1
|
Hsiao PF, Huang YT, Lu PH, Chiu LY, Weng TH, Hung CF, Wu NL. Thioredoxin-interacting protein regulates keratinocyte differentiation: Implication of its role in psoriasis. FASEB J 2022; 36:e22313. [PMID: 35471587 DOI: 10.1096/fj.202101772r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 12/20/2022]
Abstract
Thioredoxin-interacting protein (TXNIP), also known as Vitamin-D upregulated protein-1 (VDUP-1), interacts with thioredoxin to regulate redox responses and participates in diverse disorders including metabolic, cardiovascular, inflammatory and malignant diseases. Psoriasis is characterized by chronic skin inflammation and an aberrant pattern of keratinocyte differentiation. Clinically, psoriasis is associated with various cardiometabolic comorbidities but studies on TXNIP's biological role in skin disorders are limited. In this study, we investigated TXNIP expression in psoriasis and its regulation in normal human epidermal keratinocytes (NHEKs), and then explored how TXNIP regulated skin keratinocyte differentiation to determine its role in psoriasis pathogenesis. Our immunohistochemical study demonstrated extensive TXNIP expression in the upper and lower epidermis of psoriasis compared to predominant TXNIP expression in the basal layer of normal skin. 1, 25-dihydroxyvitamin D3 suppressed but TGF-α and EGF enhanced TXNIP expression in NHEKs. An inducer of keratinocyte differentiation, phorbol 12-myristate 13-acetate (PMA), also diminished TXNIP expression, which was reversed by PKC-δ knockdown. TXNIP knockdown reduced PMA-induced involucrin and transglutaminse-1 expression, and increased p63 expression in NHEKs but did not significantly affect cell proliferation. H2 O2 -induced ROS production and EGFR phosphorylation decreased in NHEKs with TXNIP knockdown. Furthermore, PMA-induced PKC-δ phosphorylation, TGF-α, and EGF-triggered EGFR phosphorylation were attenuated by TXNIP knockdown. Our results unraveled the regulation and function of TXNIP expression in skin keratinocytes and the cross-regulation between TXNIP and EGFR signaling. These findings imply a role of TXNIP in psoriasis and provide insight into the possible impact of TXNIP regulators on the skin or psoriasis.
Collapse
Affiliation(s)
- Pa-Fan Hsiao
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Yi-Ting Huang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Po-Hsuan Lu
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Ling-Ya Chiu
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Han Weng
- Department of Medical Education, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.,Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Nan-Lin Wu
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan.,Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| |
Collapse
|
2
|
Kelher MR, McLaughlin NJD, Banerjee A, Elzi DJ, Gamboni F, Khan SY, Meng X, Mitra S, Silliman CC. LysoPCs induce Hck- and PKCδ-mediated activation of PKCγ causing p47phox phosphorylation and membrane translocation in neutrophils. J Leukoc Biol 2016; 101:261-273. [PMID: 27531930 DOI: 10.1189/jlb.3a0813-420rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 11/24/2022] Open
Abstract
Lysophosphatidylcholines (lysoPCs) are effective polymorphonuclear neutrophil (PMN) priming agents implicated in transfusion-related acute lung injury (TRALI). LysoPCs cause ligation of the G2A receptor, cytosolic Ca2+ flux, and activation of Hck. We hypothesize that lysoPCs induce Hck-dependent activation of protein kinase C (PKC), resulting in phosphorylation and membrane translocation of 47 kDa phagocyte oxidase protein (p47phox). PMNs, human or murine, were primed with lysoPCs and were smeared onto slides and examined by digital microscopy or separated into subcellular fractions or whole-cell lysates. Proteins were immunoprecipitated or separated by polyacrylamide gel electrophoresis and immunoblotted for proteins of interest. Wild-type (WT) and PKCγ knockout (KO) mice were used in a 2-event model of TRALI. LysoPCs induced Hck coprecipitation with PKCδ and PKCγ and the PKCδ:PKCγ complex also had a fluorescence resonance energy transfer (FRET)+ interaction with lipid rafts and Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2 (WAVE2). PKCγ then coprecipitated with p47phox Immunoblotting, immunoprecipitation (IP), specific inhibitors, intracellular depletion of PKC isoforms, and PMNs from PKCγ KO mice demonstrated that Hck elicited activation/Tyr phosphorylation (Tyr311 and Tyr525) of PKCδ, which became Thr phosphorylated (Thr507). Activated PKCδ then caused activation of PKCγ, both by Tyr phosphorylation (Τyr514) and Ser phosphorylation, which induced phosphorylation and membrane translocation of p47phox In PKCγ KO PMNs, lysoPCs induced Hck translocation but did not evidence a FRET+ interaction between PKCδ and PKCγ nor prime PMNs. In WT mice, lysoPCs served as the second event in a 2-event in vivo model of TRALI but did not induce TRALI in PKCγ KO mice. We conclude that lysoPCs prime PMNs through Hck-dependent activation of PKCδ, which stimulates PKCγ, resulting in translocation of phosphorylated p47phox.
Collapse
Affiliation(s)
- Marguerite R Kelher
- Research Laboratory, Bonfils Blood Center, Denver, Colorado, USA.,Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA; and
| | - Nathan J D McLaughlin
- Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA; and
| | - Anirban Banerjee
- Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA; and
| | - David J Elzi
- Research Laboratory, Bonfils Blood Center, Denver, Colorado, USA.,Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA; and
| | - Fabia Gamboni
- Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA; and
| | - Samina Y Khan
- Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Xianzhong Meng
- Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA; and
| | - Sanchayita Mitra
- Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA; and
| | - Christopher C Silliman
- Research Laboratory, Bonfils Blood Center, Denver, Colorado, USA; .,Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA; and.,Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
3
|
Chew YC, Adhikary G, Xu W, Wilson GM, Eckert RL. Protein kinase C δ increases Kruppel-like factor 4 protein, which drives involucrin gene transcription in differentiating keratinocytes. J Biol Chem 2013; 288:17759-68. [PMID: 23599428 DOI: 10.1074/jbc.m113.477133] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
KLF4 is a member of the Kruppel-like factor family of transcriptional regulators. KLF4 has been shown to be required for normal terminal differentiation of keratinocytes, but the molecular mechanism whereby KLF4 regulates genes associated with the differentiation process has not been studied. In the present study, we explore the impact of KLF4 on expression of involucrin, a gene that is specifically expressed in differentiated keratinocytes. KLF4 overexpression and knockdown studies show that involucrin mRNA and protein level correlates directly with KLF4 level. Moreover, studies of mutant KLF4 proteins indicate that transcriptionally inactive forms do not increase involucrin expression. PKCδ is a regulator of keratinocyte differentiation that increases expression of differentiation-associated target genes, including involucrin. Overexpression of KLF4 augments the PKCδ-dependent increase in involucrin expression, whereas KLF4 knockdown attenuates this response. The KLF4 induction of human involucrin (hINV) promoter activity is mediated via KLF4 binding to a GC-rich element located in the hINV promoter distal regulatory region, a region of the promoter required for in vivo involucrin expression. Mutation of the GC-rich element, an adjacent AP1 factor binding site, or both sites severely attenuates the response. Moreover, loss of KLF4 in an epidermal equivalent model of differentiation results in loss of hINV expression. These studies suggest that KLF4 is part of a multiprotein complex that interacts that the hINV promoter distal regulatory region to drive differentiation-dependent hINV gene expression in epidermis.
Collapse
Affiliation(s)
- Yap Ching Chew
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
4
|
Zhao KN, Masci PP, Lavin MF. Disruption of spectrin-like cytoskeleton in differentiating keratinocytes by PKCδ activation is associated with phosphorylated adducin. PLoS One 2011; 6:e28267. [PMID: 22163289 PMCID: PMC3233558 DOI: 10.1371/journal.pone.0028267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 11/04/2011] [Indexed: 02/01/2023] Open
Abstract
Spectrin is a central component of the cytoskeletal protein network in a variety of erythroid and non-erythroid cells. In keratinocytes, this protein has been shown to be pericytoplasmic and plasma membrane associated, but its characteristics and function have not been established in these cells. Here we demonstrate that spectrin increases dramatically in amount and is assembled into the cytoskeleton during differentiation in mouse and human keratinocytes. The spectrin-like cytoskeleton was predominantly organized in the granular and cornified layers of the epidermis and disrupted by actin filament inhibitors, but not by anti-mitotic drugs. When the cytoskeleton was disrupted PKCδ was activated by phosphorylation on Thr505. Specific inhibition of PKCδ(Thr505) activation with rottlerin prevented disruption of the spectrin-like cytoskeleton and the associated morphological changes that accompany differentiation. Rottlerin also inhibited specific phosphorylation of the PKCδ substrate adducin, a cytoskeletal protein. Furthermore, knock-down of endogenous adducin affected not only expression of adducin, but also spectrin and PKCδ, and severely disrupted organization of the spectrin-like cytoskeleton and cytoskeletal distribution of both adducin and PKCδ. These results demonstrate that organization of a spectrin-like cytoskeleton is associated with keratinocytes differentiation, and disruption of this cytoskeleton is mediated by either PKCδ(Thr505) phosphorylation associated with phosphorylated adducin or due to reduction of endogenous adducin, which normally connects and stabilizes the spectrin-actin complex.
Collapse
Affiliation(s)
- Kong-Nan Zhao
- University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
5
|
Chew YC, Adhikary G, Wilson GM, Reece EA, Eckert RL. Protein kinase C (PKC) delta suppresses keratinocyte proliferation by increasing p21(Cip1) level by a KLF4 transcription factor-dependent mechanism. J Biol Chem 2011; 286:28772-28782. [PMID: 21652709 PMCID: PMC3190685 DOI: 10.1074/jbc.m110.205245] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 05/16/2010] [Indexed: 11/06/2022] Open
Abstract
PKCδ increases keratinocyte differentiation and suppresses keratinocyte proliferation and survival. However, the mechanism of proliferation suppression is not well understood. The present studies show that PKCδ overexpression increases p21(Cip1) mRNA and protein level and promoter activity and that treatment with dominant-negative PKCδ, PKCδ-siRNA, or rottlerin inhibits promoter activation. Analysis of the p21(Cip1) promoter upstream regulatory region reveals three DNA segments that mediate PKCδ-dependent promoter activation. The PKCδ response element most proximal to the transcription start site encodes six GC-rich DNA elements. Mutation of these sites results in a loss of PKCδ-dependent promoter activation. Gel mobility supershift and chromatin immunoprecipitation reveal that these DNA elements bind the Kruppel-like transcription factor KLF4. PKCδ increases KLF4 mRNA and protein level and KLF4 binding to the GC-rich elements in the p21(Cip1) proximal promoter. In addition, KLF4-siRNA inhibits PKCδ-dependent p21(Cip1) promoter activity. PKCδ increases KLF4 expression leading to enhanced KLF4 interaction with the GC-rich elements in the p21(Cip1) promoter to activate transcription.
Collapse
Affiliation(s)
- Yap Ching Chew
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Gerald M Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - E Albert Reece
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201; Department of Obstetrics and Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Richard L Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201; Department of Obstetrics and Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201; Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland 21201.
| |
Collapse
|
6
|
Saminathan H, Asaithambi A, Anantharam V, Kanthasamy AG, Kanthasamy A. Environmental neurotoxic pesticide dieldrin activates a non receptor tyrosine kinase to promote PKCδ-mediated dopaminergic apoptosis in a dopaminergic neuronal cell model. Neurotoxicology 2011; 32:567-77. [PMID: 21801747 DOI: 10.1016/j.neuro.2011.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/17/2011] [Accepted: 06/23/2011] [Indexed: 12/31/2022]
Abstract
Oxidative stress and apoptosis are two key pathophysiological mechanisms underlying dopaminergic degeneration in Parkinson's disease (PD). Recently, we identified that proteolytic activation of protein kinase C-delta (PKCδ), a member of the novel PKC family, contributes to oxidative stress-induced dopaminergic degeneration and that phosphorylation of tyrosine residue 311 (tyr311) on PKCδ is a key event preceding the PKCδ proteolytic activation during oxidative damage. Herein, we report that a non-receptor tyrosine kinase Fyn is significantly expressed in a dopaminergic neuronal N27 cell model. Exposure of N27 cells to the dopaminergic toxicant dieldrin (60 μM) rapidly activated Fyn kinase, PKCδ-tyr311 phosphorylation and proteolytic cleavage. Fyn kinase activation precedes the caspase-3-mediated proteolytic activation of PKCδ. Pre-treatment with p60-tyrosine-specific kinase inhibitor (TSKI) almost completely attenuated dieldrin-induced phosphorylation of PKCδ-tyr311 and its proteolytic activation. Additionally, TSKI almost completely blocked dieldrin-induced apoptotic cell death. To further confirm Fyn's role in the pro-apoptotic function of PKCδ, we adopted the RNAi approach. siRNA-mediated knockdown of Fyn kinase also effectively attenuated dieldrin-induced phosphorylation of PKCδ-tyr311, caspase-3-mediated PKCδ proteolytic cleavage, and DNA fragmentation, suggesting that Fyn kinase regulates the pro-apoptotic function of PKCδ. Collectively, these results demonstrate for the first time that Fyn kinase is a pro-apoptotic kinase that regulates upstream signaling of the PKCδ-mediated apoptotic cell death pathway in neurotoxicity models of pesticide exposure.
Collapse
Affiliation(s)
- Hariharan Saminathan
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|
7
|
Adhikary G, Chew YC, Reece EA, Eckert RL. PKC-delta and -eta, MEKK-1, MEK-6, MEK-3, and p38-delta are essential mediators of the response of normal human epidermal keratinocytes to differentiating agents. J Invest Dermatol 2010; 130:2017-30. [PMID: 20445555 PMCID: PMC3120227 DOI: 10.1038/jid.2010.108] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous studies suggest that the novel protein kinase C (PKC) isoforms initiate a mitogen-activated protein kinase (MAPK) signaling cascade that regulates keratinocyte differentiation. However, assigning these functions has relied on treatment with pharmacologic inhibitors and/or manipulating kinase function using overexpression of wild-type or dominant-negative kinases. As these methods are not highly specific, an obligatory regulatory role for individual kinases has not been assigned. In this study, we use small interfering RNA knockdown to study the role of individual PKC isoforms as regulators of keratinocyte differentiation induced by the potent differentiating stimulus, 12-O-tetradecanoylphorbol-13-acetate (TPA). PKC-delta knockdown reduces TPA-activated involucrin promoter activity, nuclear activator protein-1 factor accumulation and binding to DNA, and cell morphology change. Knockdown of PKC downstream targets, including MEKK-1, MEK-6, MEK-3, or p38-delta, indicates that these kinases are required for these responses. Additional studies indicate that knockdown of PKC-eta inhibits TPA-dependent involucrin promoter activation. In contrast, knockdown of PKC-alpha (a classical PKC isoform) or PKC-epsilon (a novel isoform) does not inhibit these TPA-dependent responses. Further studies indicate that PKC-delta is required for calcium and green tea polyphenol-dependent regulation of end responses. These findings are informative as they suggest an essential role for selected PKC and MAPK cascade enzymes in mediating a range of end responses to a range of differentiation stimuli in keratinocytes.
Collapse
Affiliation(s)
- Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yap Ching Chew
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - E. Albert Reece
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Richard L. Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Reznikova TV, Phillips MA, Patterson TJ, Rice RH. Opposing actions of insulin and arsenite converge on PKCdelta to alter keratinocyte proliferative potential and differentiation. Mol Carcinog 2010; 49:398-409. [PMID: 20082316 DOI: 10.1002/mc.20612] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
When cultured human keratinocytes reach confluence, they undergo a program of changes replicating features of differentiation in vivo, including exit from the proliferative pool, increased cell size, and expression of specialized differentiation marker proteins. Previously, we showed that insulin is required for some of these steps and that arsenite, a human carcinogen in skin and other epithelia, opposes the differentiation process. In present work, we show that insulin signaling, probably through the IGF-I receptor, is required for the increase in cell size accompanying differentiation and that this is opposed by arsenite. We further examine the impact of insulin and arsenite on PKCdelta, a known key regulator of keratinocyte differentiation, and show that insulin increases the amount, tyrosine phosphorylation, and membrane localization of PKCdelta. All these effects are prevented by exposure of cells to arsenite or to inhibitors of downstream effectors of insulin (phosphotidylinositol 3-kinase and mammalian target of rapamycin). Retrovirally mediated expression of activated PKCdelta resulted in increased loss of proliferative potential after confluence and greatly increased formation of cross-linked envelopes, a marker of keratinocyte terminal differentiation. These effects were prevented by removal of insulin, but not by arsenite addition. We further demonstrate a role for src family kinases in regulation of PKCdelta. Finally, inhibiting epidermal growth factor receptor kinase activity diminished the ability of arsenite to prevent cell enlargement and to suppress insulin-dependent PKCdelta amount and tyrosine 311 phosphorylation. Thus suppression of PKCdelta signaling is a critical feature of arsenite action in preventing keratinocyte differentiation and maintaining proliferative capability.
Collapse
Affiliation(s)
- Tatiana V Reznikova
- Department of Environmental Toxicology, University of California, Davis, California 95616-8588, USA
| | | | | | | |
Collapse
|