
- National Center for Natural Products Research, Research Institute of Pharmaceutical Science, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
3
|
Dickel H, Bauer A, Brehler R, Mahler V, Merk HF, Neustädter I, Strömer K, Werfel T, Worm M, Geier J. S1-Leitlinie Kontaktekzem. J Dtsch Dermatol Ges 2022; 20:711-734. [PMID: 35578429 DOI: 10.1111/ddg.14734_g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Heinrich Dickel
- Klinik für Dermatologie, Venerologie und Allergologie, St. Josef-Hospital, Universitätsklinikum der Ruhr-Universität Bochum, Bochum
| | - Andrea Bauer
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden
| | - Randolf Brehler
- Klinik für Hautkrankheiten, Universitätsklinikum Münster, Münster
| | - Vera Mahler
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel, Langen
| | | | | | | | - Thomas Werfel
- Klinik für Dermatologie, Allergologie und Venerologie, Medizinische Hochschule Hannover, Hannover
| | - Margitta Worm
- Klinik für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin, Berlin
| | - Johannes Geier
- Zentrale des IVDK, Universitätsmedizin Göttingen, Göttingen
| |
Collapse
|
4
|
Dickel H, Bauer A, Brehler R, Mahler V, Merk HF, Neustädter I, Strömer K, Werfel T, Worm M, Geier J. German S1 guideline: Contact dermatitis. J Dtsch Dermatol Ges 2022; 20:712-734. [DOI: 10.1111/ddg.14734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/05/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Heinrich Dickel
- Department of Dermatology Venereology and Allergology St. Josef Hospital University Medical Center of the Ruhr University Bochum Bochum Germany
| | - Andrea Bauer
- Department of Dermatology University Hospital Carl Gustav Carus Technical University Dresden Dresden Germany
| | - Randolf Brehler
- Department of Dermatology University Hospital Münster Münster Germany
| | - Vera Mahler
- Paul‐Ehrlich‐Institut Federal Institute for Vaccines and Biomedicines Langen Germany
| | - Hans F. Merk
- Department of Dermatology RWTH Aachen University Aachen Germany
| | - Irena Neustädter
- Department of Pediatrics Hallerwiese Cnopfsche Kinderklinik Nuremberg Germany
| | | | - Thomas Werfel
- Department of Dermatology Allergology and Venereology Hannover Medical School Hannover Germany
| | - Margitta Worm
- Department of Dermatology Venereology and Allergology Charité – Universitätsmedizin Berlin Berlin Germany
| | - Johannes Geier
- Center of IVDK University Medical Center Göttingen Göttingen Germany
| |
Collapse
|
5
|
Rodrigues de Souza I, Savio de Araujo-Souza P, Morais Leme D. Genetic variants affecting chemical mediated skin immunotoxicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:43-95. [PMID: 34979876 DOI: 10.1080/10937404.2021.2013372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The skin is an immune-competent organ and this function may be impaired by exposure to chemicals, which may ultimately result in immune-mediated dermal disorders. Interindividual variability to chemical-induced skin immune reactions is associated with intrinsic individual characteristics and their genomes. In the last 30-40 years, several genes influencing susceptibility to skin immune reactions were identified. The aim of this review is to provide information regarding common genetic variations affecting skin immunotoxicity. The polymorphisms selected for this review are related to xenobiotic-metabolizing enzymes (CYPA1 and CYPB1 genes), antioxidant defense (GSTM1, GSTT1, and GSTP1 genes), aryl hydrocarbon receptor signaling pathway (AHR and ARNT genes), skin barrier function transepidermal water loss (FLG, CASP14, and SPINK5 genes), inflammation (TNF, IL10, IL6, IL18, IL31, and TSLP genes), major histocompatibility complex (MHC) and neuroendocrine system peptides (CALCA, TRPV1, ACE genes). These genes present variants associated with skin immune responses and diseases, as well as variants associated with protecting skin immune homeostasis following chemical exposure. The molecular and association studies focusing on these genetic variants may elucidate their functional consequences and contribution in the susceptibility to skin immunotoxicity. Providing information on how genetic variations affect the skin immune system may reduce uncertainties in estimating chemical hazards/risks for human health in the future.
Collapse
Affiliation(s)
| | | | - Daniela Morais Leme
- Graduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, Brazil
| |
Collapse
|
6
|
Idda T, Bonas C, Hoffmann J, Bertram J, Quinete N, Schettgen T, Fietkau K, Esser A, Stope MB, Leijs MM, Baron JM, Kraus T, Voigt A, Ziegler P. Metabolic activation and toxicological evaluation of polychlorinated biphenyls in Drosophila melanogaster. Sci Rep 2020; 10:21587. [PMID: 33299007 PMCID: PMC7726022 DOI: 10.1038/s41598-020-78405-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 11/20/2020] [Indexed: 01/26/2023] Open
Abstract
Degradation of polychlorinated biphenyls (PCBs) is initiated by cytochrome P450 (CYP) enzymes and includes PCB oxidation to OH-metabolites, which often display a higher toxicity than their parental compounds. In search of an animal model reflecting PCB metabolism and toxicity, we tested Drosophila melanogaster, a well-known model system for genetics and human disease. Feeding Drosophila with lower chlorinated (LC) PCB congeners 28, 52 or 101 resulted in the detection of a human-like pattern of respective OH-metabolites in fly lysates. Feeding flies high PCB 28 concentrations caused lethality. Thus we silenced selected CYPs via RNA interference and analyzed the effect on PCB 28-derived metabolite formation by assaying 3-OH-2',4,4'-trichlorobiphenyl (3-OHCB 28) and 3'-OH-4',4,6'-trichlorobiphenyl (3'-OHCB 28) in fly lysates. We identified several drosophila CYPs (dCYPs) whose knockdown reduced PCB 28-derived OH-metabolites and suppressed PCB 28 induced lethality including dCYP1A2. Following in vitro analysis using a liver-like CYP-cocktail, containing human orthologues of dCYP1A2, we confirm human CYP1A2 as a PCB 28 metabolizing enzyme. PCB 28-induced mortality in flies was accompanied by locomotor impairment, a common phenotype of neurodegenerative disorders. Along this line, we show PCB 28-initiated caspase activation in differentiated fly neurons. This suggested the loss of neurons through apoptosis. Our findings in flies are congruent with observation in human exposed to high PCB levels. In plasma samples of PCB exposed humans, levels of the neurofilament light chain increase after LC-PCB exposure, indicating neuronal damage. In summary our findings demonstrate parallels between Drosophila and the human systems with respect to CYP mediated metabolism and PCB mediated neurotoxicity.
Collapse
Affiliation(s)
- T Idda
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, Aachen, Germany
| | - C Bonas
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, Aachen, Germany
| | - J Hoffmann
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, Aachen, Germany
| | - J Bertram
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, Aachen, Germany
| | - N Quinete
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, Aachen, Germany
- Department of Chemistry and Biochemistry, Florida International University Florida, Florida, USA
| | - T Schettgen
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, Aachen, Germany
| | - K Fietkau
- Department of Dermatology and Allergology, RWTH Aachen University, 52074, Aachen, Germany
| | - A Esser
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, Aachen, Germany
| | - M B Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Bonn, Germany
| | - M M Leijs
- Department of Dermatology and Allergology, RWTH Aachen University, 52074, Aachen, Germany
| | - J M Baron
- Department of Dermatology and Allergology, RWTH Aachen University, 52074, Aachen, Germany
| | - T Kraus
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, Aachen, Germany
| | - A Voigt
- Department of Neurology, University Medical Center, RWTH Aachen University, 52074, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH, RWTH Aachen University, 52074, Aachen, Germany
| | - P Ziegler
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
7
|
Zhao Q, Alhilali K, Alzahrani A, Almutairi M, Amjad J, Liu H, Sun Y, Sun L, Zhang H, Meng X, Gibson A, Ogese MO, Kevin Park B, Liu J, Ostrov DA, Zhang F, Naisbitt DJ. Dapsone- and nitroso dapsone-specific activation of T cells from hypersensitive patients expressing the risk allele HLA-B*13:01. Allergy 2019; 74:1533-1548. [PMID: 30844087 PMCID: PMC6767778 DOI: 10.1111/all.13769] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/18/2018] [Accepted: 01/10/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Research into drug hypersensitivity associated with the expression of specific HLA alleles has focussed on the interaction between parent drug and the HLA with no attention given to reactive metabolites. For this reason, we have studied HLA-B*13:01-linked dapsone hypersensitivity to (a) explore whether the parent drug and/or nitroso metabolite activate T cells and (b) determine whether HLA-B*13:01 is involved in the response. METHODS Peripheral blood mononuclear cells (PBMC) from six patients were cultured with dapsone and nitroso dapsone, and proliferative responses and IFN-γ release were measured. Dapsone- and nitroso dapsone-specific T-cell clones were generated and phenotype, function, HLA allele restriction, and cross-reactivity assessed. Dapsone intermediates were characterized by mass spectrometry. RESULTS Peripheral blood mononuclear cells from six patients and cloned T cells proliferated and secreted Th1/2/22 cytokines when stimulated with dapsone (clones: n = 395; 80% CD4+ CXCR3hi CCR4hi , 20% CD8+CXCR3hi CCR4hi CCR6hi CCR9hi CCR10hi ) and nitroso dapsone (clones: n = 399; 78% CD4+, 22% CD8+ with same chemokine receptor profile). CD4+ and CD8+ clones were HLA class II and class I restricted, respectively, and displayed three patterns of reactivity: compound specific, weakly cross-reactive, and strongly cross-reactive. Nitroso dapsone formed dimers in culture and was reduced to dapsone, providing a rationale for the cross-reactivity. T-cell responses to nitroso dapsone were dependent on the formation of a cysteine-modified protein adduct, while dapsone interacted in a labile manner with antigen-presenting cells. CD8+ clones displayed an HLA-B*13:01-restricted pattern of activation. CONCLUSION These studies describe the phenotype and function of dapsone- and nitroso dapsone-responsive CD4+ and CD8+ T cells from hypersensitive patients. Discovery of HLA-B*13:01-restricted CD8+ T-cell responses indicates that drugs and their reactive metabolites participate in HLA allele-linked forms of hypersensitivity.
Collapse
Affiliation(s)
- Qing Zhao
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical PharmacologyThe University of LiverpoolLiverpoolUK
- Department of Dermatology, Shandong Provincial Hospital for Skin DiseaseShandong UniversityJinanChina
- Shandong Provincial Institute of Dermatology and VenereologyShandong Academy of Medical SciencesJinanChina
| | - Khetam Alhilali
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical PharmacologyThe University of LiverpoolLiverpoolUK
| | - Abdulaziz Alzahrani
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical PharmacologyThe University of LiverpoolLiverpoolUK
- Al Baha University, Prince Mohammad Bin SaudAl BahahSaudi Arabia
- Pharmacology Department, College of Clinical PharmacyAlBaha UniversityAl BahaSaudi Arabia
| | - Mubarak Almutairi
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical PharmacologyThe University of LiverpoolLiverpoolUK
| | - Juwaria Amjad
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical PharmacologyThe University of LiverpoolLiverpoolUK
| | - Hong Liu
- Department of Dermatology, Shandong Provincial Hospital for Skin DiseaseShandong UniversityJinanChina
- Shandong Provincial Institute of Dermatology and VenereologyShandong Academy of Medical SciencesJinanChina
| | - Yonghu Sun
- Department of Dermatology, Shandong Provincial Hospital for Skin DiseaseShandong UniversityJinanChina
- Shandong Provincial Institute of Dermatology and VenereologyShandong Academy of Medical SciencesJinanChina
| | - Lele Sun
- Department of Dermatology, Shandong Provincial Hospital for Skin DiseaseShandong UniversityJinanChina
- Shandong Provincial Institute of Dermatology and VenereologyShandong Academy of Medical SciencesJinanChina
| | - Huimin Zhang
- Department of Dermatology, Shandong Provincial Hospital for Skin DiseaseShandong UniversityJinanChina
- Shandong Provincial Institute of Dermatology and VenereologyShandong Academy of Medical SciencesJinanChina
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical PharmacologyThe University of LiverpoolLiverpoolUK
| | - Andrew Gibson
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical PharmacologyThe University of LiverpoolLiverpoolUK
| | - Monday O. Ogese
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical PharmacologyThe University of LiverpoolLiverpoolUK
- Pathological Sciences, drug Safety and Metabolism, IMED Biotech UnitAstraZenecaCambridgeUK
| | - B. Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical PharmacologyThe University of LiverpoolLiverpoolUK
| | - Jianjun Liu
- Human GeneticsGenome Institute of Singapore, A*STARSingaporeSingapore
| | - David A. Ostrov
- Department of Pathology, Immunology and Laboratory Medicine College of MedicineUniversity of FloridaGainesvilleFlorida
| | - Furen Zhang
- Department of Dermatology, Shandong Provincial Hospital for Skin DiseaseShandong UniversityJinanChina
- Shandong Provincial Institute of Dermatology and VenereologyShandong Academy of Medical SciencesJinanChina
| | - Dean J. Naisbitt
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical PharmacologyThe University of LiverpoolLiverpoolUK
| |
Collapse
|
8
|
Kazem S, Linssen EC, Gibbs S. Skin metabolism phase I and phase II enzymes in native and reconstructed human skin: a short review. Drug Discov Today 2019; 24:1899-1910. [PMID: 31176740 DOI: 10.1016/j.drudis.2019.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/01/2019] [Accepted: 06/03/2019] [Indexed: 01/01/2023]
Abstract
Understanding skin metabolism is important when considering drug discovery and safety assessment. This review compares xenobiotic skin metabolism in ex vivo skin to reconstructed human skin and reconstructed human epidermis models, concentrating on phase I and phase II enzymes. Reports on phase I enzymes are more abundant than for phase II enzymes with mRNA and protein expression far more reported than enzyme activity. Almost all of the xenobiotic metabolizing enzymes detected in human skin are also present in liver. However, in general the relative levels are lower in skin than in liver and fewer enzymes are reported.
Collapse
Affiliation(s)
- Siamaque Kazem
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Emma Charlotte Linssen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Avonto C, Wang YH, Chittiboyina AG, Vukmanovic S, Khan IA. In chemico assessment of potential sensitizers: Stability and direct peptide reactivity of 24 fragrance ingredients. J Appl Toxicol 2018; 39:398-408. [DOI: 10.1002/jat.3732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/23/2018] [Accepted: 08/26/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Cristina Avonto
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy; The University of Mississippi; University, MS 38677 USA
| | - Yan-Hong Wang
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy; The University of Mississippi; University, MS 38677 USA
| | - Amar G. Chittiboyina
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy; The University of Mississippi; University, MS 38677 USA
| | - Stanislav Vukmanovic
- Office of Cosmetics and Colors, Center for Food Safety and Applied Nutrition; Food and Drug Administration; College Park MD 20740 USA
| | - Ikhlas A. Khan
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy; The University of Mississippi; University, MS 38677 USA
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy; The University of Mississippi; University, MS 38677 USA
| |
Collapse
|
10
|
Lee S, Greenstein T, Shi L, Maguire T, Schloss R, Yarmush M. Tri-culture system for pro-hapten sensitizer identification and potency classification. TECHNOLOGY 2018; 6:67-74. [PMID: 30519598 PMCID: PMC6276108 DOI: 10.1142/s233954781850005x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Allergic contact dermatitis (ACD) is an inflammatory disease that impacts 15-20% of the general population and accurate screening methods for chemical risk assessment are needed. However, most approaches poorly predict pre- and pro-hapten sensitizers, which require abiotic or metabolic conversion prior to inducing sensitization. We developed a tri-culture system comprised of MUTZ-3-derived Langerhans cells, HaCaT keratinocytes, and primary dermal fibroblasts to mimic the cellular and metabolic environments of skin sensitization. A panel of non-sensitizers and sensitizers was tested and the secretome was evaluated. A support vector machine (SVM) was used to identify the most predictive sensitization signature and classification trees identified statistical thresholds to predict sensitizer potency. The SVM computed 91% tri-culture prediction accuracy using the top 3 ranking biomarkers (IL-8, MIP-1β, and GM-CSF) and improved the detection of pre- and pro-haptens. This in vitro assay combined with in silico data analysis presents a promising approach and offers the possibility of multi-metric analysis for enhanced ACD sensitizer screening.
Collapse
Affiliation(s)
- Serom Lee
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Talia Greenstein
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Lingting Shi
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Tim Maguire
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Rene Schloss
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Martin Yarmush
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
- Center for Engineering in Medicine and the Department of Surgery, Massachusetts General Hospital and the Shriners Burns Hospital, Boston, MA 02114, USA
| |
Collapse
|
11
|
Hagvall L, Niklasson IB, Luthman K, Karlberg AT. Can the epoxides of cinnamyl alcohol and cinnamal show new cases of contact allergy? Contact Dermatitis 2018; 78:399-405. [PMID: 29603274 DOI: 10.1111/cod.12992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/01/2018] [Accepted: 02/10/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cinnamyl alcohol is considered to be a prohapten and prehapten with cinnamal as the main metabolite. However, many individuals who are allergic to cinnamyl alcohol do not react to cinnamal. Sensitizing epoxides of cinnamyl alcohol and cinnamal have been identified as metabolites and autoxidation products of cinnamyl alcohol. OBJECTIVE To investigate the clinical relevance of contact allergy to epoxycinnamyl alcohol and epoxycinnamal. METHODS Irritative effects of the epoxides were investigated in 12 dermatitis patients. Epoxycinnamyl alcohol and epoxycinnamal were patch tested in 393 and 390 consecutive patients, respectively. In parallel, cinnamyl alcohol and cinnamal were patch tested in 607 and 616 patients, respectively. RESULTS Both epoxides were irritants, but no more positive reactions were detected than when testing was performed with cinnamyl alcohol and cinnamal. Late allergic reactions to epoxycinnamyl alcohol were observed. In general, patients with late reactions showed doubtful or positive reactions to cinnamal and fragrance mix I at regular patch testing. CONCLUSION The investigated epoxides are not important haptens in contact allergy to cinnamon fragrance. The high frequency of fragrance allergy among patients included in the irritancy study showed the difficulty of suspecting fragrance allergy on the basis of history; patch testing broadly with fragrance compounds is therefore important.
Collapse
Affiliation(s)
- Lina Hagvall
- Department of Occupational Dermatology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ida B Niklasson
- Department of Chemistry and Molecular Biology, Dermatochemistry and Skin Allergy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina Luthman
- Department of Chemistry and Molecular Biology, Medicinal Chemistry, University of Gothenburg, Gothenburg, Sweden
| | - Ann-Therese Karlberg
- Department of Chemistry and Molecular Biology, Dermatochemistry and Skin Allergy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
12
|
Fragrance Allergens, Overview with a Focus on Recent Developments and Understanding of Abiotic and Biotic Activation. COSMETICS 2016. [DOI: 10.3390/cosmetics3020019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Urbisch D, Becker M, Honarvar N, Kolle SN, Mehling A, Teubner W, Wareing B, Landsiedel R. Assessment of Pre- and Pro-haptens Using Nonanimal Test Methods for Skin Sensitization. Chem Res Toxicol 2016; 29:901-13. [DOI: 10.1021/acs.chemrestox.6b00055] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel Urbisch
- Experimental
Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | - Matthias Becker
- Experimental
Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | - Naveed Honarvar
- Experimental
Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | | | | | | | - Britta Wareing
- Experimental
Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | | |
Collapse
|
14
|
Burkhart KK, Abernethy D, Jackson D. Data Mining FAERS to Analyze Molecular Targets of Drugs Highly Associated with Stevens-Johnson Syndrome. J Med Toxicol 2016; 11:265-73. [PMID: 25876064 DOI: 10.1007/s13181-015-0472-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Drug features that are associated with Stevens-Johnson syndrome (SJS) have not been fully characterized. A molecular target analysis of the drugs associated with SJS in the FDA Adverse Event Reporting System (FAERS) may contribute to mechanistic insights into SJS pathophysiology. The publicly available version of FAERS was analyzed to identify disproportionality among the molecular targets, metabolizing enzymes, and transporters for drugs associated with SJS. The FAERS in-house version was also analyzed for an internal comparison of the drugs most highly associated with SJS. Cyclooxygenases 1 and 2, carbonic anhydrase 2, and sodium channel 2 alpha were identified as disproportionately associated with SJS. Cytochrome P450 (CYPs) 3A4 and 2C9 are disproportionately represented as metabolizing enzymes of the drugs associated with SJS adverse event reports. Multidrug resistance protein 1 (MRP-1), organic anion transporter 1 (OAT1), and PEPT2 were also identified and are highly associated with the transport of these drugs. A detailed review of the molecular targets identifies important roles for these targets in immune response. The association with CYP metabolizing enzymes suggests that reactive metabolites and oxidative stress may have a contributory role. Drug transporters may enhance intracellular tissue concentrations and also have vital physiologic roles that impact keratinocyte proliferation and survival. Data mining FAERS may be used to hypothesize mechanisms for adverse drug events by identifying molecular targets that are highly associated with drug-induced adverse events. The information gained may contribute to systems biology disease models.
Collapse
Affiliation(s)
- Keith K Burkhart
- Medical Informatics Team, Office of Clinical Pharmacology, Office of Translational Science, Division of Applied Regulatory Science, Center for Drug Evaluation and Research, Food and Drug Administration, Bldg 64, Rm 2012, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA,
| | | | | |
Collapse
|
15
|
Korkina L. Metabolic and redox barriers in the skin exposed to drugs and xenobiotics. Expert Opin Drug Metab Toxicol 2016; 12:377-88. [PMID: 26854731 DOI: 10.1517/17425255.2016.1149569] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Growing exposure of human skin to environmental and occupational hazards, to numerous skin care/beauty products, and to topical drugs led to a biomedical concern regarding sustainability of cutaneous chemical defence that is essential for protection against intoxication. Since skin is the largest extra-hepatic drug/xenobiotic metabolising organ where redox-dependent metabolic pathways prevail, in this review, publications on metabolic processes leading to redox imbalance (oxidative stress) and its autocrine/endocrine impact to cutaneous drug/xenobiotic metabolism were scrutinised. AREAS COVERED Chemical and photo-chemical skin barriers contain metabolic and redox compartments: their protective and homeostatic functions. The review will examine the striking similarity of adaptive responses to exogenous chemical/photo-chemical stressors and endogenous toxins in cutaneous metabolic and redox system; the role(s) of xenobiotics/drugs and phase II enzymes in the endogenous antioxidant defence and maintenance of redox balance; redox regulation of interactions between metabolic and inflammatory responses in skin cells; skin diseases sharing metabolic and redox problems (contact dermatitis, lupus erythematosus, and vitiligo) EXPERT OPINION Due to exceptional the redox dependence of cutaneous metabolic pathways and interaction of redox active metabolites/exogenous antioxidants with drug/xenobiotic metabolism, metabolic tests of topical xenobiotics/drugs should be combined with appropriate redox analyses and performed on 3D human skin models.
Collapse
Affiliation(s)
- Liudmila Korkina
- a Scientific Direction, Centre for Innovative Biotechnological Investigations 'NANOLAB' , Moscow , Russia
| |
Collapse
|
16
|
Dumont C, Prieto P, Asturiol D, Worth A. Review of the Availability ofIn VitroandIn SilicoMethods for Assessing Dermal Bioavailability. ACTA ACUST UNITED AC 2015. [DOI: 10.1089/aivt.2015.0003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Coralie Dumont
- The European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | - Pilar Prieto
- The European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | - David Asturiol
- The European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | - Andrew Worth
- The European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| |
Collapse
|
17
|
Wong CL, Ghassabian S, Smith MT, Lam AL. In vitro methods for hazard assessment of industrial chemicals - opportunities and challenges. Front Pharmacol 2015; 6:94. [PMID: 25999858 PMCID: PMC4419653 DOI: 10.3389/fphar.2015.00094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/16/2015] [Indexed: 11/13/2022] Open
Abstract
Allergic contact dermatitis (ACD) is a delayed-type hypersensitivity immune reaction mediated by T-lymphocytes as a result of repeated exposure of an allergen primarily on skin. ACD accounts for up to 95% of occupational skin diseases, with epoxy resins implicated as one of the most common causes of ACD. Efficient high-throughput in vitro screening for accurate identification of compounds and materials that may pose hazardous risks in the workplace is crucial. At present, the murine local lymph node assay is the 'method of choice' for predicting the sensitizing potency of contact allergens. As the 3Rs principles of reduction, refinement, and replacement in animal testing has gained political and economic momentum, several in vitro screening methods have been developed for identifying potential contact allergens. To date, these latter methods have been utilized primarily to assess the skin sensitizing potential of the chemical components of cosmetic products with scant research attention as to the applicability of these methods to industrial chemicals, particularly epoxy resins. Herein we review the currently utilized in vitro methods and identify the knowledge gaps with regard to assessing the generalizability of in vitro screening methods for assessing the skin sensitizing potential of industrial chemicals.
Collapse
Affiliation(s)
- Chin Lin Wong
- Centre for Integrated Preclinical Drug Development, The University of QueenslandSt Lucia, QLD, Australia
- School of Pharmacy, The University of QueenslandWoolloongabba, QLD, Australia
| | - Sussan Ghassabian
- Centre for Integrated Preclinical Drug Development, The University of QueenslandSt Lucia, QLD, Australia
| | - Maree T. Smith
- Centre for Integrated Preclinical Drug Development, The University of QueenslandSt Lucia, QLD, Australia
- School of Pharmacy, The University of QueenslandWoolloongabba, QLD, Australia
| | - Ai-Leen Lam
- Centre for Integrated Preclinical Drug Development, The University of QueenslandSt Lucia, QLD, Australia
| |
Collapse
|
18
|
Reinen J, Nematollahi L, Fidder A, Vermeulen NPE, Noort D, Commandeur JNM. Characterization of human cytochrome P450s involved in the bioactivation of tri-ortho-cresyl phosphate (ToCP). Chem Res Toxicol 2015; 28:711-21. [PMID: 25706813 DOI: 10.1021/tx500490v] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tri-ortho-cresyl phosphate (ToCP) is a multipurpose organophosphorus compound that is neurotoxic and suspected to be involved in aerotoxic syndrome in humans. It has been reported that not ToCP itself but a metabolite of ToCP, namely, 2-(ortho-cresyl)-4H-1,2,3-benzodioxaphosphoran-2-one (CBDP), may be responsible for this effect as it can irreversibly bind to human butyrylcholinesterase (BuChE) and human acetylcholinesterase (AChE). The bioactivation of ToCP into CBDP involves Cytochrome P450s (P450s). However, the individual human P450s responsible for this bioactivation have not been identified yet. In the present study, we aimed to investigate the metabolism of ToCP by different P450s and to determine the inhibitory effect of the in vitro generated ToCP-metabolites on human BuChE and AChE. Human liver microsomes, rat liver microsomes, and recombinant human P450s were used for that purpose. The recombinant P450s 2B6, 2C18, 2D6, 3A4 and 3A5 showed highest activity of ToCP-bioactivation to BuChE-inhibitory metabolites. Inhibition experiments using pooled human liver microsomes indicated that P450 3A4 and 3A5 were mainly involved in human hepatic bioactivation of ToCP. In addition, these experiments indicated a minor role for P450 1A2. Formation of CBDP by in-house expressed recombinant human P450s 1A2 and 3A4 was proven by both LC-MS and GC-MS analysis. When ToCP was incubated with P450 1A2 and 3A4 in the presence of human BuChE, CBDP-BuChE-adducts were detected by LC-MS/MS which were not present in the corresponding control incubations. These results confirmed the role of human P450s 1A2 and 3A4 in ToCP metabolism and demonstrated that CBDP is the metabolite responsible for the BuChE inactivation. Interindividual differences at the level of P450 1A2 and 3A4 might play an important role in the susceptibility of humans in developing neurotoxic effects, such as aerotoxic syndrome, after exposure to ToCP.
Collapse
Affiliation(s)
- Jelle Reinen
- †Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Leyla Nematollahi
- †Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Alex Fidder
- ‡Department of CBRN Protection, TNO Technical Sciences, P.O. Box 45, 2280 AA Rijswijk, The Netherlands
| | - Nico P E Vermeulen
- †Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Daan Noort
- ‡Department of CBRN Protection, TNO Technical Sciences, P.O. Box 45, 2280 AA Rijswijk, The Netherlands
| | - Jan N M Commandeur
- †Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
19
|
Ramzy AG, Hagvall L, Pei MN, Samuelsson K, Nilsson U. Investigation of diethylthiourea and ethyl isothiocyanate as potent skin allergens in chloroprene rubber. Contact Dermatitis 2014; 72:139-46. [PMID: 25532938 DOI: 10.1111/cod.12318] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/26/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Exposure to chloroprene rubber has resulted in numerous cases of allergic contact dermatitis, attributed to organic thiourea compounds used as vulcanization accelerators. However, thiourea compounds are not considered to be strong haptens. OBJECTIVES To analyse common commercial chloroprene materials for their contents of diethylthiourea (DETU), dibutylthiourea (DBTU), diphenylthiourea (DPTU), and their degradation products, isothiocyanates; and to investigate the sensitization potencies of possible degradation products of the mentioned thiourea compounds. METHODS Liquid chromatography/mass spectrometry (MS) was used for quantification of organic thiourea compounds in chloroprene products, such as medical, sports and diving gear; isothiocyanates were measured by solid-phase microextraction/gas chromatography/MS. Sensitization potencies were determined with the murine local lymph node assay (LLNA). RESULTS DETU was identified at concentrations of 2.7-9.4 µg/cm(2) in all samples, whereas neither DBTU nor DPTU was detected. At 37°C, degradation of DETU in the materials to ethyl isothiocyanate (EITC) was detected. EITC and ethyl isocyanate showed extreme and strong sensitization potencies, respectively, in the LLNA. CONCLUSIONS DETU can act as a prehapten, being degraded to EITC when subjected to body temperature upon skin contact. EITC could thus be the culprit behind allergic contact dermatitis caused by chloroprene rubber.
Collapse
Affiliation(s)
- Ahmad G Ramzy
- Department of Analytical Chemistry, Stockholm University, Svante Arrhenius väg 16, SE-106 91, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
20
|
Lee S, Dong DX, Jindal R, Maguire T, Mitra B, Schloss R, Yarmush M. Predicting full thickness skin sensitization using a support vector machine. Toxicol In Vitro 2014; 28:1413-23. [PMID: 25025180 PMCID: PMC4470375 DOI: 10.1016/j.tiv.2014.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/26/2014] [Accepted: 07/03/2014] [Indexed: 11/21/2022]
Abstract
To assess the public's propensity for allergic contact dermatitis (ACD), many alternatives to in vivo chemical screening have been developed which generally incorporate a small panel of cell surface and secreted dendritic cell biomarkers. However, given the underlying complexity of ACD, one cell type and limited cellular metrics may be insufficient to predict contact sensitizers accurately. To identify a molecular signature that can further characterize sensitization, we developed a novel system using RealSkin, a full thickness skin equivalent, in co-culture with MUTZ-3 derived Langerhan's cells. This system was used to distinguish a model moderate pro-hapten isoeugenol (IE) and a model strong pre-hapten p-phenylenediamine (PPD) from irritant, salicylic acid (SA). Commonly evaluated metrics such as CD86, CD54, and IL-8 secretion were assessed, in concert with a 27-cytokine multi-plex screen and a functional chemotaxis assay. Data were analyzed with feature selection methods using ANOVA, hierarchical cluster analysis, and a support vector machine to identify the best molecular signature for sensitization. A panel consisting of IL-12, IL-9, VEGF, and IFN-γ predicted sensitization with over 90% accuracy using this co-culture system analysis. Thus, a multi-metric approach that has the potential to identify a molecular signature may be more predictive of contact sensitization.
Collapse
Affiliation(s)
- Serom Lee
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, United States
| | - David Xu Dong
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, United States
| | - Rohit Jindal
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, United States
| | - Tim Maguire
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, United States
| | - Bhaskar Mitra
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, United States
| | - Rene Schloss
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, United States
| | - Martin Yarmush
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, United States; Center for Engineering in Medicine and the Department of Surgery, Massachusettes General Hospital and the Shriners Burns Hospital, Boston, MA 02114, United States.
| |
Collapse
|
21
|
Niklasson IB, Ponting DJ, Luthman K, Karlberg AT. Bioactivation of Cinnamic Alcohol Forms Several Strong Skin Sensitizers. Chem Res Toxicol 2014; 27:568-75. [DOI: 10.1021/tx400428f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ida B. Niklasson
- Department
of Chemistry and Molecular Biology, Dermatochemistry and Skin Allergy, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - David J. Ponting
- Department
of Chemistry and Molecular Biology, Dermatochemistry and Skin Allergy, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Kristina Luthman
- Department
of Chemistry and Molecular Biology, Medicinal Chemistry, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Ann-Therese Karlberg
- Department
of Chemistry and Molecular Biology, Dermatochemistry and Skin Allergy, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
22
|
Vocanson M, Nicolas JF, Basketter D. In vitroapproaches to the identification and characterization of skin sensitizers. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.2013.814882] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Sumida K, Kawana M, Kouno E, Itoh T, Takano S, Narawa T, Tukey RH, Fujiwara R. Importance of UDP-glucuronosyltransferase 1A1 expression in skin and its induction by UVB in neonatal hyperbilirubinemia. Mol Pharmacol 2013; 84:679-86. [PMID: 23950218 PMCID: PMC3807078 DOI: 10.1124/mol.113.088112] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/15/2013] [Indexed: 01/04/2023] Open
Abstract
UDP-glucuronosyltransferase (UGT) 1A1 is the sole enzyme that can metabolize bilirubin. Human infants physiologically develop hyperbilirubinemia as the result of inadequate expression of UGT1A1 in the liver. Although phototherapy using blue light is effective in preventing jaundice, sunlight has also been suggested, but without conclusive evidence, to reduce serum bilirubin levels. We investigated the mRNA expression pattern of human UGT1A1 in human skin, human skin keratinocyte (HaCaT) cells, and skin of humanized UGT1 mice. The effects of UVB irradiation on the expression of UGT1A1 in the HaCaT cells were also examined. Multiple UGT1A isoforms, including UGT1A1, were expressed in human skin and HaCaT cells. When HaCaT cells were treated with UVB-exposed tryptophan, UGT1A1 mRNA and activity were significantly induced. Treatment of the HaCaT cells with 6-formylindolo[3,2-b]carbazole, which is one of the tryptophan derivatives formed by UVB, resulted in an induction of UGT1A1 mRNA and activity. In neonates, the expression of UGT1A1 was greater in the skin; in adults, UGT1A1 was expressed mainly in the liver. Treatment of humanized UGT1 mice with UVB resulted in a reduction of serum bilirubin levels, along with increased UGT1A1 expression and activity in the skin. Our data revealed a protective role of UGT1A1 expressed in the skin against neonatal hyperbilirubinemia. Sunlight, a natural and free source of light, makes it possible to treat neonatal jaundice while allowing mothers to breast-feed neonates.
Collapse
Affiliation(s)
- Kyohei Sumida
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan (K.S., M.K., E.K., T.I., S.T., T.N., R.F.); and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Sharma AM, Uetrecht J. Bioactivation of drugs in the skin: relationship to cutaneous adverse drug reactions. Drug Metab Rev 2013; 46:1-18. [DOI: 10.3109/03602532.2013.848214] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Karlberg AT, Börje A, Duus Johansen J, Lidén C, Rastogi S, Roberts D, Uter W, White IR. Activation of non-sensitizing or low-sensitizing fragrance substances into potent sensitizers - prehaptens and prohaptens. Contact Dermatitis 2013; 69:323-34. [DOI: 10.1111/cod.12127] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/25/2013] [Accepted: 06/29/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Ann-Therese Karlberg
- Division of Dermatochemistry and Skin Allergy, Department of Chemistry and Molecular Biology; University of Gothenburg; SE-412 96 Gothenburg Sweden
| | - Anna Börje
- Division of Dermatochemistry and Skin Allergy, Department of Chemistry and Molecular Biology; University of Gothenburg; SE-412 96 Gothenburg Sweden
| | - Jeanne Duus Johansen
- National Allergy Research Centre, Department of Dermato-Allergology; Gentofte Hospital, University of Copenhagen; DK-2900 Hellerup Denmark
| | - Carola Lidén
- Institute of Environmental Medicine; Karolinska Institutet; SE-171 77 Stockholm Sweden
| | | | - David Roberts
- School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| | - Wolfgang Uter
- Department of Medical Informatics, Biometry and Epidemiology; University Erlangen/Nürnberg; 91054 Erlangen Germany
| | - Ian R. White
- Department of Cutaneous Allergy; St John's Institute of Dermatology, St Thomas' Hospital; London SE1 7EH UK
| |
Collapse
|
26
|
Natsch A, Haupt T. Utility of rat liver S9 fractions to study skin-sensitizing prohaptens in a modified KeratinoSens assay. Toxicol Sci 2013; 135:356-68. [PMID: 23872582 DOI: 10.1093/toxsci/kft160] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Prohaptens are chemicals, which may cause skin sensitization after being converted into electrophilic molecules by skin enzymes. Aroclor-induced rat liver S9 fractions represent the metabolic activation system most commonly used in in vitro toxicology. This system contains much higher enzyme activities compared with those reported in skin, but it may still serve as a surrogate system to study the potential of chemicals to act as prohaptens. To test this concept, the luciferase induction in KeratinoSens reporter cells treated with chemicals in presence and absence of S9 fractions was measured. Suspected prohaptens such as methyl isoeugenol, eugenol, or trans-anethole gave no, or only weak, ge ne induction in absence of S9 fractions, and a significantly enhanced luciferase induction in presence of S9, proving their prohapten status. Direct-acting haptens like 2,4-dinitrochlorobenzene or cinnamic aldehyde gave a reduced response in presence of S9. We evaluated whether this metabolic activation assay might be implemented in a tiered screening strategy to counter-screen negatives in the KeratinoSens assay to enhance sensitivity. To this aim, all chemicals classified negative were retested with this activation step. Among the 77 chemicals found as correct-negatives, 73 were also negative in presence of metabolic activation, thus this counterscreen would reduce specificity only slightly. However, this comprehensive screening showed that only a small fraction of the known skin sensitizers need activation by the S9 system. Therefore, the KeratinoSens-S9 assay appears useful for the in vitro evaluation of specific classes of potential prohaptens and to mechanistically rationalize their prohapten status.
Collapse
Affiliation(s)
- Andreas Natsch
- Givaudan Schweiz AG, Ueberlandstrasse 138, CH-8600 Duebendorf, Switzerland
| | | |
Collapse
|
27
|
Niklasson IB, Delaine T, Islam MN, Karlsson R, Luthman K, Karlberg AT. Cinnamyl alcohol oxidizes rapidly upon air exposure. Contact Dermatitis 2013; 68:129-38. [DOI: 10.1111/cod.12009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Abstract
Contact allergens are small reactive chemicals. They cause allergic contact dermatitis (ACD) by activating the innate and adaptive immune system. Contact allergens are very peculiar because of their built-in autoadjuvanticity that allows them to trigger sterile inflammation following skin penetration. The innate inflammatory response involves the triggering of pattern recognition receptors either by direct chemical interaction with such receptors or by induction of endogenous activators. I discuss here the recent findings regarding prevalence and predisposition, the identification of innate immune and stress response mechanisms relevant for sensitization and the orchestration of the innate and adaptive immune response to contact allergens. Despite still significant gaps of knowledge, recent advances in our understanding of the immunopathogenesis of ACD can now be used for the development of causative treatment strategies and of in vitro alternatives to animal testing for the identification of contact allergens in immunotoxicology.
Collapse
Affiliation(s)
- Stefan F Martin
- Allergy Research Group, Department of Dermatology, University Freiburg Medical Center, Freiburg, Germany.
| |
Collapse
|
29
|
Development and validation of a new in vitro assay designed to measure contact allergen-triggered oxidative stress in dendritic cells. J Dermatol Sci 2012; 68:73-81. [PMID: 22974541 DOI: 10.1016/j.jdermsci.2012.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/10/2012] [Accepted: 08/14/2012] [Indexed: 11/23/2022]
Abstract
BACKGROUND Selected contact allergens are known to induce phenotypic and functional maturation of dendritic cells (DCs). Such changes occurring in DCs have been employed as assay readouts to predict skin-sensitizing potentials of small chemicals. OBJECTIVE To respond to the urgent needs for reliable in vitro tests to identify contact allergens, we sought to develop a DC-based assay designed to detect early change(s) induced by sensitizers. METHODS Signature gene expression profiles of skin sensitization were determined by GeneChip and quantitative RT-PCR analyses of RNA samples harvested from mouse skin and XS106 DC line after exposure to dinitrofluorobenzene (DNFB). Production of reactive oxygen species (ROS) was examined indirectly by measuring the level of oxidative stress-XS106 DCs were labeled with a fluorescent dye, CM-H(2)DCFDA, exposed to test chemicals, and then examined for fluorescence signals by flow cytometer. RESULTS DNFB induced abundant mRNA expression of several redox regulatory genes in both mouse skin and XS106DCs. Expression of these genes was inducible by hydrogen peroxide and blocked by a ROS inhibitor, diphenyleneiodonium. Rapid and significant ROS production was induced by 25 of the 28 tested skin sensitizers, but only by 3 of the 21 tested skin irritants. CONCLUSIONS Our small-scale validation study demonstrates the practical utility of our DC-based ROS production assay to detect structurally diverse contact allergens with varying sensitizing potencies. It is tempting to speculate that ROS production in DCs may represent an early event during the sensitization phase.
Collapse
|
30
|
Sebastian K, Ott H, Zwadlo-Klarwasser G, Skazik-Voogt C, Marquardt Y, Czaja K, Merk HF, Baron JM. Evaluation of the sensitizing potential of antibiotics in vitro using the human cell lines THP-1 and MUTZ-LC and primary monocyte‐derived dendritic cells. Toxicol Appl Pharmacol 2012; 262:283-92. [DOI: 10.1016/j.taap.2012.04.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/27/2012] [Accepted: 04/30/2012] [Indexed: 11/29/2022]
|
31
|
Jäckh C, Fabian E, van Ravenzwaay B, Landsiedel R. Relevance of xenobiotic enzymes in human skin in vitro models to activate pro-sensitizers. J Immunotoxicol 2012; 9:426-38. [PMID: 22471730 DOI: 10.3109/1547691x.2012.664578] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Skin exposure to sensitizing chemicals can induce allergic reactions. Certain chemicals, so called pro-sensitizers, need metabolic activation to become allergenic. Their metabolic activation occurs in skin cells such as keratinocytes or dendritic cells. These cell types are also incorporated into dermal in vitro test systems used to assess the sensitizing potential of chemicals for humans. In vitrosystems range from single cell cultures to organotypic multi-cellular reconstructed skin models. Until now, their metabolic competence to unmask sensitizing potential of pro-sensitizers was rarely investigated. This review aims to summarize current information on available skin in vitro models and the relevance of xenobiotic metabolizing enzymes for the activation of pro-sensitizers such as eugenol, 4-allylanisole, and ethylendiamine. Among others, these chemicals are discussed as performance standards to validate new coming in vitro systems for their potential to identify pro-sensitizers.
Collapse
Affiliation(s)
- Christine Jäckh
- BASF SE, Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany
| | | | | | | |
Collapse
|
32
|
Peiser M, Tralau T, Heidler J, Api AM, Arts JHE, Basketter DA, English J, Diepgen TL, Fuhlbrigge RC, Gaspari AA, Johansen JD, Karlberg AT, Kimber I, Lepoittevin JP, Liebsch M, Maibach HI, Martin SF, Merk HF, Platzek T, Rustemeyer T, Schnuch A, Vandebriel RJ, White IR, Luch A. Allergic contact dermatitis: epidemiology, molecular mechanisms, in vitro methods and regulatory aspects. Current knowledge assembled at an international workshop at BfR, Germany. Cell Mol Life Sci 2011; 69:763-81. [PMID: 21997384 PMCID: PMC3276771 DOI: 10.1007/s00018-011-0846-8] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/29/2011] [Accepted: 09/20/2011] [Indexed: 12/13/2022]
Abstract
Contact allergies are complex diseases, and one of the important challenges for public health and immunology. The German ‘Federal Institute for Risk Assessment’ hosted an ‘International Workshop on Contact Dermatitis’. The scope of the workshop was to discuss new discoveries and developments in the field of contact dermatitis. This included the epidemiology and molecular biology of contact allergy, as well as the development of new in vitro methods. Furthermore, it considered regulatory aspects aiming to reduce exposure to contact sensitisers. An estimated 15–20% of the general population suffers from contact allergy. Workplace exposure, age, sex, use of consumer products and genetic predispositions were identified as the most important risk factors. Research highlights included: advances in understanding of immune responses to contact sensitisers, the importance of autoxidation or enzyme-mediated oxidation for the activation of chemicals, the mechanisms through which hapten-protein conjugates are formed and the development of novel in vitro strategies for the identification of skin-sensitising chemicals. Dendritic cell cultures and structure-activity relationships are being developed to identify potential contact allergens. However, the local lymph node assay (LLNA) presently remains the validated method of choice for hazard identification and characterisation. At the workshop the use of the LLNA for regulatory purposes and for quantitative risk assessment was also discussed.
Collapse
Affiliation(s)
- M. Peiser
- Department of Product Safety, German Federal Institute for Risk Assessment (BfR), Thielallee 88-92, 14195 Berlin, Germany
| | - T. Tralau
- Department of Product Safety, German Federal Institute for Risk Assessment (BfR), Thielallee 88-92, 14195 Berlin, Germany
| | - J. Heidler
- Department of Product Safety, German Federal Institute for Risk Assessment (BfR), Thielallee 88-92, 14195 Berlin, Germany
| | - A. M. Api
- Research Institute for Fragrance Materials, Hackensack, NJ USA
| | | | | | - J. English
- Nottingham University Hospitals, Nottingham, UK
| | - T. L. Diepgen
- Department of Social Medicine, Occupational and Environmental Dermatology, University of Heidelberg, Heidelberg, Germany
| | | | - A. A. Gaspari
- School of Medicine, University of Maryland, Baltimore, MD USA
| | - J. D. Johansen
- Department of Derma-allergology, Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - A. T. Karlberg
- Department of Chemistry, Dermatochemistry and Skin Allergy, University of Gothenburg, Gothenburg, Sweden
| | - I. Kimber
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | - M. Liebsch
- Department of Experimental Toxicology and ZEBET, Center for Alternatives to Animal Testing, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - H. I. Maibach
- Department of Dermatology, University of California San Francisco, San Francisco, CA USA
| | - S. F. Martin
- Allergy Research Group, Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | - H. F. Merk
- Department of Dermatology and Allergology, University Hospitals Aachen, Aachen, Germany
| | - T. Platzek
- Department of Product Safety, German Federal Institute for Risk Assessment (BfR), Thielallee 88-92, 14195 Berlin, Germany
| | - T. Rustemeyer
- VU University Medical Center, Amsterdam, The Netherlands
| | - A. Schnuch
- Department of Dermatology, University of Göttingen, Göttingen, Germany
| | - R. J. Vandebriel
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - I. R. White
- St. John’s Institute of Dermatology, St. Thomas’ Hospital, London, UK
| | - A. Luch
- Department of Product Safety, German Federal Institute for Risk Assessment (BfR), Thielallee 88-92, 14195 Berlin, Germany
- Department of Experimental Toxicology and ZEBET, Center for Alternatives to Animal Testing, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
33
|
Martin SF, Esser PR, Weber FC, Jakob T, Freudenberg MA, Schmidt M, Goebeler M. Mechanisms of chemical-induced innate immunity in allergic contact dermatitis. Allergy 2011; 66:1152-63. [PMID: 21599706 DOI: 10.1111/j.1398-9995.2011.02652.x] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Allergic contact dermatitis (ACD) is one of the most prevalent occupational skin diseases and causes severe and long-lasting health problems in the case of chronification. It is initiated by an innate inflammatory immune response to skin contact with low molecular weight chemicals that results in the priming of chemical-specific, skin-homing CD8(+) Tc1/Tc17 and CD4(+) Th1/Th17 cells. Following this sensitization step, T lymphocytes infiltrate the inflamed skin upon challenge with the same chemical. The T cells then exert cytotoxic function and secrete inflammatory mediators to produce an eczematous skin reaction. The recent characterization of the mechanisms underlying the innate inflammatory response has revealed that contact allergens activate innate effector mechanisms and signalling pathways that are also involved in anti-infectious immunity. This emerging analogy implies infection as a potential trigger or amplifier of the sensitization to contact allergens. Moreover, new mechanistic insights into the induction of ACD identify potential targets for preventive and therapeutic intervention. We summarize here the latest findings in this area of research.
Collapse
Affiliation(s)
- S F Martin
- Allergy Research Group, Department of Dermatology, University Medical Center Freiburg, Hauptstrasse 7, Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Every organism is in contact with numerous small molecules (<1000 Da). Chemicals may cause or trigger adverse health effects, including diseases of the immune system. They may also be exploited as drugs. In this review, we look at the interaction between small molecules and the immune system. We discuss the hapten and pharmacological interaction concepts of chemical interaction to trigger T cells and how chemicals can participate in cellular signaling pathways. As a sensor of small molecules, the arylhydrocarbon receptor controls expression of many xenobiotic metabolizing enzymes, including those in the immunological barrier organs; the skin and gut. The relevance of the arylhydrocarbon receptor in the dynamic interaction of the immune system with the chemical environment is therefore discussed.
Collapse
|
35
|
Hennen J, Aeby P, Goebel C, Schettgen T, Oberli A, Kalmes M, Blömeke B. Cross talk between keratinocytes and dendritic cells: impact on the prediction of sensitization. Toxicol Sci 2011; 123:501-10. [PMID: 21742781 DOI: 10.1093/toxsci/kfr174] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding the mechanistic aspects involved in sensitization by chemicals will help to develop relevant preventive strategies. Many potential sensitizers are not directly immunogenic but require activation outside or inside the skin by nonenzymatic oxidation (prehaptens) or metabolic transformation (prohaptens) prior to being able to induce an immune response. This necessary activation step has not yet been actively integrated into a cell line-based prediction approach. We cocultured HaCaT keratinocytes with THP-1 as dendritic cell-like cells allowing intercellular interactions. The sensitizing potential was determined by analyzing differences in the expression of CD86, CD40, and CD54 on cocultured THP-1 cells. This new assay setup allowed (1) to distinguish irritants from allergens without influencing cell viability and (2) to discriminate pre/prohaptens from haptens. Under coculture conditions, the prohaptens eugenol, 2-methoxy-4-methylphenol, and benzo[a]pyrene induced a significantly higher upregulation of CD86 expression on THP-1. In agreement with the hapten concept, responses to 2,4-dinitrochlorobenzene, Bandrowski's base, and the prehapten isoeugenol were not significantly modified. Inhibition of cytochrome P450 or NAD(P)H:quinone oxidoreductase (NQO1) activity reduced the prohapten-mediated upregulation of CD86 on cocultured THP-1 cells. This coculture assay allowing cross talk between HaCaT and THP-1 cells appears to be suitable for the detection of prohaptens, is reproducible, easy to perform, and avoids donor variations. In addition, this assay is a promising approach to understand the impact of cross talk on the prediction of sensitization and once established may be integrated in a future in vitro toolbox to detect potential skin sensitizers and may thus contribute to reduce animal testing.
Collapse
Affiliation(s)
- Jenny Hennen
- Department of Environmental Toxicology, University Trier, 54286 Trier, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Cao YP, Ma PC, Liu WD, Zhou WQ, Tao Y, Zhang ML, Li LJ, Chen ZY. Evaluation of the skin sensitization potential of chemicals in THP-1/keratinocyte co-cultures. Immunopharmacol Immunotoxicol 2011; 34:196-204. [PMID: 21721923 DOI: 10.3109/08923973.2011.591800] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Many attempts have been made to develop in vitro sensitization tests that employ dendritic cells (DCs), DC-like cell lines or keratinocytes. The aim of the present investigation was to establish a co-culture of THP-1 cells and keratinocytes for evaluation of skin sensitization potential of chemicals. Co-cultures were constructed by THP-1 cells cultured in lower compartments and keratinocytes cultured in upper compartments of cell culture inserts. After 24 h exposure to sensitizers (2, 4-dinitrochlorobenzene, p-phenylenediamine, formaldehyde, nickel sulfate, isoeugenol and eugenol) and non-sensitizers (sodium lauryl sulfate, benzalkonium chloride and lactic acid), the expression of CD86 and CD54 on THP-1 cells were evaluated by flow cytometry, and cell viabilities were determined. The sensitizers induced the augmentation of CD86 and CD54 expression, but the non-sensitizers had no significant effect. Compared with mono-cultures of THP-1 cells, the augmentation of CD86 and CD54 could be detected even at a non-toxic concentration of sensitizers in THP-1 cell/keratinocyte co-cultures. Moreover, isoeugenol was distinguished as a sensitizer in co-cultures, but failed to be identified in mono-cultures. These results revealed that the co-cultures of THP-1 cells and keratinocytes were successfully established and suitable for identifying sensitizers using CD86 and CD54 expression as identification markers.
Collapse
Affiliation(s)
- Yu-Ping Cao
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Haptenation: chemical reactivity and protein binding. J Allergy (Cairo) 2011; 2011:839682. [PMID: 21785613 PMCID: PMC3138048 DOI: 10.1155/2011/839682] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/27/2011] [Indexed: 11/23/2022] Open
Abstract
Low molecular weight chemical (LMW) allergens are commonly referred to as haptens. Haptens must complex with proteins to be recognized by the immune system. The majority of occupationally related haptens are reactive, electrophilic chemicals, or are metabolized to reactive metabolites that form covalent bonds with nucleophilic centers on proteins. Nonelectrophilic protein binding may occur through disulfide exchange, coordinate covalent binding onto metal ions on metalloproteins or of metal allergens, themselves, to the major histocompatibility complex. Recent chemical reactivity kinetic studies suggest that the rate of protein binding is a major determinant of allergenic potency; however, electrophilic strength does not seem to predict the ability of a hapten to skew the response between Th1 and Th2. Modern proteomic mass spectrometry methods that allow detailed delineation of potential differences in protein binding sites may be valuable in predicting if a chemical will stimulate an immediate or delayed hypersensitivity. Chemical aspects related to both reactivity and protein-specific binding are discussed.
Collapse
|
38
|
Respiratory sensitization: advances in assessing the risk of respiratory inflammation and irritation. Toxicol In Vitro 2011; 25:1251-8. [PMID: 21570460 DOI: 10.1016/j.tiv.2011.04.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 03/04/2011] [Accepted: 04/27/2011] [Indexed: 01/14/2023]
Abstract
Respiratory sensitization provides a case study for a new approach to chemical safety evaluation, as the prevalence of respiratory sensitization has increased considerably over the last decades, but animal and/or human experimental/predictive models are not currently available. Therefore, the goal of a working group was to design a road map to develop an ASAT approach for respiratory sensitisers. This approach should aim at (i) creating a database on respiratory functional biology and toxicology, (ii) applying data analyses to understand the multi-dimensional sensitization response, and how this predisposes to respiratory inflammation and irritation, and (iii) building a systems model out of these analyses, adding pharmacokinetic-pharmacodynamic modeling to predict respiratory responses to low levels of sensitisers. To this end, the best way forward would be to follow an integrated testing approach. Experimental research should be targeted to (i) QSAR-type approaches to relate potential as a respiratory sensitizer to its chemical structure, (ii) in vitro models and (iii) in vitro-in vivo extrapolation/validation.
Collapse
|
39
|
Chipinda I, Blachere FM, Anderson SE, Siegel PD. Discrimination of haptens from prohaptens using the metabolically deficient Cprlow/low mouse. Toxicol Appl Pharmacol 2011; 252:268-72. [DOI: 10.1016/j.taap.2011.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/16/2011] [Accepted: 02/23/2011] [Indexed: 10/18/2022]
|
40
|
Chemical reactivity measurements: Potential for characterization of respiratory chemical allergens. Toxicol In Vitro 2011; 25:433-45. [DOI: 10.1016/j.tiv.2010.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 10/01/2010] [Accepted: 11/11/2010] [Indexed: 01/13/2023]
|
41
|
Skazik C, Heise R, Ott H, Czaja K, Marquardt Y, Merk HF, Baron JM. Active transport of contact allergens in human monocyte-derived dendritic cells is mediated by multidrug resistance related proteins. Arch Biochem Biophys 2011; 508:212-6. [PMID: 21284934 DOI: 10.1016/j.abb.2011.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/18/2011] [Accepted: 01/18/2011] [Indexed: 01/19/2023]
Abstract
The multidrug resistance related proteins (MRPs) function as efflux transporters of a variety of large organic anions or their conjugates. In recent studies we demonstrated that antigen-presenting cells express a specific pattern of MRPs. MRP-mediated efflux activity of human monocyte-derived dendritic cells (moDCs) was analyzed using an in vitro transport assay. The efflux transport of radiolabeled contact allergens was inhibited using the specific MRP inhibitor indomethacin. Treatment with indomethacin increased intracellular concentration of [³H] eugenol and [³H] isoeugenol in moDCs. In addition by using MRP1 expressing inside-out membrane vesicles we revealed that the transport of eugenol is mediated by MRP1. Human DCs were employed to assess the sensitizing potential of contact allergens and alters their cytokine gene expression profile. Hence, to survey the functionality of indomethacin after stimulation with contact allergens IL-8 and TRIM16 regulation was measured by a DC-based in vitro assay. Incubation with isoeugenol after pre-treatment with indomethacin leads to increased IL-8 and TRIM16 gene expression. These results strongly support the functional role of MRPs in the active efflux of contact allergens also in antigen-presenting cells like moDCs, a novel mechanism which could possibly play a role in the pathogenesis of contact allergy.
Collapse
Affiliation(s)
- Claudia Skazik
- Department of Dermatology and Allergology, University Hospital, RWTH Aachen University, Pauwelsstraße 30, D-52074 Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
42
|
Westerhof W, Manini P, Napolitano A, d’Ischia M. The haptenation theory of vitiligo and melanoma rejection: a close-up. Exp Dermatol 2011; 20:92-6. [DOI: 10.1111/j.1600-0625.2010.01200.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Samuelsson K, Bergström MA, Jonsson CA, Westman G, Karlberg AT. Diphenylthiourea, a common rubber chemical, is bioactivated to potent skin sensitizers. Chem Res Toxicol 2010; 24:35-44. [PMID: 21073181 DOI: 10.1021/tx100241z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Diphenylthiourea (DPTU) is a known skin sensitizer commonly used as a vulcanization accelerator in the production of synthetic rubber, for example, neoprene. The versatile usage of neoprene is due to the multifaceted properties of the material; for example, it is stretchable, waterproof, and chemical- and abrasion-resistant. The wide application of neoprene has resulted in numerous case reports of dermatitis patients allergic to DPTU. The mechanism by which DPTU works as a contact allergen has not been described; thus, the aim of the present study was to investigate if DPTU is a prohapten that can be activated by skin metabolism. The metabolic activation and covalent binding of (14)C-labeled DPTU to proteins were tested using a skinlike cytochrome P450 (P450) cocktail containing the five most abundant P450s found in human skin (CYP1A1, 1B1, 2B6, 2E1, and 3A5) and human liver microsomes. The incubations were carried out in the presence or absence of the metabolite trapping agents glutathione, methoxylamine, and benzylamine. The metabolism mixtures were analyzed by LC-radiochromatography, LC-MS, and LC-MS/MS. DPTU was mainly metabolically activated to reactive sulfoxides resulting in desulfurated adducts in both enzymatic systems used. Also, phenylisothiocyanate and phenylisocyanate were found to be metabolites of DPTU. The sensitizing capacity of the substrate (DPTU) and three metabolites was tested in the murine local lymph node assay. Two out of three metabolites tested were strong skin sensitizers, whereas DPTU itself, as previously known, was negative using this mouse model. In conclusion, DPTU forms highly reactive metabolites upon bioactivation by enzymes present in the skin. These metabolites are able to induce skin sensitization and are probable causes for DPTU allergy. To increase the possibilities of diagnosing contact allergy to DPTU-containing items, we suggest that suitable metabolites of DPTU should be used for screening testing.
Collapse
Affiliation(s)
- Kristin Samuelsson
- Dermatochemistry and Skin Allergy, Department of Chemistry, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
44
|
Merckel F, Bernard G, Mutschler J, Giménez-Arnau E, Gerberick GF, Lepoittevin JP. Effect of a Microemulsion System on Hapten-Peptide Reactivity Studies: Examples of Hydroxycitronellal and Citral, Fragrance Skin Sensitizers, with Glutathione. Chem Res Toxicol 2010; 23:1433-41. [DOI: 10.1021/tx100043b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fabien Merckel
- Laboratoire de Dermatochimie, Institut de Chimie, CNRS and Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France, and Central Product Safety, Miami Valley Innovation Center, The Procter & Gamble Company, Cincinnati, Ohio 45253
| | - Guillaume Bernard
- Laboratoire de Dermatochimie, Institut de Chimie, CNRS and Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France, and Central Product Safety, Miami Valley Innovation Center, The Procter & Gamble Company, Cincinnati, Ohio 45253
| | - Julien Mutschler
- Laboratoire de Dermatochimie, Institut de Chimie, CNRS and Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France, and Central Product Safety, Miami Valley Innovation Center, The Procter & Gamble Company, Cincinnati, Ohio 45253
| | - Elena Giménez-Arnau
- Laboratoire de Dermatochimie, Institut de Chimie, CNRS and Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France, and Central Product Safety, Miami Valley Innovation Center, The Procter & Gamble Company, Cincinnati, Ohio 45253
| | - G. Frank Gerberick
- Laboratoire de Dermatochimie, Institut de Chimie, CNRS and Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France, and Central Product Safety, Miami Valley Innovation Center, The Procter & Gamble Company, Cincinnati, Ohio 45253
| | - Jean-Pierre Lepoittevin
- Laboratoire de Dermatochimie, Institut de Chimie, CNRS and Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France, and Central Product Safety, Miami Valley Innovation Center, The Procter & Gamble Company, Cincinnati, Ohio 45253
| |
Collapse
|
45
|
Vandebriel RJ, Loveren HV. Non-animal sensitization testing: State-of-the-art. Crit Rev Toxicol 2010; 40:389-404. [DOI: 10.3109/10408440903524262] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
|
47
|
Natsch A. The Nrf2-Keap1-ARE toxicity pathway as a cellular sensor for skin sensitizers--functional relevance and a hypothesis on innate reactions to skin sensitizers. Toxicol Sci 2009; 113:284-92. [PMID: 19767620 DOI: 10.1093/toxsci/kfp228] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
With the tight deadlines set both by the public and by the regulatory authorities to replace animal tests for toxicological endpoints relevant to the development of cosmetic products, a large number of research projects have recently focused on cellular endpoints affected by skin sensitizing compounds. The general aim stated in these projects was to find "markers" for skin sensitizers, be it at the level of the transcriptome or at the protein level. Rather than talking of "cellular markers," the new paradigm "Toxicity testing in the 21st century" formulated by the National Academy of Sciences in the United States focuses on "Toxicity pathways." A specific marker for any given toxicological endpoint can only exist, if specific toxicity pathways, comprising specific sensors, are linked to this endpoint. In the context of skin sensitization, one has to ask whether there is an innate cellular signaling pathway activated by skin sensitizers. Here a significant body of evidence, mainly accumulated in the last 20 months, is reviewed, indicating that indeed the Nrf2-Keap1-ARE regulatory pathway is such a toxicity pathway activated by cysteine-reactive skin sensitizers. Whereas first indications on the in vivo relevance are available, key questions remain open and can now specifically be addressed. A minority of sensitizers, more specifically reacting with lysine residues, appears not to activate the Nrf2-Keap1-ARE pathway and might trigger yet another unknown toxicity pathway.
Collapse
Affiliation(s)
- Andreas Natsch
- Bioscience Department, Fragrance Research, Givaudan Schweiz AG, Duebendorf, Switzerland.
| |
Collapse
|
48
|
Baron JM, Skazik C. Research in practice: the second barrier of the human skin. J Dtsch Dermatol Ges 2009; 8:155-8. [PMID: 19751223 DOI: 10.1111/j.1610-0387.2009.07217.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A major function of human skin is to form an effective barrier between the environment and the inside of the organism. Especially important for this function is the activity of the physical barrier of the skin, which is mainly located in the stratum corneum. To improve this barrier function of the skin, skin protection agents are used. Recent studies have revealed that application of skin protection agents before exposition to xenobiotics does not generally reduce the percutaneous uptake of these compounds. These findings indicate that besides new study designs and improved test systems, there seems to be a need for new therapeutic approaches for more effective skin protection. In this light, new findings regarding a second barrier function of the human skin, the biochemical/toxicological barrier, could be of interest. A crucial part of this barrier function are members of the cytochrome P450 (CYP) family and efflux-transport proteins of the multidrug resistance-related protein family (MRPs), which are mainly expressed by basal layer keratinocytes. Recent studies have revealed that besides the physiological and protective function of these transport proteins and CYP enzymes in skin cells, the same proteins also play a role in the transport of contact allergens and activation of prohaptens to haptens causing contact dermatitis. Inhibition of this metabolism mediated activation of prohaptens and stimulation of the active elimination of contact allergens from skin cells could represent novel mechanisms improving the established tools for skin protection.
Collapse
Affiliation(s)
- Jens Malte Baron
- Department of Dermatology, University Hospital, Aachen University of Technology (RWTH), Aachen, Germany.
| | | |
Collapse
|
49
|
Gerberick GF, Troutman JA, Foertsch LM, Vassallo JD, Quijano M, Dobson RLM, Goebel C, Lepoittevin JP. Investigation of Peptide Reactivity of Pro-hapten Skin Sensitizers Using a Peroxidase-Peroxide Oxidation System. Toxicol Sci 2009; 112:164-74. [DOI: 10.1093/toxsci/kfp192] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
50
|
|