1
|
Bailey P, Chang DK, Forget MA, Lucas FAS, Alvarez HA, Haymaker C, Chattopadhyay C, Kim SH, Ekmekcioglu S, Grimm EA, Biankin AV, Hwu P, Maitra A, Roszik J. Exploiting the neoantigen landscape for immunotherapy of pancreatic ductal adenocarcinoma. Sci Rep 2016; 6:35848. [PMID: 27762323 PMCID: PMC5071896 DOI: 10.1038/srep35848] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy approaches for pancreatic ductal adenocarcinoma (PDAC) have met with limited success. It has been postulated that a low mutation load may lead to a paucity of T cells within the tumor microenvironment (TME). However, it is also possible that while neoantigens are present, an effective immune response cannot be generated due to an immune suppressive TME. To discern whether targetable neoantigens exist in PDAC, we performed a comprehensive study using genomic profiles of 221 PDAC cases extracted from public databases. Our findings reveal that: (a) nearly all PDAC samples harbor potentially targetable neoantigens; (b) T cells are present but generally show a reduced activation signature; and (c) markers of efficient antigen presentation are associated with a reduced signature of markers characterizing cytotoxic T cells. These findings suggest that despite the presence of tumor specific neoepitopes, T cell activation is actively suppressed in PDAC. Further, we identify iNOS as a potential mediator of immune suppression that might be actionable using pharmacological avenues.
Collapse
Affiliation(s)
- Peter Bailey
- Wolfson Wohl Cancer Research Centre, Institute for Cancer Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow G61 1BD, UK
| | - David K. Chang
- Wolfson Wohl Cancer Research Centre, Institute for Cancer Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow G61 1BD, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, United Kingdom
- Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia
- South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia
| | - Marie-Andrée Forget
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Francis A. San Lucas
- Departments of Pathology and Translational Molecular Pathology, Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Hector A. Alvarez
- Departments of Pathology and Translational Molecular Pathology, Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Cara Haymaker
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Chandrani Chattopadhyay
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Sun-Hee Kim
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Suhendan Ekmekcioglu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Elizabeth A. Grimm
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Andrew V. Biankin
- Wolfson Wohl Cancer Research Centre, Institute for Cancer Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow G61 1BD, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, United Kingdom
- Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia
- South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Anirban Maitra
- Departments of Pathology and Translational Molecular Pathology, Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| |
Collapse
|
2
|
Robles-Escajeda E, Lerma D, Nyakeriga AM, Ross JA, Kirken RA, Aguilera RJ, Varela-Ramirez A. Searching in mother nature for anti-cancer activity: anti-proliferative and pro-apoptotic effect elicited by green barley on leukemia/lymphoma cells. PLoS One 2013; 8:e73508. [PMID: 24039967 PMCID: PMC3767772 DOI: 10.1371/journal.pone.0073508] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/22/2013] [Indexed: 01/28/2023] Open
Abstract
Green barley extract (GB) was investigated for possible anti-cancer activity by examining its anti-proliferative and pro-apoptotic properties on human leukemia/lymphoma cell lines. Our results indicate that GB exhibits selective anti-proliferative activity on a panel of leukemia/lymphoma cells in comparison to non-cancerous cells. Specifically, GB disrupted the cell-cycle progression within BJAB cells, as manifested by G2/M phase arrest and DNA fragmentation, and induced apoptosis, as evidenced by phosphatidylserine (PS) translocation to the outer cytoplasmic membrane in two B-lineage leukemia/lymphoma cell lines. The pro-apoptotic effect of GB was found to be independent of mitochondrial depolarization, thus implicating extrinsic cell death pathways to exert its cytotoxicity. Indeed, GB elicited an increase of TNF-α production, caspase-8 and caspase-3 activation, and PARP-1 cleavage within pre-B acute lymphoblastic leukemia Nalm-6 cells. Moreover, caspase-8 and caspase-3 activation and PARP-1 cleavage were strongly inhibited/blocked by the addition of the specific caspase inhibitors Z-VAD-FMK and Ac-DEVD-CHO. Furthermore, intracellular signaling analyses determined that GB treatment enhanced constitutive activation of Lck and Src tyrosine kinases in Nalm-6 cells. Taken together, these findings indicate that GB induced preferential anti-proliferative and pro-apoptotic signals within B-lineage leukemia/lymphoma cells, as determined by the following biochemical hallmarks of apoptosis: PS externalization, enhanced release of TNF-α, caspase-8 and caspase-3 activation, PARP-1 cleavage and DNA fragmentation Our observations reveal that GB has potential as an anti-leukemia/lymphoma agent alone or in combination with standard cancer therapies and thus warrants further evaluation in vivo to support these findings.
Collapse
Affiliation(s)
- Elisa Robles-Escajeda
- Department of Biological Sciences and Border Biomedical Research Center, the University of Texas at El Paso, El Paso, Texas, United States of America
| | - Dennise Lerma
- St. Mary’s University School of Science, Engineering and Technology, San Antonio, Texas, United States of America
| | - Alice M. Nyakeriga
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, Texas, United States of America
| | - Jeremy A. Ross
- Department of Biological Sciences and Border Biomedical Research Center, the University of Texas at El Paso, El Paso, Texas, United States of America
| | - Robert A. Kirken
- Department of Biological Sciences and Border Biomedical Research Center, the University of Texas at El Paso, El Paso, Texas, United States of America
| | - Renato J. Aguilera
- Department of Biological Sciences and Border Biomedical Research Center, the University of Texas at El Paso, El Paso, Texas, United States of America
| | - Armando Varela-Ramirez
- Department of Biological Sciences and Border Biomedical Research Center, the University of Texas at El Paso, El Paso, Texas, United States of America
- * E-mail:
| |
Collapse
|
3
|
Kiaii S, Kokhaei P, Mozaffari F, Rossmann E, Pak F, Moshfegh A, Palma M, Hansson L, Mashayekhi K, Hojjat-Farsangi M, Österborg A, Choudhury A, Mellstedt H. T cells from indolent CLL patients prevent apoptosis of leukemic B cells in vitro and have altered gene expression profile. Cancer Immunol Immunother 2013; 62:51-63. [PMID: 22736254 PMCID: PMC11029037 DOI: 10.1007/s00262-012-1300-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 05/30/2012] [Indexed: 10/28/2022]
Abstract
T cells may have a role in sustaining the leukemic clone in chronic lymphocytic leukemia (CLL). In this study, we have examined the ability of T cells from CLL patients to support the survival of the leukemic B cells in vitro. Additionally, we compared global gene expression of T cells from indolent CLL patients with healthy individuals and multiple myeloma (MM) patients. Apoptosis of purified leukemic B cells was inhibited in vitro when co-cultured with increasing numbers of autologous T cells (p < 0.01) but not autologous B and T cells of normal donors. The anti-apoptotic effect exceeded that of the anti-apoptotic cytokine IL-4 (p = 0.002) and was greater with CD8+ cells (p = 0.02) than with CD4+ cells (p = 0.05). The effect was depended mainly on cell-cell contact although a significant effect was also observed in transwell experiments (p = 0.05). About 356 genes involved in different cellular pathways were deregulated in T cells of CLL patients compared to healthy individuals and MM patients. The results of gene expression profiling were verified for 6 genes (CCL4, CCL5 (RANTES), XCL1, XCL2, KLF6, and TRAF1) using qRT-PCR and immunoblotting. Our results demonstrate that CLL-derived T cells can prevent apoptosis of leukemic B cells and have altered expression of genes that may facilitate the survival of the leukemic clone.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Apoptosis/immunology
- B-Lymphocytes/immunology
- Coculture Techniques
- Female
- Flow Cytometry
- Humans
- Immunoblotting
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Middle Aged
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes/immunology
- Transcriptome
Collapse
Affiliation(s)
- Shahryar Kiaii
- Institute of Cancer, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London, EC1M 6BQ UK
- Cancer Center Karolinska, Department of Oncology-Pathology (Radiumhemmet), Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Parviz Kokhaei
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Center Karolinska, Department of Oncology-Pathology (Radiumhemmet), Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Fariba Mozaffari
- Cancer Center Karolinska, Department of Oncology-Pathology (Radiumhemmet), Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Eva Rossmann
- Cancer Center Karolinska, Department of Oncology-Pathology (Radiumhemmet), Karolinska University Hospital, Solna, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Fatemeh Pak
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Center Karolinska, Department of Oncology-Pathology (Radiumhemmet), Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Ali Moshfegh
- Cancer Center Karolinska, Department of Oncology-Pathology (Radiumhemmet), Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Marzia Palma
- Cancer Center Karolinska, Department of Oncology-Pathology (Radiumhemmet), Karolinska University Hospital, Solna, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Lotta Hansson
- Cancer Center Karolinska, Department of Oncology-Pathology (Radiumhemmet), Karolinska University Hospital, Solna, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Kaveh Mashayekhi
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Mohammad Hojjat-Farsangi
- Cancer Center Karolinska, Department of Oncology-Pathology (Radiumhemmet), Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Anders Österborg
- Cancer Center Karolinska, Department of Oncology-Pathology (Radiumhemmet), Karolinska University Hospital, Solna, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Aniruddha Choudhury
- Center for Immune and Targeted Therapy Greenslopes Private Hospital, Newdegate Street, Brisbane, QLD 4072 Australia
- Cancer Center Karolinska, Department of Oncology-Pathology (Radiumhemmet), Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Håkan Mellstedt
- Cancer Center Karolinska, Department of Oncology-Pathology (Radiumhemmet), Karolinska University Hospital, Solna, Karolinska Institutet, 171 76 Stockholm, Sweden
| |
Collapse
|
4
|
Terashima T, Haque A, Kajita Y, Takeuchi A, Nakagawa T, Yokochi T. Flavopiridol inhibits interferon-γ-induced nitric oxide production in mouse vascular endothelial cells. Immunol Lett 2012; 148:91-6. [DOI: 10.1016/j.imlet.2012.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 08/30/2012] [Accepted: 10/07/2012] [Indexed: 12/26/2022]
|
5
|
The impact of CDK inhibition in human malignancies associated with pronounced defects in apoptosis: advantages of multi-targeting small molecules. Future Med Chem 2012; 4:395-424. [DOI: 10.4155/fmc.12.12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Malignant cells in chronic lymphocytic leukemia (CLL) and related diseases are heterogeneous and consist primarily of long-lived resting cells in the periphery and a minor subset of dividing cells in proliferating centers. Both cell populations have different molecular signatures that play a major role in determining their sensitivity to therapy. Contemporary approaches to treating CLL are heavily reliant on cytotoxic chemotherapeutics. However, none of the current treatment regimens can be considered curative. Pharmacological CDK inhibitors have extended the repertoire of potential drugs for CLL. Multi-targeted CDK inhibitors affect CDKs involved in regulating both cell cycle progression and transcription. Their interference with transcriptional elongation represses anti-apoptotic proteins and, thus, promotes the induction of apoptosis. Importantly, there is evidence that treatment with CDK inhibitors can overcome resistance to therapy. The pharmacological CDK inhibitors have great potential for use in combination with other therapeutics and represent promising tools for the development of new curative treatments for CLL.
Collapse
|
6
|
Galluzzi L, Vitale I, Vacchelli E, Kroemer G. Cell death signaling and anticancer therapy. Front Oncol 2011; 1:5. [PMID: 22655227 PMCID: PMC3356092 DOI: 10.3389/fonc.2011.00005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 04/21/2011] [Indexed: 12/22/2022] Open
Abstract
For a long time, it was commonly believed that efficient anticancer regimens would either trigger the apoptotic demise of tumor cells or induce a permanent arrest in the G1 phase of the cell cycle, i.e., senescence. The recent discovery that necrosis can occur in a regulated fashion and the increasingly more precise characterization of the underlying molecular mechanisms have raised great interest, as non-apoptotic pathways might be instrumental to circumvent the resistance of cancer cells to conventional, pro-apoptotic therapeutic regimens. Moreover, it has been shown that some anticancer regimens engage lethal signaling cascades that can ignite multiple oncosuppressive mechanisms, including apoptosis, necrosis, and senescence. Among these signaling pathways is mitotic catastrophe, whose role as a bona fide cell death mechanism has recently been reconsidered. Thus, anticancer regimens get ever more sophisticated, and often distinct strategies are combined to maximize efficacy and minimize side effects. In this review, we will discuss the importance of apoptosis, necrosis, and mitotic catastrophe in the response of tumor cells to the most common clinically employed and experimental anticancer agents.
Collapse
|
7
|
Lucas DM, Still PC, Pérez LB, Grever MR, Kinghorn AD. Potential of plant-derived natural products in the treatment of leukemia and lymphoma. Curr Drug Targets 2010; 11:812-22. [PMID: 20370646 PMCID: PMC2892601 DOI: 10.2174/138945010791320809] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 01/20/2010] [Indexed: 12/13/2022]
Abstract
Hematologic malignancies account for a substantial percentage of cancers worldwide, and the heterogeneity and biological characteristics of leukemias and lymphomas present unique therapeutic challenges. Although treatment options exist for most of these diseases, many types remain incurable and the emergence of drug resistance is pervasive. Thus, novel treatment approaches are essential to improve outcome. Nearly half of the agents used in cancer therapy today are either natural products or derivatives of natural products. The enormous chemical diversity in nature, coupled with millennia of biological selection, has generated a vast and underexplored reservoir of unique chemical structures with biologic activity. This review will describe the investigation and application of natural products derived from higher plants in the treatment of leukemia and lymphoma and the rationale behind these efforts. In addition to the approved vinca alkaloids and the epipodophyllotoxin derivatives, a number of other plant compounds have shown promise in clinical trials and in preclinical investigations. In particular, we will focus on the discovery and biological evaluation of the plant-derived agent silvestrol, which shows potential for additional development as a new therapeutic agent for B-cell malignancies including chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- David M Lucas
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 410 W. 12th Avenue, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
8
|
Zaher M, Akrout I, Mirshahi M, Kolb JP, Billard C. Noxa upregulation is associated with apoptosis of chronic lymphocytic leukemia cells induced by hyperforin but not flavopiridol. Leukemia 2009; 23:594-596. [PMID: 18784742 DOI: 10.1038/leu.2008.239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
MESH Headings
- Antibodies, Monoclonal/immunology
- Apoptosis/drug effects
- Bridged Bicyclo Compounds/pharmacology
- Flavonoids/pharmacology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Myeloid Cell Leukemia Sequence 1 Protein
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Phloroglucinol/analogs & derivatives
- Phloroglucinol/pharmacology
- Piperidines/pharmacology
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/physiology
- Terpenes/pharmacology
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/pathology
- Up-Regulation/drug effects
Collapse
|
9
|
Billard C, Menasria F, Quiney C, Faussat AM, Finet JP, Combes S, Kolb JP. 4-arylcoumarin analogues of combretastatins stimulate apoptosis of leukemic cells from chronic lymphocytic leukemia patients. Exp Hematol 2008; 36:1625-33. [PMID: 18922614 DOI: 10.1016/j.exphem.2008.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 07/07/2008] [Accepted: 07/25/2008] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the proapoptotic capacities of four arylcoumarin analogues of combretastatins on leukemic cells from B-cell chronic lymphocytic leukemia (CLL), a malignancy characterized by apoptosis deficiency. MATERIALS AND METHODS The effects of the four compounds on several nuclear, membrane, and mitochondrial events of apoptosis and on expression of proteins controlling the apoptosis were analyzed after treatment of cultured CLL patients' cells. RESULTS Treatment with all four compounds resulted in a dose-dependent internucleosomal DNA fragmentation, in stimulation of phosphatidylserine externalization, disruption of the mitochondrial transmembrane potential and caspase-3 activation. DNA fragmentation was prevented in the presence of the pan-caspase inhibitor z-VAD-fmk. Two of the compounds downregulated the expression of Mcl-1, a protein thought to be crucial for the antiapoptotic state in CLL, while Bcl-2 expression was unaffected. No effects were observed on the expression of p27kip1 or the inducible nitric oxide synthase, two proteins, which are constitutively overexpressed by CLL cells and downregulated during the apoptosis induced by other plant-derived molecules (flavopiridol, polyphenols, or hyperforin). This suggests different mechanisms of action for the compounds studied here. Furthermore, normal B lymphocytes from healthy donors appeared less sensitive than CLL cells to the proapoptotic activity of the four compounds. CONCLUSION The four arylcoumarin analogues were able to promote the apoptosis of CLL cells ex vivo through the caspase-dependent mitochondrial pathway. Therefore, these compounds may be of interest to develop new therapies of CLL based on apoptosis restoration.
Collapse
Affiliation(s)
- Christian Billard
- UMRS 872 INSERM, Université Pierre et Marie Curie-Paris 6, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
10
|
Menasria F, Azebaze AGB, Billard C, Faussat AM, Nkengfack AE, Meyer M, Kolb JP. Apoptotic effects on B-cell chronic lymphocytic leukemia (B-CLL) cells of heterocyclic compounds isolated from Guttiferaes. Leuk Res 2008; 32:1914-26. [PMID: 18656257 DOI: 10.1016/j.leukres.2008.05.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2008] [Revised: 05/03/2008] [Accepted: 05/16/2008] [Indexed: 01/06/2023]
Abstract
A series of 10 heterocyclic compounds purified from Allanblackia were tested on two B cell lines, ESKOL and EHEB, and on cells from B-CLL patients. Several molecules inhibited the proliferation of both cell lines and promoted apoptosis of B-CLL cells through different mechanisms, some of them elicited a dissipation of the mitochondrial transmembrane potential, other triggered caspase-3 activation and cleavage of the inducible nitric oxide synthase. Blood mononuclear cells and B-lymphocytes from healthy donors appeared less sensitive than B-CLL cells. These results indicate that these molecules may be of interest in the development of new therapies for B-CLL.
Collapse
Affiliation(s)
- F Menasria
- UMRS 872 INSERM/Université Pierre et Marie Curie/Université Paris Descartes, Centre de Recherche des Cordeliers, Paris, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Hammadi A, Billard C, Faussat AM, Kolb JP. Stimulation of iNOS expression and apoptosis resistance in B-cell chronic lymphocytic leukemia (B-CLL) cells through engagement of Toll-like receptor 7 (TLR-7) and NF-kappaB activation. Nitric Oxide 2008; 19:138-45. [PMID: 18474259 DOI: 10.1016/j.niox.2008.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 04/17/2008] [Accepted: 04/17/2008] [Indexed: 01/02/2023]
Abstract
B-CLL cells are characterized by in vivo resistance to apoptosis due, in part, to the presence of an inducible nitric oxide synthase, iNOS, as the NO released plays anti-apoptotic role, notably by inhibiting caspases. The mechanisms leading to spontaneous expression of iNOS in these cells are presently unknown. The restricted use of some V(H) sub-groups and the sequences of the monoclonal immunoglobulins of the B-cell receptor expressed by the leukemia cells suggested that the latter have encountered specific auto-antigens and/or microbial derived antigens. Their binding to the BCR provides an activation signal resulting in enhanced survival, hence could be involved in the aetiology of the disease. At the interface of innate and cognate immunity, Toll-like receptors, TLR, recognize PAMPs (pathogen-associated molecular patterns) expressed by various bacteria and virus as well as some self-antigens. We thus hypothesized that TLR were involved in the early steps of B-CLL oncogenesis, notably apoptosis resistance through the induction of iNOS expression and the production of NO. Our results show that B-CLL cells express TLR-7 and TLR-9. Incubation of B-CLL cells with TLR-7 agonists effectively resulted in an increased resistance to apoptosis that was reverted with the NOS inhibitor L-NMMA. This resistance was associated with enhanced iNOS expression (protein and mRNA) and NO release, stimulation of NF-kappaB activation, phosphorylation of I kappaB alpha, all these events being suppressed with wedelolactone or Bay 11-7085, two inhibitors of I kappaB alpha phosphorylation. Our present data thus suggest that TLR-7 signaling stimulates apoptosis resistance, notably through an NF-kappaB-dependent activation of the NO pathway.
Collapse
Affiliation(s)
- Amar Hammadi
- UMRS 872 INSERM/Université Pierre et Marie Curie/Université Paris Descartes, Equipe 18, Centre de Recherche des Cordeliers, 15 rue de l'Ecole de Médecine, 75270 Paris cedex 06, Paris, France
| | | | | | | |
Collapse
|
12
|
Flavopiridol causes early mitochondrial damage in chronic lymphocytic leukemia cells with impaired oxygen consumption and mobilization of intracellular calcium. Blood 2008; 111:3190-9. [PMID: 18192508 DOI: 10.1182/blood-2007-10-115733] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Effective administration of flavopiridol in advanced-stage chronic lymphocytic leukemia (CLL) is often associated with early biochemical evidence of tumor cell lysis. Previous work using other cell types showed that flavopiridol impacts mitochondria, and in CLL cells flavopiridol down-regulates the mitochondrial protein Mcl-1. We therefore investigated mitochondrial structure and function in flavopiridol-treated CLL patient cells and in the lymphoblastic cell line 697 using concentrations and times at which tumor lysis is observed in treated patients. Mitochondrial membrane depolarization was detected in flavopiridol-treated CLL cells by 6 hours, well before the onset of cell death. Flavopiridol-induced mitochondrial depolarization was not blocked by caspase inhibitors or by the calcium chelator EGTA, but was reduced by Bcl-2 overexpression. Intracellular calcium mobilization was noted at early time points using fluorescence microscopy. Furthermore, electron paramagnetic resonance oximetry showed a gradual but significant reduction in cellular oxygen consumption rate by 6 hours, corresponding with ultrastructural mitochondrial damage detected by electron microscopy. These observations suggest that in CLL and 697 cells, flavopiridol mediates its cytotoxic effects via induction of the mitochondrial permeability transition and changes in intracellular calcium.
Collapse
|
13
|
Flavopiridol-induced iNOS downregulation during apoptosis of chronic lymphocytic leukemia cells is caspase-dependent. Leuk Res 2007; 32:755-60. [PMID: 17981326 DOI: 10.1016/j.leukres.2007.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 09/24/2007] [Accepted: 09/27/2007] [Indexed: 12/27/2022]
Abstract
We previously reported that flavopiridol-induced apoptosis of B cell chronic lymphocytic leukemia (CLL) patients' cells ex vivo is associated with downregulation of both the inducible nitric oxide (NO) synthase (iNOS) that produces the antiapoptotic molecule NO, and the CDK inhibitor p27kip1 that is thought to block the cell cycle of CLL cells. Here, we show that iNOS downregulation is caspase-dependent and thus can be considered as one of the effector mechanisms of apoptosis, but not a primary triggering event induced by flavopiridol. Furthermore, we also find that this flavone favors the entry into the S and G2 phases of the cell cycle of a subpopulation of the leukemic cells, confirming that flavopiridol might be useful for improving the efficacy of cell cycle-dependent cytostatic agents in the therapy of CLL.
Collapse
|
14
|
Secchiero P, di Iasio MG, Gonelli A, Barbarotto E, Melloni E, Tiribelli M, Chiaruttini C, Zauli G. Differential gene expression induction by TRAIL in B chronic lymphocytic leukemia (B-CLL) cells showing high versus low levels of Zap-70. J Cell Physiol 2007; 213:229-36. [PMID: 17476690 DOI: 10.1002/jcp.21116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Among 14 peripheral blood samples obtained from patients affected by B chronic lymphocytic leukemia (B-CLL) at initial stages (Rai 0-1) of the disease, 6 showed intermediate/high levels of Zap-70 while 8 displayed low/absent levels of Zap-70. Although Zap-70(high) and Zap-70(low) B-CLL samples displayed similar levels of surface death receptor TRAIL-R2, recombinant TRAIL induced cytotoxicity only in a subset of Zap-70(low) B-CLL samples while Zap-70(high) were completely resistant to TRAIL. The gene expression profiling was next analyzed in all B-CLL samples treated with either chlorambucil or recombinant TRAIL. While chlorambucil up-regulated the steady-state mRNA levels of known p53 target genes, such as PUMA, Fas/CD95 and MDM2 in all B-CLL samples examined, it significantly down-regulated survivin in Zap-70(low) but not in Zap-70(high). On the other hand, recombinant TRAIL up-regulated the expression of several cytokines (IL-1beta, IL-1alpha, IL-8), which have been involved in promoting B-CLL cell survival. In particular, TRAIL selectively up-regulated IL-1beta in Zap-70(low) B-CLL samples, while it markedly and selectively up-regulated its own mRNA and that of cyclooxigenase-2 (COX-2) in Zap-70(high). Taken together, our findings suggest that a significant expression of Zap-70 modulate the response of B-CLL to TRAIL, which might represents an initial step in the pathogenesis of B-CLL.
Collapse
MESH Headings
- Antineoplastic Agents, Alkylating/pharmacology
- Chlorambucil/pharmacology
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- In Vitro Techniques
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Recombinant Proteins/pharmacology
- TNF-Related Apoptosis-Inducing Ligand/pharmacology
- ZAP-70 Protein-Tyrosine Kinase/metabolism
Collapse
Affiliation(s)
- Paola Secchiero
- Department of Morphology and Embryology, Human Anatomy Section, University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Quiney C, Billard C, Faussat AM, Salanoubat C, Ensaf A, Naït-Si Y, Fourneron JD, Kolb JP. Pro-apoptotic properties of hyperforin in leukemic cells from patients with B-cell chronic lymphocytic leukemia. Leukemia 2006; 20:491-7. [PMID: 16424868 DOI: 10.1038/sj.leu.2404098] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The effects of the hyperforin (HF), a natural phloroglucinol purified from Hypericum perforatum, were investigated ex vivo on leukemic cells from patients with B-cell chronic lymphocytic leukemia (B-CLL). HF was found to promote apoptosis of B-CLL cells, as shown by time- and dose-dependent stimulation of phosphatidylserine externalization and DNA fragmentation, by disruption of the mitochondrial transmembrane potential, caspase-3 activation and cleavage of the caspase substrate PARP-1. Moreover, HF-induced downregulation of Bcl-2 and Mcl-1, two antiapoptotic proteins that control mitochondrial permeability. HF also downregulated two proteins which are overexpressed by B-CLL patients' cells, the cell cycle inhibitor p27kip1 through caspase-dependent cleavage into a p23 form, and the nitric oxid (NO) synthase of type 2 (inducible NO synthase). This latter was accompanied by reduction in the production of NO known to be antiapoptotic in B-CLL cells. Preventing effects of the general caspase inhibitor z-VAD-fmk indicated that HF-promoted apoptosis of B-CLL cells was mostly caspase dependent. Furthermore, normal B lymphocytes purified from healthy donors appeared less sensitive to HF-induced apoptosis than B-CLL cells. These results indicate that HF may be of interest in the development of new therapies for B-CLL based on the induction of apoptosis and combination with cell cycle-dependent antitumor drugs.
Collapse
Affiliation(s)
- C Quiney
- UMR 736 INSERM/Université Paris VI, Centre de Recherches Biomédicales des Cordeliers, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Venkataraman G, Maududi T, Ozpuyan F, Bahar HI, Izban KF, Qin JZ, Alkan S. Induction of apoptosis and down regulation of cell cycle proteins in mantle cell lymphoma by flavopiridol treatment. Leuk Res 2006; 30:1377-84. [PMID: 16624404 DOI: 10.1016/j.leukres.2006.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 01/25/2006] [Accepted: 03/13/2006] [Indexed: 10/24/2022]
Abstract
Typical mantle cell lymphoma (MCL) is a distinct B-cell non-Hodgkin's lymphoma associated with over-expression of cyclin D1 related to translocation between the IgH and BCL-1 genes. Due to the important functional interaction between cyclin D1 and cyclin dependent kinases, cyclin dependent kinase inhibitors such as flavopiridol are under consideration for treatment of patients with MCL. The present study investigated the in vitro effects of flavopiridol on the MCL cell line (JeKo-1). Flavopiridol at a dose of 10nmol/L induced apoptosis by 6h of treatment as noted by flow cytometric analysis, morphologic examination and Western blotting. The cleavage of procaspase-3 and PARP and the decrease of flavopiridol-induced apoptosis by pan-caspase inhibition suggested that the caspase pathway serves an important role in the apoptotic process. Furthermore, MCL cells exposed to flavopiridol showed down regulation of key cell cycle proteins acting at the restriction point control between the G1 and S phases. The onset of flavopiridol-induced apoptosis also coincided with the down regulation of Mcl-1, anti-apoptotic protein. Collectively, our data indicates that flavopiridol may have significant therapeutic potential in the context of MCL.
Collapse
Affiliation(s)
- Girish Venkataraman
- Department of Pathology, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Quiney C, Billard C, Mirshahi P, Fourneron JD, Kolb JP. Hyperforin inhibits MMP-9 secretion by B-CLL cells and microtubule formation by endothelial cells. Leukemia 2006; 20:583-9. [PMID: 16467866 DOI: 10.1038/sj.leu.2404134] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We previously reported that hyperforin (HF), a natural phloroglucinol purified from Saint John's wort, can induce the apoptosis of leukemic cells from patients with B-cell lymphocytic leukemia (B-CLL) ex vivo. We show here that treatment of cultured B-CLL patients' cells with HF results in a marked inhibition of their capacity to secrete matrix metalloproteinase-9, an essential component in neo-angiogenesis through degradation of the extracellular matrix process. The phloroglucinol acts by decreasing the production of the latent 92 kDa pro-enzyme. The inhibitory effect of HF is associated with a decrease in VEGF release by the leukemic cells. Moreover, HF is found to prevent the formation of microtubules by human bone marrow endothelial cells cultured on Matrigel, evidencing its capacity to inhibit vessel formation. Our results show the antiangiogenesis activity of HF and strengthen its potential interest in the therapy of B-CLL.
Collapse
Affiliation(s)
- C Quiney
- UMRS 736 INSERM and Université Pierre et Marie Curie-Paris 6, Centre de Recherches Biomédicales des Cordeliers, Paris, France
| | | | | | | | | |
Collapse
|
18
|
Bruserud Ø, Tronstad KJ, McCormack E, Gjertsen BT. Is targeted chemotherapy an alternative to immunotherapy in chronic lymphocytic leukemia? Cancer Immunol Immunother 2006; 55:221-8. [PMID: 16034559 PMCID: PMC11030065 DOI: 10.1007/s00262-005-0032-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 05/05/2005] [Indexed: 12/13/2022]
Abstract
Although molecular remission is now detected, it is still unknown whether we have the tools to cure B cell chronic lymphocytic leukemia (referred to as CLL). Nonetheless, several new therapeutic approaches have been introduced in cancer therapy during the last decade, including antiangiogenic therapy, apoptosis-inducing treatment and inhibition of heat shock proteins, farnesyl transferase, tyrosine kinases and proteasomes. These modalities may also be considered in CLL, but additional experimental characterization is required. Further characterization and development of CLL animal models should be a part of this preclinical work (especially xenografting in NOD/SCID animals, but also murine leukemia) to allow a more extensive evaluation prior to clinical trials. Animal models are particularly important for preclinical comparison of pharmacological effects between different disease compartments and for in vivo evaluation of antileukemic immune reactivity. However, T cell targeting therapy seems to have several advantages in comparison to other approaches: (1) based on the current clinical experience one would expect low toxicity for several of these strategies, especially vaccine treatment; (2) several studies have demonstrated that autologous T cells can recognize CLL cells; (3) experimental and clinical evidence suggests that immunotherapy can be combined with chemotherapy. Thus, T cell therapy has a relatively strong scientific basis that justifies further clinical studies of immunotherapy in CLL. Although several of the new pharmacological agents seem to have immunosuppressive effects, at least some of them (e.g. heat shock protein 90 inhibitors, proteasome inhibitors, inhibition of angiogenesis) appear to affect T cells only at relatively high concentrations and may thus be used in combination with immunotherapy.
Collapse
Affiliation(s)
- Øystein Bruserud
- Section for Hematology, Institute of Medicine, The University of Bergen, Bergen, Norway.
| | | | | | | |
Collapse
|
19
|
de Totero D, Meazza R, Zupo S, Cutrona G, Matis S, Colombo M, Balleari E, Pierri I, Fabbi M, Capaia M, Azzarone B, Gobbi M, Ferrarini M, Ferrini S. Interleukin-21 receptor (IL-21R) is up-regulated by CD40 triggering and mediates proapoptotic signals in chronic lymphocytic leukemia B cells. Blood 2006; 107:3708-15. [PMID: 16391014 DOI: 10.1182/blood-2005-09-3535] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Interleukin-21 (IL-21) is a member of the IL-2 cytokine family, which mediates proliferation or growth arrest and apoptosis of normal B cells, depending on their activation state. Here we demonstrate that surface IL-21 receptor (R) is expressed at variable levels by chronic lymphocytic leukemia (CLL) B cells freshly isolated from 33 different patients. IL-21R expression was up-regulated following cell stimulation via surface CD40. Therefore, IL-21 effects were more evident in CD40-activated CLL B cells. IL-21 induced an early signaling cascade in CLL B cells, which included JAK-1 and JAK-3 autophosphorylation and tyrosine phosphorylation of STAT-1, STAT-3, and STAT-5. IL-21 signaling failed to stimulate CLL B-cell proliferation, but induced their apoptosis. In addition, IL-21 counteracted the proliferative and antiapoptotic signals delivered by IL-15 to CLL B cells. IL-21-mediated apoptosis involved activation of caspase-8 and caspase-3, cleavage of Bid to its active form t-Bid, and cleavage of PARP and of p27Kip-1. Recent data indicate that CLL B cells require interaction with the microenvironment for their survival and expansion. The present findings thus provide a set of new mechanisms involved in the balance between cell-survival and apoptotic signals in CLL B cells.
Collapse
MESH Headings
- Animals
- Apoptosis
- Base Sequence
- CD40 Antigens/metabolism
- DNA, Neoplasm/genetics
- Humans
- In Vitro Techniques
- Interleukin-21 Receptor alpha Subunit
- Janus Kinase 1
- Janus Kinase 3
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice
- Protein-Tyrosine Kinases/metabolism
- Receptors, Interleukin/genetics
- Receptors, Interleukin-21
- STAT1 Transcription Factor/metabolism
- STAT3 Transcription Factor/metabolism
- STAT5 Transcription Factor/metabolism
- Signal Transduction
- Up-Regulation
Collapse
Affiliation(s)
- Daniela de Totero
- Laboratory of Immunotherapy, IST c/o CBA Largo R. Benzi, 10, 16132 Genova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lust S, Vanhoecke B, Janssens A, Philippe J, Bracke M, Offner F. Xanthohumol kills B-chronic lymphocytic leukemia cells by an apoptotic mechanism. Mol Nutr Food Res 2005; 49:844-50. [PMID: 16144030 DOI: 10.1002/mnfr.200500045] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
B-chronic lymphocytic leukemia (B-CLL) is an indolent lymphoid malignancy with variable prognosis. Adverse prognostic factors comprise treatment resistance, cytogenetics (11q- and 17p-), the presence of unmutated Ig genes, and the more comprehensive activation marker Zap 70. In contrast to diminished sensitivity to chemotherapy, Zap 70+ B-CLL cells retain their responsiveness to manipulation of signal transduction and monoclonals. Xanthohumol (XA) has recently been documented to have an impact on breast cancer cell growth and invasiveness in vitro. Based on these observations, lymphocytes from patients with B-CLL were cultured in the presence of XA in vitro. XA induced a dose-dependent killing of B-CLL cells at an LD(50) ((24 h)) of 24.4 +/- 6.6 microM, independent of known adverse prognostic factors including functional loss of p53. Cell death was associated with poly (ADP)-ribose polymerase cleavage and annexin V positivity, suggestive of an apoptotic mechanism. Surprisingly, p 70(S 6 K) phosphorylation was stimulated upon XA treatment. In conclusion, XA has an antitumor activity on B-CLL cells in vitro. The molecular mechanisms behind this pro-apoptotic effect deserve further investigation.
Collapse
Affiliation(s)
- Sofie Lust
- Department of Hematology, Ghent University Hospital, Gent, Belgium
| | | | | | | | | | | |
Collapse
|
21
|
Tfelt-Hansen J, Ferreira A, Yano S, Kanuparthi D, Romero JR, Brown EM, Chattopadhyay N. Calcium-sensing receptor activation induces nitric oxide production in H-500 Leydig cancer cells. Am J Physiol Endocrinol Metab 2005; 288:E1206-13. [PMID: 15657090 DOI: 10.1152/ajpendo.00492.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) is a versatile second messenger. NO is produced by Leydig cells, where NO is a negative regulator of steroidogenesis. In cancer cells, NO is thought to have mutagenic and proliferative effects. We have previously shown that the calcium-sensing receptor (CaR) has promalignant effects in rat H-500 Leydig cancer cells, a model for humoral hypercalcemia of malignancy. Calcium, the major physiological ligand of the CaR, is a recognized intracellular cofactor in the process of NO production by virtue of its positive modulation of neuronal and endothelial nitric oxide synthase (NOS), but importantly, not of inducible (i) NOS activity. iNOS activity is regulated by changes in its expression level. Therefore, we investigated whether CaR activation changes iNOS expression. We found that high extracellular calcium (Cao2+) upregulates the level of mRNA for iNOS, whereas no change was seen in neuronal or endothelial NOS, as assessed by microarray and real-time PCR, respectively. The high Cao2+-induced iNOS upregulation was also detected by Northern and Western blotting. By quantitative real-time PCR, we showed that calcium maximally upregulates iNOS at 18 h. The effect of calcium was abolished by overexpression of a dominant-negative CaR (R185Q), confirming that the effect of Cao2+ was mediated by the CaR. Cells treated with high calcium had higher NO production than those treated with low calcium, as detected with the NO-specific DAF2-AM dye. This was confirmed in single-cell fluorescence determinations using confocal microscopy. In conclusion, high calcium upregulates the levels of iNOS mRNA and protein as well as NO production in H-500 cells, and the effect of Cao2+ on iNOS expression is mediated by the CaR.
Collapse
Affiliation(s)
- Jacob Tfelt-Hansen
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine and Membrane Biology Program, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- T S Lin
- Division of Hematology and Oncology, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|