1
|
Ayoub M, Susin SA, Bauvois B. Tumor Cell Survival Factors and Angiogenesis in Chronic Lymphocytic Leukemia: How Hot Is the Link? Cancers (Basel) 2024; 17:72. [PMID: 39796700 PMCID: PMC11719013 DOI: 10.3390/cancers17010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of neoplastic CD5+/CD19+ B lymphocytes in the blood. These cells migrate to and proliferate in the bone marrow and lymphoid tissues. Despite the development of new therapies for CLL, drug resistance and disease relapse still occur; novel treatment approaches are therefore still needed. Inhibition of the angiogenesis involved in the progression of CLL might be a relevant therapeutic strategy. The literature data indicate that vascular endothelial growth factor, angiopoietin-2, and matrix metalloproteinase-9 are pro-angiogenic factors in CLL. A number of other CLL factors might have pro-angiogenic activity: fibroblast growth factor-2, certain chemokines (such as CXCL-12 and CXCL-2), tumor necrosis factor-α, insulin-like growth factor-1, neutrophil gelatinase-associated lipocalin, and progranulin. All these molecules contribute to the survival, proliferation, and migration of CLL cells. Here, we review the literature on these factors' respective expression profiles and roles in CLL. We also summarize the main results of preclinical and clinical trials of novel agents targeting most of these molecules in a CLL setting. Through the eradication of leukemic cells and the inhibition of angiogenesis, these therapeutic approaches might alter the course of CLL.
Collapse
Affiliation(s)
| | | | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; (M.A.); (S.A.S.)
| |
Collapse
|
2
|
Mitrović-Ajtić O, Živković E, Subotički T, Diklić M, Đikić D, Vukotić M, Dragojević T, Vuković V, Antić D, Čokić VP. Inflammation mediated angiogenesis in chronic lymphocytic leukemia. Ann Hematol 2024; 103:2865-2875. [PMID: 38713255 DOI: 10.1007/s00277-024-05781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
Chronic inflammation has been identified in leukemias as an essential regulator of angiogenesis. B-chronic lymphocytic leukemia (CLL) cells secrete high levels of vascular endothelial growth factor (VEGF) and hypoxia inducible factor 1 alpha (HIF1α). The aim was to assess the role of inflammation in activation of angiogenic factors: endothelial nitric oxide synthase (eNOS), HIF1α and VEGF via proliferation related signaling pathways and VEGF autocrine control. We isolated mononuclear cells (MNC) and CD19+ cells from peripheral blood of 60 patients with CLL. MNC were treated with pro-inflammatory interleukin-6 (IL-6) and VEGF, in combination with inhibitors of JAK1/2 (Ruxolitinib), mTOR (Rapamycin), NF-κB (JSH23), SMAD (LDN-193189) and PI3K/AKT (Ly294002) signaling pathways, to evaluate eNOS, VEGF and HIF1α expression by immunoblotting, immunocytochemistry and RT-qPCR. Also, we investigated IL-6 dependent neovascularization in human microvascular endothelial cells (HMEC-1) in co-culture with MNC of CLL. The angiogenic factors eNOS, VEGF and HIF1α had significantly higher frequencies in MNC of CLL in comparison to healthy controls (p < 0.001) and CD19+ cells of CLL. IL-6 increased the quantity of HIF1α (p < 0.05) and VEGF positive cells in the presence of JSH23 (p < 0.01). VEGF increased HIF1α (p < 0.05), and decreased eNOS gene expression (p < 0.01) in MNC of CLL. VEGF significantly (p < 0.001) increased the number of HIF1α positive MNC of CLL, prevented by inhibitors of JAK1/2, PI3K and mTOR signaling pathways. VEGF stimulation of SMAD (p < 0.05) and STAT5 (p < 0.01) signaling has been prevented by inhibitors of JAK1/2, mTOR, PI3K and SMAD signaling, individually (p < 0.01) or mutually (p < 0.001). Also, we showed that MNC of CLL and IL-6 individually stimulate neovascularization in co-culture with HMEC-1, without a cumulative effect. We demonstrated elevated angiogenic factors in CLL, while VEGF and IL-6 independently stimulated HIF1α. VEGF stimulation of HIF1α was mostly mTOR dependent, while IL-6 stimulation was NF-κB dependent.
Collapse
Affiliation(s)
- Olivera Mitrović-Ajtić
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129, Belgrade, Serbia.
| | - Emilija Živković
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129, Belgrade, Serbia
| | - Tijana Subotički
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129, Belgrade, Serbia
| | - Miloš Diklić
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129, Belgrade, Serbia
| | - Dragoslava Đikić
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129, Belgrade, Serbia
| | - Milica Vukotić
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129, Belgrade, Serbia
| | - Teodora Dragojević
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129, Belgrade, Serbia
| | - Vojin Vuković
- Lymphoma Center, Clinic for Hematology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Darko Antić
- Lymphoma Center, Clinic for Hematology, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladan P Čokić
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129, Belgrade, Serbia
| |
Collapse
|
3
|
Ribatti D, Tamma R, Annese T, d’Amati A, Ingravallo G, Specchia G. Vascular Growth in Lymphomas: Angiogenesis and Alternative Ways. Cancers (Basel) 2023; 15:3262. [PMID: 37370872 PMCID: PMC10296318 DOI: 10.3390/cancers15123262] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
The formation of new blood vessels is a critical process for tumor growth and may be achieved through different mechanisms. Angiogenesis represents the first described and most studied mode of vessel formation, but tumors may also use alternative ways to secure blood supply and eventually acquire resistance to anti-angiogenic treatments. These non-angiogenic mechanisms have been described more recently, including intussusceptive microvascular growth (IMG), vascular co-option, and vasculogenic mimicry. Like solid tumors, angiogenic and non-angiogenic pathways in lymphomas play a fundamental role in tumor growth and progression. In view of the relevant prognostic and therapeutic implications, a comprehensive understanding of these mechanisms is of paramount importance for improving the efficacy of treatment in patients with lymphoma. In this review, we summarize the current knowledge on angiogenic and non-angiogenic mechanisms involved in the formation of new blood vessels in Hodgkin's and non-Hodgkin's lymphomas.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neurosciences, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (R.T.); (A.d.)
| | - Roberto Tamma
- Department of Translational Biomedicine and Neurosciences, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (R.T.); (A.d.)
| | - Tiziana Annese
- Department of Medicine and Surgery, Libera Università del Mediterraneo (LUM) “Giuseppe Degennaro”, 70124 Bari, Italy;
| | - Antonio d’Amati
- Department of Translational Biomedicine and Neurosciences, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (R.T.); (A.d.)
- Section of Anatomical and Molecular Pathology, Department of Precision and Regenerative Medicine and Jonian Area, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Giuseppe Ingravallo
- Section of Anatomical and Molecular Pathology, Department of Precision and Regenerative Medicine and Jonian Area, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Giorgina Specchia
- School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
4
|
Sanges S, Guerrier T, Duhamel A, Guilbert L, Hauspie C, Largy A, Balden M, Podevin C, Lefèvre G, Jendoubi M, Speca S, Hachulla É, Sobanski V, Dubucquoi S, Launay D. Soluble markers of B cell activation suggest a role of B cells in the pathogenesis of systemic sclerosis-associated pulmonary arterial hypertension. Front Immunol 2022; 13:954007. [PMID: 35967377 PMCID: PMC9374103 DOI: 10.3389/fimmu.2022.954007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Soluble markers of B cell activation are interesting diagnostic and prognostic tools in autoimmune diseases. Data in systemic sclerosis (SSc) are scarce and few studies focused on their association with disease characteristics. Methods 1. Serum levels of 14 B cell biomarkers (β2-microglobulin, rheumatoid factor (RF), immunoglobulins (Ig) G, IgA, IgM, BAFF, APRIL, soluble (s)TACI, sBCMA sCD21, sCD23, sCD25, sCD27, CXCL13) were measured in SSc patients and healthy controls (HC). 2. Associations between these biomarkers and SSc characteristics were assessed. 3. The pathophysiological relevance of identified associations was explored by studying protein production in B cell culture supernatant. Results In a discovery panel of 80 SSc patients encompassing the broad spectrum of disease manifestations, we observed a higher frequency of RF positivity, and increased levels of β2-microglobulin, IgG and CXCL13 compared with HC. We found significant associations between several biomarkers and SSc characteristics related to disease phenotype, activity and severity. Especially, serum IgG levels were associated with pulmonary hypertension (PH); β2-microglobulin with Nt-pro-BNP and DLCO; and BAFF with peak tricuspid regurgitation velocity (TRV). In a validation cohort of limited cutaneous SSc patients without extensive ILD, we observed lower serum IgG levels, and higher β2-microglobulin, sBCMA, sCD23 and sCD27 levels in patients with pulmonary arterial hypertension (PAH). BAFF levels strongly correlated with Nt-pro-BNP levels, FVC/DLCO ratio and peak TRV in SSc-PAH patients. Cultured SSc B cells showed increased production of various angiogenic factors (angiogenin, angiopoietin-1, VEGFR-1, PDGF-AA, MMP-8, TIMP-1, L-selectin) and decreased production of angiopoietin-2 compared to HC. Conclusion Soluble markers of B cell activation could be relevant tools to assess organ involvements, activity and severity in SSc. Their associations with PAH could plead for a role of B cell activation in the pathogenesis of pulmonary microangiopathy. B cells may contribute to SSc vasculopathy through production of angiogenic mediators.
Collapse
Affiliation(s)
- Sébastien Sanges
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), Lille, France
| | - Thomas Guerrier
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - Alain Duhamel
- Univ. Lille, CHU Lille, ULR2694 – METRICS: Évaluation des technologies de santé et des pratiques médicales, Lille, France
| | - Lucile Guilbert
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - Carine Hauspie
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - Alexis Largy
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
| | - Maïté Balden
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - Céline Podevin
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France
| | - Guillaume Lefèvre
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - Manel Jendoubi
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
| | - Silvia Speca
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
| | - Éric Hachulla
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), Lille, France
| | - Vincent Sobanski
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), Lille, France
| | - Sylvain Dubucquoi
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - David Launay
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), Lille, France
| |
Collapse
|
5
|
Gagez AL, Paul F, Alaterre E, Gouilleux-Gruart V, Tuaillon E, Lepretre S, Ternant D, Letestu R, Moreaux J, Cartron G. Angiogenic factors could help us to define patients obtaining complete response with undetectable minimal residual disease in untreated CLL patients treated by FCR: results from the CLL2010FMP, a FILO study. Leuk Lymphoma 2021; 62:3160-3169. [PMID: 34806520 DOI: 10.1080/10428194.2021.1955879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Angiogenesis is in a constant balance between pro and anti-angiogenic factors. Neoangiogenesis, implicated in metastatic spreading is characterized in solid cancers, but fairly new in chronic lymphocytic leukemia (CLL). We hypothesize that secretion of angiogenic factors could be correlated to the pathogenesis of CLL, and therefore predict the outcome of patients. We investigated concentrations of 22 cytokines and chemokines in 137 non-del 17p B-CLL patients, treated with a fludarabine-cyclophosphamide-rituximab (FCR)-based regimen. We constructed a biomarker index defining different risk groups based on lymphocyte count, the intensity of CD20 antigen on CD19+ cells, Ang-2, and PDGF-BB plasma concentrations at diagnosis. Four groups were defined, exhibiting specific molecular signatures and correlated with progression-free survival of patients. Our results suggest that we can determine at diagnosis of non-del 17p B-CLL patients, those with a very high probability of progression-free survival, independently of IGVH mutational status and residual disease at the end of treatment.
Collapse
Affiliation(s)
- Anne Laure Gagez
- Department of Clinical Hematology, University Hospital Centre Montpellier, Montpellier, France
| | - Franciane Paul
- University Hospital Centre Montpellier, Montpellier, France
| | | | | | - Edouard Tuaillon
- Department of Bacteriology-Virology, University Hospital Centre Montpellier, Montpellier, France
| | | | - David Ternant
- UMR7292, Laboratory of Pharmacology-Toxicology, Tours, France
| | - Rémi Letestu
- Department of Biological Hematology, Hospital Avicenne, Bobigny, France
| | - Jérôme Moreaux
- IGH, Montpellier, France.,Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, University Hospital Centre Montpellier, Montpellier, France.,Institut Universitaire de France, Paris, France
| | | |
Collapse
|
6
|
Apollonio B, Ioannou N, Papazoglou D, Ramsay AG. Understanding the Immune-Stroma Microenvironment in B Cell Malignancies for Effective Immunotherapy. Front Oncol 2021; 11:626818. [PMID: 33842331 PMCID: PMC8027510 DOI: 10.3389/fonc.2021.626818] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022] Open
Abstract
Cancers, including lymphomas, develop in complex tissue environments where malignant cells actively promote the creation of a pro-tumoral niche that suppresses effective anti-tumor effector T cell responses. Research is revealing that the tumor microenvironment (TME) differs between different types of lymphoma, covering inflamed environments, as exemplified by Hodgkin lymphoma, to non-inflamed TMEs as seen in chronic lymphocytic leukemia (CLL) or diffuse-large B-cell lymphoma (DLBCL). In this review we consider how T cells and interferon-driven inflammatory signaling contribute to the regulation of anti-tumor immune responses, as well as sensitivity to anti-PD-1 immune checkpoint blockade immunotherapy. We discuss tumor intrinsic and extrinsic mechanisms critical to anti-tumor immune responses, as well as sensitivity to immunotherapies, before adding an additional layer of complexity within the TME: the immunoregulatory role of non-hematopoietic stromal cells that co-evolve with tumors. Studying the intricate interactions between the immune-stroma lymphoma TME should help to design next-generation immunotherapies and combination treatment strategies to overcome complex TME-driven immune suppression.
Collapse
Affiliation(s)
- Benedetta Apollonio
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Nikolaos Ioannou
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Despoina Papazoglou
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Alan G Ramsay
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
7
|
Chronic lymphocytic leukemia B-cell-derived TNFα impairs bone marrow myelopoiesis. iScience 2020; 24:101994. [PMID: 33458625 PMCID: PMC7797930 DOI: 10.1016/j.isci.2020.101994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/15/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022] Open
Abstract
TNFα is implicated in chronic lymphocytic leukemia (CLL) immunosuppression and disease progression. TNFα is constitutively produced by CLL B cells and is a negative regulator of bone marrow (BM) myelopoiesis. Here, we show that co-culture of CLL B cells with purified normal human hematopoietic stem and progenitor cells (HSPCs) directly altered protein levels of the myeloid and erythroid cell fate determinants PU.1 and GATA-2 at the single-cell level within transitional HSPC subsets, mimicking ex vivo expression patterns. Physical separation of CLL cells from control HSPCs or neutralizing TNFα abrogated upregulation of PU.1, yet restoration of GATA-2 required TNFα neutralization, suggesting both cell contact and soluble-factor-mediated regulation. We further show that CLL patient BM myeloid progenitors are diminished in frequency and function, an effect recapitulated by chronic exposure of control HSPCs to low-dose TNFα. These findings implicate CLL B-cell-derived TNFα in impaired BM myelopoiesis. CLL patient BM HSPCs exhibit aberrant molecular and functional characteristics CLL B-cell-derived TNFα upregulates PU.1 and GATA-2 in BM HSPCs The effects of CLL B-cell-derived TNFα are reversible upon TNFα neutralization Chronic TNFα exposure in vitro recapitulates ex vivo HSPC functional deficiencies
Collapse
|
8
|
The extracellular matrix: A key player in the pathogenesis of hematologic malignancies. Blood Rev 2020; 48:100787. [PMID: 33317863 DOI: 10.1016/j.blre.2020.100787] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/10/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022]
Abstract
Hematopoietic stem and progenitor cells located in the bone marrow lay the foundation for multiple lineages of mature hematologic cells. Bone marrow niches are architecturally complex with specific cellular, physiochemical, and biomechanical factors. Increasing evidence suggests that the bone marrow microenvironment contributes to the pathogenesis of hematological neoplasms. Numerous studies have deciphered the role of genetic mutations and chromosomal translocations in the development hematologic malignancies. Significant progress has also been made in understanding how the cellular components and cytokine interactions within the bone marrow microenvironment promote the evolution of hematologic cancers. Although the extracellular matrix is known to be a key player in the pathogenesis of various diseases, it's role in the progression of hematologic malignancies is less understood. In this review, we discuss the interactions between the extracellular matrix and malignant cells, and provide an overview of the role of extracellular matrix remodeling in sustaining hematologic malignancies.
Collapse
|
9
|
Antiapoptotic Proteins mcl-1 and bcl-2 as well as Growth Factors FGF and VEGF Influence Survival of Peripheral Blood and Bone Marrow Chronic Lymphocytic Leukemia Cells. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2020. [DOI: 10.2478/sjecr-2018-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Apoptosis inhibition in chronic lymphocytic leukemia (CLL) is one of the most important mechanism in the disease onset, progression and therapy response and is dependent of interaction with different microenvironments.
Aim of our paper is to determine expression of antiapoptoic proteins mcl-1 and bcl-2 in CLL cells isolated from two different compartments (peripheral blood and bone marrow) and its relation to percent of apoptotic cells and concentration of growth factors (FGF and VEGF).
Our results showed that peripheral blood CLL lymphocytes have lower apoptotic rate then those isolated from bone marrow, though bone marrow CLL lymphocytes express higher levels of antipoptotic proteins bcl-2 and mcl-1. In bone marrow FGF concentration is 10-fold higher then in patients plasma but has an limited impact on mcl-1 expression. In contrary, VEGF concentration is higher in peripheral blood and corelate with percent of apoptotic cells and mcl-1 expression in this compartment.
CLL cells derived from two different microenvironmets acts differently when tested for apoptosis „ex vivo“. In peripheral blood apoptosis is strongly connected with expression of antiapoptoic proteins (mcl-1 and bcl-2) and growth factors, but not in bone marrow.
Collapse
|
10
|
Clinical Relevance of +936 C>T VEGFA and c.233C>T bFGF Polymorphisms in Chronic Lymphocytic Leukemia. Genes (Basel) 2020; 11:genes11060686. [PMID: 32585853 PMCID: PMC7349122 DOI: 10.3390/genes11060686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/14/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis process contributes to the pathogenesis of B-cell chronic lymphocytic leukemia (B-CLL) being the levels of VEGFA and bFGF higher in patients than in healthy controls. Our aim was to evaluate the implication of angiogenesis factors genetic variants in the predisposition to B-CLL and their association with clinical factors and survival. We performed a population-based case-control study in 224 Spanish B-CLL patients and 476 healthy randomly selected controls to evaluate susceptibility to developing B-CLL. Six polymorphisms were evaluated: rs1109324, rs1547651, rs3025039 (+936 C>T), rs833052 of the VEGFA gene, rs1449683 (c.233C>T) of the bFGF gene and (−710 C>T) of the VEGFR1 gene. The association between clinical parameters and patient outcome was analyzed. Carriers of the CT/TT variants of rs3025039 showed a significant protective effect against developing B-CLL. The CT/TT variants of rs1449683 show a tendency towards the development of the disease and the same variants associated significantly with higher genetic risk and with reduced disease free survival. Moreover, the association persisted in the early-stage disease subgroup. Our study provides evidence of the protective effect of the T/- rs3025039 VEGFA variant against B-CLL development and the association of CT/TT variants of the rs1449683 bFGF gene with genetic risk and an adverse survival.
Collapse
|
11
|
Ria R, Melaccio A, Racanelli V, Vacca A. Anti-VEGF Drugs in the Treatment of Multiple Myeloma Patients. J Clin Med 2020; 9:E1765. [PMID: 32517267 PMCID: PMC7355441 DOI: 10.3390/jcm9061765] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
The interaction between the bone marrow microenvironment and plasma cells plays an essential role in multiple myeloma progression and drug resistance. The vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathway in vascular endothelial cells activates and promotes angiogenesis. Moreover, VEGF activates and promotes vasculogenesis and vasculogenic mimicry when it interacts with VEGF receptors expressed in precursor cells and inflammatory cells, respectively. In myeloma bone marrow, VEGF and VEGF receptor expression are upregulated and hyperactive in the stromal and tumor cells. It has been demonstrated that several antiangiogenic agents can effectively target VEGF-related pathways in the preclinical phase. However, they are not successful in treating multiple myeloma, probably due to the vicarious action of other cytokines and signaling pathways. Thus, the simultaneous blocking of multiple cytokine pathways, including the VEGF/VEGFR pathway, may represent a valid strategy to treat multiple myeloma. This review aims to summarize recent advances in understanding the role of the VEGF/VEGFR pathway in multiple myeloma, and mainly focuses on the transcription pathway and on strategies that target this pathway.
Collapse
Affiliation(s)
- Roberto Ria
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy; (A.M.); (V.R.); (A.V.)
| | | | | | | |
Collapse
|
12
|
Allegra A, Musolino C, Tonacci A, Pioggia G, Casciaro M, Gangemi S. Clinico-Biological Implications of Modified Levels of Cytokines in Chronic Lymphocytic Leukemia: A Possible Therapeutic Role. Cancers (Basel) 2020; 12:cancers12020524. [PMID: 32102441 PMCID: PMC7072434 DOI: 10.3390/cancers12020524] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/08/2020] [Accepted: 02/22/2020] [Indexed: 12/19/2022] Open
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) is the main cause of mortality among hematologic diseases in Western nations. B-CLL is correlated with an intense alteration of the immune system. The altered functions of innate immune elements and adaptive immune factors are interconnected in B-CLL and are decisive for its onset, evolution, and therapeutic response. Modifications in the cytokine balance could support the growth of the leukemic clone via a modulation of cellular proliferation and apoptosis, as some cytokines have been reported to be able to affect the life of B-CLL cells in vivo. In this review, we will examine the role played by cytokines in the cellular dynamics of B-CLL patients, interpret the contradictions sometimes present in the literature regarding their action, and evaluate the possibility of manipulating their production in order to intervene in the natural history of the disease.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (A.A.); (C.M.)
| | - Caterina Musolino
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (A.A.); (C.M.)
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Marco Casciaro
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
- Correspondence:
| |
Collapse
|
13
|
Role of Non-Coding RNAs in the Development of Targeted Therapy and Immunotherapy Approaches for Chronic Lymphocytic Leukemia. J Clin Med 2020; 9:jcm9020593. [PMID: 32098192 PMCID: PMC7074107 DOI: 10.3390/jcm9020593] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/15/2022] Open
Abstract
In the past decade, novel targeted therapy approaches, such as BTK inhibitors and Bcl2 blockers, and innovative treatments that regulate the immune response against cancer cells, such as monoclonal antibodies, CAR-T cell therapy, and immunomodulatory molecules, have been established to provide support for the treatment of patients. However, drug resistance development and relapse are still major challenges in CLL treatment. Several studies revealed that non-coding RNAs have a main role in the development and progression of CLL. Specifically, microRNAs (miRs) and tRNA-derived small-RNAs (tsRNAs) were shown to be outstanding biomarkers that can be used to diagnose and monitor the disease and to possibly anticipate drug resistance and relapse, thus supporting physicians in the selection of treatment regimens tailored to the patient needs. In this review, we will summarize the most recent discoveries in the field of targeted therapy and immunotherapy for CLL and discuss the role of ncRNAs in the development of novel drugs and combination regimens for CLL patients.
Collapse
|
14
|
Matrix metalloproteinase-9 induces a pro-angiogenic profile in chronic lymphocytic leukemia cells. Biochem Biophys Res Commun 2019; 520:198-204. [DOI: 10.1016/j.bbrc.2019.09.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 12/25/2022]
|
15
|
Smolej L, Andrýs C, Maisnar V, Pour L, Malý J. Plasma Concentrations of Vascular Endothelial Growth Factor and Basic Fibroblast Growth Factor in Lymphoproliferative Disorders. ACTA MEDICA (HRADEC KRÁLOVÉ) 2018. [DOI: 10.14712/18059694.2018.32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Angiogenesis plays a major role in the development and progression of haematological malignancies. In our study we measured plasma concentrations of key angiogenic activators vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) using comercially available sandwich enzyme-linked immunosorbent assay (ELISA) in 37 patients with lymphoid malignancies and 20 healthy donors. We found a statistically significant increase in bFGF concentrations in patients with B-cell chronic lymphocytic leukemia (B-CLL, n=18) compared to the control group (median 118.8 vs. 9.3 pg/ml, p<0.001). However, we didn’t find any significant difference in VEGF concentrations between B-CLL patients and the control group. There was also no significant increase in bFGF or VEGF in patients with multiple myeloma (n=7) and non-Hodgkin’s lymphoma (n=12). Our pilot study shows that measurement of angiogenic activators in plasma is a feasible and reproducible method of angiogenesis assessment. Larger studies are needed for correlation between serum and plasma concentrations and detailed statistical evaluation including the impact on patients’ survival.
Collapse
|
16
|
Zhao C, Isenberg JS, Popel AS. Human expression patterns: qualitative and quantitative analysis of thrombospondin-1 under physiological and pathological conditions. J Cell Mol Med 2018; 22:2086-2097. [PMID: 29441713 PMCID: PMC5867078 DOI: 10.1111/jcmm.13565] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/07/2018] [Indexed: 12/12/2022] Open
Abstract
Thrombospondin-1 (TSP-1), a matricellular protein and one of the first endogenous anti-angiogenic molecules identified, has long been considered a potent modulator of human diseases. While the therapeutic effect of TSP-1 to suppress cancer was investigated in both research and clinical settings, the mechanisms of how TSP-1 is regulated in cancer remain elusive, and the scientific answers to the question of whether TSP-1 expressions can be utilized as diagnostic or prognostic marker for patients with cancer are largely inconsistent. Moreover, TSP-1 plays crucial functions in angiogenesis, inflammation and tissue remodelling, which are essential biological processes in the progression of many cardiovascular diseases, and therefore, its dysregulated expressions in such conditions may have therapeutic significance. Herein, we critically analysed the literature pertaining to TSP-1 expression in circulating blood and pathological tissues in various types of cancer as well as cardiovascular and inflammation-related diseases in humans. We compare the secretion rates of TSP-1 by different cancer and non-cancer cells and discuss the potential connection between the expression changes of TSP-1 and vascular endothelial growth factor (VEGF) observed in patients with cancer. Moreover, the pattern and emerging significance of TSP-1 profiles in cardiovascular disease, such as peripheral arterial disease, diabetes and other related non-cancer disorders, are highlighted. The analysis of published TSP-1 data presented in this review may have implications for the future exploration of novel TSP-1-based treatment strategies for cancer and cardiovascular-related diseases.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Biomedical EngineeringSchool of MedicineJohns Hopkins UniversityBaltimoreMDUSA
| | - Jeffrey S. Isenberg
- Division of Pulmonary, Allergy and Critical CareDepartment of MedicineHeart, Lung, Blood and Vascular Medicine InstituteUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Aleksander S. Popel
- Department of Biomedical EngineeringSchool of MedicineJohns Hopkins UniversityBaltimoreMDUSA
| |
Collapse
|
17
|
Kay NE, Strati P, LaPlant BR, Leis JF, Nikcevich D, Call TG, Pettinger AM, Lesnick CE, Hanson CA, Shanafelt TD. A randomized phase II trial comparing chemoimmunotherapy with or without bevacizumab in previously untreated patients with chronic lymphocytic leukemia. Oncotarget 2018; 7:78269-78280. [PMID: 27861157 PMCID: PMC5346637 DOI: 10.18632/oncotarget.13412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 11/09/2016] [Indexed: 11/25/2022] Open
Abstract
Bevacizumab is a monoclonal antibody targeting vascular endothelial growth factor (VEGF) with in vitro pro-apoptotic and antiangiogenic effects on chronic lymphocytic leukemia (CLL) cells. As monotherapy in patients with CLL, it has no clinical activity. Here we report the results of an open-label, randomized phase II trial comparing the combination of pentostatin, cyclophosphamide and rituximab (PCR) either without or with bevacizumab (PCR-B) in previously untreated CLL patients. A total of 65 evaluable patients were enrolled, 32 receiving PCR and 33 PCR-B. A higher rate of grade 3-4 cardiovascular toxicity was observed with PCR-B (33% vs. 3%, p < 0.003). Patients treated with PCR-B had a trend for a higher complete remission (CR) rate (54.5% vs 31.3%; p = 0.08), longer progression-free survival (PFS)(p = 0.06) and treatment-free survival (TFS)(p = 0.09). No differences in PFS and TFS by IGHV mutational status were observed with the addition of bevacizumab. A significant post-treatment increase in VEGF levels was observed in the PCR-B arm (29.77 to 57.05 pg/mL); in the PCR-B arm, lower baseline CCL-3 levels were significantly associated with achievement of CR (p = 0.01). In conclusion, the addition of bevacizumab to chemoimmunotherapy in CLL is generally well-tolerated and appears to prolong PFS and TFS.
Collapse
Affiliation(s)
- Neil E Kay
- Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Paolo Strati
- Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | - Jose F Leis
- Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Avian leukosis virus subgroup J induces VEGF expression via NF-κB/PI3K-dependent IL-6 production. Oncotarget 2018; 7:80275-80287. [PMID: 27852059 PMCID: PMC5348319 DOI: 10.18632/oncotarget.13282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/07/2016] [Indexed: 02/07/2023] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) is an oncogenic virus causing hemangiomas and myeloid tumors in chickens. Interleukin-6 (IL-6) is a multifunctional pro-inflammatory interleukin involved in many types of cancer. We previously demonstrated that IL-6 expression was induced following ALV-J infection in chickens. The aim of this study is to characterize the mechanism by which ALV-J induces IL-6 expression, and the role of IL-6 in tumor development. Our results demonstrate that ALV-J infection increases IL-6 expression in chicken splenocytes, peripheral blood lymphocytes, and vascular endothelial cells. IL-6 production is induced by the ALV-J envelope protein gp85 and capsid protein p27 via PI3K- and NF-κB-mediated signaling. IL-6 in turn induced expression of vascular endothelial growth factor (VEGF)-A and its receptor, VEGFR-2, in vascular endothelial cells and embryonic vascular tissues. Suppression of IL-6 using siRNA inhibited the ALV-J induced VEGF-A and VEGFR-2 expression in vascular endothelial cells, indicating that the ALV-J-induced VEGF-A/VEGFR-2 expression is mediated by IL-6. As VEGF-A and VEGFR-2 are important factors in oncogenesis, our findings suggest that ALV-J hijacks IL-6 to promote tumorigenesis, and indicate that IL-6 could potentially serve as a therapeutic target in ALV-J infections.
Collapse
|
19
|
Cuesta-Mateos C, Alcaraz-Serna A, Somovilla-Crespo B, Muñoz-Calleja C. Monoclonal Antibody Therapies for Hematological Malignancies: Not Just Lineage-Specific Targets. Front Immunol 2018; 8:1936. [PMID: 29387053 PMCID: PMC5776327 DOI: 10.3389/fimmu.2017.01936] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022] Open
Abstract
Today, monoclonal antibodies (mAbs) are a widespread and necessary tool for biomedical science. In the hematological cancer field, since rituximab became the first mAb approved by the Food and Drug Administration for the treatment of B-cell malignancies, a number of effective mAbs targeting lineage-specific antigens (LSAs) have been successfully developed. Non-LSAs (NLSAs) are molecules that are not restricted to specific leukocyte subsets or tissues but play relevant pathogenic roles in blood cancers including the development, proliferation, survival, and refractoriness to therapy of tumor cells. In consequence, efforts to target NLSAs have resulted in a plethora of mAbs-marketed or in development-to achieve different goals like neutralizing oncogenic pathways, blocking tumor-related chemotactic pathways, mobilizing malignant cells from tumor microenvironment to peripheral blood, modulating immune-checkpoints, or delivering cytotoxic drugs into tumor cells. Here, we extensively review several novel mAbs directed against NLSAs undergoing clinical evaluation for treating hematological malignancies. The review focuses on the structure of these antibodies, proposed mechanisms of action, efficacy and safety profile in clinical studies, and their potential applications in the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Carlos Cuesta-Mateos
- Servicio de Inmunología, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Madrid, Spain
- IMMED S.L., Immunological and Medicinal Products, Madrid, Spain
| | - Ana Alcaraz-Serna
- Servicio de Inmunología, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Madrid, Spain
| | - Beatriz Somovilla-Crespo
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Servicio de Inmunología, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Madrid, Spain
| |
Collapse
|
20
|
Maffei R, Fiorcari S, Martinelli S, Guarnotta C, Benatti S, Belmonte B, Potenza L, Luppi M, Marasca R. Angiopoietin-2 acts as a survival factor for chronic lymphocytic leukemia B cells throughout Tie-2 receptor engagement. Hematol Oncol 2017; 36:372-375. [PMID: 28580615 DOI: 10.1002/hon.2448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Rossana Maffei
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Fiorcari
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Martinelli
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Carla Guarnotta
- Department of Human Pathology, University of Palermo, Palermo, Italy
| | - Stefania Benatti
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Belmonte
- Department of Human Pathology, University of Palermo, Palermo, Italy
| | - Leonardo Potenza
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Mario Luppi
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto Marasca
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
21
|
Targeting the TAM Receptors in Leukemia. Cancers (Basel) 2016; 8:cancers8110101. [PMID: 27834816 PMCID: PMC5126761 DOI: 10.3390/cancers8110101] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/21/2016] [Accepted: 11/01/2016] [Indexed: 12/20/2022] Open
Abstract
Targeted inhibition of members of the TAM (TYRO-3, AXL, MERTK) family of receptor tyrosine kinases has recently been investigated as a novel strategy for treatment of hematologic malignancies. The physiologic functions of the TAM receptors in innate immune control, natural killer (NK) cell differentiation, efferocytosis, clearance of apoptotic debris, and hemostasis have previously been described and more recent data implicate TAM kinases as important regulators of erythropoiesis and megakaryopoiesis. The TAM receptors are aberrantly or ectopically expressed in many hematologic malignancies including acute myeloid leukemia, B- and T-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, and multiple myeloma. TAM receptors contribute to leukemic phenotypes through activation of pro-survival signaling pathways and interplay with other oncogenic proteins such as FLT3, LYN, and FGFR3. The TAM receptors also contribute to resistance to both cytotoxic chemotherapeutics and targeted agents, making them attractive therapeutic targets. A number of translational strategies for TAM inhibition are in development, including small molecule inhibitors, ligand traps, and monoclonal antibodies. Emerging areas of research include modulation of TAM receptors to enhance anti-tumor immunity, potential roles for TYRO-3 in leukemogenesis, and the function of the bone marrow microenvironment in mediating resistance to TAM inhibition.
Collapse
|
22
|
Aguirre Palma LM, Flamme H, Gerke I, Kreuzer KA. Angiopoietins Modulate Survival, Migration, and the Components of the Ang-Tie2 Pathway of Chronic Lymphocytic Leukaemia (CLL) Cells In Vitro. CANCER MICROENVIRONMENT 2016; 9:13-26. [PMID: 26846110 DOI: 10.1007/s12307-016-0180-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 01/24/2016] [Indexed: 12/15/2022]
Abstract
In actuality, chronic lymphocytic leukaemia (CLL) remains an incurable haematopoietic malignancy of high prevalence amongst elderly populations in the West. Malignant CLL cells characteristically accumulate in the peripheral blood, bone marrow, lymph nodes, and spleen of CLL patients. There is evidence that CLL cells express Ang2 and Tie1, two central components of the Ang-Tie2 pro-angiogenic pathway. Central to blood vessel development and maintenance, at present it remains unclear how the Ang-Tie2 pathway modulates CLL pathophysiology. Here we evaluate the status of the Ang-Tie2 pathway in CLL cells and assess Ang1 levels in plasma/cell medium from CLL samples. To understand how angiopoietins in the microenvironment regulate the components of Ang-Tie2 pathway, survival, migration, and metabolic fitness of CLL cells, we exposed CLL cells to recombinant angiopoietins. CLL plasma and CLL cells in culture present significant lower levels of Ang1. CLL cells simultaneously express Ang1, Ang2, and Tie1 mRNA, but lack that of Tie2 and its regulator, VE-PTP. Exposure to Ang1 confers survival advantage in the long-term, whereas Ang2 and trebananib, an angiopoietin blocker, proved detrimental. Angiopoietins differentially modulate expression of Ang1, Ang2, and Tie1 transcripts. Ang2, but not Ang1, induces the concomitant and transient expression of Tie2 and VE-PTP mRNA. Both angiopoietins, particularly Ang2, increase CLL-Tie1 expression and Ang1 clearly induces chemotaxis and transendothelial-like migration of CLL cells. Besides, changes in caspase and ATP content corroborate the sensitivity of CLL cells to angiopoietin exposure. Altogether, this work shows that angiopoietins regulate the fate of CLL cells in a Tie2-independent manner and highlights the potential of the Ang-Tie2 pathway as a therapeutic target in CLL research.
Collapse
Affiliation(s)
| | - Hanna Flamme
- Department I of Internal Medicine, University at Cologne, Kerpener Strasse 62, Cologne, Germany
| | - Iris Gerke
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Karl-Anton Kreuzer
- Department I of Internal Medicine, University at Cologne, Kerpener Strasse 62, Cologne, Germany.
| |
Collapse
|
23
|
Blonska M, Agarwal NK, Vega F. Shaping of the tumor microenvironment: Stromal cells and vessels. Semin Cancer Biol 2015; 34:3-13. [PMID: 25794825 DOI: 10.1016/j.semcancer.2015.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/04/2015] [Accepted: 03/08/2015] [Indexed: 12/12/2022]
Abstract
Lymphomas develop and progress in a specialized tissue microenvironment such as bone marrow as well as secondary lymphoid organs such as lymph node and spleen. The lymphoma microenvironment is characterized by a heterogeneous population of stromal cells, including fibroblastic reticular cells, nurse-like cells, mesenchymal stem cells, follicular dendritic cells, and inflammatory cells such as macrophages, T- and B-cells. These cell populations interact with the lymphoma cells to promote lymphoma growth, survival and drug resistance through multiple mechanisms. Angiogenesis is also recognized as an important factor associated with lymphoma progression. In recent years, we have learned that the interaction between the malignant and non-malignant cells is bidirectional and resembles, at least in part, the pattern seen between non-neoplastic lymphoid cells and the normal microenvironment of lymphoid organs. A summary of the current knowledge of lymphoma microenvironment focusing on the cellular components will be reviewed here.
Collapse
Affiliation(s)
- Marzenna Blonska
- Division of Hematology-Oncology, Department of Medicine, University of Miami and Sylvester Comprehensive Cancer Center, Miami, FL, United States
| | - Nitin K Agarwal
- Division of Hematopathology, Department of Pathology, University of Miami and Sylvester Comprehensive Cancer Center, Miami, FL, United States
| | - Francisco Vega
- Division of Hematopathology, Department of Pathology, University of Miami and Sylvester Comprehensive Cancer Center, Miami, FL, United States.
| |
Collapse
|
24
|
Janel A, Dubois-Galopin F, Bourgne C, Berger J, Tarte K, Boiret-Dupré N, Boisgard S, Verrelle P, Déchelotte P, Tournilhac O, Berger MG. The Chronic Lymphocytic Leukemia Clone Disrupts the Bone Marrow Microenvironment. Stem Cells Dev 2014; 23:2972-82. [DOI: 10.1089/scd.2014.0229] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Alexandre Janel
- Hématologie Biologique, CHU (University Hospital Center) Clermont-Fd, Hopital Estaing, Clermont-Ferrand, France
- EA7283 CREaT, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | | | - Céline Bourgne
- Hématologie Biologique, CHU (University Hospital Center) Clermont-Fd, Hopital Estaing, Clermont-Ferrand, France
| | - Juliette Berger
- Hématologie Biologique, CHU (University Hospital Center) Clermont-Fd, Hopital Estaing, Clermont-Ferrand, France
| | - Karin Tarte
- INSERM U917–MICA, University of Medicine, Rennes, France
| | - Nathalie Boiret-Dupré
- Hématologie Biologique, CHU (University Hospital Center) Clermont-Fd, Hopital Estaing, Clermont-Ferrand, France
- EA7283 CREaT, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Stéphane Boisgard
- Orthopédie Traumatologie, CHU (University Hospital Center) Clermont-Fd, Hospital Montpied, Clermont-Ferrand, France
| | - Pierre Verrelle
- EA7283 CREaT, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Pierre Déchelotte
- Anatomie Pathologique, CHU Clermont-Fd, Hopital Estaing, Clermont-Ferrand, France
| | - Olivier Tournilhac
- EA7283 CREaT, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
- Hématologie Clinique Adulte, CHU Clermont-Fd, Hopital Estaing, Clermont-Ferrand, France
| | - Marc G. Berger
- Hématologie Biologique, CHU (University Hospital Center) Clermont-Fd, Hopital Estaing, Clermont-Ferrand, France
- EA7283 CREaT, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
- Hématologie Clinique Adulte, CHU Clermont-Fd, Hopital Estaing, Clermont-Ferrand, France
| |
Collapse
|
25
|
Aguirre Palma LM, Gehrke I, Kreuzer KA. Angiogenic factors in chronic lymphocytic leukaemia (CLL): Where do we stand? Crit Rev Oncol Hematol 2014; 93:225-36. [PMID: 25459668 DOI: 10.1016/j.critrevonc.2014.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/23/2014] [Accepted: 10/01/2014] [Indexed: 01/09/2023] Open
Abstract
The role of angiogenesis in haematological malignancies such as chronic lymphocytic leukaemia (CLL) is difficult to envision, because leukaemia cells are not dependent on a network of blood vessels to support basic physiological requirements. Regardless, CLL cells secrete high levels of major angiogenic factors, such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and platelet derived growth factor (PDGF). Nonetheless, it remains unclear how most angiogenic factors regulate accumulation and delayed apoptosis of CLL cells. Angiogenic factors such as leptin, granulocyte colony-stimulating factor (G-CSF), follistatin, angiopoietin-1 (Ang1), angiogenin (ANG), midkine (MK), pleiotrophin (PTN), progranulin (PGRN), proliferin (PLF), placental growth factor (PIGF), and endothelial locus-1 (Del-1), represent novel therapeutic targets of future CLL research but have remained widely overlooked. This review aims to outline our current understanding of angiogenic growth factors and their relationship with CLL, a still uncured haematopoietic malignancy.
Collapse
Affiliation(s)
| | - Iris Gehrke
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB, Canada.
| | - Karl-Anton Kreuzer
- Department I of Internal Medicine, University of Cologne, Cologne, Germany.
| |
Collapse
|
26
|
Jain P, Lee HJ, Qiao W, Wierda W, Benjamini O, Burger J, Ferrajoli A, Estrov Z, Kantarjian H, Keating M, O'Brien S. FCR and bevacizumab treatment in patients with relapsed chronic lymphocytic leukemia. Cancer 2014; 120:3494-501. [PMID: 25043749 DOI: 10.1002/cncr.28910] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/27/2014] [Accepted: 06/09/2014] [Indexed: 01/12/2023]
Abstract
BACKGROUND Patients with relapsed chronic lymphocytic leukemia (CLL) often achieve response with chemoimmunotherapy but have short remission durations. Studies have shown that patients with CLL have increased angiogenesis in the microenvironment; levels of proangiogenic growth factors such as VEGF and/or angiopoietin-2 are also elevated. Increased angiogenesis correlates with poor outcome in CLL. Bevacizumab (B) is a humanized monoclonal antibody targeting VEGF-A. METHODS In this study, we analyzed whether a combination of bevacizumab with fludarabine, cyclophosphamide, and rituximab chemoimmunotherapy (FCR-B) could improve outcomes in patients with relapsed CLL. Sixty-two patients were enrolled. The median age of the patients was 60 years (range, 31-84 years) and 40% had received >1 prior therapy for CLL. Sixty-one patients were evaluable for toxicity, and 57 were evaluable for response. Six cycles were planned; 36 patients (59%) completed ≥4-6 cycles of the regimen. RESULTS The overall response rate was 79%, with 13 (23%) complete remissions (CRs), 8 nodular partial remissions (14%), and 24 partial remissions (43%). The median progression-free survival and overall survival rates were 13.5 and 45 months, respectively. Grade 3 or 4 toxicities included febrile neutropenia (n = 40), infections (n = 21), thrombocytopenia (n = 18) and anemia (n = 9). CONCLUSIONS Results with FCR-B were similar to those observed with an historical cohort of relapsed patients treated with FCR.
Collapse
Affiliation(s)
- Preetesh Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Immunohistochemical analysis of IL-6, IL-8/CXCR2 axis, Tyr p-STAT-3, and SOCS-3 in lymph nodes from patients with chronic lymphocytic leukemia: correlation between microvascular characteristics and prognostic significance. BIOMED RESEARCH INTERNATIONAL 2014; 2014:251479. [PMID: 24883303 PMCID: PMC4026921 DOI: 10.1155/2014/251479] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/04/2014] [Indexed: 02/07/2023]
Abstract
A number of studies have looked into the pathophysiological role of angiogenesis in CLL, but the results have often been inconsistent. We aimed to gain direct insight into the angiogenic process in lymph nodes involved by CLL, focusing on proangiogenic cytokines and microvessel morphometry. The tissue levels of VEGF, Th-2 cytokines IL-6 and IL-8, IL-8 receptor CXCR2, and tyrosine p-STAT-3/SOCS-3 axis modulating cytokine expression were evaluated immunohistochemically in 62 CLL/SLL cases. Microvascular characteristics were evaluated by image analysis. Results were analyzed with regard to clinicopathological characteristics. Proliferation centers (PCs) were less well vascularised compared to non-PC areas. IL-8 and CXCR2 expression was distinctly uncommon as opposed to IL-6, VEGF and SOCS-3, which were detected in the vast majority of cases. The latter two molecule expressions were more pronounced in the PCs in ∼40% of the cases. p-STAT-3 immunoreactivity was recorded in 66.67% of the cases with a predilection for PCs. Microvessel morphometry was unrelated to proangiogenic cytokines, p-STAT-3, SOCS-3, or survival. Microvascular caliber and VEGF expression were higher in Binet stage A, whereasIL-6 expression was higher in stage C. VEGF and p-STAT-3 exerted a favorable effect on progression, which remained significant in multivariate analysis, thereby constituting potential outcome predictors in CLL patients.
Collapse
|
28
|
Ghosh AK, Kay NE. Critical signal transduction pathways in CLL. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 792:215-39. [PMID: 24014299 DOI: 10.1007/978-1-4614-8051-8_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Receptor tyrosine kinases (RTKs) are cell-surface transmembrane receptors that contain regulated kinase activity within their cytoplasmic domain and play a critical role in signal transduction in both normal and malignant cells. Besides B cell receptor (BCR) signaling in chronic lymphocytic leukemia (CLL), multiple RTKs have been reported to be constitutively active in CLL B cells, resulting in enhanced survival and resistance to apoptosis of the leukemic cells induced by chemotherapeutic agents. In addition to increased plasma levels of various types of cytokines/growth factors in CLL, we and others have detected that CLL B cells spontaneously produce multiple cytokines in vitro which may constitute an autocrine loop of RTK activation on the leukemic B cells. Moreover, aberrant expression and activation of non-RTKs, for example, Src/Syk kinases, induce resistance of the leukemic B cells to therapy. Based on current available knowledge, we detailed the impact of aberrant activities of various RTKs/non-RTKs on CLL B cell survival and the potential of using these signaling components as future therapeutic targets in CLL therapy.
Collapse
Affiliation(s)
- Asish K Ghosh
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | |
Collapse
|
29
|
Ferrajoli A, Faderl S, Keating MJ. Monoclonal antibodies in chronic lymphocytic leukemia. Expert Rev Anticancer Ther 2014; 6:1231-8. [PMID: 17020457 DOI: 10.1586/14737140.6.9.1231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Multiple options are now available for the treatment of chronic lymphocytic leukemia. Over the last 10 years, monoclonal antibodies have become an integral part of the management of this disease. Alemtuzumab has received approval for use in patients with fludarabine-refractory chronic lymphocytic leukemia. Rituximab has been investigated extensively in chronic lymphocytic leukemia both as a single agent and in combination with chemotherapy and other monoclonal antibodies. Epratuzumab and lumiliximab are newer monoclonal antibodies in the early phase of clinical development. This article will review the monoclonal antibodies more commonly used to treat chronic lymphocytic leukemia, the results obtained with monoclonal antibodies as single agents and in combination with chemotherapy, and other biological agents and newer compounds undergoing clinical trials.
Collapse
MESH Headings
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/therapeutic use
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
Collapse
Affiliation(s)
- Alessandra Ferrajoli
- University of Texas MD Anderson Cancer Center, Department of Leukemia, Unit 428, PO Box 301402, Houston, TX 77230-1402, USA.
| | | | | |
Collapse
|
30
|
Hua KT, Lee WJ, Yang SF, Chen CK, Hsiao M, Ku CC, Wei LH, Kuo ML, Chien MH. Vascular endothelial growth factor-C modulates proliferation and chemoresistance in acute myeloid leukemic cells through an endothelin-1-dependent induction of cyclooxygenase-2. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:387-97. [PMID: 24184161 DOI: 10.1016/j.bbamcr.2013.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/30/2013] [Accepted: 10/21/2013] [Indexed: 01/06/2023]
Abstract
High-level expression of vascular endothelial growth factor (VEGF)-C is associated with chemoresistance and adverse prognosis in acute myeloid leukemia (AML). Our previous study has found that VEGF-C induces cyclooxygenase-2 (COX-2) expression in AML cell lines and significant correlation of VEGF-C and COX-2 in bone marrow specimens. COX-2 has been reported to mediate the proliferation and drug resistance in several solid tumors. Herein, we demonstrated that the VEGF-C-induced proliferation of AML cells is effectively abolished by the depletion or inhibition of COX-2. The expression of endothelin-1 (ET-1) rapidly increased following treatment with VEGF-C. We found that ET-1 was also involved in the VEGF-C-mediated proliferation of AML cells, and that recombinant ET-1 induced COX-2 mRNA and protein expressions in AML cells. Treatment with the endothelin receptor A (ETRA) antagonist, BQ 123, or ET-1 shRNAs inhibited VEGF-C-induced COX-2 expression. Flow cytometry and immunoblotting revealed that VEGF-C induces S phase accumulation through the inhibition of p27 and the upregulation of cyclin E and cyclin-dependent kinase-2 expressions. The cell-cycle-related effects of VEGF-C were reversed by the depletion of COX-2 or ET-1. The depletion of COX-2 or ET-1 also suppressed VEGF-C-induced increases in the bcl-2/bax ratio and chemoresistance against etoposide and cytosine arabinoside in AML cells. We also demonstrated VEGF-C/ET-1/COX-2 axis-mediated chemoresistance in an AML xenograft mouse model. Our findings suggest that VEGF-C induces COX-2-mediated resistance to chemotherapy through the induction of ET-1 expression. Acting as a key regulator in the VEGF-C/COX-2 axis, ET-1 represents a potential target for ameliorating resistance to chemotherapy in AML patients.
Collapse
Affiliation(s)
- Kuo-Tai Hua
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Jiunn Lee
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chi-Kuan Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Michael Hsiao
- The Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Chi Ku
- Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Lin-Hung Wei
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Liang Kuo
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Biomedical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ming-Hsien Chien
- Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
31
|
The role of angiogenesis in human non-Hodgkin lymphomas. Neoplasia 2013; 15:231-8. [PMID: 23479502 DOI: 10.1593/neo.121962] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/06/2013] [Accepted: 01/07/2013] [Indexed: 11/18/2022]
Abstract
The role of angiogenesis in the growth of lymphomas and survival of patients with leukemias and other hematological malignancies has become evident since 1994. Angiogenic factors, such as vascular endothelial growth factor and its receptors together with other tumor microenvironment components, including myelo-monocytic cell, mast cells, endothelial progenitor cells, and circulating endothelial cells, have been shown to be important in the progression and maintenance of lymphoproliferative disorders. In this review article, we present an overview of the literature focusing on the relationship between angiogenesis and disease progression and the recent advantages in the antiangiogenic treatment in human non-Hodgkin lymphomas.
Collapse
|
32
|
Vrbacky F, Smolej L, Vroblova V, Pekova S, Hrudkova M, Cervinka M, Pecka M, Krejsek J, Maly J. Angiopoietin-2 mRNA expression is increased in chronic lymphocytic leukemia patients with poor prognostic features. Hematology 2013; 15:210-4. [DOI: 10.1179/102453309x12583347113898] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- F. Vrbacky
- 2nd Department of Internal MedicineDepartment of Clinical Hematology, Faculty of Medicine and University Hospital, Charles University, Hradec Kralove, Czech Republic
| | - L. Smolej
- 2nd Department of Internal MedicineDepartment of Clinical Hematology, Faculty of Medicine and University Hospital, Charles University, Hradec Kralove, Czech Republic
| | - V. Vroblova
- Institute of Clinical Immunology and AllergologyFaculty of Medicine and University Hospital, Charles University, Hradec Kralove, Czech Republic
| | - S. Pekova
- Laboratory for Molecular DiagnosticsChambon Inc., Prague, Czech Republic
| | - M. Hrudkova
- 2nd Department of Internal MedicineDepartment of Clinical Hematology, Faculty of Medicine and University Hospital, Charles University, Hradec Kralove, Czech Republic
| | - M. Cervinka
- Department of Medical Biology and GeneticsFaculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| | - M. Pecka
- 2nd Department of Internal MedicineDepartment of Clinical Hematology, Faculty of Medicine and University Hospital, Charles University, Hradec Kralove, Czech Republic
| | - J. Krejsek
- Institute of Clinical Immunology and AllergologyFaculty of Medicine and University Hospital, Charles University, Hradec Kralove, Czech Republic
| | - J. Maly
- 2nd Department of Internal MedicineDepartment of Clinical Hematology, Faculty of Medicine and University Hospital, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
33
|
Ribatti D. Angiogenesis as a treatment target in leukemia. Int J Hematol Oncol 2013. [DOI: 10.2217/ijh.13.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY The importance of angiogenesis in the growth and survival of leukemia has been well established and confirmed by several studies. In the last 20 years, several antiangiogenic agents have been used in preclinical and clinical studies of the treatment of leukemia. This review article summarizes the literature focusing on the relationship between angiogenesis and disease progression, and the advantages and limits of the antiangiogenic treatment of leukemia.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neuroscience, & Sensory Organs, University of Bari Medical School, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
34
|
Expression, function and cooperating partners of protease-activated receptor type 3 in vascular endothelial cells and B lymphocytes studied with specific monoclonal antibody. Mol Immunol 2013; 54:319-26. [PMID: 23352962 DOI: 10.1016/j.molimm.2012.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 12/26/2012] [Indexed: 01/01/2023]
Abstract
Receptor-specific antibodies can both prevent ligand-receptor interaction and initiate receptor signaling. Previously we generated monoclonal antibody 8E8 (mAb 8E8) against protease-activated receptor type 3 (PAR3) which inhibited proliferation of B cell hybridoma. Here we used mAb 8E8 and PAR1-specific polyclonal antibody to reveal the functions and cooperating partners of PAR3 in endothelial cells and in B lymphocytes. MAb 8E8 or PAR1 agonist peptide stimulated IL-6 and IL-8 production and VCAM-1 expression in HPMEC-ST1.6R cells. PAR1 antibody stimulated only VCAM-1 expression, while ICAM-1 expression was stimulated with mAB 8E8 or PAR3 peptide. MAb 8E8 stimulated weak mitogenic response, while PAR1 antibody inhibited it in normal but not in malignant B lymphocytes. Sandwich ELISA assay demonstrated the interaction of PAR3 with PAR1 in malignant cell lines and with IgM in normal B lymphocytes. It is concluded that PAR3 cooperates with PAR1 to mediate the effect of thrombin on cytokine production and VCAM-1 expression in endothelial cells and on cell proliferation in malignant B cells. ICAM-1 expression in endothelial cells requires PAR3 without PAR1. The inhibitory effect of thrombin in normal B lymphocytes is mediated by PAR1 alone, while mitogenic and pro-survival signaling in B lymphocytes is provided through PAR3 in cooperation with BCR.
Collapse
|
35
|
Paesler J, Gehrke I, Poll-Wolbeck SJ, Kreuzer KA. Targeting the vascular endothelial growth factor in hematologic malignancies. Eur J Haematol 2012; 89:373-84. [DOI: 10.1111/ejh.12009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2012] [Indexed: 12/16/2022]
Affiliation(s)
- Julian Paesler
- Department I of Internal Medicine I; University at Cologne; Cologne; Germany
| | - Iris Gehrke
- Department I of Internal Medicine I; University at Cologne; Cologne; Germany
| | | | - Karl-Anton Kreuzer
- Department I of Internal Medicine I; University at Cologne; Cologne; Germany
| |
Collapse
|
36
|
Song G, Li Y, Jiang G. Role of VEGF/VEGFR in the pathogenesis of leukemias and as treatment targets (Review). Oncol Rep 2012; 28:1935-44. [PMID: 22993103 DOI: 10.3892/or.2012.2045] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/22/2012] [Indexed: 11/05/2022] Open
Abstract
Angiogenesis plays an important role in solid tumor growth, progression and metastasis. Evidence suggests that the progression of hematolymphoid malignancies also depends on the induction of new blood vessel formation under the influence of acute leukemia, myelodysplastic syndromes, myeloproliferative neoplasms, multiple myeloma and lymphomas. The vascular endothelial growth factor (VEGF) is the most important proangiogenic agent that activates receptors on vascular endothelial cells and promotes blood vessel regeneration. It has been demonstrated that VEGF/VEGF receptor (VEGFR) expression is upregulated in several types of hematolymphoid tumor cells accompanied with angiogenesis. The levels of VEGF/VEGFR are correlated with the treatment, relapse and prognosis of hematolymphoid tumors. In order for VEGF family and their receptors as antiangiogenic targets to treat solid tumors, several antiangiogenic agents targeting VEGF-related pathways have been used for the treatment of hematolymphoid malignancies in clinical trials. The results demonstrate a promising therapeutic intervention in multiple types of hematolymphoid tumors. This review aims to summarize recent advances in understanding the role of VEGF and angiogenesis in leukemias, mainly focusing on their upstream transcriptors, downstream targets and the correlation of VEGF/VEGFR with the treatment, relapse or prognosis of leukemia. The progress of VEGF and its receptors as attractive targets for therapies are also discussed in clinical application.
Collapse
Affiliation(s)
- Guanhua Song
- Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Department of Hemato-Oncology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Key Laboratory of Ministry of Health for Biotech-Drug, Key Laboratory for Modern Medicine and Technology of Shandong Province, Jinan, Shandong, P.R. China
| | | | | |
Collapse
|
37
|
Angiogenic factors in chronic lymphocytic leukemia. Leuk Res 2012; 36:1211-7. [PMID: 22727510 DOI: 10.1016/j.leukres.2012.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 03/28/2012] [Accepted: 05/21/2012] [Indexed: 01/12/2023]
Abstract
Angiogenesis is a complex process controlled by the balance of a large number of regulating factors, the pro- and anti-angiogenic factors. Dysregulation of angiogenesis occurs in various pathologies and is one of the hallmarks for cancer. Recent emphasis on the microenvironment's influence in chronic lymphocytic leukemia (CLL) progression and drug resistance nurtures the interest in angiogenesis. Researchers have already identified a variety of angiogenic factors involved in the CLL, including vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF), angiopoietin-2(Ang-2), thrombospondin-1 (TSP-1), as well as extracellular proteinases such as matrix metalloproteinase-9 (MMP-9). Besides modulating neovascularization, angiogenic factors also participate in the regulation of pro-survival effects of CLL cells. However, the precise mechanism involved still needs to be elucidated further. At present, the levels of some angiogenic factors are regarded as prognostic markers of the progression of CLL, although it is not widely used. Several anti-VEGF agents are currently under clinical trial. Advances in the understanding of the bases of angiogenesis regulators will be benefit for the comprehension of CLL pathogenesis and help to conquer the disease.
Collapse
|
38
|
Skórka K, Giannopoulos K. Budowa i funkcje jądrowego czynnika transkrypcyjnego NF kappa B (NF-κB) oraz jego znaczenie w przewlekłej białaczce limfocytowej. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/s0001-5814(12)31005-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Maffei R, Fiorcari S, Bulgarelli J, Martinelli S, Castelli I, Deaglio S, Debbia G, Fontana M, Coluccio V, Bonacorsi G, Zucchini P, Narni F, Torelli G, Luppi M, Marasca R. Physical contact with endothelial cells through β1- and β2- integrins rescues chronic lymphocytic leukemia cells from spontaneous and drug-induced apoptosis and induces a peculiar gene expression profile in leukemic cells. Haematologica 2011; 97:952-60. [PMID: 22207686 DOI: 10.3324/haematol.2011.054924] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Chronic lymphocytic leukemia B cells display prolonged survival in vivo, but when cultured in vitro rapidly undergo spontaneous apoptosis. We hypothesize that interactions with endothelial cells in infiltrated tissues and during recirculation may have a pathogenic role in chronic lymphocytic leukemia. DESIGN AND METHODS We evaluated apoptosis of leukemic cells after co-culture on a monolayer of human umbilical vein endothelial cells with addition of fludarabine and antibodies that block adhesion. Then, we compared microarray-based gene expression profiles between leukemic cells at baseline and after co-culture. RESULTS We found that the endothelial layer protected leukemic cells from apoptosis inducing a 2-fold mean decrement in apoptotic cells after 2 days of co-culture. Moreover, the endothelial layer decreased the sensitivity of chronic lymphocytic leukemia B cells to fludarabine-induced apoptosis. Physical contact with endothelium mediated by both β(1)- and β(2)- integrins is essential for the survival advantage of leukemic cells. In particular, blocking CD106 on endothelial cells or CD18 on leukemic B cells led to the almost complete abrogation of the survival advantage (>70% inhibition of viability). However, a reduction of apoptosis was also measured in leukemic cells cultured in conditioned medium collected after 2 days of co-culture, implying that survival is partially mediated by soluble factors. Overall, the contact with endothelial cells modulated 1,944 genes in chronic lymphocytic leukemia B cells, establishing a peculiar gene expression profile: up-regulation of angiogenesis-related genes, an increase of genes involved in TGFβ and Wnt signaling pathways, secretion of cytokines recruiting stromal cells and macrophages and up-regulation of anti-apoptotic molecules such as Bcl2 and Survivin. CONCLUSIONS Our study supports the notion that endothelial cells are major players in the chronic lymphocytic leukemia microenvironment. Adhesion to endothelium strongly supports survival, protects from drug-induced apoptosis and extensively modifies the gene expression profile of leukemic cells.
Collapse
Affiliation(s)
- Rossana Maffei
- Hematology Unit, Department of Oncology, Hematology and Respiratory Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chanan-Khan AA, Chitta K, Ersing N, Paulus A, Masood A, Sher T, Swaika A, Wallace PK, Mashtare TL, Wilding G, Lee K, Czuczman MS, Borrello I, Bangia N. Biological effects and clinical significance of lenalidomide-induced tumour flare reaction in patients with chronic lymphocytic leukaemia: in vivo evidence of immune activation and antitumour response. Br J Haematol 2011; 155:457-67. [PMID: 22010965 DOI: 10.1111/j.1365-2141.2011.08882.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lenalidomide has demonstrated impressive antileukaemic effects in patients with chronic lymphocytic leukaemia (CLL). The mechanism(s) by which it mediates these effects remain unclear. Clinically, CLL patients treated with lenalidomide demonstrate an acute inflammatory reaction, the tumour flare reaction that is suggestive of an immune activation phenomenon. Samples from CLL patients treated with lenalidomide were used to evaluate its effect on the tumour cell and components of its microenvironment (immune cellular and cytokine). Lenalidomide was unable to directly induce apoptosis in CLL cells in vitro, however it modulated costimulatory (CD80, CD83, CD86) surface molecules on CLL cells in vitro and in vivo. Concurrently, we demonstrated that NK cell proliferation was induced by lenalidomide treatment in patients and correlated with clinical response. Cytokine analysis showed increase in levels of TNF-α post-lenalidomide treatment, consistent with acute inflammatory reaction. Furthermore, the basal cytokine profile (high IL-8, MIG, IP-10 and IL-4 levels and low IL-5, MIP1a, MIP1b, IL12/p70) was predictive of clinical response to lenalidomide. Collectively, our correlative studies provide further evidence that the antileukaemic effect of lenalidomide in CLL is mediated not only through modulation of the leukaemic clone but also through elements of the tumour microenvironment.
Collapse
|
41
|
Cross-talk between chronic lymphocytic leukemia cells and bone marrow endothelial cells: role of signal transducer and activator of transcription 3. Hum Pathol 2011; 42:1989-2000. [PMID: 21733558 DOI: 10.1016/j.humpath.2011.02.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/04/2011] [Accepted: 02/09/2011] [Indexed: 01/28/2023]
Abstract
Chronic lymphocytic leukemia bone marrow is characterized by increased angiogenesis. However, the molecular mediators of neovascularization and the biologic significance of increased endothelial cell proliferation in chronic lymphocytic leukemia require further investigation. Because signal transducer and activator of transcription 3 is constitutively activated in chronic lymphocytic leukemia, we studied the role of signal transducer and activator of transcription 3 in modulating vascular endothelial growth factor expression and the effect of vascular endothelial cells on chronic lymphocytic leukemia cells. Using chromatin immunoprecipitation, we found that anti-signal transducer and activator of transcription 3 antibodies immunoprecipitated DNA of signal transducer and activator of transcription 3, vascular endothelial growth factor, and other signal transducer and activator of transcription 3-regulated genes. In addition, signal transducer and activator of transcription 3-short interfering RNA significantly reduced messenger RNA levels of vascular endothelial growth factor in chronic lymphocytic leukemia cells, suggesting that signal transducer and activator of transcription 3 induces vascular endothelial growth factor expression in chronic lymphocytic leukemia. Remarkably, bone marrow chronic lymphocytic leukemia cells expressed high levels of vascular endothelial growth factor, and high vascular endothelial growth factor levels were detected in the plasma of patients with untreated chronic lymphocytic leukemia and correlated with white blood cell count. Chronic lymphocytic leukemia bone marrow biopsies revealed increased microvascular density and attachment of chronic lymphocytic leukemia cells to endothelial cells. Coculture of chronic lymphocytic leukemia cells and human umbilical vein endothelial cells showed a similar attachment. Furthermore, coculture studies with human umbilical vein endothelial cells showed that human umbilical vein endothelial cells protected chronic lymphocytic leukemia cells from spontaneous apoptosis by direct cell-to-cell contact as assessed by flow cytometry using annexin V. Our data suggest that constitutively activated signal transducer and activator of transcription 3 induces vascular endothelial growth factor production by chronic lymphocytic leukemia cells and that chronic lymphocytic leukemia cells derive a survival advantage from endothelial cells via cell-to-cell contact.
Collapse
|
42
|
Ishdorj G, Johnston JB, Gibson SB. Cucurbitacin-I (JSI-124) activates the JNK/c-Jun signaling pathway independent of apoptosis and cell cycle arrest in B leukemic cells. BMC Cancer 2011; 11:268. [PMID: 21702955 PMCID: PMC3146936 DOI: 10.1186/1471-2407-11-268] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 06/24/2011] [Indexed: 01/22/2023] Open
Abstract
Background Cucurbitacin-I (JSI-124) is potent inhibitor of JAK/STAT3 signaling pathway and has anti-tumor activity in a variety of cancer including B cell leukemia. However, other molecular targets of JSI-124 beyond the JAK/STAT3 pathway are not fully understood. Methods BJAB, I-83, NALM-6 and primary CLL cells were treated with JSI-124 as indicated. Apoptosis was measured using flow cytometry for accumulation of sub-G1 phase cells (indicator of apoptosis) and Annexin V/PI staining. Cell cycle was analyzed by FACS for DNA content of G1 and G2 phases. Changes in phosphorylation and protein expression of p38, Erk1/2, JNK, c-Jun, and XIAP were detected by Western blot analysis. STAT3 and c-Jun genes were knocked out using siRNA transfection. VEGF expression was determined by mRNA and protein levels by RT-PCR and western blotting. Streptavidin Pull-Down Assay was used to determine c-Jun binding to the AP-1 DNA binding site. Results Herein, we show that JSI-124 activates c-Jun N-terminal kinase (JNK) and increases both the expression and serine phosphorylation of c-Jun protein in the B leukemic cell lines BJAB, I-83 and NALM-6. JSI-124 also activated MAPK p38 and MAPK Erk1/2 albeit at lower levels than JNK activation. Inhibition of the JNK signaling pathway failed to effect cell cycle arrest or apoptosis induced by JSI-124 but repressed JSI-124 induced c-Jun expression in these leukemia cells. The JNK pathway activation c-Jun leads to transcriptional activation of many genes. Treatment of BJAB, I-83, and NALM-6 cells with JSI-124 lead to an increase of Vascular Endothelial Growth Factor (VEGF) at both the mRNA and protein level. Knockdown of c-Jun expression and inhibition of JNK activation significantly blocked JSI-124 induced VEGF expression. Pretreatment with recombinant VEGF reduced JSI-124 induced apoptosis. Conclusions Taken together, our data demonstrates that JSI-124 activates the JNK signaling pathway independent of apoptosis and cell cycle arrest, leading to increased VEGF expression.
Collapse
|
43
|
Chronic lymphocytic leukemia cells induce anti-apoptotic effects of bone marrow stroma. Ann Hematol 2011; 90:1381-90. [DOI: 10.1007/s00277-011-1218-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 03/14/2011] [Indexed: 11/25/2022]
|
44
|
The role of phosphatidylinositol 3-kinase-δ in the immunomodulatory effects of lenalidomide in chronic lymphocytic leukemia. Blood 2011; 117:4323-7. [PMID: 21378270 DOI: 10.1182/blood-2010-11-315705] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In patients with chronic lymphocytic leukemia (CLL), lenalidomide can promote humoral immune responses but also induces a distinct disease-specific toxicity of tumor flare and cytokine release. These CLL-specific events result from increased expression of costimulatory molecules on B cells. Here we demonstrate that lenalidomide activation of CLL cells depends on the phosphatidylinositol 3-kinase p110δ (PI3K-δ) pathway. Inhibition of PI3K-δ signaling by the PI3K-δ-inhibiting drug, CAL-101, or by siRNA knockdown of p110δ, abrogates CLL cell activation, costimulatory molecule expression, and vascular endothelial growth factor and basic fibroblast growth factor gene expression that is induced by lenalidomide. In addition, CAL-101 attenuates lenalidomide-mediated increases in immunoglobulin M production by normal B cells. Collectively, these data demonstrate the importance of PI3K-δ signaling for lenalidomide immune modulation. These findings may guide development of strategies for the treatment of CLL that combine lenalidomide with CAL-101, with other inhibitors of the PI3K-δ pathway, or with other agents that target downstream kinases of this signaling pathway.
Collapse
|
45
|
Sorafenib induces cell death in chronic lymphocytic leukemia by translational downregulation of Mcl-1. Leukemia 2011; 25:838-47. [PMID: 21293487 DOI: 10.1038/leu.2011.2] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic lymphocytic leukemia (CLL) has a high prevalence in western countries and remains incurable to date. Here, we provide evidence that the multikinase inhibitor sorafenib induces apoptosis in primary CLL cells. This strong pro-apoptotic effect is not restricted to any subgroup of patients, based on Binet stage and the expression of ZAP70 or CD38. Mechanistically, sorafenib-induced cell death is preceded by a rapid downregulation of Mcl-1 through the inhibition of protein translation. Subsequently, the cell intrinsic apoptotic pathway is activated, indicated by destabilization of the mitochondrial membrane potential and activation of caspase-3 and -9. In contrast to sorafenib, the monoclonal vascular epidermal growth factor (VEGF)-antibody bevacizumab failed to induce apoptosis in CLL cells, suggesting that sorafenib induces cell death irrespectively of VEGF signalling. Notably, although sorafenib inhibits phosphorylation of the Scr-kinase Lck, knock-down of Lck did not induce apoptosis in CLL cells. Of note, the pro-apoptotic effect of sorafenib is not restricted to cell-cycle arrested cells, but is also maintained in proliferating CLL cells. In addition, we provide evidence that sorafenib can overcome drug resistance in CLL cells protected by microenvironmental signals from stromal cells. Conclusively, sorafenib is highly active in CLL and may compose a new therapeutic option for patients who relapse after immunochemotherapy.
Collapse
|
46
|
Shanafelt T, Zent C, Byrd J, Erlichman C, Laplant B, Ghosh A, Call T, Villalona-Calero M, Jelinek D, Bowen D, Laumann K, Wu W, Hanson C, Kay N. Phase II trials of single-agent anti-VEGF therapy for patients with chronic lymphocytic leukemia. Leuk Lymphoma 2010; 51:2222-9. [PMID: 21054149 PMCID: PMC3928074 DOI: 10.3109/10428194.2010.524327] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Between 2005 and 2008, we conducted separate phase II clinical testing of three distinct anti-VEGF therapies for patients with relapsed/refractory CLL. Collectively, 46 patients were accrued to trials of single-agent anti-VEGF antibody (bevacizumab, n = 13) or one of two receptor tyrosine kinase inhibitors (AZD2171, n = 15; sunitinib malate, n = 18). All patients have completed treatment. Patients received a median of two cycles of bevacizumab, AZD2171, or sunitinib malate. All three trials were closed early due to lack of efficacy. No complete or partial remissions were observed. Individually and collectively, these studies indicate that single-agent anti-VEGF therapy has minimal clinical activity for patients with relapsed/refractory CLL.
Collapse
Affiliation(s)
- Tait Shanafelt
- Department of Medicine, Mayo Clinic, Rochester, MN 55902, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Motiwala T, Datta J, Kutay H, Roy S, Jacob ST. Lyn kinase and ZAP70 are substrates of PTPROt in B-cells: Lyn inactivation by PTPROt sensitizes leukemia cells to VEGF-R inhibitor pazopanib. J Cell Biochem 2010; 110:846-56. [PMID: 20564182 DOI: 10.1002/jcb.22593] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have recently shown that the gene encoding the truncated form of protein tyrosine phosphatase receptor-type O (PTPROt) expressed predominantly in hematopoietic cells is epigenetically silenced in human primary chronic lymphocytic leukemia (B-CLL). To determine whether increased phosphorylation of the PTPROt substrates following PTPROt suppression alters signal transduction pathway(s) that impart a growth advantage to the leukemic lymphocytes, it is critical to discern the key substrates of PTPROt. Here, we used substrate-trapping assay to identify two novel substrates of PTPROt, the tyrosine kinases Lyn and ZAP70. Both Lyn and ZAP70 were dephosphorylated by wild-type PTPROt, but not by its catalytic site (CS) mutant. A critical phosphorylation site in Lyn, Y397, essential for its activity was dephosphorylated by PTPROt. Consequently, the activity of Lyn kinase was compromised when co-expressed with PTPROt-WT compared to vector control or upon co-expression with PTPROt-CS. Ectopic expression of PTPROt in Raji cells reduced phosphorylation of Lyn in the absence of any change in its protein levels. These results have revealed the physiological importance of PTPROt in regulating B-cell receptor signaling at Lyn kinase. Further, ectopic expression of PTPROt also sensitized the cells to the VEGF-R inhibitor Pazopanib.
Collapse
Affiliation(s)
- Tasneem Motiwala
- Department of Molecular and Cellular Biochemistry, College of Medicine, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
48
|
Szmigielska-Kapłon A, Lech-Maranda E, Jesionek-Kupnicka D, Góra-Tybor J, Błoński JZ, Kasznicki M, Kordek R, Robak T. Prognostic value of the bone marrow microvessel density in progressive B-cell chronic lymphocytic leukemia. Leuk Lymphoma 2010; 51:1351-3. [PMID: 20496991 DOI: 10.3109/10428194.2010.486092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Bazargan A, Tam CS. New angles of attack in the fight against chronic lymphocytic leukemia: the advent of novel non-chemotherapeutic agents. Leuk Lymphoma 2010; 51:1596-611. [DOI: 10.3109/10428194.2010.497885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Paesler J, Gehrke I, Gandhirajan RK, Filipovich A, Hertweck M, Erdfelder F, Uhrmacher S, Poll-Wolbeck SJ, Hallek M, Kreuzer KA. The Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitors Vatalanib and Pazopanib Potently Induce Apoptosis in Chronic Lymphocytic Leukemia Cells In vitro and In vivo. Clin Cancer Res 2010; 16:3390-8. [DOI: 10.1158/1078-0432.ccr-10-0232] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|