1
|
Cheung ST, Do Y, Kim E, Rella A, Goyarts E, Pernodet N, Wong YH. G Protein-Coupled Receptors in Skin Aging. J Invest Dermatol 2025; 145:749-765.e8. [PMID: 39186022 DOI: 10.1016/j.jid.2024.06.1288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 08/27/2024]
Abstract
Skin aging is a complex biological process affected by a plethora of intrinsic and extrinsic factors that alter cutaneous functions through the modulations of signaling pathways and responses. Expressed in various cell types and skin tissue layers, G protein-coupled receptors (GPCRs) play a vital role in regulating skin aging. We have cataloged 156 GPCRs expressed in the skin and reviewed their roles in skin aging, such as pigmentation, loss of elasticity, wrinkles, rough texture, and aging-associated skin disorders. By exploring the GPCRs found in the skin, it may be possible to develop new treatment regimens for aging-associated skin conditions using GPCR ligands.
Collapse
Affiliation(s)
- Suet Ting Cheung
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yelim Do
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Eunah Kim
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Antonella Rella
- Research and Development, The Estée Lauder Companies, New York, New York, USA
| | - Earl Goyarts
- Research and Development, The Estée Lauder Companies, New York, New York, USA
| | - Nadine Pernodet
- Research and Development, The Estée Lauder Companies, New York, New York, USA; Estée Lauder Research Laboratories, Melville, New York, USA
| | - Yung Hou Wong
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China; Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China; Center for Aging Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
2
|
Bartley B, Pierce C, Hivnor C, Valdes-Rodriguez R. Topical Medications for Chronic Itch in Older Patients: Navigating a Pressing Need. Drugs Aging 2025; 42:213-233. [PMID: 39883297 DOI: 10.1007/s40266-024-01174-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2024] [Indexed: 01/31/2025]
Abstract
Chronic itch in older patients is a common problem, with a significant impact on quality of life. Chronic itch in the older population may be attributable to several causes, such as age-related changes, skin conditions, systemic conditions, medications, and psychological conditions. Given the complexity of itch in this population, comorbidities, and polypharmacy in most geriatric patients, treating chronic itch can be challenging for healthcare providers. Therefore, optimized topical treatment regimens are paramount to help these patients and prevent side effects.
Collapse
Affiliation(s)
- Brooke Bartley
- Department of Internal Medicine, Texas Health Presbyterian Dallas, Dallas, TX, USA
| | - Christina Pierce
- University of Texas Health Science Center at San Antonio Long School of Medicine, San Antonio, TX, USA
| | - Chad Hivnor
- Department of Dermatology, University of Texas Health Science Center, 7979 Wurzbach Rd, Grossman 3rd FL, San Antonio, TX, 78229, USA
| | - Rodrigo Valdes-Rodriguez
- Department of Dermatology, University of Texas Health Science Center, 7979 Wurzbach Rd, Grossman 3rd FL, San Antonio, TX, 78229, USA.
| |
Collapse
|
3
|
Biernacki M, Skrzydlewska E. Metabolic pathways of eicosanoids-derivatives of arachidonic acid and their significance in skin. Cell Mol Biol Lett 2025; 30:7. [PMID: 39825220 PMCID: PMC11742234 DOI: 10.1186/s11658-025-00685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025] Open
Abstract
The skin is a barrier that protects the human body against environmental factors (physical, including solar radiation, chemicals, and pathogens). The integrity and, consequently, the effective metabolic activity of skin cells is ensured by the cell membrane, the important structural and metabolic elements of which are phospholipids. Phospholipids are subject to continuous transformation, including enzymatic hydrolysis (with the participation of phospholipases A, C, and D) to free polyunsaturated fatty acids (PUFAs), which under the influence of cyclooxygenases (COX1/2), lipoxygenases (LOXs), and cytochrome P450 (CYPs P450) are metabolized to various classes of oxylipins, depending on the type of PUFA being metabolized and the enzyme acting. The most frequently analyzed oxylipins, especially in skin cells, are eicosanoids, which are derivatives of arachidonic acid (AA). Their level depends on both environmental factors and endogenous metabolic disorders. However, they play an important role in homeostasis mechanisms related to the structural and functional integrity of the skin, including maintaining redox balance, as well as regulating inflammatory processes arising in response to endogenous and exogenous factors reaching skin cells. Therefore, it is believed that dysregulation of eicosanoid levels may contribute to the development of skin diseases, such as psoriasis or atopic dermatitis, which in turn suggests that targeted control of the generation of specific eicosanoids may have diagnostic significance and beneficial therapeutic effects. This review is the first systemic and very detailed approach presenting both the causes and consequences of changes in phospholipid metabolism leading to the generation of eicosanoids, changes in the level of which result in specific metabolic disorders in skin cells leading to the development of various diseases. At the same time, existing literature data indicate that further detailed research is necessary to understand a clear relationship between changes in the level of specific eicosanoids and the pathomechanisms of specific skin diseases, as well as to develop an effective diagnostic and therapeutic approach.
Collapse
Affiliation(s)
- Michał Biernacki
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069, Bialystok, Poland.
| |
Collapse
|
4
|
Honda T, Kabashima K, Kunisawa J. Exploring the roles of prostanoids, leukotriens, and dietary fatty acids in cutaneous inflammatory diseases: Insights from pharmacological and genetic approaches. Immunol Rev 2023; 317:95-112. [PMID: 36815685 DOI: 10.1111/imr.13193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Prostanoids and leukotrienes (LTs) are representative of ω6 fatty acid-derived metabolites that exert their actions through specific receptors on the cell surface. These lipid mediators, being unstable in vivo, act locally at their production sites; thus, their physiological functions remain unclear. However, recent pharmacological and genetic approaches using experimental murine models have provided significant insights into the roles of these lipid mediators in various pathophysiological conditions, including cutaneous inflammatory diseases. These lipid mediators act not only through signaling by themselves but also by potentiating the signaling of other chemical mediators, such as cytokines and chemokines. For instance, prostaglandin E2 -EP4 and LTB4 -BLT1 signaling on cutaneous dendritic cells substantially facilitate their chemokine-induced migration ability into the skin and play critical roles in the priming and/or activation of antigen-specific effector T cells in the skin. In addition to these ω6 fatty acid-derived metabolites, various ω3 fatty acid-derived metabolites regulate skin immune cell functions, and some exert potent anti-inflammatory functions. Lipid mediators act as modulators of cutaneous immune responses, and manipulating the signaling from lipid mediators has the potential as a novel therapeutic approach for human skin diseases.
Collapse
Affiliation(s)
- Tetsuya Honda
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), Biopolis, Singapore, Singapore
- 5. A*Star Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, Graduate School of Dentistry, Graduate School of Pharmaceutical Sciences, Graduate School of Science, Osaka University, Osaka, Japan
- Department of Microbiology and Immunology, Graduate School of Medicine, Kobe University, Kobe, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
5
|
Majima M, Hosono K, Ito Y, Amano H, Nagashima Y, Matsuda Y, Watanabe SI, Nishimura H. A biologically active lipid, thromboxane, as a regulator of angiogenesis and lymphangiogenesis. Biomed Pharmacother 2023; 163:114831. [PMID: 37150029 DOI: 10.1016/j.biopha.2023.114831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/13/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Thromboxane (TX) and prostaglandins are metabolites of arachidonic acid, a twenty-carbon unsaturated fatty acid, and have a variety of actions that are exerted via specific receptors. Angiogenesis is defined as the formation of new blood vessels from pre-existing vascular beds and is a critical component of pathological conditions, including inflammation and cancer. Lymphatic vessels play crucial roles in the regulation of interstitial fluid, immune surveillance, and the absorption of dietary fat from the intestine; and they are also involved in the pathogenesis of various diseases. Similar to angiogenesis, lymphangiogenesis, the formation of new lymphatic vessels, is a critical component of pathological conditions. The TP-dependent accumulation of platelets in microvessels has been reported to enhance angiogenesis under pathological conditions. Although the roles of some growth factors and cytokines in angiogenesis and lymphangiogenesis have been well characterized, accumulating evidence suggests that TX induces the production of proangiogenic and prolymphangiogenic factors through the activation of adenylate cyclase, and upregulates angiogenesis and lymphangiogenesis under disease conditions. In this review, we discuss the role of TX as a regulator of angiogenesis and lymphangiogenesis, and its emerging importance as a therapeutic target.
Collapse
Affiliation(s)
- Masataka Majima
- Department of Medical Therapeutics, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan; Department of Pharmacology, Kitasato University School of Medicine and Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan.
| | - Kanako Hosono
- Department of Pharmacology, Kitasato University School of Medicine and Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Yoshiya Ito
- Department of Pharmacology, Kitasato University School of Medicine and Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Hideki Amano
- Department of Pharmacology, Kitasato University School of Medicine and Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Yoshinao Nagashima
- Department of Medical Therapeutics, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan; Tokyo Research Laboratories, Kao Corporation, 2-1-3, Bunka, Sumida-ku, Tokyo 131-8501, Japan
| | - Yasuhiro Matsuda
- Department of Life Support Engineering, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Shin-Ichi Watanabe
- Department of Exercise Physiology and Health Sciences, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Hironobu Nishimura
- Department of Biological Information, Faculty of Health and Medical Sciences, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| |
Collapse
|
6
|
Alvarenga PH, Andersen JF. An Overview of D7 Protein Structure and Physiological Roles in Blood-Feeding Nematocera. BIOLOGY 2022; 12:biology12010039. [PMID: 36671732 PMCID: PMC9855781 DOI: 10.3390/biology12010039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Each time an insect bites a vertebrate host, skin and vascular injury caused by piercing triggers a series of responses including hemostasis, inflammation and immunity. In place, this set of redundant and interconnected responses would ultimately cause blood coagulation, itching and pain leading to host awareness, resulting in feeding interruption in the best-case scenario. Nevertheless, hematophagous arthropod saliva contains a complex cocktail of molecules that are crucial to the success of blood-feeding. Among important protein families described so far in the saliva of blood sucking arthropods, is the D7, abundantly expressed in blood feeding Nematocera. D7 proteins are distantly related to insect Odorant-Binding Proteins (OBP), and despite low sequence identity, observation of structural similarity led to the suggestion that like OBPs, they should bind/sequester small hydrophobic compounds. Members belonging to this family are divided in short forms and long forms, containing one or two OBP-like domains, respectively. Here, we provide a review of D7 proteins structure and function, discussing how gene duplication and some modifications in their OBP-like domains during the course of evolution lead to gain and loss of function among different hematophagous Diptera species.
Collapse
|
7
|
Critical Players and Therapeutic Targets in Chronic Itch. Int J Mol Sci 2022; 23:ijms23179935. [PMID: 36077340 PMCID: PMC9456029 DOI: 10.3390/ijms23179935] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic itch is one of the most prominent clinical characteristics of diverse systematic diseases. It is a devastating sensation in pathological diseases. Despite its importance, there are no FDA-labelled drugs specifically geared toward chronic itch. The associated complex pathogenesis and diverse causes escalate chronic itch to being one of the top challenges in healthcare. Humanized antibodies against IL-13, IL-4, and IL-31 proved effective in treatment of itch-associated atopic dermatitis but remain to be validated in chronic itch. There are still no satisfactory anti-itch therapeutics available toward itch-related neuropeptides including GRP, BNP, SST, CGRP, and SP. The newly identified potential itch targets including OSM, NMB, glutamate, periostin, and Serpin E1 have opened new avenues for therapeutic development. Proof-of-principle studies have been successfully performed on antagonists against these proteins and their receptors in itch treatment in animal models. Their translational interventions in humans need to be evaluated. It is of great importance to summarize and compare the newly emerging knowledge on chronic itch and its pathways to promote the development of novel anti-itch therapeutics. The goal of this review is to analyze the different physiologies and pathophysiologies of itch mediators, whilst assessing their suitability as new targets and discussing future therapeutic development.
Collapse
|
8
|
Naganuma T, Fujinami N, Arita M. Polyunsaturated Fatty Acid-Derived Lipid Mediators That Regulate Epithelial Homeostasis. Biol Pharm Bull 2022; 45:998-1007. [DOI: 10.1248/bpb.b22-00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tatsuro Naganuma
- Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy
| | - Nodoka Fujinami
- Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy
| | - Makoto Arita
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama-City University
| |
Collapse
|
9
|
Inami Y, Fukushima M, Kume T, Uta D. Histamine enhances ATP-induced itching and responsiveness to ATP in keratinocytes. J Pharmacol Sci 2022; 148:255-261. [PMID: 35063141 DOI: 10.1016/j.jphs.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/27/2021] [Accepted: 12/14/2021] [Indexed: 02/05/2023] Open
Abstract
Mechanical stimulation of cultured keratinocytes and a living epidermis increases intracellular calcium ion concentrations ([Ca2+]i) in stimulated cells. This action propagates a Ca2+ wave to neighboring keratinocytes via ATP/P2Y2 receptors. Recent behavioral, pharmacological studies revealed that exogenous ATP induces itching via P2X3 receptors in mice. We previously showed that alloknesis occurs when an external stimulus is applied to the skin with increased epidermal histamine in the absence of spontaneous pruritus. Based on these results, we investigated the effects of histamine at a concentration that does not cause itching on ATP-induced itching. The mean number of scratching events induced by the mixture of ATP and histamine increased by 28% over the sum of that induced by histamine alone or ATP alone. A317491, a P2X3 receptor antagonist, suppressed the mixture-induced scratching more often than the ATP-induced scratching. Next, we examined the ATP-induced [Ca2+]i change before and after histamine stimulation using normal human epidermal keratinocytes. Some cells did not respond to ATP before histamine stimulation but responded to ATP afterward, the phenomenon suppressed by chlorpheniramine maleate. These findings suggest that histamine enhances ATP-induced itching and that a potential mechanism could involve increased responsiveness to ATP in keratinocytes.
Collapse
Affiliation(s)
- Yoshihiro Inami
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences University of Toyama, Toyama, Japan; Advanced Research Laboratory, Hoyu Co., Ltd., Nagakute, Aichi, Japan
| | - Miki Fukushima
- Advanced Research Laboratory, Hoyu Co., Ltd., Nagakute, Aichi, Japan
| | - Toshiaki Kume
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences University of Toyama, Toyama, Japan
| | - Daisuke Uta
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences University of Toyama, Toyama, Japan.
| |
Collapse
|
10
|
Umehara Y, Kiatsurayanon C, Trujillo-Paez JV, Chieosilapatham P, Peng G, Yue H, Nguyen HLT, Song P, Okumura K, Ogawa H, Niyonsaba F. Intractable Itch in Atopic Dermatitis: Causes and Treatments. Biomedicines 2021; 9:biomedicines9030229. [PMID: 33668714 PMCID: PMC7996203 DOI: 10.3390/biomedicines9030229] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/16/2022] Open
Abstract
Itch or pruritus is the hallmark of atopic dermatitis and is defined as an unpleasant sensation that evokes the desire to scratch. It is also believed that itch is a signal of danger from various environmental factors or physiological abnormalities. Because histamine is a well-known substance inducing itch, H1-antihistamines are the most frequently used drugs to treat pruritus. However, H1-antihistamines are not fully effective against intractable itch in patients with atopic dermatitis. Given that intractable itch is a clinical problem that markedly decreases quality of life, its treatment in atopic dermatitis is of high importance. Histamine-independent itch may be elicited by various pruritogens, including proteases, cytokines, neuropeptides, lipids, and opioids, and their cognate receptors, such as protease-activated receptors, cytokine receptors, Mas-related G protein-coupled receptors, opioid receptors, and transient receptor potential channels. In addition, cutaneous hyperinnervation is partly involved in itch sensitization in the periphery. It is believed that dry skin is a key feature of intractable itch in atopic dermatitis. Treatment of the underlying conditions that cause itch is necessary to improve the quality of life of patients with atopic dermatitis. This review describes current insights into the pathophysiology of itch and its treatment in atopic dermatitis.
Collapse
Affiliation(s)
- Yoshie Umehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Chanisa Kiatsurayanon
- Institute of Dermatology, Department of Medical Services, Ministry of Public Health, Bangkok 10400, Thailand;
| | - Juan Valentin Trujillo-Paez
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Panjit Chieosilapatham
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Ge Peng
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Hainan Yue
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Hai Le Thanh Nguyen
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Pu Song
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China;
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
- Faculty of International Liberal Arts, Juntendo University, Tokyo 113-8421, Japan
- Correspondence: ; Tel.: +81-3-5802-1591; Fax: +81-3-3813-5512
| |
Collapse
|
11
|
Huang S, Ziegler CGK, Austin J, Mannoun N, Vukovic M, Ordovas-Montanes J, Shalek AK, von Andrian UH. Lymph nodes are innervated by a unique population of sensory neurons with immunomodulatory potential. Cell 2021; 184:441-459.e25. [PMID: 33333021 PMCID: PMC9612289 DOI: 10.1016/j.cell.2020.11.028] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 09/23/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
Barrier tissue immune responses are regulated in part by nociceptors. Nociceptor ablation alters local immune responses at peripheral sites and within draining lymph nodes (LNs). The mechanisms and significance of nociceptor-dependent modulation of LN function are unknown. Using high-resolution imaging, viral tracing, single-cell transcriptomics, and optogenetics, we identified and functionally tested a sensory neuro-immune circuit that is responsive to lymph-borne inflammatory signals. Transcriptomics profiling revealed that multiple sensory neuron subsets, predominantly peptidergic nociceptors, innervate LNs, distinct from those innervating surrounding skin. To uncover LN-resident cells that may interact with LN-innervating sensory neurons, we generated a LN single-cell transcriptomics atlas and nominated nociceptor target populations and interaction modalities. Optogenetic stimulation of LN-innervating sensory fibers triggered rapid transcriptional changes in the predicted interacting cell types, particularly endothelium, stromal cells, and innate leukocytes. Thus, a unique population of sensory neurons monitors peripheral LNs and may locally regulate gene expression.
Collapse
Affiliation(s)
- Siyi Huang
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA 02115, USA.
| | - Carly G K Ziegler
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Institute for Medical Engineering & Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA 02139, USA; Harvard Graduate Program in Biophysics, Harvard University, Boston, MA 02115, USA
| | - John Austin
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA 02115, USA
| | - Najat Mannoun
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA 02115, USA
| | - Marko Vukovic
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Institute for Medical Engineering & Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jose Ordovas-Montanes
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Institute for Medical Engineering & Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alex K Shalek
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA 02115, USA; Institute for Medical Engineering & Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA 02139, USA.
| | - Ulrich H von Andrian
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Pathogenic mechanisms of lipid mediator lysophosphatidic acid in chronic pain. Prog Lipid Res 2020; 81:101079. [PMID: 33259854 DOI: 10.1016/j.plipres.2020.101079] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
A number of membrane lipid-derived mediators play pivotal roles in the initiation, maintenance, and regulation of various types of acute and chronic pain. Acute pain, comprising nociceptive and inflammatory pain warns us about the presence of damage or harmful stimuli. However, it can be efficiently reversed by opioid analgesics and anti-inflammatory drugs. Prostaglandin E2 and I2, the representative lipid mediators, are well-known causes of acute pain. However, some lipid mediators such as lipoxins, resolvins or endocannabinoids suppress acute pain. Various types of peripheral and central neuropathic pain (NeuP) as well as fibromyalgia (FM) are representatives of chronic pain and refractory owing to abnormal pain processing distinct from acute pain. Accumulating evidence demonstrated that lipid mediators represented by lysophosphatidic acid (LPA) are involved in the initiation and maintenance of both NeuP and FM in experimental animal models. The LPAR1-mediated peripheral mechanisms including dorsal root demyelination, Cavα2δ1 expression in dorsal root ganglion, and LPAR3-mediated amplification of central LPA production via glial cells are involved in the series of molecular mechanisms underlying NeuP. This review also discusses the involvement of lipid mediators in emerging research directives, including itch-sensing, sexual dimorphism, and the peripheral immune system.
Collapse
|
13
|
Jara CP, Mendes NF, Prado TPD, de Araújo EP. Bioactive Fatty Acids in the Resolution of Chronic Inflammation in Skin Wounds. Adv Wound Care (New Rochelle) 2020; 9:472-490. [PMID: 32320357 DOI: 10.1089/wound.2019.1105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Significance: Optimal skin wound healing is crucial for maintaining tissue homeostasis, particularly in response to an injury. The skin immune system is under regulation of mediators such as bioactive lipids and cytokines that can initiate an immune response with controlled inflammation, followed by efficient resolution. However, nutritional deficiency impacts wound healing by hindering fibroblast proliferation, collagen synthesis, and epithelialization, among other crucial functions. In this way, the correct nutritional support of bioactive lipids and of other essential nutrients plays an important role in the outcome of the wound healing process. Recent Advances and Critical Issues: Several studies have revealed the potential role of lipids as a treatment for the healing of skin wounds. Unsaturated fatty acids such as linoleic acid, α-linolenic acid, oleic acid, and most of their bioactive products have shown an effective role as a topical treatment of chronic skin wounds. Their effect, when the treatment starts at day 0, has been observed mainly in the inflammatory phase of the wound healing process. Moreover, some of them were associated with different dressings and were tested for clinical purposes, including pluronic gel, nanocapsules, collagen films and matrices, and polymeric bandages. Therefore, future research is still needed to evaluate these dressing technologies in association with different bioactive fatty acids in a wound healing context. Future Directions: This review summarizes the main results of the available clinical trials and basic research studies and provides evidence-based conclusions. Together, current data encourage the use of bioactive fatty acids for an optimal wound healing resolution.
Collapse
Affiliation(s)
- Carlos Poblete Jara
- Faculty of Nursing, University of Campinas, Campinas, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Natália Ferreira Mendes
- Faculty of Nursing, University of Campinas, Campinas, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Thais Paulino do Prado
- Faculty of Nursing, University of Campinas, Campinas, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Eliana Pereira de Araújo
- Faculty of Nursing, University of Campinas, Campinas, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| |
Collapse
|
14
|
Töröcsik D, Weise C, Gericke J, Szegedi A, Lucas R, Mihaly J, Worm M, Rühl R. Transcriptomic and lipidomic profiling of eicosanoid/docosanoid signalling in affected and non-affected skin of human atopic dermatitis patients. Exp Dermatol 2020; 28:177-189. [PMID: 30575130 DOI: 10.1111/exd.13867] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/28/2018] [Accepted: 12/13/2018] [Indexed: 01/06/2023]
Abstract
Lipoxygenases (LOX) and cyclooxygenase (COX) are the main enzymes for PUFA metabolism to highly bio-active prostaglandins, leukotrienes, thromboxanes, lipoxins, resolvins and protectins. LOX and COX pathways are important for the regulation of pro-inflammatory or pro-resolving metabolite synthesis and metabolism for various inflammatory diseases such as atopic dermatitis (AD). In this study, we determined PUFAs and PUFA metabolites in serum as well as affected and non-affected skin samples from AD patients and the dermal expression of various enzymes, binding proteins and receptors involved in these LOX and COX pathways. Decreased EPA and DHA levels in serum and reduced EPA level in affected and non-affected skin were found; in addition, n3/n6-PUFA ratios were lower in affected and non-affected skin and serum. Mono-hydroxylated PUFA metabolites of AA, EPA, DHA and the sum of AA, EPA and DHA metabolites were increased in affected and non-affected skin. COX1 and ALOX12B expression, COX and 12/15-LOX metabolites as well as various lipids, which are known to induce itch (12-HETE, LTB4, TXB2, PGE2 and PGF2) and the ratio of pro-inflammatory vs pro-resolving lipid mediators in non-affected and affected skin as well as in the serum of AD patients were increased, while n3/n6-PUFAs and metabolite ratios were lower in non-affected and affected AD skin. Expression of COX1 and COX-metabolites was even higher in non-affected AD skin. To conclude, 12/15-LOX and COX pathways were mainly upregulated, while n3/n6-PUFA and metabolite ratios were lower in AD patients skin. All these parameters are a hallmark of a pro-inflammatory and non-resolving environment in affected and partly in non-affected skin of AD patients.
Collapse
Affiliation(s)
- Daniel Töröcsik
- Faculty of Medicine, Department of Dermatology, University of Debrecen, Debrecen, Hungary
| | - Christin Weise
- Department of Dermatology and Allergology, Allergy-Center-Charité, Charité - Universitätsmedizin, Berlin, Germany
| | - Janine Gericke
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Andrea Szegedi
- Faculty of Medicine, Department of Dermatology, University of Debrecen, Debrecen, Hungary
| | - Renata Lucas
- Faculty of Medicine, Department of Dermatology, University of Debrecen, Debrecen, Hungary
| | - Johanna Mihaly
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Margitta Worm
- Department of Dermatology and Allergology, Allergy-Center-Charité, Charité - Universitätsmedizin, Berlin, Germany
| | - Ralph Rühl
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary.,Paprika Bioanalytics BT, Debrecen, Hungary
| |
Collapse
|
15
|
Honda T, Kabashima K. Prostanoids and leukotrienes in the pathophysiology of atopic dermatitis and psoriasis. Int Immunol 2020; 31:589-595. [PMID: 30715370 DOI: 10.1093/intimm/dxy087] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/15/2019] [Indexed: 12/25/2022] Open
Abstract
Lipid mediators, such as prostanoids and leukotrienes (LTs), exert a range of actions through their own receptors on cell surfaces in various pathophysiological conditions. It has been reported that the production of prostanoids and LTs is significantly elevated in the skin lesions of some chronic inflammatory skin diseases, such as atopic dermatitis (AD) and psoriasis, showing the possible involvement of these lipid mediators in the development of those diseases. Although the actual significance of these lipid mediators in humans is still unclear, the findings from studies in mice suggest diverse roles of the lipid mediators in the progression or regulation of these diseases. For example, in a mouse AD model, prostaglandin D2 inhibits the induction of Th2 cells through DP receptor on Langerhans cells, while it promotes infiltration of Th2 cells through chemoattractant receptor-homologous molecule expressed on Th2 cells. In a psoriasis model, thromboxane A2-TP signaling promotes psoriatic dermatitis by facilitating IL-17 production from γδ T cells. In this short review, we summarize the current findings on the roles of prostanoids and LTs in AD and psoriasis as revealed by studies in mice, and discuss the potential of these lipid mediators as therapeutic targets in humans.
Collapse
Affiliation(s)
- Tetsuya Honda
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan.,Singapore Immunology Network (SIgN) and Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| |
Collapse
|
16
|
Jang Y, Kim M, Hwang SW. Molecular mechanisms underlying the actions of arachidonic acid-derived prostaglandins on peripheral nociception. J Neuroinflammation 2020; 17:30. [PMID: 31969159 PMCID: PMC6975075 DOI: 10.1186/s12974-020-1703-1] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/06/2020] [Indexed: 12/30/2022] Open
Abstract
Arachidonic acid-derived prostaglandins not only contribute to the development of inflammation as intercellular pro-inflammatory mediators, but also promote the excitability of the peripheral somatosensory system, contributing to pain exacerbation. Peripheral tissues undergo many forms of diseases that are frequently accompanied by inflammation. The somatosensory nerves innervating the inflamed areas experience heightened excitability and generate and transmit pain signals. Extensive studies have been carried out to elucidate how prostaglandins play their roles for such signaling at the cellular and molecular levels. Here, we briefly summarize the roles of arachidonic acid-derived prostaglandins, focusing on four prostaglandins and one thromboxane, particularly in terms of their actions on afferent nociceptors. We discuss the biosynthesis of the prostaglandins, their specific action sites, the pathological alteration of the expression levels of related proteins, the neuronal outcomes of receptor stimulation, their correlation with behavioral nociception, and the pharmacological efficacy of their regulators. This overview will help to a better understanding of the pathological roles that prostaglandins play in the somatosensory system and to a finding of critical molecular contributors to normalizing pain.
Collapse
Affiliation(s)
- Yongwoo Jang
- Department of Psychiatry and Program in Neuroscience, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA.,Department of Biomedical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Minseok Kim
- Department of Biomedical Sciences, Korea University, Seoul, 02841, South Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences, Korea University, Seoul, 02841, South Korea. .,Department of Physiology, College of Medicine, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
17
|
Andoh T, Akasaka C, Shimizu K, Lee JB, Yoshihisa Y, Shimizu T. Involvement of α-Melanocyte-Stimulating Hormone-Thromboxane A 2 System on Itching in Atopic Dermatitis. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1775-1785. [PMID: 31220451 DOI: 10.1016/j.ajpath.2019.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
Abstract
α-Melanocyte-stimulating hormone (α-MSH) is an endogenous peptide hormone involved in cutaneous pigmentation in atopic dermatitis (AD) with severe itching. α-MSH elicits itch-related responses in mice. We, therefore, investigated whether α-MSH was involved in itching in AD. In the skin of AD patients and mice with atopy-like dermatitis, α-MSH and the prohormone convertase 2, which is the key processing enzyme for the production of α-MSH, were distributed mainly in keratinocytes. In the skin of mice with dermatitis, melanocortin receptors (MC1R and MC5R) were expressed at the mRNA level and were distributed in the dermis. In the dorsal root ganglion of mice with dermatitis, mRNAs encoding MC1R, MC3R, and MC5R were also expressed. MC1R antagonist agouti-signaling protein inhibited spontaneous scratching in mice with dermatitis. In healthy mice, intradermal α-MSH elicited itch-associated responses, which were inhibited by thromboxane (TX) A2 receptor antagonist ONO-3708. In mouse keratinocytes, α-MSH increased the production of TXA2, which was inhibited by adenylyl cyclase inhibitor SQ-22536 and Ca2+ chelator EGTA. In mouse keratinocytes treated with siRNA for MC1R and/or MC5R, α-MSH-induced TXA2 production was decreased. α-MSH increased intracellular Ca2+ ion concentration in dorsal root ganglion neurons and keratinocytes. These results suggest that α-MSH is involved in itching during AD and may elicit itching through the direct action of primary afferents and TXA2 production by keratinocytes.
Collapse
Affiliation(s)
- Tsugunobu Andoh
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | - Chihiro Akasaka
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kyoko Shimizu
- Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Jung-Bum Lee
- Laboratory of Medicinal Bio-resources, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoko Yoshihisa
- Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tadamichi Shimizu
- Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
18
|
Li S, Andoh T, Zhang Q, Uta D, Kuraishi Y. β2-Microglobulin, interleukin-31, and arachidonic acid metabolites (leukotriene B4 and thromboxane A2) are involved in chronic renal failure-associated itch-associated responses in mice. Eur J Pharmacol 2019; 847:19-25. [DOI: 10.1016/j.ejphar.2019.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/26/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022]
|
19
|
Hirakata T, Lee HC, Ohba M, Saeki K, Okuno T, Murakami A, Matsuda A, Yokomizo T. Dietary ω-3 fatty acids alter the lipid mediator profile and alleviate allergic conjunctivitis without modulating T h2 immune responses. FASEB J 2018; 33:3392-3403. [PMID: 30383446 PMCID: PMC6404575 DOI: 10.1096/fj.201801805r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Allergic conjunctivitis (AC) is one of the most common ocular surface diseases in the world. In AC, T helper type 2 (Th2) immune responses play central roles in orchestrating inflammatory responses. However, the roles of lipid mediators in the onset and progression of AC remain to be fully explored. Although previous reports have shown the beneficial effects of supplementation of ω-3 fatty acids in asthma or atopic dermatitis, the underlying molecular mechanisms are poorly understood. In this study, a diet rich in ω-3 fatty acids alleviated AC symptoms in both early and late phases without affecting Th2 immune responses, but rather by altering the lipid mediator profiles. The ω-3 fatty acids completely suppressed scratching behavior toward the eyes, an allergic reaction provoked by itch. Although total serum IgE levels and the expression levels of Th2 cytokines and chemokines in the conjunctiva were not altered by ω-3 fatty acids, eosinophil infiltration into the conjunctiva was dramatically suppressed. The levels of ω-6–derived proinflammatory lipid mediators, including those with chemoattractant properties for eosinophils, were markedly reduced in the conjunctivae of ω-3 diet–fed mice. Dietary ω-3 fatty acids can alleviate a variety of symptoms of AC by altering the lipid mediator profile.—Hirakata, T., Lee, H.-C., Ohba, M., Saeki, K., Okuno, T., Murakami, A., Matsuda, A., Yokomizo, T. Dietary ω-3 fatty acids alter the lipid mediator profile and alleviate allergic conjunctivitis without modulating Th2 immune responses.
Collapse
Affiliation(s)
- Toshiaki Hirakata
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hyeon-Cheol Lee
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mai Ohba
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuko Saeki
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akira Matsuda
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Tarighi N, Menger D, Pierre S, Kornstädt L, Thomas D, Ferreirós N, Nüsing RM, Geisslinger G, Scholich K. Thromboxane-Induced α-CGRP Release from Peripheral Neurons Is an Essential Positive Feedback Loop in Capsaicin-Induced Neurogenic Inflammation. J Invest Dermatol 2018; 139:656-664. [PMID: 30612974 DOI: 10.1016/j.jid.2018.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 11/30/2022]
Abstract
α-CGRP is synthesized by sensory nerves in the dermis and its release can cause vasodilation and local inflammation. Its vasorelaxant effects are based on the direct activation of smooth muscle and endothelial cells, as well as the activation of mast cells causing the release of vasoactive and proinflammatory mediators. Here, we show that in the capsaicin model for neurogenic inflammation, capsaicin-induced edema formation is mediated by α-CGRP and mast cells, but is absent in thromboxane receptor-deficient mice. Capsaicin treatment of mice induced a thromboxane synthesis, which was mediated by α-CGRP and mast cells. Fittingly, α-CGRP induced thromboxane synthesis in mast cells and the thromboxane receptor agonist I-BOP caused edema formation independently of mast cells, suggesting that mast cells are the source of thromboxane. Most importantly, I-BOP-induced edema formation was mediated by α-CGRP and I-BOP was able to stimulate through calcineurin the α-CGRP release from peripheral neurons. Likewise, the signaling pathway, including α-CGRP, thromboxane receptor, and mast cells, also mediated capsaicin-induced mechanical hypersensitivity, a common symptom of capsaicin treatment. Taken together, the thromboxane-induced α-CGRP release from neurons forms a positive feedback loop causing prolonged α-CGRP release and edema formation during capsaicin-induced neurogenic inflammation.
Collapse
Affiliation(s)
- Neda Tarighi
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Germany
| | - Dominic Menger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Germany
| | - Sandra Pierre
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Germany
| | - Lisa Kornstädt
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Germany
| | - Nerea Ferreirós
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Germany
| | - Rolf M Nüsing
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology, Frankfurt/Main, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology, Frankfurt/Main, Germany.
| |
Collapse
|
21
|
Involvement of thromboxane A 2 in interleukin-31-induced itch-associated response in mice. Pharmacol Rep 2017; 70:251-257. [PMID: 29477033 DOI: 10.1016/j.pharep.2017.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 09/07/2017] [Accepted: 10/02/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND Atopic dermatitis is a chronic and severe pruritic skin disease. Interlukin-31 (IL-31) has been recently demonstrated to be one of the key pruritogens in atopic dermatitis. However, the mechanisms underlying IL-31-induced itching remains unclear. In our previous study, we have shown that thromboxane (TX) A2 is involved in itch-associated responses in mice with atopy-like skin diseases. METHODS IL-31 was given intradermally into the rostral back of ICR mice and the hind-paw scratching to the injection site were counted. Expression of TX synthase and IL-31 receptors were analyzed using immunohistochemical staining or RT-PCR in mouse skin or primary cultures of mouse keratinocytes. The concentration of TXB2, a metabolite of TXA2, in the skin and the culture medium of primary cultures of mouse keratinocytes was measured using enzyme immunoassay. The concentration of intracellular Ca2+ ions in mouse keratinocytes was measured using the calcium imaging method. RESULTS An intradermal injection of IL-31 elicited scratching, an itch-related response, in mice. The scratching was inhibited by TP TXA2 receptor antagonist DCHCH. The distribution of TX synthase and IL-31RA receptor was mainly epidermal keratinocytes in the skin. The primary cultures of keratinocytes expressed the mRNAs of TX synthase and IL-31 receptors. IL-31 increased the concentration of TXB2, which was inhibited by TX synthase inhibitor sodium ozagrel and EGTA, in the skin and the culture medium of primary cultures of keratinocytes. IL-31 increased the concentration of intracellular Ca2+ ions in mouse keratinocytes. CONCLUSION It is suggested that IL-31 elicits itch-associated responses through TXA2 produced from keratinocytes.
Collapse
|
22
|
Andoh T, Maki T, Li S, Uta D. β2-Microglobulin elicits itch-related responses in mice through the direct activation of primary afferent neurons expressing transient receptor potential vanilloid 1. Eur J Pharmacol 2017; 810:134-140. [PMID: 28687195 DOI: 10.1016/j.ejphar.2017.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 12/23/2022]
Abstract
Uremic pruritus is an unpleasant symptom in patients undergoing hemodialysis, and the underlying mechanisms remain unclear. β2-Microglobulin (β2-MG) is well-known as an MHC class I molecule and its level is increased in the plasma of patients undergoing hemodialysis. In this study, we investigated whether β2-MG was a pruritogen in mice. Intradermal injections of β2-MG into the rostral back induced scratching in a dose-dependent manner. Intradermal injection of β2-MG into the cheek also elicited scratching, but not wiping. β2-MG-induced scratching was inhibited by the μ-opioid receptor antagonist naltrexone hydrochloride. β2-MG-induced scratching was not inhibited by antagonists of itch-related receptors (e.g., H1 histamine receptor (terfenadine), TP thromboxane receptor (DCHCH), BLT1 leukotriene B4 receptor (CMHVA), and proteinase-activated receptor 2 (FSLLRY-NH2)). However, β2-MG-induced scratching was attenuated in mice desensitized by repeated application of capsaicin and also by a selective transient receptor potential vanilloid 1 (TRPV1) antagonist (BCTC). In addition, β2-MG induced phosphorylation of extracellular signal-regulated kinase (a marker of activated neurons) in primary culture of dorsal root ganglion neurons that expressed TRPV1. These results suggest that β2-MG is a pruritogen and elicits itch-related responses, at least in part, through TRPV1-expressing primary sensory neurons.
Collapse
Affiliation(s)
- Tsugunobu Andoh
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Takahito Maki
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Sikai Li
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Daisuke Uta
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
23
|
Sundarrajan S, Arumugam M. A systems pharmacology perspective to decipher the mechanism of action of Parangichakkai chooranam , a Siddha formulation for the treatment of psoriasis. Biomed Pharmacother 2017; 88:74-86. [DOI: 10.1016/j.biopha.2016.12.135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/29/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022] Open
|
24
|
|
25
|
Kuraishi Y. Methods for preclinical assessment of antipruritic agents and itch mechanisms independent of mast-cell histamine. Biol Pharm Bull 2016; 38:635-44. [PMID: 25947907 DOI: 10.1248/bpb.b15-00090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Itch is a sensation that provokes a desire to scratch. Mast-cell histamine was thought to be a key itch mediator. However, histamine and mast-cell degranulation were reported not to elicit scratching in animals. It was difficult to investigate the pathophysiology of itching and to evaluate the antipruritic efficacy of chemical agents in the early 1990 s. We showed that hind-paw scratching and biting were elicited by stimulation with pruritogenic agents in mice. Those results demonstrated for the first time that cutaneous itching could be evaluated behaviorally in animals. We established various animal models of pathological itch of the skin (dry skin, mosquito allergy, surfactant-induced pruritus, and herpes zoster) and mucus membranes (pollen allergy). Mast-cell histamine did not play a key role in itching in any animal model examined except for the pollen allergy model. Histamine is not an exclusive itch mediator of mast cells; tryptase and leukotriene B4 released from mast cells also act as itch mediators. Epidermal keratinocytes release several itch mediators, such as leukotriene B4, sphingosylphosphorylcholine, thromboxane A2, nociceptin, nitric oxide, and histamine, which may play important roles in pathological itching. Appropriate animal models of pathological itching are needed for pharmacological evaluation of the antipruritic efficacy of chemical agents.
Collapse
Affiliation(s)
- Yasushi Kuraishi
- Laboratory of Applied Pharmacology, Graduate School of Medicine and
Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
26
|
Abstract
Itch is a unique sensation associated with the scratch reflex. Although the scratch reflex plays a protective role in daily life by removing irritants, chronic itch remains a clinical challenge. Despite urgent clinical need, itch has received relatively little research attention and its mechanisms have remained poorly understood until recently. The goal of the present review is to summarize our current understanding of the mechanisms of acute as well as chronic itch and classifications of the primary itch populations in relationship to transient receptor potential (Trp) channels, which play pivotal roles in multiple somatosensations. The convergent involvement of Trp channels in diverse itch signaling pathways suggests that Trp channels may serve as promising targets for chronic itch treatments.
Collapse
Affiliation(s)
- Shuohao Sun
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA.
- Howard Hughes Medical Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
27
|
Kiguchi N, Sukhtankar DD, Ding H, Tanaka KI, Kishioka S, Peters CM, Ko MC. Spinal Functions of B-Type Natriuretic Peptide, Gastrin-Releasing Peptide, and Their Cognate Receptors for Regulating Itch in Mice. J Pharmacol Exp Ther 2016; 356:596-603. [PMID: 26669425 PMCID: PMC4767390 DOI: 10.1124/jpet.115.229997] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022] Open
Abstract
B-type natriuretic peptide (BNP)-natriuretic peptide receptor A (NPRA) and gastrin-releasing peptide (GRP)-GRP receptor (GRPR) systems contribute to spinal processing of itch. However, pharmacological and anatomic evidence of these two spinal ligand-receptor systems are still not clear. The aim of this study was to determine the spinal functions of BNP-NPRA and GRP-GRPR systems for regulating scratching activities in mice by using pharmacological and immunohistochemical approaches. Our results showed that intrathecal administration of BNP (0.3-3 nmol) dose dependently elicited scratching responses, which could be blocked by the NPRA antagonist (Arg6,β-cyclohexyl-Ala8,D-Tic16,Arg17,Cys18)-atrial natriuretic factor(6-18) amide (A71915). However, A71915 had no effect on intrathecal GRP-induced scratching. In contrast, pretreatment with a GRPR antagonist (D-Tpi6,Leu13ψ(CH2-NH)-Leu14)bombesin(6-14) (RC-3095) inhibited BNP-induced scratching. Immunostaining revealed that NPRA proteins colocalize with GRP, but not GRPR, in the superficial area of dorsal horn, whereas BNP proteins do not colocalize with either GRP or GRPR in the dorsal horn. Intradermal administration of ligands including endothelin-1, U-46619, bovine adrenal medulla 8-22, and Ser-Leu-Ile-Gly-Arg-Leu-NH2 (SLIGRL) increased scratching bouts at different levels of magnitude. Pretreatment with intrathecal A71915 did not affect scratching responses elicited by all four pruritogens, whereas pretreatment with RC-3095 only inhibited SLIGRL-induced scratching. Interestingly, immunostaining showed that RC-3095, but not A71915, inhibited SLIGRL-elicited c-Fos activation in the spinal dorsal horn, which was in line with behavioral outcomes. These findings demonstrate that: 1) BNP-NPRA system may function upstream of the GRP-GRPR system to regulate itch in the mouse spinal cord, and 2) both NPRA and GRPR antagonists may have antipruritic efficacy against centrally, but not peripherally, elicited itch.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Physiology and Pharmacology (N.K., D.D.S., H.D., M.-C.K.) and Department of Anesthesiology (C.M.P.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Department of Physiology and Pharmacology, Saitama Prefectural University, Saitama, Japan (K.T.); Department of Pharmacology, Wakayama Medical University, Wakayama, Japan (S.K.)
| | - Devki D Sukhtankar
- Department of Physiology and Pharmacology (N.K., D.D.S., H.D., M.-C.K.) and Department of Anesthesiology (C.M.P.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Department of Physiology and Pharmacology, Saitama Prefectural University, Saitama, Japan (K.T.); Department of Pharmacology, Wakayama Medical University, Wakayama, Japan (S.K.)
| | - Huiping Ding
- Department of Physiology and Pharmacology (N.K., D.D.S., H.D., M.-C.K.) and Department of Anesthesiology (C.M.P.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Department of Physiology and Pharmacology, Saitama Prefectural University, Saitama, Japan (K.T.); Department of Pharmacology, Wakayama Medical University, Wakayama, Japan (S.K.)
| | - Ken-ichi Tanaka
- Department of Physiology and Pharmacology (N.K., D.D.S., H.D., M.-C.K.) and Department of Anesthesiology (C.M.P.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Department of Physiology and Pharmacology, Saitama Prefectural University, Saitama, Japan (K.T.); Department of Pharmacology, Wakayama Medical University, Wakayama, Japan (S.K.)
| | - Shiroh Kishioka
- Department of Physiology and Pharmacology (N.K., D.D.S., H.D., M.-C.K.) and Department of Anesthesiology (C.M.P.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Department of Physiology and Pharmacology, Saitama Prefectural University, Saitama, Japan (K.T.); Department of Pharmacology, Wakayama Medical University, Wakayama, Japan (S.K.)
| | - Christopher M Peters
- Department of Physiology and Pharmacology (N.K., D.D.S., H.D., M.-C.K.) and Department of Anesthesiology (C.M.P.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Department of Physiology and Pharmacology, Saitama Prefectural University, Saitama, Japan (K.T.); Department of Pharmacology, Wakayama Medical University, Wakayama, Japan (S.K.)
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology (N.K., D.D.S., H.D., M.-C.K.) and Department of Anesthesiology (C.M.P.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Department of Physiology and Pharmacology, Saitama Prefectural University, Saitama, Japan (K.T.); Department of Pharmacology, Wakayama Medical University, Wakayama, Japan (S.K.)
| |
Collapse
|
28
|
Rebel AA, Urquhart SA, Puig KL, Ghatak A, Brose SA, Golovko MY, Combs CK. Brain changes associated with thromboxane receptor antagonist SQ 29,548 treatment in a mouse model. J Neurosci Res 2015; 93:1279-92. [PMID: 25703023 DOI: 10.1002/jnr.23578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 01/22/2015] [Accepted: 01/22/2015] [Indexed: 01/08/2023]
Abstract
The purpose of this study was to characterize behavioral and physiological effects of a selective thromboxane (TP) receptor antagonist, SQ 29,548, in the C57Bl/6 mouse model. At 6 months of age, male mice were given either sham or drug i.p. injections for 3 days at a dose of 2 mg/kg each day. On the day after the final injection, mice were subjected to behavioral testing before brain collection. Left hemisphere hippocampi were collected from all mice for protein analysis via Western blot. Right brain hemispheres were fixed and embedded in gelatin and then serially sectioned. The sections were immunostained with anti-c-Fos antibodies. Prostaglandin analysis was performed from remaining homogenized brain samples, minus the hippocampi. Injection of SQ 29,548 decreased selective brain prostaglandin levels compared with sham controls. This correlated with robust increases in limbic-region c-Fos immunoreactivity in the SQ 29,548-injected mice. However, drug-treated mice demonstrated no significant changes in relevant hippocampal protein levels compared with sham treatments, as determined from Western blots. Surprisingly, injection of SQ 29,548 caused mixed changes in parameters of depression and anxiety-like behavior in the mice. In conclusion, the results indicate that administration of peripheral TP receptor antagonists alters brain levels of prostanoids and influences neuronal activity, with only minimal alterations of behavior. Whether the drug affects neurons directly or through a secondary pathway involving endothelium or other tissues remains unclear.
Collapse
Affiliation(s)
- Andrew A Rebel
- Department of Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota
| | - Siri A Urquhart
- Department of Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota
| | - Kendra L Puig
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota
| | - Atreyi Ghatak
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota
| | - Stephen A Brose
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota
| | - Mikhail Y Golovko
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota
| | - Colin K Combs
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota
| |
Collapse
|
29
|
Wilson AD. Immune responses to ectoparasites of horses, with a focus on insect bite hypersensitivity. Parasite Immunol 2015; 36:560-72. [PMID: 25180696 DOI: 10.1111/pim.12142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/18/2014] [Indexed: 12/24/2022]
Abstract
Horses are affected by a wide variety of arthropod ectoparasites, ranging from lice which spend their entire life on the host, through ticks which feed over a period of days, to numerous biting insects that only transiently visit the host to feed. The presence of ectoparasites elicits a number of host responses including innate inflammatory responses, adaptive immune reactions and altered behaviour; all of which can reduce the severity of the parasite burden. All of these different responses are linked through immune mechanisms mediated by mast cells and IgE antibodies which have an important role in host resistance to ectoparasites, yet immune responses also cause severe pathological reactions. One of the best described examples of such pathological sequelae is insect bite hypersensitivity (IBH) of horses; an IgE-mediated type 1 hypersensitivity to the salivary proteins of Culicoides spp. associated with T-helper-2 production of IL4 and IL13. Importantly, all horses exposed to Culicoides have an expanded population of Culicoides antigen-specific T cells with this pattern of cytokine production, but in those which remain healthy, the inflammatory reaction is tempered by the presence of FoxP3+ CD4+ regulatory T cells that express IL10 and TGF-beta, which suppresses the IL4 production by Culicoides antigen-activated T cells.
Collapse
Affiliation(s)
- A D Wilson
- School of Clinical Veterinary Science, University of Bristol, Bristol, UK
| |
Collapse
|
30
|
Honda T, Kabashima K. Prostanoids in allergy. Allergol Int 2015; 64:11-6. [PMID: 25572554 DOI: 10.1016/j.alit.2014.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 12/18/2022] Open
Abstract
Prostanoids, which include prostaglandin and thromboxane, are metabolites of arachidonic acid released in various pathophysiological conditions. They induce a range of actions mediated through their respective receptors expressed on target cells. It has been demonstrated that each prostanoid receptor has multiple functions and that the effect of receptor stimulation can vary depending on context; this sometimes results in opposing effects, such as simultaneous excitatory and inhibitory outcomes. The balance between the production of each prostanoid and the expression of its receptors has been shown to be important for maintaining homeostasis but also involved in the development of various pathological conditions such as allergy. Here, we review the recent findings on the roles of prostanoids in allergy, especially focusing on atopic dermatitis and asthma.
Collapse
Affiliation(s)
- Tetsuya Honda
- Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
31
|
Tóth BI, Szallasi A, Bíró T. Transient receptor potential channels and itch: how deep should we scratch? Handb Exp Pharmacol 2015; 226:89-133. [PMID: 25861776 DOI: 10.1007/978-3-662-44605-8_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Over the past 30 years, transient receptor potential (TRP) channels have evolved from a somewhat obscure observation on how fruit flies detect light to become the center of drug discovery efforts, triggering a heated debate about their potential as targets for therapeutic applications in humans. In this review, we describe our current understanding of the diverse mechanism of action of TRP channels in the itch pathway from the skin to the brain with focus on the peripheral detection of stimuli that elicit the desire to scratch and spinal itch processing and sensitization. We predict that the compelling basic research findings on TRP channels and pruritus will be translated into the development of novel, clinically useful itch medications.
Collapse
Affiliation(s)
- Balázs I Tóth
- DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, University of Debrecen, Debrecen, 4032, Hungary
| | | | | |
Collapse
|
32
|
Park MK, Choi JK, Kim HJ, Nakahata N, Lim KM, Kim SY, Lee CH. Novel inhibitory effects of cardamonin on thromboxane A2-induced scratching response: Blocking of Gh/transglutaminase-2 binding to thromboxane A2 receptor. Pharmacol Biochem Behav 2014; 126:131-5. [PMID: 25285619 DOI: 10.1016/j.pbb.2014.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/15/2014] [Accepted: 09/13/2014] [Indexed: 12/12/2022]
Abstract
Alpinia katsumadai is known to suppress thromboxane A2 (TXA2) receptor agonist-induced scratching in mice. The specific components of A. katsumadai responsible for these biological effects, however, are not known. In the present study, we investigated whether cardamonin (CDN), one of major principles of A. katsumadai, has suppressive effects on TXA2-induced scratching in mice. Scratching induced by U46619 (the TXA2 receptor agonist) at a dose of 10nmol/site was shown to be suppressed by CDN (0.1nmol-0.5nmol/site). Suppression of the U46619-induced scratching response by CDN was found to be unrelated to competition with the ligand at the TXA2 receptor, since CDN did not suppress [(3)H] SQ29548 (the TXA2 receptor antagonist) binding to TXA2 receptor. TXA2 receptor expression in A549, HaCaT, and SH-SY5Y cell lines was examined and determined to be significant in the A549 and SH-SY5Y cell lines. Further, binding of high molecular G protein Gh/transglutaminase-2 (Gh/Tgase-2) to TXA2 receptor was confirmed in the A549 and SH-SY5Y cells by co-immunoprecipitation. CDN suppressed the binding of TXA2 receptor with Gh/Tgase-2, which also acts as a G protein involved in TXA2 signaling. These results suggested that CDN suppresses TXA2 receptor agonist-induced scratching by suppressing TXA2 signaling, specifically via blocking of the binding of Gh/Tgase-2 to TXA2 receptor.
Collapse
Affiliation(s)
- Mi Kyung Park
- BK21PLUS R-FIND Team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Jin Kyu Choi
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 151-742 Seoul, Republic of Korea
| | - Hyun Ji Kim
- BK21PLUS R-FIND Team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Norimichi Nakahata
- Dept. of Cellular Signaling, Graduate School of Pharmaceutical Science, Tohoku University, Japan
| | - Kyung Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 151-742, Republic of Korea
| | - Soo Youl Kim
- National Cancer Center, Goyang 410-769, Republic of Korea
| | - Chang Hoon Lee
- BK21PLUS R-FIND Team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea.
| |
Collapse
|
33
|
Tominaga M, Takamori K. Recent advances in pathophysiological mechanisms of itch. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.10.7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Abstract
While considerable effort has been made to investigate the neural mechanisms of pain, much less effort has been devoted to itch, at least until recently. However, itch is now gaining increasing recognition as a widespread and costly medical and socioeconomic issue. This is accompanied by increasing interest in the underlying neural mechanisms of itch, which has become a vibrant and rapidly-advancing field of research. The goal of the present forefront review is to describe the recent progress that has been made in our understanding of itch mechanisms.
Collapse
Affiliation(s)
- Tasuku Akiyama
- University of California, Davis, Department of Neurobiology, Physiology & Behavior, 1 Shields Avenue, Davis, CA 95616, United States
| | | |
Collapse
|
35
|
Ishii N, Shirato M, Wakita H, Miyazaki K, Takase Y, Asano O, Kusano K, Yamamoto E, Inoue C, Hishinuma I. Antipruritic effect of the topical phosphodiesterase 4 inhibitor E6005 ameliorates skin lesions in a mouse atopic dermatitis model. J Pharmacol Exp Ther 2013; 346:105-12. [PMID: 23674603 DOI: 10.1124/jpet.113.205542] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Phosphodiesterase (PDE) 4 inhibition is a well-known anti-inflammatory mechanism, but the development of PDE4 inhibitors has been hampered by side effects such as nausea and emesis. Local delivery of a PDE4 inhibitor to the site of inflammation may overcome these issues. The purpose of this study was to assess the therapeutic potential of E6005 (methyl 4-[({3-[6,7-dimethoxy-2-(methylamino)quinazolin-4-yl]phenyl}amino)carbonyl]benzoate), a novel PDE4 inhibitor developed as a topical agent for atopic dermatitis (AD). E6005 potently and selectively inhibited human PDE4 activity with an IC₅₀ of 2.8 nM and suppressed the production of various cytokines from human lymphocytes and monocytes with IC₅₀ values ranging from 0.49 to 3.1 nM. In mice models, the topical application of E6005 produced an immediate antipruritic effect as well as an anti-inflammatory effect with reduced expression of cytokines/adhesion molecules. On the basis of these observed effects, topical E6005 ameliorated the appearance of atopic dermatitis-like skin lesions in two types of AD models, hapten- and mite-elicited models, exhibiting inhibitory effects comparable to that of tacrolimus. The use of ¹⁴C-labeled E6005 showed rapid clearance from the blood and low distribution to the brain, contributing to the low emetic potential of this compound. These results suggest that E6005 may be a promising novel therapeutic agent with antipruritic activity for the treatment of AD.
Collapse
MESH Headings
- Administration, Topical
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Antipruritics/administration & dosage
- Antipruritics/pharmacokinetics
- Antipruritics/pharmacology
- Antipruritics/therapeutic use
- Cell Adhesion Molecules/antagonists & inhibitors
- Cell Adhesion Molecules/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry
- Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism
- Cytokines/antagonists & inhibitors
- Cytokines/metabolism
- Dermatitis, Atopic/blood
- Dermatitis, Atopic/drug therapy
- Dermatitis, Atopic/immunology
- Dermatitis, Atopic/metabolism
- Disease Models, Animal
- Female
- Humans
- Lymphocytes/drug effects
- Lymphocytes/immunology
- Lymphocytes/metabolism
- Male
- Metabolic Clearance Rate
- Mice
- Mice, Inbred Strains
- Monocytes/drug effects
- Monocytes/immunology
- Monocytes/metabolism
- Phosphodiesterase 4 Inhibitors/administration & dosage
- Phosphodiesterase 4 Inhibitors/pharmacokinetics
- Phosphodiesterase 4 Inhibitors/pharmacology
- Phosphodiesterase 4 Inhibitors/therapeutic use
- Phthalic Acids/administration & dosage
- Phthalic Acids/pharmacokinetics
- Phthalic Acids/pharmacology
- Phthalic Acids/therapeutic use
- Quinazolines/administration & dosage
- Quinazolines/pharmacokinetics
- Quinazolines/pharmacology
- Quinazolines/therapeutic use
- Rats
- Rats, Sprague-Dawley
- Skin/drug effects
- Skin/immunology
- Skin/metabolism
- Tissue Distribution
Collapse
Affiliation(s)
- Naoto Ishii
- Eisai Co. Ltd., Tsukuba Research Laboratories, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu B, Escalera J, Balakrishna S, Fan L, Caceres AI, Robinson E, Sui A, McKay MC, McAlexander MA, Herrick CA, Jordt SE. TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis. FASEB J 2013; 27:3549-63. [PMID: 23722916 DOI: 10.1096/fj.13-229948] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Allergic contact dermatitis is a common skin disease associated with inflammation and persistent pruritus. Transient receptor potential (TRP) ion channels in skin-innervating sensory neurons mediate acute inflammatory and pruritic responses following exogenous stimulation and may contribute to allergic responses. Genetic ablation or pharmacological inhibition of TRPA1, but not TRPV1, inhibited skin edema, keratinocyte hyperplasia, nerve growth, leukocyte infiltration, and antihistamine-resistant scratching behavior in mice exposed to the haptens, oxazolone and urushiol, the contact allergen of poison ivy. Hapten-challenged skin of TRPA1-deficient mice contained diminished levels of inflammatory cytokines, nerve growth factor, and endogenous pruritogens, such as substance P (SP) and serotonin. TRPA1-deficient sensory neurons were defective in SP signaling, and SP-induced scratching behavior was abolished in Trpa1(-/-) mice. SP receptor antagonists, such as aprepitant inhibited both hapten-induced cutaneous inflammation and scratching behavior. These findings support a central role for TRPA1 and SP in the integration of immune and neuronal mechanisms leading to chronic inflammatory responses and pruritus associated with contact dermatitis.
Collapse
Affiliation(s)
- Boyi Liu
- Department of Pharmacology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Petho G, Reeh PW. Sensory and signaling mechanisms of bradykinin, eicosanoids, platelet-activating factor, and nitric oxide in peripheral nociceptors. Physiol Rev 2013; 92:1699-775. [PMID: 23073630 DOI: 10.1152/physrev.00048.2010] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Peripheral mediators can contribute to the development and maintenance of inflammatory and neuropathic pain and its concomitants (hyperalgesia and allodynia) via two mechanisms. Activation or excitation by these substances of nociceptive nerve endings or fibers implicates generation of action potentials which then travel to the central nervous system and may induce pain sensation. Sensitization of nociceptors refers to their increased responsiveness to either thermal, mechanical, or chemical stimuli that may be translated to corresponding hyperalgesias. This review aims to give an account of the excitatory and sensitizing actions of inflammatory mediators including bradykinin, prostaglandins, thromboxanes, leukotrienes, platelet-activating factor, and nitric oxide on nociceptive primary afferent neurons. Manifestations, receptor molecules, and intracellular signaling mechanisms of the effects of these mediators are discussed in detail. With regard to signaling, most data reported have been obtained from transfected nonneuronal cells and somata of cultured sensory neurons as these structures are more accessible to direct study of sensory and signal transduction. The peripheral processes of sensory neurons, where painful stimuli actually affect the nociceptors in vivo, show marked differences with respect to biophysics, ultrastructure, and equipment with receptors and ion channels compared with cellular models. Therefore, an effort was made to highlight signaling mechanisms for which supporting data from molecular, cellular, and behavioral models are consistent with findings that reflect properties of peripheral nociceptive nerve endings. Identified molecular elements of these signaling pathways may serve as validated targets for development of novel types of analgesic drugs.
Collapse
Affiliation(s)
- Gábor Petho
- Pharmacodynamics Unit, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | | |
Collapse
|
38
|
Nicolaou A. Eicosanoids in skin inflammation. Prostaglandins Leukot Essent Fatty Acids 2013; 88:131-8. [PMID: 22521864 DOI: 10.1016/j.plefa.2012.03.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 03/29/2012] [Accepted: 03/30/2012] [Indexed: 12/27/2022]
Abstract
Eicosanoids play an integral part in homeostatic mechanisms related to skin health and structural integrity. They also mediate inflammatory events developed in response to environmental factors, such as exposure to ultraviolet radiation, and inflammatory and allergic disorders, including psoriasis and atopic dermatitis. This review article discusses biochemical aspects related to cutaneous eicosanoid metabolism, the contribution of these potent autacoids to skin inflammation and related conditions, and considers the importance of nutritional supplementation with bioactives such as omega-3 and omega-6 polyunsaturated fatty acids and plant-derived antioxidants as means of addressing skin health issues.
Collapse
Affiliation(s)
- Anna Nicolaou
- School of Pharmacy and Centre for Skin Sciences, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, UK.
| |
Collapse
|
39
|
Yamaura K, Shigemori A, Suwa E, Ueno K. Expression of the histamine H4 receptor in dermal and articular tissues. Life Sci 2012; 92:108-13. [PMID: 23154242 DOI: 10.1016/j.lfs.2012.10.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 10/17/2012] [Accepted: 10/25/2012] [Indexed: 10/27/2022]
Abstract
Histamine H(4) receptor was identified in 2000 and is the most recently identified of the four histamine receptors. It is expressed primarily in immune cells and is involved in physiologic functions related to inflammation and allergy. Recently, the H(4) receptor was highlighted as a promising therapeutic target in atopic dermatitis, asthma, and chronic arthritis. In fact, some H(4) receptor antagonists have reached clinical trials for the treatment of asthma, atopic dermatitis, and allergic rhinitis. Based on an initial assessment of distribution, the H(4) receptor has been referred to as the histamine receptor of the hematopoietic system. However, the H(4) receptor has also been implicated in the regulation of other non-hematopoietic systems. Here, we review the expression and function of the H(4) receptor with a focus on dermal and articular tissues. In skin, the H(4) receptor is expressed in both the epidermis and dermis, with stronger receptor expression in the epidermis. In articular tissue, H(4) receptor expression has been detected in synovial cells. Chondrocytes, a major cell sources for cartilage tissue engineering, also express the H(4) receptor. Further understanding of the functions of H(4) receptors in non-hematopoietic cells might lead to novel treatments for diseases with unmet needs.
Collapse
Affiliation(s)
- Katsunori Yamaura
- Department of Geriatric Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Chiba University, Japan.
| | | | | | | |
Collapse
|
40
|
Andoh T, Takayama Y, Yamakoshi T, Lee JB, Sano A, Shimizu T, Kuraishi Y. Involvement of serine protease and proteinase-activated receptor 2 in dermatophyte-associated itch in mice. J Pharmacol Exp Ther 2012; 343:91-6. [PMID: 22761302 DOI: 10.1124/jpet.112.195222] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We investigated the involvement of serine protease and proteinase-activated receptor 2 (PAR(2)) in dermatophyte-induced itch in mice. An intradermal injection of an extract of the dermatophyte Arthroderma vanbreuseghemii (ADV) induced hind-paw scratching, an itch-related behavior. ADV extract-induced scratching was inhibited by the opioid receptor antagonists naloxone and naltrexone, the serine protease inhibitor nafamostat mesylate, and the PAR(2) receptor antagonist FSLLRY-NH(2). ADV extract-induced scratching was not inhibited by the H(1) histamine receptor antagonist terfenadine or by mast cell deficiency. Heat pretreatment of the ADV extract markedly reduced the scratch-inducing and serine protease activities. Proteolytic cleavage within the extracellular N terminus of the PAR(2) receptor exposes a sequence that serves as a tethered ligand for the receptor. The ADV extract as well as tryptase and trypsin cleaved a synthetic N-terminal peptide of the PAR(2) receptor. The present results suggest that serine protease secreted by dermatophytes causes itching through activation of the PAR(2) receptors, which may be a causal mechanism of dernatophytosis itch.
Collapse
Affiliation(s)
- Tsugunobu Andoh
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Andoh T, Sakai K, Urashima M, Kitazawa K, Honma A, Kuraishi Y. Involvement of leukotriene B4 in itching in a mouse model of ocular allergy. Exp Eye Res 2012; 98:97-103. [PMID: 22504036 DOI: 10.1016/j.exer.2012.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/24/2012] [Accepted: 03/29/2012] [Indexed: 11/20/2022]
Abstract
Itching of ocular allergy is alleviated but not completely relieved by H(1) histamine receptor antagonists, suggesting that histamine is not the sole itch mediator in ocular allergy. We investigated whether leukotriene B(4) (LTB(4)), a mediator of cutaneous itch, is involved in the itch of ocular allergy in mice. Mice were immunized by the repeated subcutaneous injections of ragweed pollen and alum into the caudal back, and given a subconjunctival injection of ragweed pollen extract into the palpebra for allergic challenge. Challenge with ragweed pollen extract markedly elicited ocular scratching in sensitized mice. The scratching was almost abolished by mast cell deficiency. The H(1) antagonist terfenadine partially inhibited scratching at a dose that almost completely suppressed plasma extravasation. Scratching was inhibited by the glucocorticoid betamethasone and the 5-lipoxygenase inhibitor zileuton at doses that inhibited the challenge-induced production of LTB(4). A subconjunctival injection of LTB(4) at doses 1/10,000 or less than that required for histamine elicited ocular scratching in naïve mice. The LTB(4) receptor antagonist ONO-4057 inhibited the ragweed pollen challenge-induced ocular scratching at doses that suppressed LTB(4)-induced ocular scratching. In addition to histamine, LTB(4) is involved in the ocular itching of pollen allergy. H(1) receptor antagonists with an inhibitory effect on the action and/or production of LTB(4) may have more potent anti-pruritic activity than selective H(1) antagonists.
Collapse
Affiliation(s)
- Tsugunobu Andoh
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Characterization of thromboxane A₂ receptor and TRPV1 mRNA expression in cultured sensory neurons. Neurosci Lett 2012; 515:12-7. [PMID: 22425716 DOI: 10.1016/j.neulet.2012.02.092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/17/2012] [Accepted: 02/28/2012] [Indexed: 11/20/2022]
Abstract
Thromboxane A(2) (TxA(2)) is an arachidonic acid metabolite that stimulates platelet aggregation and vasoconstriction when released from platelets and other cell types during tissue trauma. More recent research has demonstrated that TxA(2) can also stimulate vagal and spinal sensory nerves. The purpose of this study was twofold. One, we compared the expression of the TxA(2) receptor (TxA2R) in neurons from two sensory ganglia: the nodose ganglion (NG) containing cell bodies of vagal afferent nerves and the thoracic dorsal root ganglion (DRG) containing cell bodies of spinal afferent nerves. Two, we determined if TxA2R co-localizes with mRNA for the nociceptive marker, TRPV1, which is the receptor for the noxious substance capsaicin. We found a greater percentage of neurons in the NG that are positive for TxA2R expression than in the DRG. We also found that there was no correlation of expression of TxA2R with TRPV1. These data suggest that while TxA2R is expressed in both vagal and spinal neurons, TxA(2) may elicit stronger vagal or parasympathetic reflexes in the rabbit when released during tissue trauma depending on the location of release. Our data also indicate that TxA(2) is likely to stimulate both nociceptive and non-nociceptive neurons thereby broadening the types of neurons and reflexes that it may excite.
Collapse
|
43
|
Abstract
In psychophysical experiments, humans use different verbal responses to pruritic and algesic chemical stimuli to indicate the different qualities of sensation they feel. A major challenge for behavioural models in the mouse of chemical itch and pain in humans is to devise experimental protocols that provide the opportunity for the animal to exhibit a multiplicity of responses as well. One basic criterion is that chemicals that evoke primarily itch or pain in humans should elicit different types of responses when applied in the same way to the mouse. Meeting this criterion is complicated by the fact that the type of behavioural responses exhibited by the mouse depends in part on the site of chemical application such as the nape of the neck that evokes only scratching with the hind paw versus the hind limb that elicits licking and biting. Here, we review to what extent mice behaviourally differentiate chemicals that elicit itch versus pain in humans.
Collapse
Affiliation(s)
- Robert H LaMotte
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
44
|
Cyphert JM, Allen IC, Church RJ, Latour AM, Snouwaert JN, Coffman TM, Koller BH. Allergic inflammation induces a persistent mechanistic switch in thromboxane-mediated airway constriction in the mouse. Am J Physiol Lung Cell Mol Physiol 2011; 302:L140-51. [PMID: 21984570 DOI: 10.1152/ajplung.00152.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Actions of thromboxane (TXA(2)) to alter airway resistance were first identified over 25 years ago. However, the mechanism underlying this physiological response has remained largely undefined. Here we address this question using a novel panel of mice in which expression of the thromboxane receptor (TP) has been genetically manipulated. We show that the response of the airways to TXA(2) is complex: it depends on expression of other G protein-coupled receptors but also on the physiological context of the signal. In the healthy airway, TXA(2)-mediated airway constriction depends on expression of TP receptors by smooth muscle cells. In contrast, in the inflamed lung, the direct actions of TXA(2) on smooth muscle cell TP receptors no longer contribute to bronchoconstriction. Instead, in allergic lung disease, TXA(2)-mediated airway constriction depends on neuronal TP receptors. Furthermore, this mechanistic switch persists long after resolution of pulmonary inflammation. Our findings demonstrate the powerful ability of lung inflammation to modify pathways leading to airway constriction, resulting in persistent changes in mechanisms of airway reactivity to key bronchoconstrictors. Such alterations are likely to shape the pathogenesis of asthmatic lung disease.
Collapse
Affiliation(s)
- Jaime M Cyphert
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7264, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Andoh T, Kuwazono T, Lee JB, Kuraishi Y. Gastrin-releasing peptide induces itch-related responses through mast cell degranulation in mice. Peptides 2011; 32:2098-103. [PMID: 21933692 DOI: 10.1016/j.peptides.2011.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 09/02/2011] [Accepted: 09/03/2011] [Indexed: 12/13/2022]
Abstract
Gastrin-releasing peptide (GRP), secreted from the central terminals of primary afferents, is involved in the transmission of itch signals in the spinal dorsal horn. Although primary afferents containing GRP are distributed throughout the skin, the role of peripherally released GRP in the itch response is unknown. We investigated whether GRP acts on the skin to induce an itch response in mice. Intradermal injections of GRP(18-27) (1-300 nmol/site) elicited scratching. GRP(18-27)-induced scratching was inhibited by the μ-opioid receptor antagonist naltrexone hydrochloride, the BB(2) bombesin receptor antagonist RC-3095, the H(1) histamine receptor antagonists fexofenadine hydrochloride and chlorpheniramine maleate, and the PAR(2) proteinase-activated receptor antagonist FSLLRY-NH(2). Mast cell deficiency significantly, but not completely, reduced the GRP(18-27)-induced scratching. BB(2) bombesin receptors are present in mast cells in the skin, and intradermal injection of GRP(18-27), not only induced scratching, but also led to mast cell degranulation. GRP(18-27)-induced mast cell degranulation was inhibited by the BB(2) bombesin receptor antagonist RC-3095. These results suggest that peripherally released GRP can induce an itch response, at least partly, through activation of BB(2) receptors present in the mast cells, triggering their degradation and the release of histamine and the serine proteinase, tryptase.
Collapse
Affiliation(s)
- Tsugunobu Andoh
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | | | | | | |
Collapse
|
46
|
Woodward DF, Jones RL, Narumiya S. International Union of Basic and Clinical Pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress. Pharmacol Rev 2011; 63:471-538. [PMID: 21752876 DOI: 10.1124/pr.110.003517] [Citation(s) in RCA: 332] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It is now more than 15 years since the molecular structures of the major prostanoid receptors were elucidated. Since then, substantial progress has been achieved with respect to distribution and function, signal transduction mechanisms, and the design of agonists and antagonists (http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=58). This review systematically details these advances. More recent developments in prostanoid receptor research are included. The DP(2) receptor, also termed CRTH2, has little structural resemblance to DP(1) and other receptors described in the original prostanoid receptor classification. DP(2) receptors are more closely related to chemoattractant receptors. Prostanoid receptors have also been found to heterodimerize with other prostanoid receptor subtypes and nonprostanoids. This may extend signal transduction pathways and create new ligand recognition sites: prostacyclin/thromboxane A(2) heterodimeric receptors for 8-epi-prostaglandin E(2), wild-type/alternative (alt4) heterodimers for the prostaglandin FP receptor for bimatoprost and the prostamides. It is anticipated that the 15 years of research progress described herein will lead to novel therapeutic entities.
Collapse
Affiliation(s)
- D F Woodward
- Dept. of Biological Sciences RD3-2B, Allergan, Inc., 2525 Dupont Dr., Irvine, CA 92612, USA.
| | | | | |
Collapse
|
47
|
Andoh T, Haza S, Saito A, Kuraishi Y. Involvement of leukotriene B4 in spontaneous itch-related behaviour in NC mice with atopic dermatitis-like skin lesions. Exp Dermatol 2011; 20:894-8. [DOI: 10.1111/j.1600-0625.2011.01346.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Yun JW, Seo JA, Jang WH, Koh HJ, Bae IH, Park YH, Lim KM. Antipruritic Effects of TRPV1 Antagonist in Murine Atopic Dermatitis and Itching Models. J Invest Dermatol 2011; 131:1576-9. [DOI: 10.1038/jid.2011.87] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Zhang Q, Andoh T, Konno M, Lee JB, Hattori M, Kuraishi Y. Inhibitory effect of methanol extract of Ganoderma lucidum on acute itch-associated responses in mice. Biol Pharm Bull 2010; 33:909-11. [PMID: 20460776 DOI: 10.1248/bpb.33.909] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, the antipruritic effect of the methanol extract of Ganoderma lucidum (MEGL) was studied in mice. Oral administration of MEGL (10-1000 mg/kg) produced a dose-dependent inhibition of scratching, an itch-related response, induced by intradermal 5-hydroxytryptamine (5-HT) (100 nmol/site), alpha-methyl-5-HT (100 nmol/site), and proteinase-activated receptor-2 (PAR(2))-activating peptide SLIGRL-NH(2) (50 nmol/site). However, MEGL (100-1000 mg/kg) did not inhibit the scratching induced by histamine (100 nmol/site), substance P (100 nmol/site), and compound 48/80 (10 microg/site). These results raise the possibility that MEGL is effective against pruritus mediated by proteinases and 5-HT and that primary afferents expressing PAR(2) and 5-HT(2A) receptors are the sites of its action.
Collapse
Affiliation(s)
- Qun Zhang
- Department of Applied Pharmacology, University of Toyama, 2630 Sugitani, Toyama 930-0914, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Alvarenga PH, Francischetti IMB, Calvo E, Sá-Nunes A, Ribeiro JMC, Andersen JF. The function and three-dimensional structure of a thromboxane A2/cysteinyl leukotriene-binding protein from the saliva of a mosquito vector of the malaria parasite. PLoS Biol 2010; 8:e1000547. [PMID: 21152418 PMCID: PMC2994686 DOI: 10.1371/journal.pbio.1000547] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 10/08/2010] [Indexed: 12/04/2022] Open
Abstract
A salivary protein from a malaria-transmitting mosquito uses a single domain to bind to thromboxane A2 and cysteinyl leukotrienes and prevent blood clotting and inflammation in the host on which it feeds. The highly expressed D7 protein family of mosquito saliva has previously been shown to act as an anti-inflammatory mediator by binding host biogenic amines and cysteinyl leukotrienes (CysLTs). In this study we demonstrate that AnSt-D7L1, a two-domain member of this group from Anopheles stephensi, retains the CysLT binding function seen in the homolog AeD7 from Aedes aegypti but has lost the ability to bind biogenic amines. Unlike any previously characterized members of the D7 family, AnSt-D7L1 has acquired the important function of binding thromboxane A2 (TXA2) and its analogs with high affinity. When administered to tissue preparations, AnSt-D7L1 abrogated Leukotriene C4 (LTC4)-induced contraction of guinea pig ileum and contraction of rat aorta by the TXA2 analog U46619. The protein also inhibited platelet aggregation induced by both collagen and U46619 when administered to stirred platelets. The crystal structure of AnSt-D7L1 contains two OBP-like domains and has a structure similar to AeD7. In AnSt-D7L1, the binding pocket of the C-terminal domain has been rearranged relative to AeD7, making the protein unable to bind biogenic amines. Structures of the ligand complexes show that CysLTs and TXA2 analogs both bind in the same hydrophobic pocket of the N-terminal domain. The TXA2 analog U46619 is stabilized by hydrogen bonding interactions of the ω-5 hydroxyl group with the phenolic hydroxyl group of Tyr 52. LTC4 and occupies a very similar position to LTE4 in the previously determined structure of its complex with AeD7. As yet, it is not known what, if any, new function has been acquired by the rearranged C-terminal domain. This article presents, to our knowledge, the first structural characterization of a protein from mosquito saliva that inhibits collagen mediated platelet activation. When feeding, a female mosquito must inhibit the blood clotting and inflammatory responses of the host. To do this, the insect produces salivary proteins that neutralize key host molecules participating in clotting and inflammation. Here, we describe a salivary protein AnSt-D7L1 that scavenges both thomboxane A2 and cysteinyl leukotrienes, two substances involved in blood vessel constriction, platelet aggregation, and inflammatory responses to an insect bite. We produced this protein in bacteria and showed that it tightly binds both these molecules, inhibiting the processes in which they are involved. We then determined its structure using X-ray crystallography and showed that there is a single binding site in one domain of the protein, accommodating both thromboxane A2 and cysteinyl leukotrienes, and that this site is responsible for the scavenging effect of the protein. These studies reveal the structural features of proteins needed to bind to key molecules of potential pharmacological importance and add to our understanding of the process of mosquito blood feeding, which is essential for transmission of the malaria parasite.
Collapse
Affiliation(s)
- Patricia H. Alvarenga
- Laboratory of Malaria and Vector Research, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
- Laboratório de Bioquímica e Fisiologia de Artrópodes, Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Ivo M. B. Francischetti
- Laboratory of Malaria and Vector Research, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
| | - Anderson Sá-Nunes
- Laboratory of Malaria and Vector Research, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
- Laboratório de Imunologia Experimental, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - José M. C. Ribeiro
- Laboratory of Malaria and Vector Research, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
| | - John F. Andersen
- Laboratory of Malaria and Vector Research, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|