1
|
Ahmed N, Cavattoni I, Villiers W, Cugno C, Deola S, Mifsud B. Multi-omic analysis of longitudinal acute myeloid leukemia patient samples reveals potential prognostic markers linked to disease progression. Front Genet 2024; 15:1442539. [PMID: 39399221 PMCID: PMC11466779 DOI: 10.3389/fgene.2024.1442539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Relapse remains a determinant of treatment failure and contributes significantly to mortality in acute myeloid leukemia (AML) patients. Despite efforts to understand AML progression and relapse mechanisms, findings on acquired gene mutations in relapse vary, suggesting inherent genetic heterogeneity and emphasizing the role of epigenetic modifications. We conducted a multi-omic analysis using Omni-C, ATAC-seq, and RNA-seq on longitudinal samples from two adult AML patients at diagnosis and relapse. Herein, we characterized genetic and epigenetic changes in AML progression to elucidate the underlying mechanisms of relapse. Differential interaction analysis showed significant 3D chromatin landscape reorganization between relapse and diagnosis samples. Comparing global open chromatin profiles revealed that relapse samples had significantly fewer accessible chromatin regions than diagnosis samples. In addition, we discovered that relapse-related upregulation was achieved either by forming new active enhancer contacts or by losing interactions with poised enhancers/potential silencers. Altogether, our study highlights the impact of genetic and epigenetic changes on AML progression, underlining the importance of multi-omic approaches in understanding disease relapse mechanisms and guiding potential therapeutic interventions.
Collapse
Affiliation(s)
- Nisar Ahmed
- College of Health and Life Sciences, Genomics and Precision Medicine, Hamad Bin Khalifa University, Doha, Qatar
| | - Irene Cavattoni
- Hematology and Bone Marrow Transplant Unit, Ospedale Centrale Bolzano, Bolzano, Italy
| | - William Villiers
- College of Health and Life Sciences, Genomics and Precision Medicine, Hamad Bin Khalifa University, Doha, Qatar
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Chiara Cugno
- Advanced Cell Therapy Core, Research, Sidra Medicine, Doha, Qatar
| | - Sara Deola
- Advanced Cell Therapy Core, Research, Sidra Medicine, Doha, Qatar
| | - Borbala Mifsud
- College of Health and Life Sciences, Genomics and Precision Medicine, Hamad Bin Khalifa University, Doha, Qatar
- William Harvey Research Institute, Queen Mary University London, London, United Kingdom
| |
Collapse
|
2
|
Leroy H, Gadaud N, Bérard E, Klein E, Luquet I, Vial J, Rieu J, Lechevalier N, Tavitian S, Leguay T, Largeaud L, Bidet A, Delabesse E, Sarry A, de Grande A, Récher C, Pigneux A, Bertoli S, Dumas P. Dismal outcome of refractory or relapsing patients with myelodysplasia-related acute myeloid leukemia partially alleviated by intensive chemotherapy. Cancer Med 2024; 13:e7003. [PMID: 38400682 PMCID: PMC10891460 DOI: 10.1002/cam4.7003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) with myelodysplasia-related characteristics is a heterogeneous subset of AML that has been challenged throughout the history of myeloid malignancies classifications, considered to have similar outcomes as intermediate- or adverse-risk AML depending on the subgroup. However, little is known about the fate of these patients in refractory or relapsed situation (R/R) after first line therapy. METHODS A large series of R/R AML patients, recorded in the French DATAML registry, have received either intensive chemotherapy (ICT), azacitidine (AZA) as single agent, or best supportive care (BSC). A cohort of 183 patients (median age 63-year-old) with what was called at the time AML-MRC has been explored, and data are reported here. RESULTS Patient status was refractory for 93, while 90 had relapsed. Respectively, 88, 34, and 61 were included in the three treatment arms. The median OS of the whole cohort was 4.2 months (95%CI: 3.1-5.6) with a mean 1-year overall survival of 24% ± 3.2%. There was no significant survival difference between refractory and relapsed patients. The BSC group had overall a significantly worse outcome (p = 0.0001), and this remained true in both refractory (p = 0.01) and relapsed (p = 0.002) patients. Similar survivals were observed in both groups comparing ICT and AZA. CONCLUSIONS These data, reporting about an ill-explored population, indicate the poor prognosis of this condition where both ICT and AZA can be proposed. The latter, which was demonstrated here to be a feasible option, should be added to new targeted therapies.
Collapse
Affiliation(s)
- Harmony Leroy
- CHU Bordeaux, Service d'Hématologie Clinique et de Thérapie CellulaireBordeauxFrance
| | - Noémie Gadaud
- Service d'HématologieCentre Hospitalier Universitaire de ToulouseInstitut Universitaire du Cancer de Toulouse‐OncopoleToulouseFrance
| | - Emilie Bérard
- Centre Hospitalier Universitaire de Toulouse, Service d'Epidémiologie, CERPOP, Inserm, Université Toulouse III Paul SabatierToulouseFrance
| | - Emilie Klein
- CHU Bordeaux, Laboratoire d'Hématologie BiologiqueBordeauxFrance
| | - Isabelle Luquet
- Laboratoire d'HématologieCentre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse‐OncopoleToulouseFrance
| | | | - Jean‐Baptiste Rieu
- Laboratoire d'HématologieCentre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse‐OncopoleToulouseFrance
| | | | - Suzanne Tavitian
- Service d'HématologieCentre Hospitalier Universitaire de ToulouseInstitut Universitaire du Cancer de Toulouse‐OncopoleToulouseFrance
| | - Thibaut Leguay
- CHU Bordeaux, Service d'Hématologie Clinique et de Thérapie CellulaireBordeauxFrance
| | - Laetitia Largeaud
- Laboratoire d'HématologieCentre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse‐OncopoleToulouseFrance
| | - Audrey Bidet
- CHU Bordeaux, Laboratoire d'Hématologie BiologiqueBordeauxFrance
| | - Eric Delabesse
- Laboratoire d'HématologieCentre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse‐OncopoleToulouseFrance
| | - Audrey Sarry
- Service d'HématologieCentre Hospitalier Universitaire de ToulouseInstitut Universitaire du Cancer de Toulouse‐OncopoleToulouseFrance
| | | | - Christian Récher
- Service d'HématologieCentre Hospitalier Universitaire de ToulouseInstitut Universitaire du Cancer de Toulouse‐OncopoleToulouseFrance
| | - Arnaud Pigneux
- CHU Bordeaux, Service d'Hématologie Clinique et de Thérapie CellulaireBordeauxFrance
- Université de Bordeaux, Bordeaux, Institut National de la Santé et de la Recherche MédicaleBordeauxFrance
| | - Sarah Bertoli
- Service d'HématologieCentre Hospitalier Universitaire de ToulouseInstitut Universitaire du Cancer de Toulouse‐OncopoleToulouseFrance
| | - Pierre‐Yves Dumas
- CHU Bordeaux, Service d'Hématologie Clinique et de Thérapie CellulaireBordeauxFrance
- Université de Bordeaux, Bordeaux, Institut National de la Santé et de la Recherche MédicaleBordeauxFrance
| |
Collapse
|
3
|
Cytogenetic evolution predicts a poor prognosis in acute myeloid leukemia patients who relapse after allogeneic hematopoietic stem cell transplantation. Ann Hematol 2023; 102:89-97. [PMID: 36542104 DOI: 10.1007/s00277-022-05061-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 11/13/2022] [Indexed: 12/24/2022]
Abstract
Acute myeloid leukemia (AML) patients relapsing after allogeneic hematopoietic stem cell transplantation (allo-HSCT) have a poor prognosis. Cytogenetic evolution (CGE) has been investigated and found to have an important impact on the prognosis of relapsed leukemia, but its impact on AML patients relapsing after transplantation remains controversial. In this study, we analyzed 34 AML patients relapsing after allo-HSCT, among whom 14 developed additional abnormalities in chromosomal karyotype after leukemia recurrence (CGE group) and 20 patients did not (non-CGE group). We found that the cytogenetic characteristics were much more complex at relapse in the CGE group, and the acquisition of aberrations at relapse most commonly involved chromosome 11. The 6-month post-relapse overall survival (PROS) of the CGE group was significantly lower than that of the non-CGE group (21.4% versus 50.0%, P = 0.004). The CGE group also showed a trend of worse 2-year OS (7.1% versus 28.6%, P = 0.096). In the multivariate analyses, the occurrence of chronic graft-versus-host disease (HR 0.27 [95% CI, 0.11-0.68], P = 0.006) and a reduced-intensity FBA conditioning regimen (HR 0.42 [95% CI, 0.18-0.98], P = 0.045) were found to be two independent factors for a better PROS, whereas CGE (HR 3.16 [95% CI, 1.42-7.05], P = 0.005) was associated with a worse PROS. In conclusion, CGE was associated with a poor prognosis in AML patients who relapsed after allo-HSCT, and the importance of monitoring karyotype changes after transplantation should be noted.
Collapse
|
4
|
Okada Y, Nakasone H, Nakamura Y, Kawamura M, Kawamura S, Takeshita J, Yoshino N, Misaki Y, Yoshimura K, Matsumi S, Gomyo A, Kawamura T, Akahoshi Y, Kusuda M, Kameda K, Tanihara A, Tamaki M, Kimura SI, Kobayashi S, Kako S, Kimura F, Kanda Y. Prognostic impact of chromosomal changes at relapse after allogeneic hematopoietic cell transplantation for acute myeloid leukemia or myelodysplastic syndrome. Bone Marrow Transplant 2022; 57:810-816. [PMID: 35314792 DOI: 10.1038/s41409-022-01635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 11/09/2022]
Abstract
Chromosome analysis is a powerful prognostic tool in myeloid malignancies. Recipients who experience relapse after allogeneic hematopoietic cell transplantation (allo-HCT) often show chromosomal changes between diagnosis and relapse. However, the clinical impact of chromosomal changes and the efficacy of post-relapse treatment according to chromosomal changes have not been fully investigated. We retrospectively analyzed 72 recipients who had experienced relapse after allo-HCT for acute myeloid leukemia or myelodysplastic syndrome. We categorized them into two groups: with or without clonal chromosomal changes at relapse after allo-HCT. Post-relapse survival was shorter in the clonal chromosomal change group (median 117 days vs 275 days, P = 0.019). Moreover, acquisition of chromosome 7 abnormality or complex changes tended to be associated with inferior survival in a univariate analysis (median 92 days vs median 173 days, P = 0.043), and this adverse impact was confirmed in a multivariate analysis (hazard ratio 2.07, P = 0.024). The patterns of chromosomal changes from diagnosis to relapse after allo-HCT were heterogenous, and further investigations are required to clarify the effect of individual chromosomal changes.
Collapse
Affiliation(s)
- Yosuke Okada
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan.,Division of Hematology, Department of Internal Medicine, National Defense Medical College Hospital, Saitama, Japan
| | - Hideki Nakasone
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Yuhei Nakamura
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Masakatsu Kawamura
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Shunto Kawamura
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Junko Takeshita
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Nozomu Yoshino
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Yukiko Misaki
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Kazuki Yoshimura
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Shimpei Matsumi
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Ayumi Gomyo
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Toshikuni Kawamura
- Division of Hematology, Department of Internal Medicine, National Defense Medical College Hospital, Saitama, Japan
| | - Yu Akahoshi
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Machiko Kusuda
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Kazuaki Kameda
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Aki Tanihara
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Masaharu Tamaki
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Shun-Ichi Kimura
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Shinichi Kobayashi
- Division of Hematology, Department of Internal Medicine, National Defense Medical College Hospital, Saitama, Japan
| | - Shinichi Kako
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Fumihiko Kimura
- Division of Hematology, Department of Internal Medicine, National Defense Medical College Hospital, Saitama, Japan
| | - Yoshinobu Kanda
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan.
| |
Collapse
|
5
|
Klein K, Beverloo HB, Zimmermann M, Raimondi SC, von Neuhoff C, de Haas V, van Weelderen R, Cloos J, Abrahamsson J, Bertrand Y, Dworzak M, Fynn A, Gibson B, Ha SY, Harrison CJ, Hasle H, Elitzur S, Leverger G, Maschan A, Razzouk B, Reinhardt D, Rizzari C, Smisek P, Creutzig U, Kaspers GJL. Prognostic significance of chromosomal abnormalities at relapse in children with relapsed acute myeloid leukemia: A retrospective cohort study of the Relapsed AML 2001/01 Study. Pediatr Blood Cancer 2022; 69:e29341. [PMID: 34532968 DOI: 10.1002/pbc.29341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/30/2021] [Accepted: 08/18/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND In addition to treatment response, cytogenetic and molecular aberrations are the most important prognostic factors in children with de novo acute myeloid leukemia (AML). However, little is known about cytogenetics at the time of relapse. METHODS This international study analyzed the prognostic value of cytogenetic profiles and karyotypic changes in pediatric relapsed AML in relation to the probability of event-free (pEFS) and overall survival (pOS). For this purpose, cytogenetic reports from all patients registered on the Relapsed AML 2001/01 Study were reviewed and classified. RESULTS Cytogenetic information at relapse was available for 403 (71%) of 569 registered patients. Frequently detected aberrations at relapse were t(8;21)(q22;q22) (n = 60) and inv(16)(p13.1q22)/t(16;16)(p13.1;q22) (n = 24), both associated with relatively good outcome (4-year pOS 59% and 71%, respectively). Monosomy 7/7q-, t(9;11)(p22;q23), t(10;11)(p12;q23), and complex karyotypes were associated with poor outcomes (4-year pOS 17%, 19%, 22%, and 22%, respectively). Of 261 (65%) patients for whom cytogenetic data were reliable at both diagnosis and relapse, pEFS was inferior for patients with karyotypic instability (n = 128, 49%), but pOS was similar. Unstable karyotypes with both gain and loss of aberrations were associated with inferior outcome. Early treatment response, time to relapse, and cytogenetic profile at time of relapse were the most important prognostic factors, both outweighing karytoypic instability per se. CONCLUSION The cytogenetic subgroup at relapse is an independent risk factor for (event-free) survival. Cytogenetic assessment at the time of relapse is of high importance and may contribute to improved risk-adapted treatment for children with relapsed AML.
Collapse
Affiliation(s)
- Kim Klein
- Pediatric Oncology, Cancer Center Amsterdam, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Pediatric Hematology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - H Berna Beverloo
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Martin Zimmermann
- Pediatric Hematology/Oncology, Hannover Medical School, Hannover, Germany
| | - Susana C Raimondi
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christine von Neuhoff
- Department of Pediatric Hematology-Oncology, University Hospital Essen, Essen, Germany
| | - Valérie de Haas
- Clinical laboratory, Dutch Childhood Oncology Group, The Hague, The Netherlands.,Department of Pediatric Hematology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Romy van Weelderen
- Pediatric Oncology, Cancer Center Amsterdam, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Pediatric Hematology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jacqueline Cloos
- Pediatric Oncology, Cancer Center Amsterdam, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jonas Abrahamsson
- Department of Pediatrics, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Yves Bertrand
- Children's Leukemia Cooperative Group/European Organisation for Research and Treatment of Cancer, Institut d'Hématologie et d'Oncologie Pédiatrique, Lyon, France
| | - Michael Dworzak
- St. Anna Children's Hospital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria
| | - Alcira Fynn
- Grupo Argentino de Tratamiento de la Leucemia Aguda, Children's Hospital La Plata, La Plata, Buenos Aires, Argentina
| | - Brenda Gibson
- Department of Paediatric Haematology, United Kingdom Childhood Leukaemia Study Group, Royal Hospital for Children, Glasgow, UK
| | - Shau-Yin Ha
- Department of Pediatrics/Pediatric oncology, Hong Kong Children's Hospital, Hong Kong, China
| | - Christine J Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Sarah Elitzur
- Schneider Children's Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Guy Leverger
- Hematopathology Department, Assistance Publique Hopitaux de Paris, Paris, France
| | - Alexei Maschan
- Oncology and Immunology, Dmitriy Rogachev Federal Center for Pediatric Hematology, Moscow, Russia
| | - Bassem Razzouk
- Children's Center for Cancer and Blood Diseases, Peyton Manning Children's Hospital at St. Vincent, Indianapolis, Indiana, USA
| | - Dirk Reinhardt
- Department of Pediatric Hematology-Oncology, University Hospital Essen, Essen, Germany
| | - Carmelo Rizzari
- Pediatric Hematology-Oncology Unit, Department of Pediatrics, University of Milano-Bicocca, S. Gerardo Hospital, Monza, Italy
| | - Pter Smisek
- Department of Pediatric Hematology and Oncology, Carles University in Prague/Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Ursula Creutzig
- Pediatric Hematology/Oncology, Hannover Medical School, Hannover, Germany
| | - Gertjan J L Kaspers
- Pediatric Oncology, Cancer Center Amsterdam, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Clinical laboratory, Dutch Childhood Oncology Group, The Hague, The Netherlands.,Department of Pediatric Hematology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
6
|
de Oliveira Lisboa M, Brofman PRS, Schmid-Braz AT, Rangel-Pozzo A, Mai S. Chromosomal Instability in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13112655. [PMID: 34071283 PMCID: PMC8198625 DOI: 10.3390/cancers13112655] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Chromosomal instability (CIN), the increasing rate in which cells acquire new chromosomal alterations, is one of the hallmarks of cancer. Many studies highlighted CIN as an important mechanism in the origin, progression, and relapse of acute myeloid leukemia (AML). The ambivalent feature of CIN as a cancer-promoting or cancer-suppressing mechanism might explain the prognostic variability. The latter, however, is described in very few studies. This review highlights the important CIN mechanisms in AML, showing that CIN signatures can occur largely in all the three major AML types (de novo AML, secondary-AML, and therapy-related-AML). CIN features in AML could also be age-related and reflect the heterogeneity of the disease. Although most of these abnormalities show an adverse prognostic value, they also offer a strong new perspective on personalized therapy approaches, which goes beyond assessing CIN in vitro in patient tumor samples to predict prognosis. Current and emerging AML therapies are exploring CIN to improve AML treatment, which includes blocking CIN or increasing CIN beyond the limit threshold to induce cell death. We argue that the characterization of CIN features, not included yet in the routine diagnostic of AML patients, might provide a better stratification of patients and be extended to a more personalized therapeutic approach.
Collapse
Affiliation(s)
- Mateus de Oliveira Lisboa
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba 80215-901, Paraná, Brazil; (M.d.O.L.); (P.R.S.B.)
| | - Paulo Roberto Slud Brofman
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba 80215-901, Paraná, Brazil; (M.d.O.L.); (P.R.S.B.)
| | - Ana Teresa Schmid-Braz
- Hospital das Clínicas, Universidade Federal do Paraná, Curitiba 80060-240, Paraná, Brazil;
| | - Aline Rangel-Pozzo
- Department of Physiology and Pathophysiology, University of Manitoba, Cell Biology, CancerCare Manitoba Research Institute, Winnipeg, MB R3C 2B7, Canada
- Correspondence: (A.R.-P.); (S.M.); Tel.: +1-(204)787-4125 (S.M.)
| | - Sabine Mai
- Department of Physiology and Pathophysiology, University of Manitoba, Cell Biology, CancerCare Manitoba Research Institute, Winnipeg, MB R3C 2B7, Canada
- Correspondence: (A.R.-P.); (S.M.); Tel.: +1-(204)787-4125 (S.M.)
| |
Collapse
|
7
|
Rapaport F, Neelamraju Y, Baslan T, Hassane D, Gruszczynska A, Robert de Massy M, Farnoud N, Haddox S, Lee T, Medina-Martinez J, Sheridan C, Thurmond A, Becker M, Bekiranov S, Carroll M, Moses Murdock H, Valk PJM, Bullinger L, D'Andrea R, Lowe SW, Neuberg D, Levine RL, Melnick A, Garrett-Bakelman FE. Genomic and evolutionary portraits of disease relapse in acute myeloid leukemia. Leukemia 2021; 35:2688-2692. [PMID: 33580203 PMCID: PMC8357838 DOI: 10.1038/s41375-021-01153-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/23/2020] [Accepted: 01/22/2021] [Indexed: 11/12/2022]
Affiliation(s)
- Franck Rapaport
- Molecular Cancer Medicine Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Center for Clinical and Translational Science, The Rockefeller University, New York, NY, USA.,St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Yaseswini Neelamraju
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Timour Baslan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Duane Hassane
- Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Agata Gruszczynska
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Marc Robert de Massy
- Molecular Cancer Medicine Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Noushin Farnoud
- Molecular Cancer Medicine Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel Haddox
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Tak Lee
- Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Juan Medina-Martinez
- Molecular Cancer Medicine Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Caroline Sheridan
- Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Alexis Thurmond
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Michael Becker
- Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Martin Carroll
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Heardly Moses Murdock
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Peter J M Valk
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Lars Bullinger
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany.,Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - Richard D'Andrea
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Donna Neuberg
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA, USA
| | - Ross L Levine
- Molecular Cancer Medicine Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ari Melnick
- Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Francine E Garrett-Bakelman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA. .,Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA. .,Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA. .,University of Virginia Cancer Center, Charlottesville, VA, USA.
| |
Collapse
|
8
|
Yuasa M, Yamamoto H, Mitsuki T, Kageyama K, Kaji D, Taya Y, Nishida A, Ishiwata K, Takagi S, Yamamoto G, Asano-Mori Y, Wake A, Koike Y, Makino S, Uchida N, Taniguchi S. Prognostic Impact of Cytogenetic Evolution on the Outcome of Allogeneic Stem Cell Transplantation in Patients with Acute Myeloid Leukemia in Nonremission: A Single-Institute Analysis of 212 Recipients. Biol Blood Marrow Transplant 2020; 26:2262-2270. [PMID: 32871257 DOI: 10.1016/j.bbmt.2020.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/16/2020] [Accepted: 08/22/2020] [Indexed: 12/16/2022]
Abstract
Recent progress in genetic analysis technology has helped researchers understand the pathogenesis of acute myeloid leukemia (AML). Considering this progress, AML karyotype is still one of the most significant prognostic factors that provides risk-adapted treatment approaches. Karyotype changes during treatment have been observed at times, but their prognostic impact is sparse, especially on allogeneic stem cell transplantation (allo-SCT). Here, we retrospectively investigated the effect of chromosomal changes between diagnosis and pretransplantation on the prognosis of allo-SCT by analyzing the outcomes of 212 consecutive patients who underwent allo-SCT for the first time at Toranomon Hospital, Tokyo, Japan, between 2008 and 2018. Cytogenetic abnormalities at diagnosis and pretransplantation were categorized based on the 2017 European Leukemia Net risk stratification. Genetic abnormalities such as FLT3-ITD and NPM1 were not considered in this study due to lack of genetic information in most patients. We defined cytogenetic evolution as chromosomal changes classified from lower category to higher category. Seventeen patients (8%) had cytogenetic evolution between diagnosis and pretransplantation, and they showed a significantly worse relapse rate than those who were categorized in the intermediate group based on the karyotype at diagnosis (3-year confidence interval [CI] of relapse, 57.4% versus 24.9%; P < .01). In multivariate analysis, cytogenetic evolution before allo-SCT had a significant impact on the CI of relapse (hazard ratio [HR], 3.89; CI, 1.75 to 8.67; P < .01), as well as the high score of the hematopoietic cell transplantation-specific comorbidity index (HR, 0.54; CI, 0.31 to 0.94; P = .03), but had no significant impact on overall survival or nonrelapse mortality. These results indicate that cytogenetic evolution has a significant impact after allo-SCT and should be considered during AML treatment.
Collapse
Affiliation(s)
| | | | - Takashi Mitsuki
- Department of Hematology, Toranomon Hospital Kajigaya, Kanagawa, Japan
| | - Kosei Kageyama
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Daisuke Kaji
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Yuki Taya
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Aya Nishida
- Department of Hematology, Toranomon Hospital Kajigaya, Kanagawa, Japan
| | - Kazuya Ishiwata
- Department of Hematology, Toranomon Hospital Kajigaya, Kanagawa, Japan
| | | | - Go Yamamoto
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | | | - Atsushi Wake
- Department of Hematology, Toranomon Hospital Kajigaya, Kanagawa, Japan
| | - Yukako Koike
- Department of Clinical Laboratory, Toranomon Hospital, Tokyo, Japan
| | - Shigeyoshi Makino
- Department of Transfusion Medicine, Toranomon Hospital, Tokyo, Japan
| | - Naoyuki Uchida
- Department of Hematology, Toranomon Hospital, Tokyo, Japan.
| | - Shuichi Taniguchi
- Department of Hematology, Toranomon Hospital, Tokyo, Japan; Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| |
Collapse
|
9
|
Abstract
Modern management of acute myeloid leukaemia (AML) relies on the integration of phenotypic and genetic data to assign classification, establish prognosis, enhance monitoring and guide treatment. The prism through which we can now disperse a patient's leukaemia, interpret and apply our understanding has fundamentally changed since the completion of the first whole-genome sequencing (WGS) of an AML patient in 2008 and where possible, many clinicians would now prefer to delay treatment decisions until the karyotype and genetic status of a new patient is known. The success of global sequencing initiatives such as The Cancer Genome Atlas (TCGA) have brought us significantly closer to cataloguing the full spectrum of coding mutations involved in human malignancy. Indeed, genetic capability has raced ahead of our capacity to apply much of this knowledge into clinical practice and we are in the peculiar position of having routine access to genetic information on an individual patient's leukaemia that cannot be reliably interpreted or utilised. This is a measure of how rapid the progress has been, and this rate of change is likely to continue into the foreseeable future as research intensifies on the non-coding genome and the epigenome, as we scrutinise disease at a single cell level, and as initiatives like Beat AML and the Harmony Alliance progress. In this review, we will examine how interrogation of the coding genome is revolutionising our understanding of AML and improving our ability to underscore differences between paediatric and adult onset, sporadic and inherited forms of disease. We will look at how this knowledge is informing improvements in outcome prediction and the development of novel treatments, bringing us a step closer to personalised therapy for myeloid malignancy.
Collapse
Affiliation(s)
- Sarah Charrot
- Centre for Haemato-oncology, Barts Cancer Institute, QMUL, London, UK
| | - Hannah Armes
- Centre for Haemato-oncology, Barts Cancer Institute, QMUL, London, UK
| | - Ana Rio-Machin
- Centre for Haemato-oncology, Barts Cancer Institute, QMUL, London, UK
| | - Jude Fitzgibbon
- Centre for Haemato-oncology, Barts Cancer Institute, QMUL, London, UK
| |
Collapse
|
10
|
Vosberg S, Greif PA. Clonal evolution of acute myeloid leukemia from diagnosis to relapse. Genes Chromosomes Cancer 2019; 58:839-849. [PMID: 31478278 PMCID: PMC6852285 DOI: 10.1002/gcc.22806] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
Based on the individual genetic profile, acute myeloid leukemia (AML) patients are classified into clinically meaningful molecular subtypes. However, the mutational profile within these groups is highly heterogeneous and multiple AML subclones may exist in a single patient in parallel. Distinct alterations of single cells may be key factors in providing the fitness to survive in this highly competitive environment. Although the majority of AML patients initially respond to induction chemotherapy and achieve a complete remission, most patients will eventually relapse. These points toward an evolutionary process transforming treatment-sensitive cells into treatment-resistant cells. As described by Charles Darwin, evolution by natural selection is the selection of individuals that are optimally adapted to their environment, based on the random acquisition of heritable changes. By changing their mutational profile, AML cell populations are able to adapt to the new environment defined by chemotherapy treatment, ultimately leading to cell survival and regrowth. In this review, we will summarize the current knowledge about clonal evolution in AML, describe different models of clonal evolution, and provide the methodological background that allows the detection of clonal evolution in individual AML patients. During the last years, numerous studies have focused on delineating the molecular patterns that are associated with AML relapse, each focusing on a particular genetic subgroup of AML. Finally, we will review the results of these studies in the light of Darwinian evolution and discuss open questions regarding the molecular background of relapse development.
Collapse
Affiliation(s)
- Sebastian Vosberg
- Department of Medicine IIIUniversity Hospital, LMU MunichMunichGermany
- Experimental Leukemia and Lymphoma Research (ELLF)University Hospital, LMU MunichMunichGermany
- German Cancer Consortium (DKTK)HeidelbergGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Philipp A. Greif
- Department of Medicine IIIUniversity Hospital, LMU MunichMunichGermany
- Experimental Leukemia and Lymphoma Research (ELLF)University Hospital, LMU MunichMunichGermany
- German Cancer Consortium (DKTK)HeidelbergGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| |
Collapse
|
11
|
Emerging agents and regimens for treatment of relapsed and refractory acute myeloid leukemia. Cancer Gene Ther 2019; 27:1-14. [PMID: 31292516 DOI: 10.1038/s41417-019-0119-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/14/2019] [Accepted: 06/23/2019] [Indexed: 12/28/2022]
Abstract
Relapsed and refractory acute myeloid leukemia (R/R AML) has complicated pathogenesis. Its treatment is complicated, and the prognosis is poor. So far, there is no consensus on what is the optimal treatment strategy. With the deepening of research, new chemotherapy regimens, new small molecule inhibitors, and immunotherapy have been increasingly applied to clinical trials, providing more possibilities for the treatment of R/R AML. The most effective treatment for patients who achieve complete remission after recurrence is still sequential conditioning therapy followed by allogeneic hematopoietic cell transplantation. Finding the best combination of treatments is still an important goal for the future.
Collapse
|
12
|
Megías-Vericat JE, Martínez-Cuadrón D, Sanz MÁ, Montesinos P. Salvage regimens using conventional chemotherapy agents for relapsed/refractory adult AML patients: a systematic literature review. Ann Hematol 2018; 97:1115-1153. [DOI: 10.1007/s00277-018-3304-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/12/2018] [Indexed: 12/26/2022]
|
13
|
Pashaiefar H, Yaghmaie M, Tavakkoly-Bazzaz J, Hamidollah Ghaffari S, Alimoghaddam K, Izadi P, Ghavamzadeh A. The Association between PARP1 and LIG3 Expression Levels and Chromosomal Translocations in Acute Myeloid Leukemia Patients. CELL JOURNAL 2018; 20:204-210. [PMID: 29633598 PMCID: PMC5893292 DOI: 10.22074/cellj.2018.5210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/24/2017] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Chromosomal translocations are among the most common mutational events in cancer development, especially in hematologic malignancies. However, the precise molecular mechanism of these events is still not clear. It has been recently shown that alternative non-homologous end-joining (alt-NHEJ), a newly described pathway for double-stranded DNA break repair, mediates the formation of chromosomal translocations. Here, we examined the expression levels of the main components of alt-NHEJ (PARP1 and LIG3) in acute myeloid leukemia (AML) patients and assessed their potential correlation with the formation of chromosomal translocations. MATERIALS AND METHODS This experimental study used reverse transcription-quantitative polymerase chain reaction (RTqPCR) to quantify the expression levels of PARP1 and LIG3 at the transcript level in AML patients (n=78) and healthy individuals (n=19). RESULTS PARP1 was the only gene overexpressed in the AML group when compared with healthy individuals (P=0.0004), especially in the poor prognosis sub-group. Both genes were, however, found to be up-regulated in AML patients with chromosomal translocations (P=0.04 and 0.0004 respectively). Moreover, patients with one isolated translocation showed an over-expression of only LIG3 (P=0.005), whereas those with two or more translocations over-expressed both LIG3 (P=0.002) and PARP1 (P=0.02). CONCLUSIONS The significant correlations observed between PARP1 and LIG3 expression and the rate of chromosomal translocations in AML patients provides a molecular context for further studies to investigate the causality of this association.
Collapse
Affiliation(s)
- Hossein Pashaiefar
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Yaghmaie
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Javad Tavakkoly-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hamidollah Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Alimoghaddam
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Pantea Izadi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Ghavamzadeh
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Cytogenetic Evolution in Myeloid Neoplasms at Relapse after Allogeneic Hematopoietic Cell Transplantation: Association with Previous Chemotherapy and Effect on Survival. Biol Blood Marrow Transplant 2017; 23:782-789. [DOI: 10.1016/j.bbmt.2017.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/06/2017] [Indexed: 01/21/2023]
|
15
|
Shimizu H, Yokohama A, Ishizaki T, Hatsumi N, Takada S, Saitoh T, Sakura T, Nojima Y, Handa H. Clonal evolution detected with conventional cytogenetic analysis is a potent prognostic factor in adult patients with relapsed AML. Hematol Oncol 2017; 36:252-257. [DOI: 10.1002/hon.2393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/25/2017] [Accepted: 02/10/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Hiroaki Shimizu
- Department of Medicine and Clinical Science; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Akihiko Yokohama
- Division of Blood Transfusion Service, Faculty of Medicine; Gunma University Hospital; Maebashi Gunma Japan
| | - Takuma Ishizaki
- Department of Medicine and Clinical Science; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Nahoko Hatsumi
- Leukemia Research Center; Saiseikai Maebashi Hospital; Maebashi Gunma Japan
| | - Satoru Takada
- Leukemia Research Center; Saiseikai Maebashi Hospital; Maebashi Gunma Japan
| | - Takayuki Saitoh
- Gunma University School of Health Sciences, Faculty of Medicine; Gunma University; Maebashi Gunma Japan
| | - Toru Sakura
- Leukemia Research Center; Saiseikai Maebashi Hospital; Maebashi Gunma Japan
| | - Yoshihisa Nojima
- Department of Medicine and Clinical Science; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Hiroshi Handa
- Department of Medicine and Clinical Science; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| |
Collapse
|
16
|
Hackl H, Astanina K, Wieser R. Molecular and genetic alterations associated with therapy resistance and relapse of acute myeloid leukemia. J Hematol Oncol 2017; 10:51. [PMID: 28219393 PMCID: PMC5322789 DOI: 10.1186/s13045-017-0416-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/04/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The majority of individuals with acute myeloid leukemia (AML) respond to initial chemotherapy and achieve a complete remission, yet only a minority experience long-term survival because a large proportion of patients eventually relapse with therapy-resistant disease. Relapse therefore represents a central problem in the treatment of AML. Despite this, and in contrast to the extensive knowledge about the molecular events underlying the process of leukemogenesis, information about the mechanisms leading to therapy resistance and relapse is still limited. PURPOSE AND CONTENT OF REVIEW Recently, a number of studies have aimed to fill this gap and provided valuable information about the clonal composition and evolution of leukemic cell populations during the course of disease, and about genetic, epigenetic, and gene expression changes associated with relapse. In this review, these studies are summarized and discussed, and the data reported in them are compiled in order to provide a resource for the identification of molecular aberrations recurrently acquired at, and thus potentially contributing to, disease recurrence and the associated therapy resistance. This survey indeed uncovered genetic aberrations with known associations with therapy resistance that were newly gained at relapse in a subset of patients. Furthermore, the expression of a number of protein coding and microRNA genes was reported to change between diagnosis and relapse in a statistically significant manner. CONCLUSIONS Together, these findings foster the expectation that future studies on larger and more homogeneous patient cohorts will uncover pathways that are robustly associated with relapse, thus representing potential targets for rationally designed therapies that may improve the treatment of patients with relapsed AML, or even facilitate the prevention of relapse in the first place.
Collapse
Affiliation(s)
- Hubert Hackl
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Ksenia Astanina
- Department of Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Wien, Austria
| | - Rotraud Wieser
- Department of Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Wien, Austria
| |
Collapse
|
17
|
Kim H, Seol YM, Song MK, Choi YJ, Shin HJ, Park SH, Lee EY, Chung JS. Evaluation of prognostic factors in patients with relapsed AML: Clonal evolution versus residual disease. Blood Res 2016; 51:175-180. [PMID: 27722128 PMCID: PMC5054249 DOI: 10.5045/br.2016.51.3.175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/20/2016] [Accepted: 08/02/2016] [Indexed: 01/22/2023] Open
Abstract
Background It is widely known that the prognosis of acute myeloid leukemia (AML) depends on chromosomal abnormalities. The majority of AML patients relapse and experience a dismal disease course despite initial remission. Methods We reviewed the medical records and laboratory findings of 55 AML patients who had relapsed between 2004 and 2013 and who had been treated at the Division of Hematology of the Pusan National University Hospital. Results The event-free survival (EFS) was related to prognostic karyotype classification at the time of diagnosis and relapse (unfavorable vs. favorable or intermediate karyotypes at diagnosis, 8.2 vs. 11.9 mo, P=0.003; unfavorable vs. favorable or intermediate karyotypes at relapse, 8.2 vs. 11.9 mo, P=0.009). The overall survival (OS) was significantly correlated with karyotype classification only at diagnosis (unfavorable vs. favorable or intermediate vs. karyotypes at diagnosis, 8.5 vs. 21.8 mo, P=0.001; unfavorable vs. favorable or intermediate karyotypes at relapse, 8.5 vs. 21.2 mo, P=0.136). A change in karyotype between diagnosis and relapse, which is regarded as a factor of resistance against treatment, was not a significant prognostic factor for OS, EFS, and post-relapse survival (PRS). A Cox proportional hazards model showed that the combined use of fludarabine, cytosine arabinoside, and granulocyte colony-stimulating factor (FLAG) as a salvage regimen, was a significant prognostic factor for OS (hazard ratio=0.399, P=0.010) and the PRS (hazard ratio=0.447, P=0.031). Conclusion The karyotype classification at diagnosis predicts survival including PRS in relapsed AML patients as well as in treatment-naïve patients. We suggest that presently, administration of salvage FLAG could be a better treatment option.
Collapse
Affiliation(s)
- Hyojeong Kim
- Department of Hematology-Oncology, Pusan National University Hospital, School of Medicine, Pusan National University, Busan, Korea
| | - Young Mi Seol
- Department of Hematology-Oncology, Pusan National University Hospital, School of Medicine, Pusan National University, Busan, Korea
| | - Moo-Kon Song
- Department of Hematology-Oncology, Pusan National University Hospital, School of Medicine, Pusan National University, Busan, Korea
| | - Young Jin Choi
- Department of Hematology-Oncology, Pusan National University Hospital, School of Medicine, Pusan National University, Busan, Korea
| | - Ho-Jin Shin
- Department of Hematology-Oncology, Pusan National University Hospital, School of Medicine, Pusan National University, Busan, Korea
| | - Sang Hyuk Park
- Department of Laboratory Medicine, Pusan National University Hospital, School of Medicine, Pusan National University, Busan, Korea
| | - Eun Yup Lee
- Department of Laboratory Medicine, Pusan National University Hospital, School of Medicine, Pusan National University, Busan, Korea
| | - Joo-Seop Chung
- Department of Hematology-Oncology, Pusan National University Hospital, School of Medicine, Pusan National University, Busan, Korea
| |
Collapse
|
18
|
Weber S, Haferlach T, Alpermann T, Perglerová K, Schnittger S, Haferlach C, Kern W. Feasibility of BAALC gene expression for detection of minimal residual disease and risk stratification in normal karyotype acute myeloid leukaemia. Br J Haematol 2016; 175:904-916. [PMID: 27662611 DOI: 10.1111/bjh.14343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/31/2016] [Indexed: 12/28/2022]
Abstract
High BAALC gene expression has been associated with poor prognosis in cytogenetically normal acute myeloid leukaemia (CN-AML) and has been suggested as a suitable marker for assessing minimal residual disease (MRD). The purpose of this study was to substantiate these findings by the analysis of a large data set of 632 diagnostic and follow-up samples in 142 intensively treated CN-AML patients. Paired diagnostic/relapse samples of 35 patients revealed stable high BAALC expression in 89%, irrespective of a high proportion of clonal evolution found in 49% of these cases. High BAALC expression, both directly after induction chemotherapy and within 3-6 months after induction chemotherapy, correlated significantly with shorter event-free survival and overall survival. Moreover, 8 of 10 patients displaying high BAALC expression levels after completion of induction therapy as well as 5 of 5 patients exhibiting high BAALC expression levels within 3-6 months after induction chemotherapy experienced relapse with a median of 197 and 101 days, respectively, from sampling to relapse. Thus, BAALC expression-based MRD detection during therapy may be considered a strategy to identify patients at high risk of relapse.
Collapse
Affiliation(s)
- Simone Weber
- MLL Munich Leukaemia Laboratory, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Next-generation sequencing of FLT3 internal tandem duplications for minimal residual disease monitoring in acute myeloid leukemia. Oncotarget 2016; 6:22812-21. [PMID: 26078355 PMCID: PMC4673201 DOI: 10.18632/oncotarget.4333] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 05/25/2015] [Indexed: 11/25/2022] Open
Abstract
Minimal Residual Disease (MRD) detection can be used for early intervention in relapse, risk stratification, and treatment guidance. FLT3 ITD is the most common mutation found in AML patients with normal karyotype. We evaluated the feasibility of NGS with high coverage (up to 2.4.10(6) PE fragments) for MRD monitoring on FLT3 ITD. We sequenced 37 adult patients at diagnosis and various times of their disease (64 samples) and compared the results with FLT3 ITD ratios measured by fragment analysis. We found that NGS could detect variable insertion sites and lengths in a single test for several patients. We also showed mutational shifts between diagnosis and relapse, with the outgrowth of a clone at relapse different from that dominant at diagnosis. Since NGS is scalable, we were able to adapt sensitivity by increasing the number of reads obtained for follow-up samples, compared to diagnosis samples. This technique could be applied to detect biological relapse before its clinical consequences and to better tailor treatments through the use of FLT3 inhibitors. Larger cohorts should be assessed in order to validate this approach.
Collapse
|
20
|
Kell J. Considerations and challenges for patients with refractory and relapsed acute myeloid leukaemia. Leuk Res 2016; 47:149-60. [PMID: 27371910 DOI: 10.1016/j.leukres.2016.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 05/30/2016] [Indexed: 12/29/2022]
Abstract
Despite advances in understanding the complexities of acute myeloid leukaemia (AML), the treatment of refractory or relapsed AML (rrAML) remains a daunting clinical challenge. Numerous clinical trials have failed to identify new treatments or combinations of existing therapies that substantially improve outcomes and survival. This may be due, at least in part, to heterogeneity among study patients with respect to multiple inter-related factors that have been shown to affect treatment outcomes for patients with rrAML; such factors include age, cytogenetics, immunophenotypic changes, and (in the case of relapsed AML) duration of first complete remission, or if the patient has had a previous blood and marrow transplant (BMT). A clear understanding of disease characteristics and patient-related factors that influence treatment response, as well as expected outcomes with existing and emerging therapies, can aid clinicians in helping their patients navigate through this complex disease state.
Collapse
Affiliation(s)
- Jonathan Kell
- University Hospital of Wales, Department of Haematology, Heath Park, Cardiff, GB, United Kingdom.
| |
Collapse
|
21
|
Abstract
Dismal outcomes of acute myeloid leukemia (AML), especially in the elderly, are mainly associated with leukemia relapse and primary no response to initial therapy. This review will focus on AML relapse, and how a better understanding of the evolutionary stages that lead to relapse might help us improve disease outcome. The fact that the relapse rate for some AMLs is so high indicates that we do not truly understand the biology of relapse or possibly that we are not implementing our current understanding into, clinical practice. Therefore, this review will also aim to explore some of the current understanding of AML relapse biology in order to identify the gaps in our knowledge and translation. Accumulating evidence suggests that the root of relapse evolves even before the time of diagnosis, meaning that the complex clonal structure of AML is created before patients present to the clinic. Some of the clones that exist at diagnosis can survive chemotherapy and give rise to relapse. Accordingly, in order to better understand the mechanisms of relapse, we must consider both early and late steps in AML evolution.
Collapse
|
22
|
Wakita S, Yamaguchi H, Ueki T, Usuki K, Kurosawa S, Kobayashi Y, Kawata E, Tajika K, Gomi S, Koizumi M, Fujiwara Y, Yui S, Fukunaga K, Ryotokuji T, Hirakawa T, Arai K, Kitano T, Kosaka F, Tamai H, Nakayama K, Fukuda T, Inokuchi K. Complex molecular genetic abnormalities involving three or more genetic mutations are important prognostic factors for acute myeloid leukemia. Leukemia 2015; 30:545-54. [DOI: 10.1038/leu.2015.288] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 10/04/2015] [Accepted: 10/07/2015] [Indexed: 01/07/2023]
|
23
|
Angelova S, Spassov B, Nikolova V, Christov I, Tzvetkov N, Simeonova M. Is amplification of c-MYC, MLL and RUNX1 genes in AML and MDS patients with trisomy 8, 11 and 21 a factor for a clonal evolution in the karyotype? CYTOL GENET+ 2015. [DOI: 10.3103/s0095452715030032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Bachas C, Schuurhuis GJ, Zwaan CM, van den Heuvel-Eibrink MM, den Boer ML, de Bont ESJM, Kwidama ZJ, Reinhardt D, Creutzig U, de Haas V, Kaspers GJL, Cloos J. Gene expression profiles associated with pediatric relapsed AML. PLoS One 2015; 10:e0121730. [PMID: 25849371 PMCID: PMC4388534 DOI: 10.1371/journal.pone.0121730] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 02/17/2015] [Indexed: 02/04/2023] Open
Abstract
Development of relapse remains a problem for further improvements in the survival of pediatric AML patients. While virtually all patients show a good response to initial treatment, more patients respond poorly when treated at relapse. The cellular characteristics of leukemic blast cells that allow survival of initial treatment, relapse development and subsequent resistance to salvage treatment remain largely elusive. Therefore, we studied if leukemic blasts at relapse biologically resemble their initial diagnosis counterparts. We performed microarray gene expression profiling on paired initial and relapse samples of 23 pediatric AML patients. In 11 out of 23 patients, gene expression profiles of initial and corresponding relapse samples end up in different clusters in unsupervised analysis, indicating altered gene expression profiles. In addition, shifts in type I/II mutational status were found in 5 of these 11 patients, while shifts were found in 3 of the remaining 12 patients. Although differentially expressed genes varied between patients, they were commonly related to hematopoietic differentiation, encompassed genes involved in chromatin remodeling and showed associations with similar transcription factors. The top five were CEBPA, GFI1, SATB1, KLF2 and TBP. In conclusion, the leukemic blasts at relapse are biologically different from their diagnosis counterparts. These differences may be exploited for further development of novel treatment strategies.
Collapse
Affiliation(s)
- Costa Bachas
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | | | - C. Michel Zwaan
- Department of Pediatric Oncology/Hematology, Erasmus MC/Sophia Children’s Hospital, Rotterdam, The Netherlands
| | | | - Monique L. den Boer
- Department of Pediatric Oncology/Hematology, Erasmus MC/Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Eveline S. J. M. de Bont
- Division of Pediatric Oncology/Hematology, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Zinia J. Kwidama
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Dirk Reinhardt
- AML-BFM Study Group, Department of Pediatric Hematology/ Oncology, Medical School Hannover, Hannover, Germany
| | - Ursula Creutzig
- AML-BFM Study Group, Department of Pediatric Hematology/ Oncology, Medical School Hannover, Hannover, Germany
| | - Valérie de Haas
- Dutch Childhood Oncology Group (DCOG), The Hague, The Netherlands
| | - Gertjan J. L. Kaspers
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
- Dutch Childhood Oncology Group (DCOG), The Hague, The Netherlands
| | - Jacqueline Cloos
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
25
|
Hu Y, Duan Q, Chen Y, Yao L, Chen Z, Li K, Sun W. A Novel Multiplex RT-PCR Assay for the Detection of Four Chromosomal Translocations of Leukemia. Genet Test Mol Biomarkers 2014; 18:810-9. [PMID: 25387311 DOI: 10.1089/gtmb.2014.0243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yingxi Hu
- 1 Laboratory of Molecular Diagnostics, College of Pharmaceutical Sciences, Soochow University , Suzhou, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Hartmann L, Stephenson CF, Verkamp SR, Johnson KR, Burnworth B, Hammock K, Brodersen LE, de Baca ME, Wells DA, Loken MR, Zehentner BK. Detection of clonal evolution in hematopoietic malignancies by combining comparative genomic hybridization and single nucleotide polymorphism arrays. Clin Chem 2014; 60:1558-68. [PMID: 25320376 DOI: 10.1373/clinchem.2014.227785] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Array comparative genomic hybridization (aCGH) has become a powerful tool for analyzing hematopoietic neoplasms and identifying genome-wide copy number changes in a single assay. aCGH also has superior resolution compared with fluorescence in situ hybridization (FISH) or conventional cytogenetics. Integration of single nucleotide polymorphism (SNP) probes with microarray analysis allows additional identification of acquired uniparental disomy, a copy neutral aberration with known potential to contribute to tumor pathogenesis. However, a limitation of microarray analysis has been the inability to detect clonal heterogeneity in a sample. METHODS This study comprised 16 samples (acute myeloid leukemia, myelodysplastic syndrome, chronic lymphocytic leukemia, plasma cell neoplasm) with complex cytogenetic features and evidence of clonal evolution. We used an integrated manual peak reassignment approach combining analysis of aCGH and SNP microarray data for characterization of subclonal abnormalities. We compared array findings with results obtained from conventional cytogenetic and FISH studies. RESULTS Clonal heterogeneity was detected in 13 of 16 samples by microarray on the basis of log2 values. Use of the manual peak reassignment analysis approach improved resolution of the sample's clonal composition and genetic heterogeneity in 10 of 13 (77%) patients. Moreover, in 3 patients, clonal disease progression was revealed by array analysis that was not evident by cytogenetic or FISH studies. CONCLUSIONS Genetic abnormalities originating from separate clonal subpopulations can be identified and further characterized by combining aCGH and SNP hybridization results from 1 integrated microarray chip by use of the manual peak reassignment technique. Its clinical utility in comparison to conventional cytogenetic or FISH studies is demonstrated.
Collapse
|
27
|
Gourdin TS, Zou Y, Ning Y, Emadi A, Duong VH, Tidwell ML, Chen C, Rassool FV, Baer MR. High frequency of rare structural chromosome abnormalities at relapse of cytogenetically normal acute myeloid leukemia with FLT3 internal tandem duplication. Cancer Genet 2014; 207:467-73. [PMID: 25441683 DOI: 10.1016/j.cancergen.2014.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/30/2014] [Accepted: 09/01/2014] [Indexed: 01/13/2023]
Abstract
FLT3 internal tandem duplication (ITD) mutations are present in acute myeloid leukemia (AML) in 30% of patients with acute myeloid leukemia (AML), most commonly in those with a normal karyotype, and are associated with short relapse-free survival. Both in vitro and in vivo studies of FLT3-ITD cell lines have demonstrated reactive oxygen species-mediated DNA double-strand breaks and associated error-prone DNA repair as a mechanism of genomic instability, and we hypothesized that genomic instability might be manifested by cytogenetic changes at relapse of FLT3-ITD AML. We retrospectively reviewed charts of patients with cytogenetically normal (CN) FLT3-ITD AML treated at the University of Maryland Greenebaum Cancer Center, with attention to metaphase analysis results at relapse. Cytogenetic data were available from first and, when applicable, subsequent relapses for 15 patients diagnosed with CN FLT3-ITD AML. Among 12 patients with documented FLT3-ITD at first and, when applicable, subsequent relapse, 10 had cytogenetic changes, including nine with rare structural abnormalities. The high frequency of rare structural chromosome abnormalities at relapse in our case series supports a role of genomic instability in the genesis of relapse, and suggests that reactive oxygen species-generating and DNA repair pathways might be therapeutic targets in FLT3-ITD AML.
Collapse
Affiliation(s)
- Theodore S Gourdin
- University of Maryland Greenebaum Cancer Center, Baltimore, MD; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Ying Zou
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | - Yi Ning
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | - Ashkan Emadi
- University of Maryland Greenebaum Cancer Center, Baltimore, MD; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Vu H Duong
- University of Maryland Greenebaum Cancer Center, Baltimore, MD; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Michael L Tidwell
- University of Maryland Greenebaum Cancer Center, Baltimore, MD; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Ching Chen
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | - Feyruz V Rassool
- University of Maryland Greenebaum Cancer Center, Baltimore, MD; Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| | - Maria R Baer
- University of Maryland Greenebaum Cancer Center, Baltimore, MD; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
28
|
Hackl H, Steinleitner K, Lind K, Hofer S, Tosic N, Pavlovic S, Suvajdzic N, Sill H, Wieser R. A gene expression profile associated with relapse of cytogenetically normal acute myeloid leukemia is enriched for leukemia stem cell genes. Leuk Lymphoma 2014; 56:1126-8. [PMID: 25030037 PMCID: PMC4695919 DOI: 10.3109/10428194.2014.944523] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Hubert Hackl
- Biocenter, Division of Bioinformatics, Innsbruck Medical University , Innsbruck , Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Cytogenetic data suggest that acute myeloid leukemia (AML) develops through a process of branching evolution, especially during relapse and progression. Recent genomic data from AML cases using digital sequencing, temporal comparisons, xenograft cloning, and single-cell analysis indicate that most, if not all, AML cases emerge through branching evolution. According to a review of the current literature, the balanced translocations (t[15;17], t[8;21], and inv[16]) and nucleotide variants in DNMT3A and TET2 most commonly occur in the founding clone at diagnosis. These mutations are rarely gained or lost at relapse, and the latter 2 mutations are observed in elderly subjects with mosaic hematopoiesis antedating overt leukemia. In contrast, +8, +13, +22, -X, -Y, and nucleotide variants in FLT3, NRAS/KRAS, WT1, and KIT frequently occur in subclones and are observed either to emerge or to be lost at relapse. Because drugs that target mutations within a subclone are unlikely to eliminate all leukemic cells, it will be essential to understand not only which mutations a patient has but also how they organize within the leukemic subclonal architecture.
Collapse
Affiliation(s)
- John S Welch
- Washington University School of Medicine, Division of Oncology, Stem Cell Biology Section, St. Louis, MO.
| |
Collapse
|
30
|
Meyer SC, Levine RL. Translational implications of somatic genomics in acute myeloid leukaemia. Lancet Oncol 2014; 15:e382-94. [DOI: 10.1016/s1470-2045(14)70008-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Zeijlemaker W, Gratama JW, Schuurhuis GJ. Tumor heterogeneity makes AML a "moving target" for detection of residual disease. CYTOMETRY PART B-CLINICAL CYTOMETRY 2013; 86:3-14. [PMID: 24151248 DOI: 10.1002/cyto.b.21134] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/26/2013] [Accepted: 09/17/2013] [Indexed: 12/24/2022]
Abstract
Detection of minimal residual disease is recognized as an important post-therapy risk factor in acute myeloid leukemia patients. Two most commonly used methods for residual disease monitoring are real-time quantitative polymerase chain reaction and multiparameter flow cytometry. The results so far are very promising, whereby it is likely that minimal residual disease results will enable to guide future post-remission treatment strategies. However, the leukemic clone may change between diagnosis and relapse due to the instability of the tumor cells. This instability may already be evident at diagnosis if different subpopulations of tumor cells coexist. Such tumor heterogeneity, which may be reflected by immunophenotypic, molecular, and/or cytogenetic changes, can have important consequences for minimal residual disease detection, since false-negative results can be expected to be the result of losses of aberrancies used as minimal residual disease markers. In this review the role of such changes in minimal residual disease monitoring is explored. Furthermore, possible causes of tumor instability are discussed, whereby the concept of clonal selection and expansion of a chemotherapy-resistant subpopulation is highlighted. Accordingly, detailed knowledge of the process of clonal evolution is required to improve both minimal residual disease risk stratification and patient outcome.
Collapse
MESH Headings
- Adult
- Biomarkers, Tumor
- Clonal Evolution
- Drug Resistance, Neoplasm/genetics
- Flow Cytometry
- Genetic Variation
- Humans
- Immunophenotyping
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Neoplasm Recurrence, Local/diagnosis
- Neoplasm Recurrence, Local/prevention & control
- Neoplasm, Residual/diagnosis
- Neoplasm, Residual/prevention & control
- Real-Time Polymerase Chain Reaction
- Treatment Outcome
Collapse
Affiliation(s)
- W Zeijlemaker
- Department of Hematology, VU Institute for Cancer and Immunology (V-ICI), VU University Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
32
|
Kim Y, Jang J, Hyun SY, Hwang D, Kim SJ, Kim JS, Cheong JW, Min YH. Karyotypic change between diagnosis and relapse as a predictor of salvage therapy outcome in AML patients. Blood Res 2013; 48:24-30. [PMID: 23589791 PMCID: PMC3624999 DOI: 10.5045/br.2013.48.1.24] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 12/20/2012] [Accepted: 02/13/2013] [Indexed: 11/17/2022] Open
Abstract
Background Only a few patients who experience AML relapse derive lasting benefit from re-induction therapy. The utility of reassessing the disease karyotype at relapse is unclear. The main goals of this study were to identify prognostic factors for AML relapse and to determine the prognostic utility of karyotypic change between diagnosis and relapse as a variable for predicting response to salvage therapy for relapsed AML. Methods This retrospective study included 58 patients with relapsed AML treated at the Yonsei University College of Medicine between 2005 and 2010. Karyotypes at both diagnosis and relapse were available for 45 patients (77%). A change in karyotype at relapse was observed in 17 of 45 cases (37%), and no change was noted in 28 of 45 cases (62%). Results Karyotypic changes between diagnosis and relapse were associated with the response rate (RR) to salvage therapy (P=0.016). Overall survival (OS) and event-free survival (EFS) in the group with karyotypic changes between diagnosis and relapse were significantly different from those with no karyotypic changes (P=0.004 and P=0.010, respectively). We applied multiple multivariate Cox regression analyses to identify independent prognostic factors for overall response (OR), OS, and EFS. A change in karyotype between diagnosis and relapse was significantly associated with OS (P=0.023; RR=2.655) and EFS (P=0.033; RR=2.831). Conclusion Karyotypic changes between the diagnosis and relapse of AML could be used to predict outcomes and tailor clinical and biological therapeutic strategies for relapsed AML patients.
Collapse
Affiliation(s)
- Yundeok Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Therapy-related MDS: the importance of repeating cytogenetics and immunophenotyping in “relapsed” AML. J Hematop 2013. [DOI: 10.1007/s12308-013-0178-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
34
|
Abstract
The frequent occurrence of persistent or relapsed disease after induction chemotherapy in AML necessitates a better understanding of the clonal relationship of AML in various disease phases. In this study, we used SNP 6.0 array-based genomic profiling of acquired copy number aberrations (aCNA) and copy neutral LOH (cnLOH) together with sequence analysis of recurrently mutated genes to characterize paired AML genomes. We analyzed 28 AML sample pairs from patients who achieved complete remission with chemotherapy and subsequently relapsed and 11 sample pairs from patients with persistent disease after induction chemotherapy. Through review of aCNA/cnLOH and gene mutation profiles in informative cases, we demonstrate that relapsed AML invariably represents re-emergence or evolution of a founder clone. Furthermore, all individual aCNA or cnLOH detected at presentation persisted at relapse indicating that this lesion type is proximally involved in AML evolution. Analysis of informative paired persistent AML disease samples uncovered cases with 2 coexisting dominant clones of which at least one was chemotherapy sensitive and one resistant, respectively. These data support the conclusion that incomplete eradication of AML founder clones rather than stochastic emergence of fully unrelated novel clones underlies AML relapse and persistence with direct implications for clinical AML research.
Collapse
|
35
|
Oran B, Dolan M, Cao Q, Brunstein C, Warlick E, Weisdorf D. Monosomal Karyotype Provides Better Prognostic Prediction after Allogeneic Stem Cell Transplantation in Patients with Acute Myelogenous Leukemia. Biol Blood Marrow Transplant 2011; 17:356-64. [DOI: 10.1016/j.bbmt.2010.05.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 05/18/2010] [Indexed: 11/29/2022]
|
36
|
Genomic, immunophenotypic, and NPM1/FLT3 mutational studies on 17 patients with normal karyotype acute myeloid leukemia (AML) followed by aberrant karyotype AML at relapse. ACTA ACUST UNITED AC 2010; 202:101-7. [PMID: 20875872 DOI: 10.1016/j.cancergencyto.2010.07.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 06/28/2010] [Accepted: 07/02/2010] [Indexed: 11/23/2022]
Abstract
Normal karyotype (NK) is the most common cytogenetic group in acute myeloid leukemia (AML) diagnosis; however, up to 50% of these patients at relapse will have aberrant karyotype (AK) AML. To determine the etiology of relapsed AK AML cells, we evaluated cytogenetic, immunophenotypic, and molecular results of 17 patients with diagnostic NK AML and relapsed AK AML at our institute. AK AML karyotype was diverse, involving no favorable and largely (8 of 17) complex cytogenetics. Despite clear cytogenetic differences, immunophenotype and NPM1/FLT3 gene mutation status did not change between presentation and relapse in 83% (10 of 12) and 94% (15 of 16) cases, respectively. High-resolution array-based comparative genomic hybridization (aCGH) performed via paired aCGH on NK AML and AK AML samples from the same patient confirmed cytogenetic aberrations only in the relapse sample. Analysis of 16 additional diagnostic NK AML samples revealed no evidence of submicroscopic aberrations undetected by conventional cytogenetics in any case. These results favor evolution of NK AML leukemia cells with acquisition of novel genetic changes as the most common etiology of AK AML relapse as opposed to secondary leukemogenesis. Additional studies are needed to confirm whether AK AML cells represent selection of rare preexisting clones below aCGH detection and to further characterize the molecular lesions found at time of AK AML relapse.
Collapse
|
37
|
Kern W, Bacher U, Haferlach C, Schnittger S, Haferlach T. The role of multiparameter flow cytometry for disease monitoring in AML. Best Pract Res Clin Haematol 2010; 23:379-90. [DOI: 10.1016/j.beha.2010.06.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
McCormick SR, McCormick MJ, Grutkoski PS, Ducker GS, Banerji N, Higgins RR, Mendiola JR, Reinartz JJ. FLT3 Mutations at Diagnosis and Relapse in Acute Myeloid Leukemia: Cytogenetic and Pathologic Correlations, Including Cuplike Blast Morphology. Arch Pathol Lab Med 2010; 134:1143-51. [DOI: 10.5858/2009-0292-oa.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Context.—Acquired mutations in the fms-like tyrosine kinase 3 gene (FLT3) adversely impact relapse risk after chemotherapy in patients with acute myeloid leukemia (AML). The FLT3 mutation status may differ at diagnosis and relapse, suggesting a potential role in chemoresistance, yet few reports have addressed the cytogenetic and pathologic correlates of FLT3 mutations in relapsed AML.
Objectives.—To determine FLT3 mutations at diagnosis and relapse in a cohort of adult patients with chemoresistant AML and to correlate mutation status with multiple variables.
Design.—We retrospectively determined FLT3 internal tandem duplication (FLT3/ITD) and FLT3 tyrosine kinase domain mutations in 50 diagnosis/relapse pairs. We correlated FLT3 status with karyotype, World Health Organization 2008 subtype, white blood cell count, biopsy cellularity, blast percentage, and the presence of invaginated (“cuplike”) blast nuclei.
Results.—In 11 of 50 patients (22%) the FLT3 mutation status differed at relapse and diagnosis, with a trend toward gain of FLT3/ITD (n = 7) and loss of FLT3 tyrosine kinase domain (n = 5) mutations. FLT3-mutated AMLs correlated with the World Health Organization 2008 subtype, AML, not otherwise specified, hyperproliferative features at diagnosis and relapse, and cytogenetic evolution. FLT3-wild type AMLs correlated with the subtype AML with myelodysplasia-related changes and frequently had adverse presentation karyotypes. Cuplike blast morphology was associated with FLT3/ITD+ status and with high mutation levels. Four of 7 patients with relapse-only FLT3/ITD mutations exhibited cuplike blasts at relapse after being noncuplike at diagnosis.
Conclusions.—In addition to well-known correlates in pretreatment specimens, FLT3 mutation status has pathologic and cytogenetic significance at relapse. A shift to cuplike blast morphology at relapse may herald emergence of a previously undetected FLT3/ITD mutation.
Collapse
|
39
|
Bacher U, Haferlach T, Alpermann T, Zenger M, Kröger N, Beelen DW, Kern W, Schnittger S, Haferlach C. Comparison of cytogenetic clonal evolution patterns following allogeneic hematopoietic transplantation versus conventional treatment in patients at relapse of AML. Biol Blood Marrow Transplant 2010; 16:1649-57. [PMID: 20558312 DOI: 10.1016/j.bbmt.2010.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Accepted: 06/07/2010] [Indexed: 11/27/2022]
Abstract
Relapse of acute myelogenous leukemia has been associated with clonal cytogenetic evolution, but no study focused specifically on relapse after allogeneic hematopoietic stem cell transplantation (HSCT). We compared karyotypes in 160 patients at both diagnosis and relapse either after allo-HSCT (n = 26) or standard chemotherapy (n = 134) using chromosome banding analysis combined with fluorescein in situ hybridization. There were 71 females and 89 males (19.7-80.6 years). At diagnosis, aberrant karyotypes were more frequent in the HSCT than in the chemotherapy cohort (16 of 26; 61.5% versus 63 of 134; 47.0%). This was most obvious in patients with unfavorable cytogenetics (8 of 26; 30.8% versus 19 of 134; 14.2%; P = .032). Differences in the karyotypes between diagnosis and relapse were more frequent in the allo-cohort (14 of 26; 53.8% versus 49 of 134; 36.6%) than in the conventional cohort (n.s.), mainly because of newly emerging cytogenetic alterations. Appearance of ≥ 3 new clonal alterations was more frequent in the allo-cohort (6 of 12; 50.0% with clonal evolution versus 5 of 41; 12.2%, P = .005). The mean number of cytogenetic alterations per patient was increasing from 2.0 at diagnosis to 4.0 at relapse in the allo-cohort, in the conventionally treated patients from 0.9 to 1.3 (both P < .001). Thus, higher frequencies of clonal evolution and increasing cytogenetic complexity were observed in the stem cell recipients probably related to the more unfavorable cytogenetic profiles already depicted at diagnosis.
Collapse
Affiliation(s)
- Ulrike Bacher
- Interdisciplinary Clinic for Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Multilineage dysplasia has no impact on biologic, clinicopathologic, and prognostic features of AML with mutated nucleophosmin (NPM1). Blood 2010; 115:3776-86. [DOI: 10.1182/blood-2009-08-240457] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
NPM1-mutated acute myeloid leukemia (AML) is a provisional entity in the 2008 World Health Organization (WHO) classification of myeloid neoplasms. The significance of multilineage dysplasia (MLD) in NPM1-mutated AML is unclear. Thus, in the 2008 WHO classification, NPM1-mutated AML with MLD is classified as AML with myelodysplasia (MD)–related changes (MRCs). We evaluated morphologically 318 NPM1-mutated AML patients and found MLD in 23.3%. Except for a male predominance and a lower fms-related tyrosine kinase 3–internal tandem duplication (FLT3-ITD) incidence in the MLD+ group, no differences were observed in age, sex, cytogenetics, and FLT3-–tyrosine kinase domain between NPM1-mutated AML with and without MLD. NPM1-mutated AML with and without MLD showed overlapping immunophenotype (CD34 negativity) and gene expression profile (CD34 down-regulation, HOX genes up-regulation). Moreover, overall and event-free survival did not differ among NPM1-mutated AML patients independently of whether they were MLD+ or MLD−, the NPM1-mutated/FLT3-ITD negative genotype showing the better prognosis. Lack of MLD impact on survival was confirmed by multivariate analysis that highlighted FLT3-ITD as the only significant prognostic parameter in NPM1-mutated AML. Our findings indicate that NPM1 mutations rather than MLD dictate the distinctive features of NPM1-mutated AML. Thus, irrespective of MLD, NPM1-mutated AML represents one disease entity clearly distinct from AML with MRCs.
Collapse
|
41
|
Schmidt-Hieber M, Blau IW, Richter G, Türkmen S, Bommer C, Thiel G, Neitzel H, Stroux A, Uharek L, Thiel E, Blau O. Cytogenetic studies in acute leukemia patients relapsing after allogeneic stem cell transplantation. ACTA ACUST UNITED AC 2010; 198:135-43. [PMID: 20362228 DOI: 10.1016/j.cancergencyto.2010.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 01/04/2010] [Accepted: 01/12/2010] [Indexed: 11/19/2022]
Abstract
We analyzed karyotype stability in 22 patients with acute leukemia at relapse or disease progression after allogeneic stem cell transplantation (allo-SCT). Karyotypes before and at relapse after allo-SCT were different in 15 patients (68%), the most frequent type being clonal evolution either alone or combined with clonal devolution (13 patients). Patients with and without a karyotype change did not differ significantly in overall survival (OS) (median, 399 vs. 452 days; P = 0.889) and survival after relapse (median, 120 vs. 370 days; P = 0.923). However, acquisition of additional structural chromosome 1 abnormalities at relapse after allo-SCT occurred more frequently than expected and was associated with reduced OS (median, 125 vs. 478 days; P = 0.008) and shorter survival after relapse (median, 37 vs. 370 days; P = 0.002). We identified a previously undescribed clonal evolution involving t(15;17) without PML-RARA rearrangement in an AML patient. We conclude that a karyotype change is common at relapse after allo-SCT in acute leukemia patients. Moreover, our data suggest that additional structural chromosome 1 abnormalities are overrepresented at relapse after allo-SCT in these patients and, in contrast to a karyotype change per se, are associated with reduced OS and shorter survival after relapse.
Collapse
Affiliation(s)
- Martin Schmidt-Hieber
- Medical Department III (Hematology, Oncology and Transfusion Medicine), Charité Campus Benjamin Franklin, 12200 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
AML with mutated NPM1 carrying a normal or aberrant karyotype show overlapping biologic, pathologic, immunophenotypic, and prognostic features. Blood 2009; 114:3024-32. [DOI: 10.1182/blood-2009-01-197871] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acute myeloid leukemia (AML) with mutated NPM1 usually carries normal karyotype (NK), but it may harbor chromosomal aberrations whose significance remains unclear. We addressed this question in 631 AML patients with mutated/cytoplasmic NPM1. An abnormal karyotype (AK) was present in 93 of 631 cases (14.7%), the most frequent abnormalities being +8, +4, −Y, del(9q), +21. Chromosome aberrations in NPM1-mutated AML were similar to, but occurred less frequently than additional chromosome changes found in other AML with recurrent cytogenetic abnormalities according to WHO classification. Four of the 31 NPM1-mutated AML patients karyotyped at different time points had NK at diagnosis but AK at relapse: del(9q) (n = 2), t(2;11) (n = 1), inv(12) (n = 1). NPM1-mutated AML with NK or AK showed overlapping morphologic, immunophenotypic (CD34 negativity), and gene expression profile (down-regulation of CD34 and up-regulation of HOX genes). No difference in survival was observed among NPM1-mutated AML patients independently of whether they carried a NK or an AK, the NPM1-mutated/FLT3-ITD negative cases showing the better prognosis. Findings in our patients point to chromosomal aberrations as secondary events, reinforce the concept that NPM1 mutation is a founder genetic lesion, and indicate that NPM1-mutated AML should be clinically handled as one entity, irrespective of the karyotype.
Collapse
|
43
|
Falini B, Bolli N, Liso A, Martelli MP, Mannucci R, Pileri S, Nicoletti I. Altered nucleophosmin transport in acute myeloid leukaemia with mutated NPM1: molecular basis and clinical implications. Leukemia 2009; 23:1731-43. [PMID: 19516275 DOI: 10.1038/leu.2009.124] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nucleophosmin (NPM1) is a highly conserved nucleo-cytoplasmic shuttling protein that shows a restricted nucleolar localization. Mutations of NPM1 gene leading to aberrant cytoplasmic dislocation of nucleophosmin (NPMc+) occurs in about one third of acute myeloid leukaemia (AML) patients that exhibit distinctive biological and clinical features. We discuss the latest advances in the molecular basis of nucleophosmin traffic under physiological conditions, describe the molecular abnormalities underlying altered transport of nucleophosmin in NPM1-mutated AML and present evidences supporting the view that cytoplasmic nucleophosmin is a critical event for leukaemogenesis. We then outline how a highly specific immunohistochemical assay can be exploited to diagnose NPM1-mutated AML and myeloid sarcoma in paraffin-embedded samples by looking at aberrant nucleophosmin accumulation in cytoplasm of leukaemic cells. This procedure is also suitable for detection of haemopoietic multilineage involvement in bone marrow trephines. Moreover, use of immunohistochemistry as surrogate for molecular analysis can serve as first-line screening in AML and should facilitate implementation of the 2008 World Health Organization classification of myeloid neoplasms that now incorporates AML with mutated NPM1 (synonym: NPMc+ AML) as a new provisional entity. Finally, we discuss the future therapeutic perspectives aimed at reversing the altered nucleophosmin transport in AML with mutated NPM1.
Collapse
Affiliation(s)
- B Falini
- The Institute of Haematology, University of Perugia, IBiT Foundation, Fondazione IRCCS Biotecnologie nel Trapianto, Perugia, Italy.
| | | | | | | | | | | | | |
Collapse
|
44
|
Raghavan M, Smith LL, Lillington DM, Chaplin T, Kakkas I, Molloy G, Chelala C, Cazier JB, Cavenagh JD, Fitzgibbon J, Lister TA, Young BD. Segmental uniparental disomy is a commonly acquired genetic event in relapsed acute myeloid leukemia. Blood 2008; 112:814-21. [PMID: 18490517 DOI: 10.1182/blood-2008-01-132431] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite advances in the curative treatment of acute myeloid leukemia (AML), recurrence will occur in the majority of cases. At diagnosis, acquisition of segmental uniparental disomy (UPD) by mitotic recombination has been reported in 15% to 20% of AML cases, associated with homozygous mutations in the region of loss of heterozygosity. This study aimed to discover if clonal evolution from heterozygous to homozygous mutations by mitotic recombination provides a mechanism for relapse. DNA from 27 paired diagnostic and relapsed AML samples were analyzed using genotyping arrays. Newly acquired segmental UPDs were observed at relapse in 11 AML samples (40%). Six were segmental UPDs of chromosome 13q, which were shown to lead to a change from heterozygosity to homozygosity for internal tandem duplication mutation of FLT3 (FLT3 ITD). Three further AML samples had evidence of acquired segmental UPD of 13q in a subclone of the relapsed leukemia. One patient acquired segmental UPD of 19q that led to homozygosity for a CEBPA mutation 207C>T. Finally, a single patient with AML acquired segmental UPD of chromosome 4q, for which the candidate gene is unknown. We conclude that acquisition of segmental UPD and the resulting homozygous mutation is a common event associated with relapse of AML.
Collapse
Affiliation(s)
- Manoj Raghavan
- Medical Oncology Unit, Centre for Molecular Oncology, Institute of Cancer, Barts and the London School of Medicine and Dentistry, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Evolutional change of karyotype with t(8;9)(p22;p24) and HLA-DR immunophenotype in relapsed acute myeloid leukemia. Int J Hematol 2008; 88:197-201. [DOI: 10.1007/s12185-008-0113-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 05/01/2008] [Accepted: 05/27/2008] [Indexed: 10/21/2022]
|
46
|
Shah N, Leaker MT, Teshima I, Baruchel S, Abdelhaleem M, Ye CC. Late-appearing Philadelphia chromosome in childhood acute myeloid leukemia. Pediatr Blood Cancer 2008; 50:1052-3. [PMID: 18213712 DOI: 10.1002/pbc.21317] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A 3-year-old female was diagnosed with acute myeloid leukemia (AML-M2). The disease was refractory to various chemotherapeutic agents. Cytogenetic analysis revealed a clone with trisomy 8 at diagnosis that was replaced by a clone containing a t(11;15) and del(20q) by the end of the second induction. A new clone, characterized by a Philadelphia chromosome, with the minor BCR/ABL p190 transcript, emerged 14 months after diagnosis and remained to the end of disease course. The late occurrence of the Philadelphia chromosome in AML has been documented rarely in adults.
Collapse
Affiliation(s)
- Niketa Shah
- Department of Paediatrics, Division of Haematology and Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Christopeit M, Mueller LP, Hainz M, Holzhausen HJ, Behre G. Cytogenetics detects infiltrations of a primary cutaneous acute myeloid leukemia to the kidney. Ann Hematol 2007; 86:291-3. [PMID: 17206419 DOI: 10.1007/s00277-006-0234-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 11/21/2006] [Indexed: 11/24/2022]
Abstract
Extramedullary manifestations of acute myeloid leukemia (AML) are rare and commonly involve one tissue. We report of a cutaneous acute myelomonocytic leukemia infiltrating the kidney next to the skin. A 61-year-old female patient with complex karyotype cutaneous AML FAB M4 underwent abdominal computed tomography scans. A lesion in her left kidney appeared suspicious of renal carcinoma as confirmed by histology. However, fluorescence in situ hybridization cytogenetics revealed a chromosome 11q23 abnormality in the nephrectomy specimen, which also appeared in the leukemic blasts of skin and bone marrow. Closer histomorphologic workup revealed an infiltration of the kidney with leukemia. This case report illustrates how modern diagnostic procedures can help to reveal rare sites of disease.
Collapse
|
48
|
Kern W, Haferlach C, Haferlach T, Schnittger S. Monitoring of minimal residual disease in acute myeloid leukemia. Cancer 2007; 112:4-16. [DOI: 10.1002/cncr.23128] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Asgharzadeh S, Pique-Regi R, Sposto R, Wang H, Yang Y, Shimada H, Matthay K, Buckley J, Ortega A, Seeger RC. Prognostic significance of gene expression profiles of metastatic neuroblastomas lacking MYCN gene amplification. J Natl Cancer Inst 2006; 98:1193-203. [PMID: 16954472 DOI: 10.1093/jnci/djj330] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The aggressiveness of metastatic neuroblastomas that lack MYCN gene amplification varies with age--they are least aggressive when diagnosed in patients younger than 12 months and most aggressive when diagnosed in patients older than 24 months. However, age at diagnosis is not always associated with patient survival. We examined whether molecular classification of metastatic neuroblastomas without MYCN gene amplification at diagnosis using gene expression profiling could improve the prediction of risk of disease progression. METHODS We used Affymetrix microarrays to determine the gene expression profiles of 102 untreated primary neuroblastomas without MYCN gene amplification obtained from children whose ages at diagnosis ranged from 0.1 to 151 months. A supervised method using diagonal linear discriminant analysis was devised to build a multigene model for predicting risk of disease progression. The accuracy of the model was evaluated using nested cross-validations, permutation analyses, and gene expression data from 15 additional tumors obtained at disease progression. RESULTS An expression profile model using 55 genes defined a tumor signature that distinguished two groups of patients from among those older than 12 months at diagnosis and clinically classified as having high-risk disease, those with a progression-free survival (PFS) rate of 16% (95% confidence interval [CI] = 8% to 28%), and those with a PFS rate of 79% (95% CI = 57% to 91%) (P<.01). These tumor signatures also identified two groups of patients with PFS of 15% (95% CI = 7% to 27%) and 69% (95% CI = 40% to 86%) (P<.01) from among patients who were older than 18 months at diagnosis. The gene expression signature of untreated molecular high-risk tumors was also present in progressively growing tumors. CONCLUSION Gene expression signatures of tumors obtained at diagnosis from patients with clinically indistinguishable high-risk, metastatic neuroblastomas identify subgroups with different outcomes. Accurate identification of these subgroups with gene expression profiles may facilitate development, implementation, and analysis of clinical trials aimed at improving outcome.
Collapse
Affiliation(s)
- Shahab Asgharzadeh
- Department of Pediatrics, Division of Hematology-Oncology, Childrens Hospital Los Angeles and Saban Research Institute, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lee JH, Choi SJ, Lee JH, Lee YS, Seol M, Ryu SG, Jang S, Park CJ, Chi HS, Lee JS, Kim WK, Lee KH. Continuous infusion intermediate-dose cytarabine, mitoxantrone, plus etoposide for refractory or early relapsed acute myelogenous leukemia. Leuk Res 2006; 30:204-10. [PMID: 16055185 DOI: 10.1016/j.leukres.2005.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 06/20/2005] [Accepted: 06/21/2005] [Indexed: 10/25/2022]
Abstract
For refractory and early relapsed AML, this prospective phase II clinical trial evaluated a salvage chemotherapy regimen, which was consisted of continuous infusion intermediate-dose cytarabine (1g/m(2)/day, 24h i.v. infusion x 5), mitoxantrone (12 mg/m(2)/day x 3), and etoposide (150 mg/m(2)/day x 3). We treated 33 patients and 17 (51.5%) achieved CR with a median duration of 117 days. Median overall survival was 219 days. Our results suggest that continuous infusion intermediate-dose cytarabine, together with mitoxantrone and etoposide, may induce CR in a significant proportion of patients with refractory or early relapsed AML, although remission duration was short.
Collapse
Affiliation(s)
- Je-Hwan Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan, College of Medicine, 388-1 Pungnap-2dong, Songpa-gu, Seoul 138-736, South Korea.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|