1
|
Leitch HA. Iron Overload, Oxidative Stress, and Somatic Mutations in MDS: What Is the Association? Eur J Haematol 2025; 114:710-732. [PMID: 39876029 DOI: 10.1111/ejh.14385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/30/2025]
Abstract
INTRODUCTION Iron overload (IOL) accumulates in myelodysplastic syndromes (MDS) from expanded erythropoiesis and transfusions. Somatic mutations (SM) are frequent in MDS and stratify patient risk. MDS treatments reversing or limiting transfusion dependence are limited. METHODS The literature was reviewed on how IOL and oxidative stress interact with specific SM in MDS to influence cellular physiology. PubMed searches included keywords of each specific mutation combined with iron, oxidative stress, and reactive oxygens species (ROS). Papers relevant to hematopoietic stem/progenitor cells, the bone marrow microenvironment, MDS, AML or other myeloid disorders were preferred. Included were the most frequent SM in MDS, SM of the International Prognostic Scoring System-Molecular (IPSS-M), of familial predisposing conditions and the CMML PSS-molecular. RESULTS About 31 SM plus four familial conditions were searched. Discussed are the frequency of each SM, whether function is gained or lost, early or late SM status, a function of the unmutated gene, and function considering iron and oxidative stress. DISCUSSION Given limited effective MDS therapies, considering how IOL and ROS interact with SM to influence cellular physiology in the hematopoietic system, increasing bone marrow failure progression or malignant transformation may be of benefit and support optimization of measures to reduce IOL or neutralize ROS.
Collapse
Affiliation(s)
- Heather A Leitch
- Hematology, St. Paul's Hospital and The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Yang L, Chen Y, Wu Y. The hypoxia signaling pathway in the development of acute myeloid leukemia. Biomed Pharmacother 2025; 186:117999. [PMID: 40188762 DOI: 10.1016/j.biopha.2025.117999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 04/25/2025] Open
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults. Although advances in targeted agents have greatly improved the prognosis of patients with AML in recent years, those who fail to achieve remission or relapse after remission are still in urgent need of novel therapeutic strategies. The hypoxia signaling pathway is involved in various biological processes, and hypoxia-inducible factor alpha (HIF-α) is considered a potential therapeutic target in AML. The bone marrow microenvironment is known to be in a state of chronic hypoxia, which is important for hematopoietic stem cells to maintain quiescence, and provides leukemic stem cells with a refuge from immune defenses and chemotherapeutic agents. Therefore, this review aims to explore the role of the HIF-α signaling pathway in the development of AML.
Collapse
Affiliation(s)
- Liqing Yang
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fujian 350001, China; Department of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Yuanzhong Chen
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fujian 350001, China
| | - Yong Wu
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fujian 350001, China; Department of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China.
| |
Collapse
|
3
|
Tang D, Wang H, Jiang Y, Chen M, Zhang G, Wu S, Wang Y. ATRA-induced NEAT1 upregulation promotes autophagy during APL cell granulocytic differentiation. PLoS One 2024; 19:e0316109. [PMID: 39715205 DOI: 10.1371/journal.pone.0316109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/05/2024] [Indexed: 12/25/2024] Open
Abstract
AIMS Acute promyelocytic leukemia (APL) progresses quickly and often leads to early hemorrhagic death. Treatment with all-trans retinoic acid (ATRA) promotes differentiation of APL cells and clinical remission, making APL a potentially curable malignancy. Understanding how ATRA works may lead to new treatments for other types of leukemia. Long non-coding RNA NEAT1 has been implicated in the differentiation of APL cells. This study aims to elucidate the specific role of NEAT1 in the granulocytic differentiation of APL. METHODS The influence of NEAT1 on autophagy and PML/RARα degradation was assessed using western blot assays. The impact of NEAT1 on the expression of autophagy-related genes was evaluated through quantitative real-time RT-PCR. Mechanistic insights into the role of NEAT1 in modulating autophagy were supported by RNA immunoprecipitation and RNA pulldown assays. KEY FINDINGS Knockdown of NEAT1 suppressed autophagy and attenuated ATRA-induced PML/RARα degradation and granulocytic differentiation of APL cells. Subsequent screening of autophagy-related genes demonstrated that silencing NEAT1 impaired the ATRA-induced upregulation of ATG10 and ATG12. Mechanistic investigations revealed that the RNA-binding protein TAF15 interacted with NEAT1, synergistically stabilizing the mRNA of ATG10 and ATG12. Furthermore, knockdown of NEAT1 impaired the interactions between TAF15 and the mRNAs of ATG10 and ATG12, thereby compromising their mRNA stability. SIGNIFICANCE Our study elucidates the critical role of NEAT1-mediated autophagy in the differentiation of APL cells and delineates the molecular mechanism by which upregulation of NEAT1 enhances autophagy. Specifically, NEAT1 binds to the RNA-binding protein TAF15, which in turn stabilizes the mRNA of both ATG10 and ATG12.
Collapse
MESH Headings
- Humans
- Autophagy/drug effects
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Leukemia, Promyelocytic, Acute/genetics
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Cell Differentiation/drug effects
- Tretinoin/pharmacology
- Up-Regulation/drug effects
- Cell Line, Tumor
- Granulocytes/metabolism
- Granulocytes/drug effects
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/genetics
Collapse
Affiliation(s)
- Doudou Tang
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Centre for Evidence-based Medicine, Central South University, Changsha, Hunan, China
| | - Huihui Wang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Yafeng Jiang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingjie Chen
- Shanghai NewCore Biotechnology Co., Ltd., Minhang District, Shanghai, China
| | - Guangsen Zhang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Shangjie Wu
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Centre for Evidence-based Medicine, Central South University, Changsha, Hunan, China
| | - Yewei Wang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Ding S, Ding W, Zhang Y, Chen Y, Tang H, Jiang X, Chen J. Serum HIF-1α, IGF-1 and IGFBP-3 correlate to recurrence and overall survival in early-stage hepatocellular carcinoma patients. Biomark Med 2024; 18:1027-1036. [PMID: 39552593 PMCID: PMC11633424 DOI: 10.1080/17520363.2024.2421149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024] Open
Abstract
Aim: Recurrence of hepatocellular carcinoma (HCC) after ultrasound-guided microwave ablation (UGMWA) was a critical issue. Therefore, it is significant to identify the role of hypoxia-inducible factor 1 α (HIF-1α), insulin-like growth factor-1 (IGF-1) and IGF binding protein-3 (IGFBP-3) in recurrence.Materials & methods: HCC patients receiving UGMWA were divided into recurrence and no-recurrence groups. The preoperative and postoperative risk factors were compared between these two groups.Results: Preoperative and postoperative serum levels of HIF-1α, IGF-1 and IGFBP-3 were closely associated with the recurrence of HCC. Serum HIF-1α level was increased, while serum levels of IGF-1 and IGFBP-3 were decreased in HCC patients with recurrence.Conclusion: HIF-1α, IGF-1 and IGFBP-3 were associated with and predicted the recurrence of HCC after UGMWA, respectively or in combination.
Collapse
Affiliation(s)
- Shujun Ding
- Department of Ultrasonography, Wuxi People's Hospital Affiliated to Nanjing Medical University, Qingyang Road, Wuxi, 214023, Jiangsu, China
| | - Wei Ding
- Department of Interventional Radiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Qingyang Road, Wuxi, 214023, Jiangsu, China
| | - Ye Zhang
- Department of General Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Qingyang Road, Wuxi, 214023, Jiangsu, China
| | - Yunbao Chen
- Department of Ultrasonography, Wuxi People's Hospital Affiliated to Nanjing Medical University, Qingyang Road, Wuxi, 214023, Jiangsu, China
| | - Hongtao Tang
- Department of Ultrasonography, Wuxi People's Hospital Affiliated to Nanjing Medical University, Qingyang Road, Wuxi, 214023, Jiangsu, China
| | - Xiao Jiang
- Department of Ultrasonography, Shanghai Yangpu District Shidong Hospital, No. 999 Shiguang Road, Shanghai, 200438, China
| | - Jun Chen
- Department of Ultrasonography, Wuxi People's Hospital Affiliated to Nanjing Medical University, Qingyang Road, Wuxi, 214023, Jiangsu, China
| |
Collapse
|
5
|
Yang F, Cui X, Wang H, Zhang D, Luo S, Li Y, Dai Y, Yang D, Zhang X, Wang L, Zheng G, Zhang X. Iron overload promotes the progression of MLL-AF9 induced acute myeloid leukemia by upregulation of FOS. Cancer Lett 2024; 583:216652. [PMID: 38242196 DOI: 10.1016/j.canlet.2024.216652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/26/2023] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Systemic iron overload is a common clinical challenge leading to significantly serious complications in patients with acute myeloid leukemia (AML), which affects both the quality of life and the overall survival of patients. Symptoms can be relieved after iron chelation therapy in clinical practice. However, the roles and mechanisms of iron overload on the initiation and progression of leukemia remain elusive. Here we studied the correlation between iron overload and AML clinical outcome, and further explored the role and pathophysiologic mechanism of iron overload in AML by using two mouse models: an iron overload MLL-AF9-induced AML mouse model and a nude xenograft mouse model. Patients with AML had an increased ferritin level, particularly in the myelomonocytic (M4) or monocytic (M5) subtypes. High level of iron expression correlated with a worsened prognosis in AML patients and a shortened survival time in AML mice. Furthermore, iron overload increased the tumor load in the bone marrow (BM) and extramedullary tissues by promoting the proliferation of leukemia cells through the upregulation of FOS. Collectively, our findings provide new insights into the roles of iron overload in AML. Additionally, this study may provide a potential therapeutic target to improve the outcome of AML patients and a rationale for the prospective evaluation of iron chelation therapy in AML.
Collapse
Affiliation(s)
- Feifei Yang
- Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xiaoxi Cui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Hao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Dongyue Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Shulin Luo
- Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yifei Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yibo Dai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Dan Yang
- Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xiuqun Zhang
- Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Lina Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Xuezhong Zhang
- Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
6
|
Kojima T, Nakamura T, Saito J, Hidaka Y, Akimoto T, Inoue H, Chick CN, Usuki T, Kaneko M, Miyagi E, Ishikawa Y, Yokoyama U. Hydrostatic pressure under hypoxia facilitates fabrication of tissue-engineered vascular grafts derived from human vascular smooth muscle cells in vitro. Acta Biomater 2023; 171:209-222. [PMID: 37793599 DOI: 10.1016/j.actbio.2023.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Biologically compatible vascular grafts are urgently required. The scaffoldless multi-layered vascular wall is considered to offer theoretical advantages, such as facilitating cells to form cell-cell and cell-matrix junctions and natural extracellular matrix networks. Simple methods are desired for fabricating physiological scaffoldless tissue-engineered vascular grafts. Here, we showed that periodic hydrostatic pressurization under hypoxia (HP/HYP) facilitated the fabrication of multi-layered tunica media entirely from human vascular smooth muscle cells. Compared with normoxic atmospheric pressure, HP/HYP increased expression of N-myc downstream-regulated 1 (NDRG1) and the collagen-cross-linking enzyme lysyl oxidase in human umbilical artery smooth muscle cells. HP/HYP increased N-cadherin-mediated cell-cell adhesion via NDRG1, cell-matrix interaction (i.e., clustering of integrin α5β1 and fibronectin), and collagen fibrils. We then fabricated vascular grafts using HP/HYP during repeated cell seeding and obtained 10-layered smooth muscle grafts with tensile rupture strength of 0.218-0.396 MPa within 5 weeks. Implanted grafts into the rat aorta were endothelialized after 1 week and patent after 5 months, at which time most implanted cells had been replaced by recipient-derived cells. These results suggest that HP/HYP enables fabrication of scaffoldless human vascular mimetics that have a spatial arrangement of cells and matrices, providing potential clinical applications for cardiovascular diseases. STATEMENT OF SIGNIFICANCE: Tissue-engineered vascular grafts (TEVGs) are theoretically more biocompatible than prosthetic materials in terms of mechanical properties and recipient cell-mediated tissue reconstruction. Although some promising results have been shown, TEVG fabrication processes are complex, and the ideal method is still desired. We focused on the environment in which the vessels develop in utero and found that mechanical loading combined with hypoxia facilitated formation of cell-cell and cell-matrix junctions and natural extracellular matrix networks in vitro, which resulted in the fabrication of multi-layered tunica media entirely from human umbilical artery smooth muscle cells. These scaffoldless TEVGs, produced using a simple process, were implantable and have potential clinical applications for cardiovascular diseases.
Collapse
Affiliation(s)
- Tomoyuki Kojima
- Department of Physiology, Tokyo Medical University, Tokyo 160-0023, Japan; Department of Obstetrics and Gynecology, Yokohama City University Graduate School of Medicine, Kanagawa 236-0004, Japan
| | - Takashi Nakamura
- Department of Physiology, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Junichi Saito
- Department of Physiology, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Yuko Hidaka
- Department of Physiology, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Taisuke Akimoto
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Kanagawa 236-0004, Japan
| | - Hana Inoue
- Department of Physiology, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Christian Nanga Chick
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| | - Toyonobu Usuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| | - Makoto Kaneko
- Graduate School of Science and Engineering, Meijo University, Aichi 468-8502, Japan
| | - Etsuko Miyagi
- Department of Obstetrics and Gynecology, Yokohama City University Graduate School of Medicine, Kanagawa 236-0004, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Kanagawa 236-0004, Japan
| | - Utako Yokoyama
- Department of Physiology, Tokyo Medical University, Tokyo 160-0023, Japan.
| |
Collapse
|
7
|
Wang Q, Cai WZ, Wang QR, Zhu MQ, Yan LZ, Yu Y, Bao XB, Shen HJ, Yao H, Xie JD, Zhang TT, Zhang L, Xu XY, Shan Z, Liu H, Cen JN, Liu DD, Pan JL, Lu DR, Chen J, Xu Y, Zhang R, Wang Y, Xue SL, Miao M, Han Y, Tang XW, Qiu HY, Sun AN, Huang JY, Dai HP, Wu DP, Chen SN. Integrative genomic and transcriptomic profiling reveals distinct molecular subsets in adult mixed phenotype acute leukemia. Am J Hematol 2023; 98:66-78. [PMID: 36219502 DOI: 10.1002/ajh.26758] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 02/04/2023]
Abstract
Mixed phenotype acute leukemia (MPAL) is a subtype of leukemia in which lymphoid and myeloid markers are co-expressed. Knowledge regarding the genetic features of MPAL is lacking due to its rarity and heterogeneity. Here, we applied an integrated genomic and transcriptomic approach to explore the molecular characteristics of 176 adult patients with MPAL, including 86 patients with T-lymphoid/myeloid MPAL (T/My MPAL-NOS), 42 with Ph+ MPAL, 36 with B-lymphoid/myeloid MPAL (B/My MPAL-NOS), 4 with t(v;11q23), and 8 with MPAL, NOS, rare types. Genetically, T/My MPAL-NOS was similar to B/T MPAL-NOS but differed from Ph+ MPAL and B/My MPAL-NOS. T/My MPAL-NOS exhibited higher CEBPA, DNMT3A, and NOTCH1 mutations. Ph+ MPAL demonstrated higher RUNX1 mutations. B/T MPAL-NOS showed higher NOTCH1 mutations. By integrating next-generation sequencing and RNA sequencing data of 89 MPAL patients, we defined eight molecular subgroups (G1-G8) with distinct mutational and gene expression characteristics. G1 was associated with CEBPA mutations, G2 and G3 with NOTCH1 mutations, G4 with BCL11B rearrangement and FLT3 mutations, G5 and G8 with BCR::ABL1 fusion, G6 with KMT2A rearrangement/KMT2A rearrangement-like features, and G7 with ZNF384 rearrangement/ZNF384 rearrangement-like characteristics. Subsequently, we analyzed single-cell RNA sequencing data from five patients. Groups G1, G2, G3, and G4 exhibited overexpression of hematopoietic stem cell disease-like and common myeloid progenitor disease-like signatures, G5 and G6 had high expression of granulocyte-monocyte progenitor disease-like and monocyte disease-like signatures, and G7 and G8 had common lymphoid progenitor disease-like signatures. Collectively, our findings indicate that integrative genomic and transcriptomic profiling may facilitate more precise diagnosis and develop better treatment options for MPAL.
Collapse
Affiliation(s)
- Qian Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Wen-Zhi Cai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Qin-Rong Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Ming-Qing Zhu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Ling-Zhi Yan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Yan Yu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Xie-Bing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Hong-Jie Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Hong Yao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Jun-Dan Xie
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Tong-Tong Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Ling Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Xiao-Yu Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Zhe Shan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Hong Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Jian-Nong Cen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Dan-Dan Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Jin-Lan Pan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Da-Ru Lu
- Key Laboratory of Birth Defects and Reproductive Health of National Health Commission, Chongqing Population and Family Planning, Science and Technology Research Institute, Chongqing, People's Republic of China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jia Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Ri Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Ying Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Sheng-Li Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Miao Miao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Xiao-Wen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Hui-Ying Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Ai-Ning Sun
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Jin-Yan Huang
- Biomedical Big Data Center, Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Zhejiang University Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Hai-Ping Dai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - De-Pei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Su-Ning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
8
|
Otarola GA, Hu JC, Athanasiou KA. Ion modulatory treatments toward functional self-assembled neocartilage. Acta Biomater 2022; 153:85-96. [PMID: 36113725 PMCID: PMC11575480 DOI: 10.1016/j.actbio.2022.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022]
Abstract
Signals that recapitulate in vitro the conditions found in vivo, such as hypoxia or mechanical forces, contribute to the generation of tissue-engineered hyaline-like tissues. The cell regulatory processes behind hypoxic and mechanical stimuli rely on ion concentration; iron is required to degrade the hypoxia inducible factor 1a (HIF1α) under normoxia, whereas the initiation of mechanotransduction requires the cytoplasmic increase of calcium concentration. In this work, we propose that ion modulation can be used to improve the biomechanical properties of self-assembled neocartilage constructs derived from rejuvenated expanded minipig rib chondrocytes. The objectives of this work were 1) to determine the effects of iron sequestration on self-assembled neocartilage constructs using two doses of the iron chelator deferoxamine (DFO), and 2) to evaluate the performance of the combined treatment of DFO and ionomycin, a calcium ionophore that triggers cytoplasmic calcium accumulation. This study employed a two-phase approach. In Phase I, constructs treated with a high dose of DFO (100 µM) exhibited an 87% increase in pyridinoline crosslinks, a 57% increase in the Young's modulus, and a 112% increase in the ultimate tensile strength (UTS) of the neotissue. In Phase II, the combined use of both ion modulators resulted in 150% and 176% significant increases in the Young's modulus and UTS of neocartilage constructs, respectively; for the first time, neocartilage constructs achieved a Young's modulus of 11.76±3.29 MPa and UTS of 4.20±1.24 MPa. The results of this work provide evidence that ion modulation can be employed to improve the biomechanical properties in engineered neotissues. STATEMENT OF SIGNIFICANCE: The translation of tissue-engineered products requires the development of strategies capable of producing biomimetic neotissues in a replicable, controllable, and cost-effective manner. Among other functions, Fe2+ and Ca2+ are involved in the control of the hypoxic response and mechanotransduction, respectively. Both stimuli, hypoxia and mechanical forces, are known to favor chondrogenesis. This study utilized ion modulators to improve the mechanical properties self-assembled neocartilage constructs derived from expanded and rejuvenated costal chondrocytes via Fe2+ sequestration and Ca2+ influx, alone or in combination. The results indicate that ion modulation induced tissue maturation and a significant improvement of the mechanical properties, and holds potential as a tool to mitigate the need for bioreactors and engineer hyaline-like tissues.
Collapse
Affiliation(s)
- Gaston A Otarola
- 3131 Engineering Hall, Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA
| | - Jerry C Hu
- 3131 Engineering Hall, Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA
| | - Kyriacos A Athanasiou
- 3131 Engineering Hall, Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA.
| |
Collapse
|
9
|
Lee YM. RUNX Family in Hypoxic Microenvironment and Angiogenesis in Cancers. Cells 2022; 11:cells11193098. [PMID: 36231060 PMCID: PMC9564080 DOI: 10.3390/cells11193098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022] Open
Abstract
The tumor microenvironment (TME) is broadly implicated in tumorigenesis, as tumor cells interact with surrounding cells to influence the development and progression of the tumor. Blood vessels are a major component of the TME and are attributed to the creation of a hypoxic microenvironment, which is a common feature of advanced cancers and inflamed premalignant tissues. Runt-related transcription factor (RUNX) proteins, a transcription factor family of developmental master regulators, are involved in vital cellular processes such as differentiation, proliferation, cell lineage specification, and apoptosis. Furthermore, the RUNX family is involved in the regulation of various oncogenic processes and signaling pathways as well as tumor suppressive functions, suggesting that the RUNX family plays a strategic role in tumorigenesis. In this review, we have discussed the relevant findings that describe the crosstalk of the RUNX family with the hypoxic TME and tumor angiogenesis or with their signaling molecules in cancer development and progression.
Collapse
Affiliation(s)
- You Mie Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea
- Lab of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-8566; Fax:+82-53-950-8557
| |
Collapse
|
10
|
Sabui S, Ramamoorthy K, Romero JM, Simoes RD, Fleckenstein JM, Said HM. Hypoxia inhibits colonic uptake of the microbiota-generated forms of vitamin B1 via HIF-1α-mediated transcriptional regulation of their transporters. J Biol Chem 2022; 298:101562. [PMID: 34998824 PMCID: PMC8800108 DOI: 10.1016/j.jbc.2022.101562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/29/2021] [Accepted: 01/02/2022] [Indexed: 01/19/2023] Open
Abstract
Hypoxia exerts profound effects on cell physiology, but its effect on colonic uptake of the microbiota-generated forms of vitamin B1 (i.e., thiamin pyrophosphate [TPP] and free thiamine) has not been described. Here, we used human colonic epithelial NCM460 cells and human differentiated colonoid monolayers as in vitro and ex vivo models, respectively, and were subjected to either chamber (1% O2, 5% CO2, and 94% N2) or chemically (desferrioxamine; 250 μM)-induced hypoxia followed by determination of different physiological-molecular parameters. We showed that hypoxia causes significant inhibition in TPP and free thiamin uptake by colonic NCM460 cells and colonoid monolayers; it also caused a significant reduction in the expression of TPP (SLC44A4) and free thiamin (SLC19A2 and SLC19A3) transporters and in activity of their gene promoters. Furthermore, hypoxia caused a significant induction in levels of hypoxia-inducible transcription factor (HIF)-1α but not HIF-2α. Knocking down HIF-1α using gene-specific siRNAs in NCM460 cells maintained under hypoxic conditions, on the other hand, led to a significant reversal in the inhibitory effect of hypoxia on TPP and free thiamin uptake as well as on the expression of their transporters. Finally, a marked reduction in level of expression of the nuclear factors cAMP responsive element-binding protein 1 and gut-enriched Krüppel-like factor 4 (required for activity of SLC44A4 and SLC19A2 promoters, respectively) was observed under hypoxic conditions. In summary, hypoxia causes severe inhibition in colonic TPP and free thiamin uptake that is mediated at least in part via HIF-1α-mediated transcriptional mechanisms affecting their respective transporters.
Collapse
Affiliation(s)
- Subrata Sabui
- Department of Physiology and Biophysics, UCI, Irvine, California, USA; Department of Research, VA Medical Center, Long Beach, California, USA
| | | | - Jose M Romero
- Department of Research, VA Medical Center, Long Beach, California, USA; Department of Medicine, UCI, Irvine, California, USA
| | - Rita D Simoes
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - James M Fleckenstein
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA; Department Medicine Service, Veterans Affairs Medical Center, St Louis, Missouri, USA
| | - Hamid M Said
- Department of Physiology and Biophysics, UCI, Irvine, California, USA; Department of Research, VA Medical Center, Long Beach, California, USA; Department of Medicine, UCI, Irvine, California, USA.
| |
Collapse
|
11
|
Ghio AJ, Pavlisko EN, Roggli VL, Todd NW, Sangani RG. Cigarette Smoke Particle-Induced Lung Injury and Iron Homeostasis. Int J Chron Obstruct Pulmon Dis 2022; 17:117-140. [PMID: 35046648 PMCID: PMC8763205 DOI: 10.2147/copd.s337354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
It is proposed that the mechanistic basis for non-neoplastic lung injury with cigarette smoking is a disruption of iron homeostasis in cells after exposure to cigarette smoke particle (CSP). Following the complexation and sequestration of intracellular iron by CSP, the host response (eg, inflammation, mucus production, and fibrosis) attempts to reverse a functional metal deficiency. Clinical manifestations of this response can present as respiratory bronchiolitis, desquamative interstitial pneumonitis, pulmonary Langerhans’ cell histiocytosis, asthma, pulmonary hypertension, chronic bronchitis, and pulmonary fibrosis. If the response is unsuccessful, the functional deficiency of iron progresses to irreversible cell death evident in emphysema and bronchiectasis. The subsequent clinical and pathological presentation is a continuum of lung injuries, which overlap and coexist with one another. Designating these non-neoplastic lung injuries after smoking as distinct disease processes fails to recognize shared relationships to each other and ultimately to CSP, as well as the common mechanistic pathway (ie, disruption of iron homeostasis).
Collapse
Affiliation(s)
- Andrew J Ghio
- Human Studies Facility, US Environmental Protection Agency, Chapel Hill, NC, 27514, USA
- Correspondence: Andrew J Ghio Human Studies Facility, US Environmental Protection Agency, 104 Mason Farm Road, Chapel Hill, NC, USA Email
| | | | | | - Nevins W Todd
- Department of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Rahul G Sangani
- Department of Medicine, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
12
|
Tang D, Hu P, Zhu D, Luo Y, Chen M, Zhang G, Wang Y. C/EBPα is indispensable for PML/RARα-mediated suppression of long non-coding RNA NEAT1 in acute promyelocytic leukemia cells. Aging (Albany NY) 2021; 13:13179-13194. [PMID: 33901013 PMCID: PMC8148485 DOI: 10.18632/aging.203000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 03/27/2021] [Indexed: 11/25/2022]
Abstract
Better understanding of the transcriptional regulatory network in acute promyelocytic leukemia (APL) cells is critical to illustrate the pathogenesis of other types of acute myeloid leukemia. Previous studies have primarily focused on the retinoic acid signaling pathway and how it is interfered with by promyelocytic leukemia/retinoic acid receptor-α (PML/RARα) fusion protein. However, this hardly explains how APL cells are blocked at the promyelocytic stage. Here, we demonstrated that C/EBPα bound and transactivated the promoter of long non-coding RNA NEAT1, an essential element for terminal differentiation of APL cells, through C/EBP binding sites. More importantly, PML/RARα repressed C/EBPα-mediated transactivation of NEAT1 through binding to NEAT1 promoter. Consistently, mutation of the C/EBP sites or deletion of retinoic acid responsive elements (RAREs) and RARE half motifs abrogated the PML/RARα-mediated repression. Moreover, silencing of C/EBPα attenuated ATRA-induced NEAT1 upregulation and APL cell differentiation. Finally, simultaneous knockdown of C/EBPα and C/EBPβ reduces ATRA-induced upregulation of C/EBPε and dramatically impaired NEAT1 activation and APL cell differentiation. In sum, C/EBPα binds and transactivates NEAT1 whereas PML/RARα represses this process. This study describes an essential role for C/EBPα in PML/RARα-mediated repression of NEAT1 and suggests that PML/RARα could contribute to the pathogenesis of APL through suppressing C/EBPα targets.
Collapse
Affiliation(s)
- Doudou Tang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Hunan Centre for Evidence-Based Medicine, Central South University, Changsha, Hunan, China
| | - Piao Hu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Dengqin Zhu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Yujiao Luo
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | | | - Guangsen Zhang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Yewei Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| |
Collapse
|
13
|
Leitch HA, Buckstein R, Zhu N, Nevill TJ, Yee KWL, Leber B, Keating MM, St Hilaire E, Kumar R, Delage R, Geddes M, Storring JM, Shamy A, Elemary M, Wells RA. Iron overload in myelodysplastic syndromes: Evidence based guidelines from the Canadian consortium on MDS. Leuk Res 2018; 74:21-41. [PMID: 30286330 DOI: 10.1016/j.leukres.2018.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/08/2018] [Accepted: 09/15/2018] [Indexed: 01/19/2023]
Abstract
In 2008 the first evidence-based Canadian consensus guideline addressing the diagnosis, monitoring and management of transfusional iron overload in patients with myelodysplastic syndromes (MDS) was published. The Canadian Consortium on MDS, comprised of hematologists from across Canada with a clinical and academic interest in MDS, reconvened to update these guidelines. A literature search was updated in 2017; topics reviewed include mechanisms of iron overload induced cellular damage, evidence for clinical endpoints impacted by iron overload including organ dysfunction, infections, marrow failure, overall survival, acute myeloid leukemia progression, and endpoints around hematopoietic stem-cell transplant. Evidence for an impact of iron reduction on the same endpoints is discussed, guidelines are updated, and areas identified where evidence is suboptimal. The guidelines address common questions around the diagnosis, workup and management of iron overload in clinical practice, and take the approach of who, when, why and how to treat iron overload in MDS. Practical recommendations for treatment and monitoring are made. Evidence levels and grading of recommendations are provided for all clinical endpoints examined.
Collapse
Affiliation(s)
- Heather A Leitch
- Hematology, St. Paul's Hospital and the University of British Columbia, Vancouver, BC, Canada.
| | - Rena Buckstein
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Nancy Zhu
- Hematology/Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Thomas J Nevill
- Leukemia/BMT Program of British Columbia, Division of Hematology, Vancouver, BC, Canada
| | - Karen W L Yee
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Brian Leber
- McMaster University, Hamilton, Ontario, Canada
| | | | - Eve St Hilaire
- Centre d'Oncologie, Dr-Leon-Richard, Moncton, New Brunswick, Canada
| | - Rajat Kumar
- Hematology/Oncology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Robert Delage
- Hematology Department, Centre Hospitalier Universitaire, Laval University, Quebec, QC, Canada
| | - Michelle Geddes
- Department of Medicine/Hematology, Foothills Medical Centre, Calgary, Alberta, Canada
| | | | - April Shamy
- Sir Mortimer B Davis Hospital, McGill University, Montreal, Quebec, Canada
| | - Mohamed Elemary
- Saskatoon Cancer Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Richard A Wells
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Adris N, Chua ACG, Knuiman MW, Divitini ML, Trinder D, Olynyk JK. A prospective cohort examination of haematological parameters in relation to cancer death and incidence: the Busselton Health Study. BMC Cancer 2018; 18:863. [PMID: 30176879 PMCID: PMC6122556 DOI: 10.1186/s12885-018-4775-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancer risk is associated with serum iron levels. The aim of this study was to evaluate whether haematological parameters reflect serum iron levels and may also be associated with cancer risk. METHODS We studied 1564 men and 1769 women who were enrolled in the Busselton Health Study, Western Australia. Haematological parameters evaluated included haemoglobin (Hb), mean cell volume (MCV), mean cell haemoglobin (MCH) and mean cell haemoglobin concentration (MCHC) and red cell distribution width (RCDW). Statistical analyses included t-tests for quantitative variables, chi-square tests for categorical variables and Cox proportional hazards regression modelling for cancer incidence and death. RESULTS There was marginal evidence of an association between MCV (as a continuous variable) and non-skin cancer incidence in women (HR 1.15, 95% CI 1.013, 1.302; p = 0.030) but the hazard ratio was attenuated to non-significance after adjustment for serum ferritin (SF), iron and transferrin saturation (TS) (HR 1.11, 95% CI 0.972, 1.264; p = 0.126). There was strong evidence of an association between MCHC and prostate cancer incidence in men; the estimated hazard ratio for an increase of one SD (0.5) in MCHC was 1.27 (95% CI 1.064, 1.507; p = 0.008). These results remained significant after further adjustment for SF and iron; the estimated hazard ratio for an increase of one SD (0.5) in MCHC was 1.25 (p = 0.014, 95% CI 1.05 to 1.48). CONCLUSIONS The MCHC and MCV were associated with cancer incidence in a Western Australian population, although only MCHC remained associated with prostate cancer after adjusting with serum iron and TS (circulating iron) and SF (storage iron). Haematological parameters are thus of limited utility in population profiling for future cancer risk.
Collapse
Affiliation(s)
- Niwansa Adris
- Department of Gastroenterology and Hepatology, Fiona Stanley and Fremantle Hospital Group, Murdoch, WA 6150 Australia
| | - Anita Chai Geik Chua
- Medical School, The University of Western Australia, Fiona Stanley Hospital, Murdoch, WA 6150 Australia
- Harry Perkins Institute of Medical Research, Murdoch, WA 6150 Australia
| | - Matthew William Knuiman
- School of Population and Global Health, The University of Western Australia, Crawley, WA 6009 Australia
| | - Mark Laurence Divitini
- School of Population and Global Health, The University of Western Australia, Crawley, WA 6009 Australia
| | - Debbie Trinder
- Medical School, The University of Western Australia, Fiona Stanley Hospital, Murdoch, WA 6150 Australia
- Harry Perkins Institute of Medical Research, Murdoch, WA 6150 Australia
| | - John Kevin Olynyk
- Department of Gastroenterology and Hepatology, Fiona Stanley and Fremantle Hospital Group, Murdoch, WA 6150 Australia
- School of Health and Medical Sciences, Edith Cowan University, Joondalup, 6027 Western Australia
| |
Collapse
|
15
|
Irigoyen M, García-Ruiz JC, Berra E. The hypoxia signalling pathway in haematological malignancies. Oncotarget 2018; 8:36832-36844. [PMID: 28415662 PMCID: PMC5482702 DOI: 10.18632/oncotarget.15981] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/27/2017] [Indexed: 12/25/2022] Open
Abstract
Haematological malignancies are tumours that affect the haematopoietic and the lymphatic systems. Despite the huge efforts to eradicate these tumours, the percentage of patients suffering resistance to therapies and relapse still remains significant. The tumour environment favours drug resistance of cancer cells, and particularly of cancer stem/initiating cells. Hypoxia promotes aggressiveness, metastatic spread and relapse in most of the solid tumours. Furthermore, hypoxia is associated with worse prognosis and resistance to conventional treatments through activation of the hypoxia-inducible factors. Haematological malignancies are not considered solid tumours, and therefore, the role of hypoxia in these diseases was initially presumed to be inconsequential. However, hypoxia is a hallmark of the haematopoietic niche. Here, we will review the current understanding of the role of both hypoxia and hypoxia-inducible factors in different haematological tumours.
Collapse
Affiliation(s)
- Marta Irigoyen
- Centro de Investigación Cooperativa en Biociencias CIC bioGUNE, Derio, Spain
| | - Juan Carlos García-Ruiz
- Servicio de Hematología y Hemoterapia, BioCruces Health Research Institute, Hospital Universitario Cruces, Spain
| | - Edurne Berra
- Centro de Investigación Cooperativa en Biociencias CIC bioGUNE, Derio, Spain
| |
Collapse
|
16
|
Wang M, Zhao X, Zhu D, Liu T, Liang X, Liu F, Zhang Y, Dong X, Sun B. HIF-1α promoted vasculogenic mimicry formation in hepatocellular carcinoma through LOXL2 up-regulation in hypoxic tumor microenvironment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:60. [PMID: 28449718 PMCID: PMC5408450 DOI: 10.1186/s13046-017-0533-1] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/21/2017] [Indexed: 02/07/2023]
Abstract
Background The incidence and mortality rates of hepatocellular carcinoma (HCC) have steadily increased in recent years. A hypoxic microenvironment is one of the most important characteristics of solid tumors which has been shown to promote tumor metastasis, epithelial-mesenchymal transition and angiogenesis. Epithelial-mesenchymal transition and vasculogenic mimicry have been regarded as crucial contributing factors to cancer progression. HIF-1α functions as a master transcriptional regulator in the adaptive response to hypoxia. Lysyl oxidases like 2 (LOXL2) is a member of the lysyl oxidase family, which main function is to catalyze the covalent cross-linkages of collagen and elastin in the extracellular matrix. Recent work has demonstrated that HIF-1α promotes the expression of LOXL2, which is believed to amplify tumor aggressiveness. LOXL2 has shown to promote metastasis and is correlated with poor prognosis in hepatocellular carcinoma. The purpose of our study is to explore the role of HIF-1α in progression and metastasis of hepatocellular carcinoma by promoting the expression of LOXL2 as well as the potential regulatory mechanism. Methods HIF-1α, LOXL2 expression and CD31/periodic acid-Schiff double staining in HCC patient samples were examined by immunohistochemical staining. shRNA plasmids against HIF-1α was used to determine whether LOXL2 been increased by HIF-1α. We monitored a series of rescue assays to demonstrate our hypothesis that LOXL2 is required and sufficient for HIF-1α induced EMT and VM formation, which mediates cellular transformation and takes effect in cellular invasion. Then we performed GeneChip® Human Transcriptome Array (HTA) 2.0 in HepG2 cells, HepG2 cells overexpressed LOXL2 and HepG2 cells treated with CoCl2. Results In clinical HCC tissues, it confirmed a positive relationship between HIF-1α and LOXL2 protein. Importantly, HIF-1α and LOXL2 high expression and the presence of vasculogenic mimicry were correlated to poor prognosis. HIF-1α was found to induce EMT, HCC cell migration, invasion and VM formation by regulating LOXL2. The results of microarray assays were analyzed. Conclusion HIF-1α plays an important role in the development of HCC by promoting HCC metastasis, EMT and VM through up-regulating LOXL2. This study highlights the potential therapeutic value of targeting LOXL2 for suppression of HCC metastasis and progression. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0533-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meili Wang
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China. .,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China.
| | - Dongwang Zhu
- Department of Surgery, Stomatological Hospital of Tianjin Medical University, Tianjin, 300070, China
| | - Tieju Liu
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Xiaohui Liang
- Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Fang Liu
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Yanhui Zhang
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China. .,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China.
| |
Collapse
|
17
|
Musto P, Maurillo L, Simeon V, Poloni A, Finelli C, Balleari E, Ricco A, Rivellini F, Cortelezzi A, Tarantini G, Villani O, Mansueto G, Milella MR, Scapicchio D, Marziano G, Breccia M, Niscola P, Sanna A, Clissa C, Voso MT, Fenu S, Venditti A, Santini V, Angelucci E, Levis A. Iron-chelating therapy with deferasirox in transfusion-dependent, higher risk myelodysplastic syndromes: a retrospective, multicentre study. Br J Haematol 2017; 177:741-750. [PMID: 28419408 DOI: 10.1111/bjh.14621] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/27/2016] [Indexed: 01/19/2023]
Abstract
Iron chelation is controversial in higher risk myelodysplastic syndromes (HR-MDS), outside the allogeneic transplant setting. We conducted a retrospective, multicentre study in 51 patients with transfusion-dependent, intermediate-to-very high risk MDS, according to the revised international prognostic scoring system, treated with the oral iron chelating agent deferasirox (DFX). Thirty-six patients (71%) received azacitidine concomitantly. DFX was given at a median dose of 1000 mg/day (range 375-2500 mg) for a median of 11 months (range 0·4-75). Eight patients (16%) showed grade 2-3 toxicities (renal or gastrointestinal), 4 of whom (8%) required drug interruption. Median ferritin levels decreased from 1709 μg/l at baseline to 1100 μg/l after 12 months of treatment (P = 0·02). Seventeen patients showed abnormal transaminase levels at baseline, which improved or normalized under DFX treatment in eight cases. One patient showed a remarkable haematological improvement. At a median follow up of 35·3 months, median overall survival was 37·5 months. The results of this first survey of DFX in HR-MDS are comparable, in terms of safety and efficacy, with those observed in lower-risk MDS. Though larger, prospective studies are required to demonstrate real clinical benefits, our data suggest that DFX is feasible and might be considered in a selected cohort of HR-MDS patients.
Collapse
Affiliation(s)
- Pellegrino Musto
- Scientific Direction, IRCCS-CROB, "Referral Cancer Centre of Basilicata", Rionero In Vulture (Pz), Italy
| | - Luca Maurillo
- Haematology, Department of Biomedicine and Prevention, "Tor Vergata" University, Rome, Italy
| | - Vittorio Simeon
- Laboratory of Pre-clinical and Translational Research, IRCCS-CROB, "Referral Cancer Centre of Basilicata", Rionero In Vulture (Pz), Italy
| | - Antonella Poloni
- Haematology Clinic, Department of Clinic and Molecular Sciences, "Università Politecnica delle Marche", Ancona, Italy
| | - Carlo Finelli
- "Seràgnoli Institute of Haematology", University School of Medicine, Bologna, Italy
| | - Enrico Balleari
- Department of Haematology and Oncology, IRCCS AOU San Martino - IST, Genova, Italy
| | - Alessandra Ricco
- Department of Emergency and Organ Transplantation, Haematology Section, University of Bari, Bari, Italy
| | | | - Agostino Cortelezzi
- Department of Oncology and Haemato-Oncology, University of Milan and Haematology Unit, "Fondazione IRCCS Ca' Granda, Ospedale Maggiore" Policlinico, Milan, Italy
| | | | - Oreste Villani
- Department of Onco-Haematology, IRCCS-CROB, "Referral Cancer Centre of Basilicata", Rionero in Vulture (Pz), Italy
| | - Giovanna Mansueto
- Department of Onco-Haematology, IRCCS-CROB, "Referral Cancer Centre of Basilicata", Rionero in Vulture (Pz), Italy
| | - Maria R Milella
- Pharmacy Unit, IRCCS-CROB, "Referral Cancer Centre of Basilicata", Rionero In Vulture (Pz), Italy
| | - Daniele Scapicchio
- Management Control Unit, IRCCS-CROB, "Referral Cancer Centre of Basilicata", Rionero In Vulture (Pz), Italy
| | - Gioacchino Marziano
- Scientific Direction, IRCCS-CROB, "Referral Cancer Centre of Basilicata", Rionero In Vulture (Pz), Italy
| | - Massimo Breccia
- Department of Cellular Biotechnologies and Haematology, "La Sapienza" University, Rome, Italy
| | | | - Alessandro Sanna
- Haematology, University of Florence, AOU Careggi, Florence, Italy
| | - Cristina Clissa
- Haematology and Haematopoietic Stem Cell Transplant Centre, AORMN, Pesaro, Italy
| | - Maria T Voso
- Haematology, Department of Biomedicine and Prevention, "Tor Vergata" University, Rome, Italy
| | - Susanna Fenu
- Haematology, "San Giovanni" Hospital, Rome, Italy
| | - Adriano Venditti
- Haematology, Department of Biomedicine and Prevention, "Tor Vergata" University, Rome, Italy
| | - Valeria Santini
- Haematology, University of Florence, AOU Careggi, Florence, Italy
| | - Emanuele Angelucci
- Department of Haematology and Oncology, IRCCS AOU San Martino - IST, Genova, Italy
| | - Alessandro Levis
- FISM, Fondazione Italiana Sindromi Mielodisplastiche, Alessandria, Italy
| |
Collapse
|
18
|
Semenza GL. A compendium of proteins that interact with HIF-1α. Exp Cell Res 2017; 356:128-135. [PMID: 28336293 DOI: 10.1016/j.yexcr.2017.03.041] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/18/2017] [Indexed: 12/23/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is the founding member of a family of transcription factors that function as master regulators of oxygen homeostasis. HIF-1 is composed of an O2-regulated HIF-1α subunit and a constitutively expressed HIF-1β subunit. This review provides a compendium of proteins that interact with the HIF-1α subunit, many of which regulate HIF-1 activity in either an O2-dependent or O2-independent manner.
Collapse
Affiliation(s)
- Gregg L Semenza
- Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205 USA.
| |
Collapse
|
19
|
Brenner AK, Tvedt THA, Nepstad I, Rye KP, Hagen KM, Reikvam H, Bruserud Ø. Patients with acute myeloid leukemia can be subclassified based on the constitutive cytokine release of the leukemic cells; the possible clinical relevance and the importance of cellular iron metabolism. Expert Opin Ther Targets 2017; 21:357-369. [PMID: 28281897 DOI: 10.1080/14728222.2017.1300255] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Acute myeloid leukaemia (AML) is a heterogeneous malignancy; we studied how the constitutive cytokine release by the AML cells varies among patients. METHODS We investigated the constitutive release of 28 mediators during in vitro culture for 79 consecutive patients. RESULTS Constitutive cytokine release profiles differed among patients, and hierarchical clustering identified three subsets with high, intermediate and low release, respectively. The high-release subset showed high levels of most mediators, usually monocytic differentiation as well as altered mRNA expression of proteins involved in intracellular iron homeostasis and molecular trafficking; this subset also included 4 out of 6 patients with inv(16). Spontaneous in vitro apoptosis did not differ among the subsets. For the high-release patients, cytokines were released both by CD34+ and CD34- cells. The mRNA and released protein levels showed statistically significant correlations only for eleven of the cytokines. The overall survival after intensive anti-leukemic therapy was significantly higher for high-release compared with low-release patients. Pharmacological targeting of iron metabolism (iron chelation, transferrin receptor blocking) altered the cytokine release profile. CONCLUSIONS Subclassification of AML patients based on the constitutive cytokine release may be clinically relevant and a part of a low-risk (i.e. chemosensitive) AML cell phenotype.
Collapse
Affiliation(s)
- Annette K Brenner
- a Section for Haematology, Department of Clinical Science , University of Bergen , Bergen , Norway
| | | | - Ina Nepstad
- a Section for Haematology, Department of Clinical Science , University of Bergen , Bergen , Norway
| | - Kristin P Rye
- a Section for Haematology, Department of Clinical Science , University of Bergen , Bergen , Norway
| | - Karen M Hagen
- a Section for Haematology, Department of Clinical Science , University of Bergen , Bergen , Norway
| | - Håkon Reikvam
- a Section for Haematology, Department of Clinical Science , University of Bergen , Bergen , Norway.,b Department of Medicine , Haukeland University Hospital , Bergen , Norway
| | - Øystein Bruserud
- a Section for Haematology, Department of Clinical Science , University of Bergen , Bergen , Norway.,b Department of Medicine , Haukeland University Hospital , Bergen , Norway
| |
Collapse
|
20
|
Lee SH, Manandhar S, Lee YM. Roles of RUNX in Hypoxia-Induced Responses and Angiogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:449-469. [PMID: 28299673 DOI: 10.1007/978-981-10-3233-2_27] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During the past two decades, Runt domain transcription factors (RUNX1, 2, and 3) have been investigated in regard to their function, structural elements, genetic variants, and roles in normal development and pathological conditions. The Runt family proteins are evolutionarily conserved from Drosophila to mammals, emphasizing their physiological importance. A hypoxic microenvironment caused by insufficient blood supply is frequently observed in developing organs, growing tumors, and tissues that become ischemic due to impairment or blockage of blood vessels. During embryonic development and tumor growth, hypoxia triggers a stress response that overcomes low-oxygen conditions by increasing erythropoiesis and angiogenesis and triggering metabolic changes. This review briefly introduces hypoxic conditions and cellular responses, as well as angiogenesis and its related signaling pathways, and then describes our current knowledge on the functions and molecular mechanisms of Runx family proteins in hypoxic responses, especially in angiogenesis.
Collapse
Affiliation(s)
- Sun Hee Lee
- National Basic Research Laboratory of Vascular Homeostasis Regulation, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, South Korea
| | - Sarala Manandhar
- National Basic Research Laboratory of Vascular Homeostasis Regulation, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, South Korea
| | - You Mie Lee
- National Basic Research Laboratory of Vascular Homeostasis Regulation, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
21
|
Chavez-Gonzalez A, Bakhshinejad B, Pakravan K, Guzman ML, Babashah S. Novel strategies for targeting leukemia stem cells: sounding the death knell for blood cancer. Cell Oncol (Dordr) 2016; 40:1-20. [PMID: 27678246 DOI: 10.1007/s13402-016-0297-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are characterized by high self-renewal and multi-lineage differentiation capacities. CSCs are thought to play indispensable roles in the initiation, progression and metastasis of many types of cancer. Leukemias are thought to be initiated and maintained by a specific sub-type of CSC, the leukemia stem cell (LSC). An important feature of LSCs is their resistance to standard therapy, which may lead to relapse. Increasing efforts are aimed at developing novel therapeutic strategies that selectively target LSCs, while sparing their normal counterparts and, thus, minimizing adverse treatment-associated side-effects. These LSC targeting therapies aim to eradicate LSCs through affecting mechanisms that control their survival, self-renewal, differentiation, proliferation and cell cycle progression. Some LSC targeting therapies have already been proven successful in pre-clinical studies and they are now being tested in clinical studies, mainly in combination with conventional treatment regimens. CONCLUSIONS A growing body of evidence indicates that the selective targeting of LSCs represents a promising approach to improve disease outcome. Beyond doubt, the CSC hypothesis has added a new dimension to the area of anticancer research, thereby paving the way for shaping a new trend in cancer therapy.
Collapse
Affiliation(s)
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Katayoon Pakravan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Monica L Guzman
- Department of Medicine, Weill Medical College of Cornell University, 1300 York Ave, Box 113, New York, NY, 10065, USA.
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.
| |
Collapse
|
22
|
Deynoux M, Sunter N, Hérault O, Mazurier F. Hypoxia and Hypoxia-Inducible Factors in Leukemias. Front Oncol 2016; 6:41. [PMID: 26955619 PMCID: PMC4767894 DOI: 10.3389/fonc.2016.00041] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/08/2016] [Indexed: 01/10/2023] Open
Abstract
Despite huge improvements in the treatment of leukemia, the percentage of patients suffering relapse still remains significant. Relapse most often results from a small number of leukemic stem cells (LSCs) within the bone marrow, which are able to self-renew, and therefore reestablish the full tumor. The marrow microenvironment contributes considerably in supporting the protection and development of leukemic cells. LSCs share specific niches with normal hematopoietic stem cells with the niche itself being composed of a variety of cell types, including mesenchymal stem/stromal cells, bone cells, immune cells, neuronal cells, and vascular cells. A hallmark of the hematopoietic niche is low oxygen partial pressure, indeed this hypoxia is necessary for the long-term maintenance of hematopoietic stem/progenitor cells. Hypoxia is a strong signal, principally maintained by members of the hypoxia-inducible factor (HIF) family. In solid tumors, it has been well established that hypoxia triggers intrinsic metabolic changes and microenvironmental modifications, such as the stimulation of angiogenesis, through activation of HIFs. As leukemia is not considered a “solid” tumor, the role of oxygen in the disease was presumed to be inconsequential and remained long overlooked. This view has now been revised since hypoxia has been shown to influence leukemic cell proliferation, differentiation, and resistance to chemotherapy. However, the role of HIF proteins remains controversial with HIFs being considered as either oncogenes or tumor suppressor genes, depending on the study and model. The purpose of this review is to highlight our knowledge of hypoxia and HIFs in leukemic development and therapeutic resistance and to discuss the recent hypoxia-based strategies proposed to eradicate leukemias.
Collapse
Affiliation(s)
- Margaux Deynoux
- Génétique, Immunothérapie, Chimie et Cancer (GICC) UMR 7292, CNRS, UFR de Médecine, Université François-Rabelais de Tours , Tours , France
| | - Nicola Sunter
- Génétique, Immunothérapie, Chimie et Cancer (GICC) UMR 7292, CNRS, UFR de Médecine, Université François-Rabelais de Tours , Tours , France
| | - Olivier Hérault
- Génétique, Immunothérapie, Chimie et Cancer (GICC) UMR 7292, CNRS, UFR de Médecine, Université François-Rabelais de Tours, Tours, France; Service d'Hématologie Biologique, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Frédéric Mazurier
- Génétique, Immunothérapie, Chimie et Cancer (GICC) UMR 7292, CNRS, UFR de Médecine, Université François-Rabelais de Tours , Tours , France
| |
Collapse
|
23
|
Borsi E, Terragna C, Brioli A, Tacchetti P, Martello M, Cavo M. Therapeutic targeting of hypoxia and hypoxia-inducible factor 1 alpha in multiple myeloma. Transl Res 2015; 165:641-50. [PMID: 25553605 DOI: 10.1016/j.trsl.2014.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
Abstract
Multiple myeloma (MM) is a clonal B-cell malignancy characterized by accumulation of malignant plasma cells (PCs) within the bone marrow (BM). The PCs are in close contact with stromal cells, which secrete growth factors and cytokines, promoting tumor cell growth and survival. Despite the availability of new drugs with immunomodulatory properties targeting the neoplastic clone and its microenvironment, MM is still an incurable disease, with patients experiencing subsequent phases of remission and relapse, eventually leading to disease resistance and patient death. It is now well established that the MM BM microenvironment is hypoxic, a condition required for the activation of the hypoxia-inducible factor 1 alpha (HIF-1α). It has been shown that HIF-1α is constitutively expressed in MM even in normoxic conditions, suggesting that HIF-1α suppression might be part of a therapeutic strategy. Constitutively activated HIF-1α enhances neovascularization, increases glucose metabolism, and induces the expression of antiapoptotic proteins. HIF-1α is thought to be one of the most important molecular targets in the treatment of cancer, and a variety of chemical inhibitors for HIF-1α have been developed to date. This review examines the role of HIF-1α in MM and recent developments in harnessing the therapeutic potential of HIF-1α inhibition in MM.
Collapse
Affiliation(s)
- Enrica Borsi
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Institute of Hematology, "L. & A. Seràgnoli," Bologna University, S. Orsola's University Hospital, Bologna, Italy
| | - Carolina Terragna
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Institute of Hematology, "L. & A. Seràgnoli," Bologna University, S. Orsola's University Hospital, Bologna, Italy
| | - Annamaria Brioli
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Institute of Hematology, "L. & A. Seràgnoli," Bologna University, S. Orsola's University Hospital, Bologna, Italy
| | - Paola Tacchetti
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Institute of Hematology, "L. & A. Seràgnoli," Bologna University, S. Orsola's University Hospital, Bologna, Italy
| | - Marina Martello
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Institute of Hematology, "L. & A. Seràgnoli," Bologna University, S. Orsola's University Hospital, Bologna, Italy
| | - Michele Cavo
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Institute of Hematology, "L. & A. Seràgnoli," Bologna University, S. Orsola's University Hospital, Bologna, Italy.
| |
Collapse
|
24
|
Friedman AD. C/EBPα in normal and malignant myelopoiesis. Int J Hematol 2015; 101:330-41. [PMID: 25753223 DOI: 10.1007/s12185-015-1764-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 12/22/2022]
Abstract
CCAAT/enhancer binding protein α (C/EBPα) dimerizes via its leucine zipper (LZ) domain to bind DNA via its basic region and activate transcription via N-terminal trans-activation domains. The activity of C/EBPα is modulated by several serine/threonine kinases and via sumoylation, its gene is activated by RUNX1 and additional transcription factors, its mRNA stability is modified by miRNAs, and its mRNA is subject to translation control that affects AUG selection. In addition to inducing differentiation, C/EBPα inhibits cell cycle progression and apoptosis. Within hematopoiesis, C/EBPα levels increase as long-term stem cells progress to granulocyte-monocyte progenitors (GMP). Absence of C/EBPα prevents GMP formation, and higher levels are required for granulopoiesis compared to monopoiesis. C/EBPα interacts with AP-1 proteins to bind hybrid DNA elements during monopoiesis, and induction of Gfi-1, C/EBPε, KLF5, and miR-223 by C/EBPα enables granulopoiesis. The CEBPA ORF is mutated in approximately 10 % of acute myeloid leukemias (AML), leading to expression of N-terminally truncated C/EBPαp30 and C-terminal, in-frame C/EBPαLZ variants, which inhibit C/EBPα activities but also play additional roles during myeloid transformation. RUNX1 mutation, CEBPA promoter methylation, Trib1 or Trib2-mediated C/EBPαp42 degradation, and signaling pathways leading to C/EBPα serine 21 phosphorylation reduce C/EBPα expression or activity in additional AML cases.
Collapse
Affiliation(s)
- Alan D Friedman
- Division of Pediatric Oncology, Johns Hopkins University, Cancer Research Building I, Room 253, 1650 Orleans Street, Baltimore, MD, 21231, USA,
| |
Collapse
|
25
|
Endogenous molecular-cellular hierarchical modeling of prostate carcinogenesis uncovers robust structure. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 117:30-42. [PMID: 25657097 DOI: 10.1016/j.pbiomolbio.2015.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 01/12/2015] [Indexed: 01/30/2023]
Abstract
We explored endogenous molecular-cellular network hypothesis for prostate cancer by constructing relevant endogenous interaction network model and analyzing its dynamical properties. Molecular regulations involved in cell proliferation, apoptosis, differentiation and metabolism are included in a hierarchical mathematical modeling scheme. This dynamical network organizes into multiple robust functional states, including physiological and pathological ones. Some states have characteristics of cancer: elevated metabolic and immune activities, high concentration of growth factors and different proliferative, apoptotic and adhesive behaviors. The molecular profile of calculated cancer state agrees with existing experiments. The modeling results have additional predictions which may be validated by further experiment: 1) Prostate supports both stem cell like and liver style proliferation; 2) While prostate supports multiple cell types, including basal, luminal and endocrine cell type differentiated from its stem cell, luminal cell is most likely to be transformed malignantly into androgen independent type cancer; 3) Retinoic acid pathway and C/EBPα are possible therapeutic targets.
Collapse
|
26
|
Wang Y, Jin W, Jia X, Luo R, Tan Y, Zhu X, Yang X, Wang X, Wang K. Transcriptional repression of CDKN2D by PML/RARα contributes to the altered proliferation and differentiation block of acute promyelocytic leukemia cells. Cell Death Dis 2014; 5:e1431. [PMID: 25275592 PMCID: PMC4649503 DOI: 10.1038/cddis.2014.388] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 01/14/2023]
Abstract
Cell proliferation and differentiation are highly coordinated processes. These two processes are disrupted during leukemogenesis, resulting in differentiation block and uncontrolled proliferation in leukemia. To understand the mechanisms disrupting the coordination between the two processes in acute promyelocytic leukemia (APL), we investigated the regulatory mechanism of the negative cell cycle regulator CDKN2D by the promyelocytic leukemia/retinoic acid receptor α (PML/RARα) fusion protein and the role of CDKN2D in cell differentiation and proliferation. We found that CDKN2D expression in APL cells was significantly lower than that in normal promyelocytes. By chromatin immunoprecipitation and luciferase reporter assays, we showed that PML/RARα directly bound to and inhibited the transactivation of the CDKN2D promoter. Further evidence by the truncated and mutated CDKN2D promoters revealed that the everted repeat 8 (ER8) motif on the promoter was the binding site of PML/RARα. Forced expression of CDKN2D induced G0/G1 phase arrest and partial granulocytic differentiation in APL-derived NB4 cells, suggesting the function of CDKN2D in regulating both cell proliferation and granulocytic differentiation. Furthermore, all-trans retinoic acid (ATRA) significantly induced CDKN2D expression in APL cells and knockdown of CDKN2D expression during ATRA treatment partially blocked the ATRA-induced differentiation and cell cycle arrest. Collectively, our data indicate that CDKN2D repression by PML/RARα disrupts both cell proliferation and differentiation in the pathogenesis of APL, and induced expression of CDKN2D by ATRA alleviates the disruption of both processes to ensure treatment efficiency. This study provides a mechanism for coupling proliferation and differentiation in leukemic cells through the action of CDKN2D.
Collapse
Affiliation(s)
- Y Wang
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - W Jin
- 1] State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China [2] Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, China [3] Sino-French Research Center for Life Sciences and Genomics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - X Jia
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - R Luo
- School of Life Sciences/Center for Computational Systems Biology, Fudan University, Shanghai, 200433, China
| | - Y Tan
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - X Zhu
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - X Yang
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - X Wang
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - K Wang
- 1] State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China [2] Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, China [3] Sino-French Research Center for Life Sciences and Genomics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
27
|
Sumoylation of hypoxia inducible factor-1α and its significance in cancer. SCIENCE CHINA-LIFE SCIENCES 2014; 57:657-64. [DOI: 10.1007/s11427-014-4685-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 04/15/2014] [Indexed: 12/26/2022]
|
28
|
Merkel DG, Nagler A. Toward resolving the unsettled role of iron chelation therapy in myelodysplastic syndromes. Expert Rev Anticancer Ther 2014; 14:817-29. [PMID: 24641787 DOI: 10.1586/14737140.2014.896208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transfusion dependent low risk myelodysplastic syndromes (MDS) patients, eventually develop iron overload. Iron toxicity, via oxidative stress, can damage cellular components and impact organ function. In thalassemia major patients, iron chelation therapy lowered iron levels with recovery of cardiac and liver functions and significant improvement in survival. Several noncontrolled studies show inferior survival in MDS patients with iron overload, including an increase in transplant-related mortality and infection risk while iron chelation appears to improve survival in both lower risk MDS patients and in stem cell transplant settings. Collated data are presented on the pathophysiological impact of iron overload; measuring techniques and chelating agents' therapy positive impact on hematological status and overall survival are discussed. Although suggested by retrospective analyses, the lack of clear prospective data of the beneficial effects of iron chelation on morbidity and survival, the role of iron chelation therapy in MDS patients remains controversial.
Collapse
Affiliation(s)
- Drorit G Merkel
- Division of Hematology, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Israel
| | | |
Collapse
|
29
|
McCarthy TL, Yun Z, Madri JA, Centrella M. Stratified control of IGF-I expression by hypoxia and stress hormones in osteoblasts. Gene 2014; 539:141-51. [PMID: 24440782 DOI: 10.1016/j.gene.2014.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/04/2014] [Indexed: 01/11/2023]
Abstract
Bone cells respond to the integrated effects of local and systemic regulation. Here we show that hypoxia and the stress hormones PGE2 and glucocorticoid interact in complex ways in osteoblasts, converging on insulin like growth factor I (IGF-I) expression. Whereas hypoxia alone rapidly increased transcription factor HIF activity, it suppressed DNA synthesis, had no significant effects on protein synthesis or alkaline phosphatase activity, and drove discrete changes in a panel of osteoblast mRNAs. Notably, hypoxia increased expression of the acute phase response transcription factor C/EBPδ which can induce IGF-I in response to PGE2, but conversely prevented the stimulatory effect of PGE2 on IGF-I mRNA. However, unlike its effect on C/EBPδ, hypoxia suppressed expression of the obligate osteoblast transcription factor Runx2, which can activate an upstream response element in the IGF-I gene promoter. Hypoxic inhibition of IGF-I and Runx2 were enforced by glucocorticoid, and continued with prolonged exposure. Our studies thus reveal that IGF-I expression is stratified by two critical transcriptional elements in osteoblasts, which are resolved by the individual and combined effects of hypoxic stress and stress hormones. In so doing, hypoxia suppresses Runx2, limits the enhancing influence of PGE2, and interacts with glucocorticoid to reduce IGF-I expression by osteoblasts.
Collapse
Affiliation(s)
- Thomas L McCarthy
- Yale University School of Medicine, Department of Surgery, New Haven, CT 06520-8041, USA; Yale University School of Medicine, Department of Pathology, New Haven, CT 06520-8023, USA.
| | - Zhong Yun
- Yale University School of Medicine, Department of Therapeutic Radiology, New Haven, CT 06520-8040, USA
| | - Joseph A Madri
- Yale University School of Medicine, Department of Pathology, New Haven, CT 06520-8023, USA
| | - Michael Centrella
- Yale University School of Medicine, Department of Surgery, New Haven, CT 06520-8041, USA; Yale University School of Medicine, Department of Pathology, New Haven, CT 06520-8023, USA.
| |
Collapse
|
30
|
Yan ZW, Hou JK, He W, Fan L, Huang Y. Chloroquine enhances cobalt chloride-induced leukemic cell differentiation via the suppression of autophagy at the late phase. Biochem Biophys Res Commun 2013; 430:926-32. [PMID: 23262180 DOI: 10.1016/j.bbrc.2012.12.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 12/06/2012] [Indexed: 01/01/2023]
Abstract
We previously reported that moderate hypoxia and hypoxia-mimetic agents including cobalt chloride (CoCl(2)) induce differentiation of human acute myeloid leukemia (AML) cells through hypoxia-inducible factor-1 α (HIF-1 α), which interacts with and enhances transcriptional activity of CCAAT-enhancer binding factor alpha and Runx1/AML1, two important transcriptional factors for hematopoietic cell differentiation. Here, we show that autophagy inhibitor chloroquine (CQ) increases HIF-1 α accumulation, thus potentiating CoCl(2)-induced growth arrest and differentiation of leukemic cells. Furthermore, the increased effect of CQ on differentiation induction is dependent of the inhibition of autophagosome maturation and degradation, since this sensitization could be mimicked by the suppression of expression of both lysosome-associated membrane proteins 1 and 2 (LAMP1 and LAMP2). These findings not only provide the evidence that CQ is a sensitizer for CoCl(2)-induced differentiation of leukemic cells but also possibly propose the new therapeutic strategy for differentiation induction of AML.
Collapse
Affiliation(s)
- Zhao-Wen Yan
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
31
|
Cooperativity of stress-responsive transcription factors in core hypoxia-inducible factor binding regions. PLoS One 2012; 7:e45708. [PMID: 23029193 PMCID: PMC3454324 DOI: 10.1371/journal.pone.0045708] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 08/22/2012] [Indexed: 11/19/2022] Open
Abstract
The transcriptional response driven by Hypoxia-inducible factor (HIF) is central to the adaptation to oxygen restriction. Despite recent characterization of genome-wide HIF DNA binding locations and hypoxia-regulated transcripts in different cell types, the molecular bases of HIF target selection remain unresolved. Herein, we combined multi-level experimental data and computational predictions to identify sequence motifs that may contribute to HIF target selectivity. We obtained a core set of bona fide HIF binding regions by integrating multiple HIF1 DNA binding and hypoxia expression profiling datasets. This core set exhibits evolutionarily conserved binding regions and is enriched in functional responses to hypoxia. Computational prediction of enriched transcription factor binding sites identified sequence motifs corresponding to several stress-responsive transcription factors, such as activator protein 1 (AP1), cAMP response element-binding (CREB), or CCAAT-enhancer binding protein (CEBP). Experimental validations on HIF-regulated promoters suggest a functional role of the identified motifs in modulating HIF-mediated transcription. Accordingly, transcriptional targets of these factors are over-represented in a sorted list of hypoxia-regulated genes. Altogether, our results implicate cooperativity among stress-responsive transcription factors in fine-tuning the HIF transcriptional response.
Collapse
|
32
|
Leitch HA, Chan C, Leger CS, Foltz LM, Ramadan KM, Vickars LM. Improved survival with iron chelation therapy for red blood cell transfusion dependent lower IPSS risk MDS may be more significant in patients with a non-RARS diagnosis. Leuk Res 2012; 36:1380-6. [PMID: 22921191 DOI: 10.1016/j.leukres.2012.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 07/31/2012] [Accepted: 08/05/2012] [Indexed: 02/04/2023]
Abstract
Retrospective analyses suggest iron overload is associated with inferior survival (OS) in lower risk MDS and iron chelation therapy (ICT) with improvement. However, an analysis of RARS patients found no such association. We analyzed subtypes of lower risk MDS. Median OS for non-RARS without and with ICT was 44 months and not reached (P<0.001), and for RARS 99 and 134.4 months (P=NS); in red blood cell (RBC) transfusion dependent RARS patients not receiving ICT, median OS was 73.8 months (P=0.025). These results suggest a stronger association between ICT and OS in non-RARS MDS than in RARS, with significantly superior OS in transfusion dependent patients receiving ICT.
Collapse
Affiliation(s)
- Heather A Leitch
- Hematology, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | | | | |
Collapse
|
33
|
AML1-ETO targets and suppresses cathepsin G, a serine protease, which is able to degrade AML1-ETO in t(8;21) acute myeloid leukemia. Oncogene 2012; 32:1978-87. [PMID: 22641217 DOI: 10.1038/onc.2012.204] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although the significance of cathepsin G (CTSG) in host defense has been intensively investigated, little is known about its potential roles in granulopoiesis or leukemogenesis. We report here that CTSG is directly targeted and suppressed by AML1-ETO in t(8;21) acute myeloid leukemia (AML). Luciferase assays demonstrate that the CTSG promoter is strongly transactivated by AML1 and the AML1-dependent transactivation is suppressed by AML1-ETO. We also define a novel regulatory mechanism by which AML1-ETO-mediated transrepression requires both AML1-ETO and AML1 binding at adjacent sites, instead of the replacement of AML1 by AML1-ETO, and wild-type AML1 binding is a prerequisite for the repressive effect caused by AML1-ETO. Further evidence shows that CTSG, as a hematopoietic serine protease, can degrade AML1-ETO both in vitro and in vivo. Restoration of CTSG induces partial differentiation, growth inhibition and apoptosis in AML1-ETO-positive cells. In addition to t(8;21) AML, CTSG downregulation is observed in AML patients with other cytogenetic/genetic abnormalities that potentially interrupt normal AML1 function, that is, inv(16) and EVI1 overexpression. Thus, the targeting and suppression of CTSG by AML1-ETO in t(8;21) AML may provide a mechanism for leukemia cells to escape from the intracellular surveillance system by preventing degradation of foreign proteins.
Collapse
|
34
|
Koukourakis MI. Radiation damage and radioprotectants: new concepts in the era of molecular medicine. Br J Radiol 2012; 85:313-30. [PMID: 22294702 DOI: 10.1259/bjr/16386034] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exposure to ionising radiation results in mutagenesis and cell death, and the clinical manifestations depend on the dose and the involved body area. Reducing carcinogenesis in patients treated with radiotherapy, exposed to diagnostic radiation or who are in certain professional groups is mandatory. The prevention or treatment of early and late radiotherapy effects would improve quality of life and increase cancer curability by intensifying therapies. Experimental and clinical data have given rise to new concepts and a large pool of chemical and molecular agents that could be effective in the protection and treatment of radiation damage. To date, amifostine is the only drug recommended as an effective radioprotectant. This review identifies five distinct types of radiation damage (I, cellular depletion; II, reactive gene activation; III, tissue disorganisation; IV, stochastic effects; V, bystander effects) and classifies the radioprotective agents into five relevant categories (A, protectants against all types of radiation effects; B, death pathway modulators; C, blockers of inflammation, chemotaxis and autocrine/paracrine pathways; D, antimutagenic keepers of genomic integrity; E, agents that block bystander effects). The necessity of establishing and funding central committees that guide systematic clinical research into evaluating the novel agents revealed in the era of molecular medicine is stressed.
Collapse
Affiliation(s)
- M I Koukourakis
- Department of Radiotherapy and Oncology, Democritus University of Thrace, Alexandroupolis, Greece.
| |
Collapse
|
35
|
Zhao XY, Zhao KW, Jiang Y, Zhao M, Chen GQ. Synergistic induction of galectin-1 by CCAAT/enhancer binding protein alpha and hypoxia-inducible factor 1alpha and its role in differentiation of acute myeloid leukemic cells. J Biol Chem 2011; 286:36808-19. [PMID: 21880716 DOI: 10.1074/jbc.m111.247262] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Galectin-1 is a member of the galectin family and has a high affinity for galactose and N-acetylglucosamine moieties of glycoproteins. It mediates multiple signal transduction pathways to modulate cellular proliferation, survival, differentiation, and migration. However, the mechanisms for the regulation of its expression remain greatly elusive. We reported previously that galectin-1 is a direct target of the hypoxia-inducible factor 1 (HIF-1), a key heterodimeric transcriptional factor for the cellular response to hypoxia. Here we show that CCAAT/enhancer binding protein α (C/EBPα), a critical transcriptional factor for hematopoietic cell differentiation, can directly activate galectin-1 through binding to the -48 to -42 bp region of its promoter. Based on the physical interaction of C/EBPα and HIF-1α, the synergistic transcriptional activity of C/EBPα and HIF-1α on the promoter of the galectin-1 gene is also found by chromatin immunoprecipitation (ChIP), ChIP followed by ChIP (ChIP-reChIP), and luciferase assay. Moreover, knockdown or chemical inhibition of galectin-1 partially blocks the differentiation induced by HIF-1α or C/EBPα, which can be rescued by recombinant galectin-1. These discoveries would shed new insights on the mechanisms for galectin-1 expression regulation and HIF-1α- and C/EBPα-induced leukemic cell differentiation.
Collapse
Affiliation(s)
- Xu-Yun Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Ministry of Education of China and the Chemical Biology Division of Shanghai Universities E-Institutes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | |
Collapse
|
36
|
Leitch HA. Optimizing therapy for iron overload in the myelodysplastic syndromes: recent developments. Drugs 2011; 71:155-77. [PMID: 21275444 DOI: 10.2165/11585280-000000000-00000] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The myelodysplastic syndromes (MDS) are characterized by cytopenias and risk of progression to acute myeloid leukaemia (AML). Most MDS patients eventually require transfusion of red blood cells for anaemia, placing them at risk of transfusional iron overload. In β-thalassaemia major, transfusional iron overload leads to organ dysfunction and death; however, with iron chelation therapy, organ function is improved, and survival improved to near normal and correlated with the degree of compliance with chelation. In lower-risk MDS, several nonrandomized studies suggest an adverse effect of iron overload on survival and that lowering iron with chelation may minimize this impact. Emerging data indicate that chelation may improve organ function, particularly hepatic function, and a minority of patients may have improvement in cell counts and decreased transfusion requirements. While guidelines for MDS generally recommend chelation in selected lower-risk patients, data from nonrandomized trials suggest iron overload may impact adversely on the outcome of higher-risk MDS and stem cell transplantation (SCT). This effect may be due to increased transplant-related mortality, infection and AML progression, and preliminary data suggest that lowering iron may be beneficial in this patient group. Other areas of active and future investigation include optimizing the monitoring of iron overload using imaging such as T2* MRI and measures of labile iron and oxidative stress; correlating new methods of measuring iron to clinical outcomes; clarifying the contribution of different cellular and extracellular iron pools to iron toxicity; optimizing chelation by using agents that access the appropriate iron pools to minimize the relevant clinical consequences in individual patients; and incorporating measures of quality of life and co-morbidities into clinical trials of chelation in MDS. It should be noted that chelation is costly and potentially toxic, and in MDS should be initiated after weighing potential risks and benefits for each patient until more definitive data are available. In this review, data on the impact of iron overload in MDS and SCT are discussed; for example, several noncontrolled studies show inferior survival in patients with iron overload in these clinical settings, including an increase in transplant-related mortality and infection risk. Possible mechanisms of iron toxicity include oxidative stress, which can damage cellular components, and the documented impact of lowering iron on organ function with measures such as iron chelation therapy includes an improvement in elevated liver transaminases. Lowering iron also appears to improve survival in both lower-risk MDS and SCT in nonrandomized studies. Selected aspects of iron metabolism, transport, storage and distribution that may be amenable to future intervention and improved removal of iron from important cellular sites are discussed, as are attempts to quantify quality of life and the importance of co-morbidities in measures to treat MDS, including chelation therapy.
Collapse
Affiliation(s)
- Heather A Leitch
- Division of Hematology, St Paul's Hospital and the University of British Columbia, 440–1144 Burrard Street, Vancouver, BC, Canada.
| |
Collapse
|
37
|
Semenza GL. Oxygen homeostasis. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:336-361. [PMID: 20836033 DOI: 10.1002/wsbm.69] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metazoan life is dependent upon the utilization of O(2) for essential metabolic processes and oxygen homeostasis is an organizing principle for understanding metazoan evolution, ontology, physiology, and pathology. Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that is expressed by all metazoan species and functions as a master regulator of oxygen homeostasis. Recent studies have elucidated complex mechanisms by which HIF-1 activity is regulated and by which HIF-1 regulates gene expression, with profound consequences for prenatal development, postnatal physiology, and disease pathogenesis.
Collapse
Affiliation(s)
- Gregg L Semenza
- Vascular Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MA 21205, USA.,Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, and Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MA 21205, USA.,McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MA 21205, USA
| |
Collapse
|
38
|
Ghosh G, Subramanian IV, Adhikari N, Zhang X, Joshi HP, Basi D, Chandrashekhar YS, Hall JL, Roy S, Zeng Y, Ramakrishnan S. Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-α isoforms and promotes angiogenesis. J Clin Invest 2010; 120:4141-54. [PMID: 20972335 DOI: 10.1172/jci42980] [Citation(s) in RCA: 351] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 08/25/2010] [Indexed: 12/12/2022] Open
Abstract
Adaptive changes to oxygen availability are critical for cell survival and tissue homeostasis. Prolonged oxygen deprivation due to reduced blood flow to cardiac or peripheral tissues can lead to myocardial infarction and peripheral vascular disease, respectively. Mammalian cells respond to hypoxia by modulating oxygen-sensing transducers that stabilize the transcription factor hypoxia-inducible factor 1α (HIF-1α), which transactivates genes governing angiogenesis and metabolic pathways. Oxygen-dependent changes in HIF-1α levels are regulated by proline hydroxylation and proteasomal degradation. Here we provide evidence for what we believe is a novel mechanism regulating HIF-1α levels in isolated human ECs during hypoxia. Hypoxia differentially increased microRNA-424 (miR-424) levels in ECs. miR-424 targeted cullin 2 (CUL2), a scaffolding protein critical to the assembly of the ubiquitin ligase system, thereby stabilizing HIF-α isoforms. Hypoxia-induced miR-424 was regulated by PU.1-dependent transactivation. PU.1 levels were increased in hypoxic endothelium by RUNX-1 and C/EBPα. Furthermore, miR-424 promoted angiogenesis in vitro and in mice, which was blocked by a specific morpholino. The rodent homolog of human miR-424, mu-miR-322, was significantly upregulated in parallel with HIF-1α in experimental models of ischemia. These results suggest that miR-322/424 plays an important physiological role in post-ischemic vascular remodeling and angiogenesis.
Collapse
Affiliation(s)
- Goutam Ghosh
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
C/EBPα down-regulation is associated with reduced hepatic cellular viability during hypoxia in vitro and in vivo. ACTA ACUST UNITED AC 2010; 63:307-10. [PMID: 20219337 DOI: 10.1016/j.etp.2010.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/05/2010] [Accepted: 02/15/2010] [Indexed: 11/22/2022]
Abstract
C/EBPα transcription factor is a key regulator in liver biology and was preliminarily shown to be down-regulated in hypoxic primary rat hepatocytes. The aim of this study was to explore the possible association between C/EBPα expression level and hepatocyte viability in both the in-vitro cultured hypoxic rat primary hepatocytes and two models of acute liver hypoxia induced by carbon tetrachloride or Fas antibody. C/EBPα mRNA was significantly down-regulated under hypoxic conditions both in vitro and in vivo, which was paralleled by a similar decrease in hepatocyte viability and partially reversed by 3D matrix and dexamethasone. These results suggested that C/EBPα down-regulation may be one mechanism of reduced hepatocyte viability in these settings.
Collapse
|
40
|
The Impact of Desferrioxamine Postallogeneic Hematopoietic Cell Transplantation in Relapse Incidence and Disease-Free Survival: A Retrospective Analysis. Transplantation 2010; 89:472-9. [DOI: 10.1097/tp.0b013e3181c42944] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
41
|
Distinct clinical and biologic characteristics in adult acute myeloid leukemia bearing the isocitrate dehydrogenase 1 mutation. Blood 2010; 115:2749-54. [PMID: 20097881 DOI: 10.1182/blood-2009-11-253070] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mutations of nicotinamide adenine dinucleotide phosphate-dependent isocitrate dehydrogenase gene (IDH1) have been identified in patients with gliomas. Recent genome-wide screening also revealed IDH1 mutation as a recurrent event in acute myeloid leukemia (AML), but its clinical implications in AML are largely unknown. We analyzed 493 adult Chinese AML patients in Taiwan and found 27 patients (5.5%) harboring this mutation. IDH1 mutation was strongly associated with normal karyotype (8.4%, P = .002), isolated monosomy 8 (P = .043), NPM1 mutation (P < .001), and French-American-British M1 subtype (P < .001), but inversely associated with French-American-British M4 subtype (P = .030) and expression of HLA-DR, CD13, and CD14 (P = .002, .003, and .038, respectively). There was no impact of this mutation on patient survival. Sequential analysis of IDH1 mutation was performed in 130 patients during follow-ups. None of the 112 patients without IDH1 mutation at diagnosis acquired this mutation at relapse. In all 18 IDH1-mutated patients studied, the mutation disappeared in complete remission; the same mutation reappeared in all 11 samples obtained at relapse. We conclude that IDH1 is associated with distinct clinical and biologic characteristics and seems to be very stable during disease evolution.
Collapse
|
42
|
Synthesis and antiproliferating activity of iron chelators of hydroxyamino-1,3,5-triazine family. Bioorg Med Chem Lett 2010; 20:458-60. [DOI: 10.1016/j.bmcl.2009.11.130] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 11/24/2009] [Accepted: 11/25/2009] [Indexed: 01/29/2023]
|
43
|
Active compounds-based discoveries about the differentiation and apoptosis of leukemic cells. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11434-009-0628-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Dose-dependent modulation of HIF-1alpha/sima controls the rate of cell migration and invasion in Drosophila ovary border cells. Oncogene 2009; 29:1123-34. [PMID: 19966858 DOI: 10.1038/onc.2009.407] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The role of the hypoxic response during metastasis was analysed in migrating border cells of the Drosophila ovary. Acute exposure to 1% O(2) delayed or blocked border cell migration (BCM), whereas prolonged exposure resulted in the first documented accelerated BCM phenotype. Similarly, manipulating the expression levels of sima, the Drosophila hypoxia-inducible factor (HIF)-1alpha ortholog, revealed that Sima can either block or restore BCM in a dose-dependent manner. In contrast, over-expression of Vhl (Drosophila von Hippel-Lindau) generated a range of phenotypes, including blocked, delayed and accelerated BCM, whereas over-expression of hph (Drosophila HIF prolyl hydroxylase) only accelerated BCM. Mosaic clone analysis of sima or tango (HIF-1beta ortholog) mutants revealed that cells lacking Hif-1 transcriptional activity were preferentially detected in the leading cell position of the cluster, resulting in either a delay or acceleration of BCM. Moreover, in sima mutant cell clones, there was reduced expression of nuclear slow border cells (Slbo) and basolateral DE-cadherin, proteins essential for proper BCM. These results show that Sima levels define the rate of BCM in part through regulation of Slbo and DE-cadherin, and suggest that dynamic regulation of Hif-1 activity is necessary to maintain invasive potential of migrating epithelial cells.
Collapse
|
45
|
Zhang J, Chen GQ. Hypoxia-HIF-1alpha-C/EBPalpha/Runx1 signaling in leukemic cell differentiation. ACTA ACUST UNITED AC 2009; 16:297-303. [PMID: 19285840 DOI: 10.1016/j.pathophys.2009.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Acute myeloid leukemia (AML), a class of prevalent hematopoietic malignancies, is caused by the acquisition of gene mutations that confer deregulated proliferation, impaired differentiation and a survival advantage of hematopoietic progenitors. More recently, we reported that cobalt chloride (CoCl(2))/iron chelator desferrioxamine (DFO)-mimicked hypoxia or moderate hypoxia (2% and 3% O(2)) can directly trigger differentiation of many subtypes of AML cells. Also, intermittent hypoxia significantly prolongs the survival of the transplanted leukemic mice with differentiation induction of leukemic cells. Additionally, these hypoxia-simulating agents selectively stimulate differentiation in acute promyelocytic leukemic cells induced by arsenic trioxide, an effective second-line drug for this unique type of leukemia. Based on this interesting evidence in vitro and in vivo, the ongoing investigations showed the role of hypoxia-inducible factor-1alpha (HIF-1alpha) protein through its non-transcriptional activity in myeloid cell differentiation, as evidenced by chemical interference, the conditional HIF-1alpha induction, the specific short hairpin RNAs (shRNAs) against HIF-1alpha and HIF-1beta, an essential partner for transcription activity of HIF-1. Furthermore, HIF-1alpha and two hematopoietic transcription factors CCAAT/enhancer binding protein alpha (C/EBPalpha) and Runx1/AML1 interact directly with each other. Such interactions increase the transcriptional activities of C/EBPalpha and Runx1/AML1, while C/EBPalpha competes with HIF-1beta for direct binding to HIF-1alpha protein, and significantly inhibits the DNA-binding ability of HIF-1. As a protein is rapidly responsive to all-trans retinoic acid (ATRA), a classical clinical differentiation-inducing drug for AML, HIF-1alpha also plays a role in ATRA-induced differentiation of leukemic cells.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, and Institute of Health Science, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences-Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | | |
Collapse
|
46
|
Leitch HA, Vickars LM. Supportive care and chelation therapy in MDS: are we saving lives or just lowering iron? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2009; 2009:664-672. [PMID: 20008252 DOI: 10.1182/asheducation-2009.1.664] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The myelodysplastic syndromes (MDS) are characterized by cytopenias and risk of transformation to acute myeloid leukemia (AML). Although new treatments are available, a mainstay in MDS remains supportive care, which aims to minimize the impact of cytopenias and transfusion of blood products. Red blood cell (RBC) transfusions place patients at risk of iron overload (IOL). In beta-thalassemia major (BTM), IOL from chronic RBC transfusions inevitably leads to organ dysfunction and death. With iron chelation therapy (ICT), survival in BTM improved from the second decade to near normal and correlated with ICT compliance. Effects of ICT in BTM include reversal of cardiac arrhythmias, improvement in left ventricular ejection fraction, arrest of hepatic fibrosis, and reduction of glucose intolerance. It is not clear whether these specific outcomes are applicable to MDS. Although retrospective, recent studies in MDS suggest an adverse effect of transfusion dependence and IOL on survival and AML transformation, and that lowering iron minimizes this impact. These data raise important points that warrant further study. ICT is potentially toxic and cumbersome, is costly, and in MDS patients should be initiated only after weighing potential risks against benefits until further data are available to better justify its use. Since most MDS patients eventually require RBC transfusions, the public health implications both of transfusion dependence and ICT in MDS are considerable. This paper summarizes the impact of cytopenias in MDS and treatment approaches to minimize their impact, with a focus on RBC transfusions and their complications, particularly with respect to iron overload.
Collapse
Affiliation(s)
- Heather A Leitch
- Division of Hematology, St. Paul's Hospital and the University of British Columbia, Vancouver, BC, Canada.
| | | |
Collapse
|
47
|
Abstract
The hypoxia inducible factors (HIFs) and CCAAT/enhancer binding protein alpha (C/EBP alpha) are transcription factors that mediate adaptive responses to hypoxia and control aspects of energy metabolism, respectively. New evidence suggests that when HIF-1 alpha and C/EBP alpha interact, they bring about reciprocal functional changes, so that the activity of HIF-1 alpha is decreased and that of C/EBP alpha is restricted or increased in a tissue-specific manner. This Journal Club article highlights research depicting interactions between HIF-1 alpha and C/EBP alpha and discusses conditions and tissues in which this interaction might occur.
Collapse
|
48
|
Zacharski LR, Chow BK, Howes PS, Shamayeva G, Baron JA, Dalman RL, Malenka DJ, Ozaki CK, Lavori PW. Decreased Cancer Risk After Iron Reduction in Patients With Peripheral Arterial Disease: Results From a Randomized Trial. J Natl Cancer Inst 2008; 100:996-1002. [DOI: 10.1093/jnci/djn209] [Citation(s) in RCA: 233] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
49
|
Seifeddine R, Dreiem A, Blanc E, Fulchignoni-Lataud MC, Belda MALF, Lecuru F, Mayi TH, Mazure N, Favaudon V, Massaad C, Barouki R, Massaad-Massade L. Hypoxia Down-regulates CCAAT/Enhancer Binding Protein-α Expression in Breast Cancer Cells. Cancer Res 2008; 68:2158-65. [DOI: 10.1158/0008-5472.can-07-1190] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Yeh JRJ, Munson KM, Chao YL, Peterson QP, Macrae CA, Peterson RT. AML1-ETO reprograms hematopoietic cell fate by downregulating scl expression. Development 2008; 135:401-10. [PMID: 18156164 DOI: 10.1242/dev.008904] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AML1-ETO is one of the most common chromosomal translocation products associated with acute myelogenous leukemia (AML). Patients carrying the AML1-ETO fusion gene exhibit an accumulation of granulocyte precursors in the bone marrow and the blood. Here, we describe a transgenic zebrafish line that enables inducible expression of the human AML1-ETO oncogene. Induced AML1-ETO expression in embryonic zebrafish causes a phenotype that recapitulates some aspects of human AML. Using this highly tractable model, we show that AML1-ETO redirects myeloerythroid progenitor cells that are developmentally programmed to adopt the erythroid cell fate into the granulocytic cell fate. This fate change is characterized by a loss of gata1 expression and an increase in pu.1 expression in myeloerythroid progenitor cells. Moreover, we identify scl as an early and essential mediator of the effect of AML1-ETO on hematopoietic cell fate. AML1-ETO quickly shuts off scl expression, and restoration of scl expression rescues the effects of AML1-ETO on myeloerythroid progenitor cell fate. These results demonstrate that scl is an important mediator of the ability of AML1-ETO to reprogram hematopoietic cell fate decisions, suggesting that scl may be an important contributor to AML1-ETO-associated leukemia. In addition, treatment of AML1-ETO transgenic zebrafish embryos with a histone deacetylase inhibitor, Trichostatin A, restores scl and gata1 expression, and ameliorates the accumulation of granulocytic cells caused by AML1-ETO. Thus, this zebrafish model facilitates in vivo dissection of AML1-ETO-mediated signaling, and will enable large-scale chemical screens to identify suppressors of the in vivo effects of AML1-ETO.
Collapse
Affiliation(s)
- Jing-Ruey J Yeh
- Developmental Biology Laboratory, Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | | | | | | | | | | |
Collapse
|