1
|
Kwentoh I, Bugayong ML, Olusoji R, McPherson T, Ahluwalia M. Rare Ring Chromosome [r(15)]: Cytogenetic Abnormality in TP53-Mutated De Novo AML-M4 Masked as Gastrointestinal Bleed With Rapidly Progressing Hyperleukocytosis and Leukostasis. Cureus 2023; 15:e46119. [PMID: 37779685 PMCID: PMC10536451 DOI: 10.7759/cureus.46119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 10/03/2023] Open
Abstract
TP53-mutated (TP53m) acute myeloid leukemia (AML) comprises only 5-15% of de novo AML, associated with poor survival outcomes due to its resistance to conventional therapy. Ring chromosomes, an even more rare subset of genetic anomalies, occur in only 2% of cases. We report a unique case of de novo AML with both TP53 and ring chromosome anomalies leading to a catastrophic outcome in a 72-year-old male who initially presented with gastrointestinal bleeding (GIB) and urethral stone status post-cystoscopy with J-stent placement. He had no history of chemotherapy use, radiation, benzene exposure, or any other risk factors except for his age. He was noted to have pancytopenia, for which bone marrow biopsy, flow cytometry, and cytogenetic studies were done. Biopsy reported an interesting next-generation sequenced TP53-mutated AML, which correlates with a low rate of response to standard chemotherapy except for bone marrow transplants. Notably, with a complex aberration of 45 XY with multiple translocations (t), deletions (del), inversions (inv), derivative (der) breakpoints, aneuploidy, and rare ring and maker chromosomes, his case was complicated with rapid-onset and very severe hyperleucostasis, reflecting the prognostic value of this rare cytogenetic configuration. The patient expired within 48 hours of diagnosis, despite the urgent initiation of cytoreductive therapy and the mitigation of tumor lysis syndrome with Rasburicase. To the best of our knowledge, this is one of the first AML-M4 patients with rapid-onset leucostasis and the demise of next-generation sequences (NGS) in a de Novo AML patient with this rare complex combination.
Collapse
Affiliation(s)
- Ifeoma Kwentoh
- Medicine, Columbia University, New York, USA
- Internal Medicine, Columbia University at Harlem Hospital Center, New York, USA
| | | | - Rahman Olusoji
- Internal Medicine, Columbia University at Harlem Hospital Center, New York, USA
| | - Tasheka McPherson
- Internal Medicine, Columbia University at Harlem Hospital Center, New York, USA
| | - Meena Ahluwalia
- Oncology, Columbia University at Harlem Hospital Center, New York, USA
| |
Collapse
|
2
|
Assessing copy number abnormalities and copy-neutral loss-of-heterozygosity across the genome as best practice in diagnostic evaluation of acute myeloid leukemia: An evidence-based review from the cancer genomics consortium (CGC) myeloid neoplasms working group. Cancer Genet 2018; 228-229:218-235. [DOI: 10.1016/j.cancergen.2018.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022]
|
3
|
Kanagal-Shamanna R, Hodge JC, Tucker T, Shetty S, Yenamandra A, Dixon-McIver A, Bryke C, Huxley E, Lennon PA, Raca G, Xu X, Jeffries S, Quintero-Rivera F, Greipp PT, Slovak ML, Iqbal MA, Fang M. Assessing copy number aberrations and copy neutral loss of heterozygosity across the genome as best practice: An evidence based review of clinical utility from the cancer genomics consortium (CGC) working group for myelodysplastic syndrome, myelodysplastic/myeloproliferative and myeloproliferative neoplasms. Cancer Genet 2018; 228-229:197-217. [PMID: 30377088 DOI: 10.1016/j.cancergen.2018.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022]
Abstract
Multiple studies have demonstrated the utility of chromosomal microarray (CMA) testing to identify clinically significant copy number alterations (CNAs) and copy-neutral loss-of-heterozygosity (CN-LOH) in myeloid malignancies. However, guidelines for integrating CMA as a standard practice for diagnostic evaluation, assessment of prognosis and predicting treatment response are still lacking. CMA has not been recommended for clinical work-up of myeloid malignancies by the WHO 2016 or the NCCN 2017 guidelines but is a suggested test by the European LeukaemiaNet 2013 for the diagnosis of primary myelodysplastic syndrome (MDS). The Cancer Genomics Consortium (CGC) Working Group for Myeloid Neoplasms systematically reviewed peer-reviewed literature to determine the power of CMA in (1) improving diagnostic yield, (2) refining risk stratification, and (3) providing additional genomic information to guide therapy. In this manuscript, we summarize the evidence base for the clinical utility of array testing in the workup of MDS, myelodysplastic/myeloproliferative neoplasms (MDS/MPN) and myeloproliferative neoplasms (MPN). This review provides a list of recurrent CNAs and CN-LOH noted in this disease spectrum and describes the clinical significance of the aberrations and how they complement gene mutation findings by sequencing. Furthermore, for new or suspected diagnosis of MDS or MPN, we present suggestions for integrating genomic testing methods (CMA and mutation testing by next generation sequencing) into the current standard-of-care clinical laboratory testing (karyotype, FISH, morphology, and flow).
Collapse
Affiliation(s)
- Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston TX, USA.
| | - Jennelle C Hodge
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tracy Tucker
- Department of Pathology and Laboratory Medicine, Cancer Genetics Laboratory, British Columbia Cancer Agency, Vancouver, BC Canada
| | - Shashi Shetty
- Department of Pathology, UHCMC, University Hospitals and Case Western Reserve University, Cleveland, OH, USA
| | - Ashwini Yenamandra
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Christine Bryke
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Emma Huxley
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | | | - Gordana Raca
- Department of Pathology and Laboratory Medicine, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Xinjie Xu
- ARUP Laboratories, University of Utah, Salt Lake City, UT, USA
| | - Sally Jeffries
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Fabiola Quintero-Rivera
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Patricia T Greipp
- Department of Laboratory Medicine and Pathology, Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Marilyn L Slovak
- TriCore Reference Laboratories, University of New Mexico, Albuquerque, NM, USA
| | - M Anwar Iqbal
- University of Rochester Medical Center, Rochester, NY, USA
| | - Min Fang
- Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Yeung C, McElhone S, Chen XY, Ng D, Storer B, Deeg HJ, Fang M. Impact of copy neutral loss of heterozygosity and total genome aberrations on survival in myelodysplastic syndrome. Mod Pathol 2018; 31:569-580. [PMID: 29243741 PMCID: PMC5906151 DOI: 10.1038/modpathol.2017.157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 12/17/2022]
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of diseases with varying genetic aberrations. Half of MDS patients have normal karyotype, obscuring the underlying condition indicating a need for new markers for improved diagnostics and prognosis. We performed a retrospective review of sequential MDS patients who underwent chromosomal genetic array testing (CGAT) between November 2008 and March 2014. Total Genomic Aberration (TGA) scores, with and without copy-neutral loss of heterozygosity (cnLOH), were compared to pathology and clinical data. Of 68 MDS participants, 50 patients (73%) had abnormal CGAT results. 32% showedcnLOH, 41% had no cnLOH but displayed copy number aberration (CNAs). Of 26 patients with normal cytogenetics, 46% had clonal abnormalities by CGAT. Abnormal CGAT results were associated with lower overall survival (P=0.04). Overall survival in patients with TGA above the median (68.6 Mb) was significantly inferior to those below the median (HR=2.9, 95% CI=1.3-6.8, P=0.01). Furthermore, there was an observed association between increased TGA and increased dysplastic lineages (Ptrend=0.003). CGAT studies provide important findings that extend beyond current standard testing. Clinical utility of CGAT includes improved diagnostic yield, correlation of extent of TGA and increased dysplastic features, and survival.
Collapse
Affiliation(s)
- Cecilia Yeung
- Fred Hutchinson Cancer Research Center, Seattle, WA
- University of Washington, Seattle, WA
- Seattle Cancer Care Alliance, Seattle, WA
| | | | | | | | - Barry Storer
- Fred Hutchinson Cancer Research Center, Seattle, WA
- University of Washington, Seattle, WA
| | - H. Joachim Deeg
- Fred Hutchinson Cancer Research Center, Seattle, WA
- University of Washington, Seattle, WA
| | - Min Fang
- Fred Hutchinson Cancer Research Center, Seattle, WA
- University of Washington, Seattle, WA
- Seattle Cancer Care Alliance, Seattle, WA
| |
Collapse
|
5
|
Abstract
The spectrum of chromosomal abnormality associated with leukemogenesis of acute myeloid leukemia (AML) is broad and heterogeneous when compared to chronic myeloid leukemia and other myeloid neoplasms. Recurrent chromosomal translocations such as t(8;21), t(15;17), and inv(16) are frequently detected, but hundreds of other uncommon chromosomal aberrations from AML also exist. This chapter discusses 22 chromosomal abnormalities that are common structural, numerical aberrations, and other important but infrequent (less than 1 %) translocations emphasized in the WHO classification. Brief morphologic, cytogenetic, and clinical characteristics are summarized, so as to provide a concise reference to cancer cytogenetic laboratories. Morphology based on FAB classification is used together with the current WHO classification due to frequent mentioning in a vast number of reference literatures. Characteristic chromosomal aberrations of other myeloid neoplasms such as myelodysplastic syndrome and myeloproliferative neoplasm will be discussed in separate chapters-except for certain abnormalities such as t(9;22) in de novo AML. Gene mutations detected in normal karyotype AML by cutting edge next generation sequencing technology are also briefly mentioned.
Collapse
|
6
|
Evans AG, Ahmad A, Burack WR, Iqbal MA. Combined comparative genomic hybridization and single-nucleotide polymorphism array detects cryptic chromosomal lesions in both myelodysplastic syndromes and cytopenias of undetermined significance. Mod Pathol 2016; 29:1183-99. [PMID: 27389314 DOI: 10.1038/modpathol.2016.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 12/28/2022]
Abstract
The diagnosis of myelodysplastic syndrome (MDS) can be challenging, and may be facilitated by correlation with cytogenetic testing. Microarray analysis using comparative genomic hybridization and/or single-nucleotide polymorphism array can detect chromosomal abnormalities not seen by standard metaphase cytogenetics. We examined the ability of combined comparative genomic hybridization and single-nucleotide polymorphism analysis (hereafter referred to as 'combined array') to detect changes among 83 patients with unexplained cytopenias undergoing pathologic evaluation for MDS and compared results with 18 normal bone marrow controls. Thirty-seven patients (45%) were diagnosed with MDS, 12 patients (14%) were demonstrated to have 'indeterminate dyspoiesis' (insufficient for classification of MDS), 27 (33%) were essentially normal, and 7 patients (8%) had alternative pathologic diagnoses. Twenty-one MDS patients (57% of diagnoses) had effectively normal metaphase cytogenetics, but combined array showed that 5 of these (13% of MDS patients) harbored major cryptic chromosomal aberrations. Furthermore, nearly half of patients with 'indeterminate dyspoiesis' and 1 with normal morphology had clonal cytopenia(s) of undetermined significance by combined array analysis. Cryptic array findings among MDS patients and those with clonal cytopenias(s) included large-scale copy-neutral loss of heterozygosity (up to 118 Mb) and genomic deletion of loci implicated in MDS pathogenesis (eg, TET2 (4q22) and NUP98 (11p15)). By comparison, in MDS patients with abnormal metaphase cytogenetics, microarray mostly recapitulated findings seen by routine karyotype. Combined array analysis has considerable diagnostic yield in detecting cryptic chromosomal aberrations in MDS and in demonstrating aberrant clonal hematopoiesis in cytopenic patients with indeterminate morphologic dysplasia.
Collapse
Affiliation(s)
- Andrew G Evans
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ausaf Ahmad
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - W Richard Burack
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - M Anwar Iqbal
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
7
|
Zhang R, Kim YM, Wang X, Li Y, Lu X, Sternenberger AR, Li S, Lee JY. Genomic Copy Number Variations in the Myelodysplastic Syndrome and Acute Myeloid Leukemia Patients with del(5q) and/or -7/del(7q). Int J Med Sci 2015; 12:719-26. [PMID: 26392809 PMCID: PMC4571549 DOI: 10.7150/ijms.12612] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/17/2015] [Indexed: 01/01/2023] Open
Abstract
The most common chromosomal abnormalities in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are -5/del(5q) and -7/del(7q). When -5/del(5q) and -7/del(7q) coexist in patients, a poor prognosis is typically associated. Given that -5/del(5q) and/or -7/del(7q) often are accompanied with additional recurrent chromosomal alterations, genetic change(s) on the accompanying chromosome(s) other than chromosomes 5 and 7 may be important factor(s) affecting leukemogenesis and disease prognosis. Using an integrated analysis of karyotype, FISH and array CGH results in this study, we evaluated the smallest region of overlap (SRO) of chromosomes 5 and 7 as well as copy number alterations (CNAs) on the other chromosomes. Moreover, the relationship between the CNAs and del(5q) and -7/del(7q) was investigated by categorizing the cases into three groups based on the abnormalities of chromosomes 5 and 7 [group I: cases only with del(5q), group II: cases only with -7/del(7q) and group III: concurrent del(5q) and del(7q) cases]. The overlapping SRO of chromosome 5 from groups I and III was 5q31.1-33.1 and of chromosome 7 from groups II and III was 7q31.31-q36.1. A total of 318 CNAs were observed; ~ 78.3% of them were identified on chromosomes other than chromosomes 5 and 7, which were defined as 'other CNAs'. Group III was a distinctive group carrying the most high number (HN) CNAs, cryptic CNAs and 'other CNAs'. The loss of TP53 was highly associated with del(5q). The loss of ETV6 was specifically associated with group III. These CNAs or genes may play a secondary role in disease progression and should be further evaluated for their clinical significance and influence on therapeutic approaches in patients with MDS/AML carrying del(5q) and/or -7/del(7q) in large-scale, patient population study.
Collapse
Affiliation(s)
- Rui Zhang
- 1. Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- 2. Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Young-Mi Kim
- 1. Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Xianfu Wang
- 1. Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yan Li
- 2. Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Xianglan Lu
- 1. Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andrea R. Sternenberger
- 1. Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Shibo Li
- 1. Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ji-Yun Lee
- 3. Department of Pathology, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
8
|
Mehrotra M, Luthra R, Ravandi F, Sargent RL, Barkoh BA, Abraham R, Mishra BM, Medeiros LJ, Patel KP. Identification of clinically important chromosomal aberrations in acute myeloid leukemia by array-based comparative genomic hybridization. Leuk Lymphoma 2015; 55:2538-48. [PMID: 24446873 DOI: 10.3109/10428194.2014.883073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Array-based comparative genomic hybridization (aCGH) chromosomal analysis facilitates rapid detection of cytogenetic abnormalities previously undetectable by conventional cytogenetics. In this study, we analyzed 48 uniformly treated patients with acute myeloid leukemia (AML) by 44K aCGH and correlated the findings with clinical outcome. aCGH identified previously undetected aberrations, as small as 5 kb, of currently unknown significance. The 36.7 Mb minimally deleted region on chromosome 5 lies between 5q14.3 and 5q33.3 and contains 634 genes and 15 microRNAs, whereas loss of chromosome 17 spans 3194 kb and involves 342 genes and 12 microRNAs. Loss of a 155 kb region on 5q33.3 (p < 0.05) was associated with achievement of complete remission (CR). In contrast, loss of 17p11.2-q11.1 was associated with a lower CR rate and poorer overall survival (Kaplan-Meier analysis, p < 0.0096). aCGH detected loss of 17p in 12/48 patients as compared to 9/48 by conventional karyotyping. In conclusion, aCGH analysis adds to the prognostic stratification of patients with AML.
Collapse
Affiliation(s)
- Meenakshi Mehrotra
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center , Houston, TX , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tang G, Zhang L, Fu B, Hu J, Lu X, Hu S, Patel A, Goswami M, Khoury JD, Garcia-Manero G, Medeiros LJ, Wang SA. Cytogenetic risk stratification of 417 patients with chronic myelomonocytic leukemia from a single institution. Am J Hematol 2014; 89:813-8. [PMID: 24782398 DOI: 10.1002/ajh.23751] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 01/22/2023]
Abstract
Approximately 30% of patients with chronic myelomonocytic leukemia (CMML) have karyotypic abnormalities and this low frequency has made using cytogenetic data for the prognostication of CMML patients challenging. Recently, a three-tiered cytogenetic risk stratification system for CMML patients has been proposed by a Spanish study group. Here we assessed the prognostic impact of cytogenetic abnormalities on overall survival (OS) and leukemia-free survival (LFS) in 417 CMML patients from our institution. Overall, the Spanish cytogenetic risk effectively stratified patients into different risk groups, with a median OS of 33 months in the low-, 24 months in intermediate- and 14 months in the high-risk groups. Within the proposed high risk group, however, marked differences in OS were observed. Patients with isolated trisomy 8 showed a median OS of 22 months, similar to the intermediate-risk group (P = 0.132), but significantly better than other patients in the high-risk group (P = 0.018). Furthermore, patients with more than three chromosomal abnormalities showed a significantly shorter OS compared with patients with three abnormalities (8 vs. 15 months, P = 0.004), suggesting possible a separate risk category. If we simply moved trisomy 8 to the intermediate risk category, the modified cytogenetic grouping would provide a better separation of OS and LFS; and its prognostic impact was independent of other risk parameters. Our study results strongly advocate for the incorporation of cytogenetic information in the risk model for CMML.
Collapse
Affiliation(s)
- Guilin Tang
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Liping Zhang
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Bin Fu
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Jianhua Hu
- Department of Biostatistics; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Xinyan Lu
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Shimin Hu
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Ankita Patel
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston Texas
| | - Maitrayee Goswami
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Joseph D. Khoury
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | | | - L. Jeffrey Medeiros
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Sa A. Wang
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| |
Collapse
|
10
|
Hahm C, Mun YC, Seong CM, Han SH, Chung WS, Huh J. Single nucleotide polymorphism array-based karyotyping in acute myeloid leukemia or myelodysplastic syndrome with trisomy 8 as the sole chromosomal abnormality. Acta Haematol 2013. [PMID: 23208021 DOI: 10.1159/000343420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The clinical heterogeneity of patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) with trisomy 8 as the sole abnormality may result from cytogenetically undetectable genetic changes. The purpose of this study was to identify hidden genomic aberrations not detected by metaphase cytogenetics (MC) using high-resolution single nucleotide polymorphism array (SNP-A)-based karyotyping in AML/MDS patients with a sole trisomy 8. The study group included 8 patients (3 AML and 5 MDS) and array-based karyotyping was done using whole-genome SNP-A (SNP 6.0 and SNP 2.7M). By SNP-A, additional genomic aberrations not detected by MC were identified in 2 patients: 1 AML patient exhibited a copy-neutral loss of heterozygosity (CN-LOH) of 3q21.1-q29 and 11q13.1-q25 and the other patient with MDS (refractory cytopenia with unilineage dysplasia) had CN-LOH of 2p25.3-p15. In particular, the latter patient progressed to AML 18 months after the diagnosis. In 3 patients, aberrations in addition to trisomy 8 were not identified by SNP-A. In the remaining 3 patients, SNP-A could not detect trisomy 8, while trisomy 8 was found in 25-67% of metaphase cells by MC. This study suggests that additional genomic aberrations may in fact be present even in cases of trisomy 8 as sole abnormality by MC, and SNP-A could be a useful karyotyping tool to identify hidden aberrations such as CN-LOH.
Collapse
Affiliation(s)
- Chorong Hahm
- Department of Laboratory Medicine, Ewha Womans University School of Medicine, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
11
|
Shaffer LG, Ballif BC, Schultz RA. The use of cytogenetic microarrays in myelodysplastic syndrome characterization. Methods Mol Biol 2013; 973:69-85. [PMID: 23412784 DOI: 10.1007/978-1-62703-281-0_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Various microarray platforms, including BAC, oligonucleotide, and SNP arrays, have been shown to -provide clinically useful diagnostic and prognostic information for patients with myelodysplastic syndromes (MDS). Clinically useful arrays are designed with specific purposes in mind and with attention to genomic content and probe density. All array types have been shown to detect genomic copy gains and losses, with SNP arrays having the added advantage of detecting copy neutral loss of heterozygosity (CNLOH). The finding of CNLOH has led to the identification of certain disease genes implicated in the initiation or progression of myeloid diseases. In addition, SNP karyotyping alone, or in conjunction with routine cytogenetics, can affect the outcome prediction and improve prognostic stratification of patients with MDS. Patients who were reclassified after array testing as having adverse-risk chromosomal findings correlated with poor survival. Results of over 25 published studies support the use of arrays in MDS testing. Because few balanced translocations are found in MDS, this disease is particularly amenable to microarray testing, and studies have shown better disease classification, identification of cryptic changes, and prognostication in this heterogeneous group of disorders. Novel genomic alterations identified by array testing may lead to better targeted therapies for treating patients with MDS.
Collapse
Affiliation(s)
- Lisa G Shaffer
- Signature Genomic Laboratories, PerkinElmer Inc., Spokane, WA, USA.
| | | | | |
Collapse
|
12
|
Jacoby MA, Walter MJ. Detection of copy number alterations in acute myeloid leukemia and myelodysplastic syndromes. Expert Rev Mol Diagn 2012; 12:253-64. [PMID: 22468816 DOI: 10.1586/erm.12.18] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chromosomal deletions and amplifications that occur in affected cells from patients with myelodysplastic syndromes and acute myeloid leukemia often contain genes that contribute to disease pathogenesis. Identification of copy number alterations (deletions and amplifications) and regions of copy neutral loss of heterozygosity using array-based platforms has led to the identification of genes that are commonly mutated in myeloid malignancies. In this article, we review the literature and highlight the array-based studies that directly compare matched normal and tumor samples from the same individual to identify somatic alterations. We also discuss the use of next-generation sequencing to identify all types of structural variants, including copy number alterations and copy neutral loss of heterozygosity, and provide an outlook for how this technology may be used to interrogate cancer genomes.
Collapse
Affiliation(s)
- Meagan A Jacoby
- Department of Internal Medicine, Washington University School of Medicine, Division of Oncology, Stem Cell Biology Section, Campus Box 8007, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | | |
Collapse
|
13
|
Will a peripheral blood (PB) sample yield the same diagnostic and prognostic cytogenetic data as the concomitant bone marrow (BM) in myelodysplasia? Leuk Res 2012; 36:832-40. [PMID: 22537394 DOI: 10.1016/j.leukres.2012.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 02/04/2023]
Abstract
In patients with myelodysplastic syndromes (MDS), chromosome anomalies are detected by conventional cytogenetic studies (CCS) and/or interphase fluorescence in situ hybridization (FISH) of bone marrow (BM) samples and provide prognostic and diagnostic information, which can direct therapy. Whether peripheral blood (PB) can be substituted for bone marrow in these cases and can provide the same information remains unknown. Concurrent BM and PB specimens collected from 100 patients with recently diagnosed MDS were studied using both CCS and FISH. While 68% of BM samples showed an abnormal karyotype by CCS, only 31% of PB samples were abnormal by CCS. In 12% of patients, FISH and CCS were discordant due to the inability of the FISH panel to detect all possible abnormalities. However, only one case (1%) had a cryptic abnormality detected by FISH. BM and PB FISH were discordant in 3% of cases, most likely due to the smaller clone size in PB vs. BM. While PB should not be substituted for BM at diagnosis, it is a viable alternative for monitoring patients using the appropriate FISH probe(s).
Collapse
|
14
|
Abstract
Sustained clinical cytopenia is a frequent laboratory finding in ambulatory and hospitalized patients. For pathologists and hematopathologists who examine the bone marrow (BM), a diagnosis of cytopenia secondary to an infiltrative BM process or acute leukemia can be readily established based on morphologic evaluation and flow cytometry immunophenotyping. However, it can be more challenging to establish a diagnosis of myelodysplastic syndrome (MDS). In this article, the practical approaches for establishing or excluding a diagnosis of MDS (especially low-grade MDS) in patients with clinical cytopenia are discussed along with the current diagnostic recommendations provided by the World Health Organization and the International Working Group for MDS.
Collapse
|
15
|
Development of a multiplex PCR assay for the detection of genomic copy number changes in myelodysplastic syndromes. Leuk Res 2012; 36:e93-7. [PMID: 22341430 DOI: 10.1016/j.leukres.2012.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 01/06/2012] [Accepted: 01/09/2012] [Indexed: 11/22/2022]
|
16
|
Pan J, Xue Y, Chen S, Qiu H, Wu C, Jiang H, Wang Q, Zhang J, Bai S, Wu Y, Wang Y, Shen J. Establishment and characterization of a new human acute myelomonocytic leukemia cell line JIH-3. Leuk Res 2012; 36:889-94. [PMID: 22340903 DOI: 10.1016/j.leukres.2012.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/31/2011] [Accepted: 01/19/2012] [Indexed: 11/25/2022]
Abstract
Here, a new acute myelomonocytic leukemia (AMML) cell line, JIH-3, is reported, and its biological characteristics are described. JIH-3 cells were maintained without any cytokines for 27 months. The JIH-3 cell line showed typical myelomonocytic morphological features. Additionally, it mainly expressed myeloid and monocytic markers (CD13, CD14, CD11b, CD15 and CD33), although it also expressed other antigens such as the markers of T and B lymphocytic lineage as well as stem cell, progenitor cell, and natural killer cell-related antigens (CD4, CD5, CD7, CD10, CD22, CD34, CD38, HLADR, CD16/CD56 and CD56); the expression of these markers, suggested that this cell line was in the early stage of myelomonocytic differentiation. Cytogenetic analysis initially showed a karyotype of 46, XY, del(7) (p1?3p2?2). During the passage period, the cells with this karyotype gradually decreased and were replaced by cells with a 45,XY,dic(4;7)(p11;p11),del(15)(q2?2) karyotype. Chromosome painting showed a deletion in the short arm of chromosome 7 for del(7)(p1?3p2?2) and der(4;7)(p11;p11). The latter had larger deleted segment than the former. Fluorescence in situ hybridization (FISH) revealed the dicentric nature of der(4;7), and Multiplex FISH (M-FISH) confirmed that der(4;7) was an unbalanced translocation. A deletion involving the 7p region on dic(4;7)(p11;p11) harbors many genes, including CDC2L5, C7ORF11, C7ORF10 and INHBA. Haploinsufficiency of the genes on 4p, 7p and 15q caused by deletions of 4p, 7p and 15q2?2 that resulted from dic(4;7)(p11;p11) and del(15)(q2?2) may play important roles in leukemogenesis and in the establishment of the JIH-3 cell line. JIH-3 cells did not express multidrug resistance (MDR)-related genes and apoptosis-related genes such as MDR1, multidrug resistance-related protein, lung resistance protein, BCL-2, Bax, GS-π or Fax, only P21 expression was detected, which probably leads the MDR indirectly through inhibition of the activities of cyclin-dependent kinase (CDK). JIH-3 cells had tumorigenic capacity in nude mice. In conclusion, JIH-3 is a new acute myelomonocytic leukemia cell line. It is from a well-characterized background and provides a new useful tool for the study of leukemia patients with a 7p deletion.
Collapse
Affiliation(s)
- Jinlan Pan
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Suzhou, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bullinger L, Fröhling S. Array-Based Cytogenetic Approaches in Acute Myeloid Leukemia: Clinical Impact and Biological Insights. Semin Oncol 2012; 39:37-46. [DOI: 10.1053/j.seminoncol.2011.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
18
|
Dawson AJ, Yanofsky R, Vallente R, Bal S, Schroedter I, Liang L, Mai S. Array comparative genomic hybridization and cytogenetic analysis in pediatric acute leukemias. ACTA ACUST UNITED AC 2011; 18:e210-7. [PMID: 21980252 DOI: 10.3747/co.v18i5.770] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Most patients with acute lymphocytic leukemia (all) are reported to have acquired chromosomal abnormalities in their leukemic bone marrow cells. Many established chromosome rearrangements have been described, and their associations with specific clinical, biologic, and prognostic features are well defined. However, approximately 30% of pediatric and 50% of adult patients with all do not have cytogenetic abnormalities of clinical significance. Despite significant improvements in outcome for pediatric all, therapy fails in approximately 25% of patients, and these failures often occur unpredictably in patients with a favorable prognosis and "good" cytogenetics at diagnosis.It is well known that karyotype analysis in hematologic malignancies, although genome-wide, is limited because of altered cell kinetics (mitotic rate), a propensity of leukemic blasts to undergo apoptosis in culture, overgrowth by normal cells, and chromosomes of poor quality in the abnormal clone. Array comparative genomic hybridization (acgh-"microarray") has a greatly increased genomic resolution over classical cytogenetics. Cytogenetic microarray, which uses genomic dna, is a powerful tool in the analysis of unbalanced chromosome rearrangements, such as copy number gains and losses, and it is the method of choice when the mitotic index is low and the quality of metaphases is suboptimal. The copy number profile obtained by microarray is often called a "molecular karyotype."In the present study, microarray was applied to 9 retrospective cases of pediatric all either with initial high-risk features or with at least 1 relapse. The conventional karyotype was compared to the "molecular karyotype" to assess abnormalities as interpreted by classical cytogenetics. Not only were previously undetected chromosome losses and gains identified by microarray, but several karyotypes interpreted by classical cytogenetics were shown to be discordant with the microarray results. The complementary use of microarray and conventional cytogenetics would allow for more sensitive, comprehensive, and accurate analysis of the underlying genetic profile, with concomitant improvement in prognosis and treatment, not only for pediatric all, but for neoplastic disorders in general.
Collapse
Affiliation(s)
- A J Dawson
- Cytogenetics Laboratory, Diagnostic Services Manitoba, Winnipeg, MB
| | | | | | | | | | | | | |
Collapse
|
19
|
Characterization of a novel t(2;5;11) in a patient with concurrent AML and CLL: a case report and literature review. Cancer Genet 2011; 204:328-33. [PMID: 21763630 DOI: 10.1016/j.cancergen.2011.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 04/18/2011] [Accepted: 04/25/2011] [Indexed: 12/11/2022]
Abstract
Acute myeloid leukemia (AML) that occurs concurrent with a diagnosis of chronic lymphocytic leukemia (CLL) is rare, but the number of cases recognized has recently dramatically increased as a result of the application of flow cytometry. This raises a series of questions regarding the clinical characterization of mixed leukemia, whether this diagnosis possesses unique cytogenetic abnormalities, and the possible association between AML and CLL cell clones. The current study attempts to answer these questions by evaluating an 80-year-old man with concurrent diagnoses of AML-M0 and CLL. Routine G-banded chromosome, array based comparative genomic hybridization, and fluorescence in situ hybridization analyses were used to characterize complex chromosomal rearrangements in the patient's bone marrow. Novel complex translocations involving chromosomes 2, 5, and 11, as well as submicroscopic deletions and duplications, were revealed. This case study reports a t(2;5;11) in either AML-M0 or in CLL by using array based comparative genomic hybridization and fluorescence in situ hybridization analyses to facilitate the diagnosis. The study also delineates the clinical characteristics and cytogenetic changes that occur with concurrent AML and CLL.
Collapse
|
20
|
van der Veken LT, Buijs A. Array CGH in human leukemia: from somatics to genetics. Cytogenet Genome Res 2011; 135:260-70. [PMID: 21893961 DOI: 10.1159/000330629] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During the past decade, array CGH has been applied to study copy number alterations in the genome in human leukemia in relation to prediction of prognosis or responsiveness to therapy. In the first segment of this review, we will focus on the identification of acquired mutations by array CGH, followed by studies on the pathogenesis of leukemia associated with germline genetic variants, phenotypic presentation and response to treatment. In the last section, we will discuss constitutional genomic aberrations causally related to myeloid leukemogenesis.
Collapse
Affiliation(s)
- L T van der Veken
- Section of Genome Diagnostics, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
21
|
Genomic imbalances are confined to non-proliferating cells in paediatric patients with acute myeloid leukaemia and a normal or incomplete karyotype. PLoS One 2011; 6:e20607. [PMID: 21694761 PMCID: PMC3111408 DOI: 10.1371/journal.pone.0020607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 05/05/2011] [Indexed: 11/19/2022] Open
Abstract
Leukaemia is often associated with genetic alterations such as translocations, amplifications and deletions, and recurrent chromosome abnormalities are used as markers of diagnostic and prognostic relevance. However, a proportion of acute myeloid leukaemia (AML) cases have an apparently normal karyotype despite comprehensive cytogenetic analysis. Based on conventional cytogenetic analysis of banded chromosomes, we selected a series of 23 paediatric patients with acute myeloid leukaemia and performed whole genome array comparative genome hybridization (aCGH) using DNA samples derived from the same patients. Imbalances involving large chromosomal regions or entire chromosomes were detected by aCGH in seven of the patients studied. Results were validated by fluorescence in situ hybridization (FISH) to both interphase nuclei and metaphase chromosomes using appropriate bacterial artificial chromosome (BAC) probes. The majority of these copy number alterations (CNAs) were confirmed by FISH and found to localize to the interphase rather than metaphase nuclei. Furthermore, the proliferative states of the cells analyzed by FISH were tested by immunofluorescence using an antibody against the proliferation marker pKi67. Interestingly, these experiments showed that, in the vast majority of cases, the changes appeared to be confined to interphase nuclei in a non-proliferative status.
Collapse
|
22
|
Borze I, Scheinin I, Siitonen S, Elonen E, Juvonen E, Knuutila S. miRNA expression profiles in myelodysplastic syndromes reveal Epstein-Barr virus miR-BART13 dysregulation. Leuk Lymphoma 2011; 52:1567-73. [PMID: 21649547 DOI: 10.3109/10428194.2011.568652] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recently, the microRNA (miRNA) signature has been used for better characterization and understanding of the pathogenesis of different malignancies, including myelodysplastic syndromes (MDS). MDS are a heterogeneous group of stem cell disorders in which the genetic and molecular defects are not well defined. In the present study, we applied array based miRNA profiling to study 19 bone marrow cell samples of de novo MDS compared with eight healthy individuals. In addition, integration of the miRNA profiling data with our previous array comparative genomic hybridization data, from the same cohort of patients, was performed. We observed up-regulation of hsa-miR-720 and hsa-miR-21, and down-regulation of hsa-miR-671-5p and one human virus miRNA (Epstein-Barr virus miR-BART13) in MDS samples compared with normal samples. In our study, the copy number alteration harboring miRNA was not affecting miRNA expression, but a distinct microRNA expression pattern was observed, not only in MDS compared with controls, but also between MDS entities.
Collapse
Affiliation(s)
- Ioana Borze
- Department of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
23
|
Itzhar N, Dessen P, Toujani S, Auger N, Preudhomme C, Richon C, Lazar V, Saada V, Bennaceur A, Bourhis JH, de Botton S, Bernheim A. Chromosomal minimal critical regions in therapy-related leukemia appear different from those of de novo leukemia by high-resolution aCGH. PLoS One 2011; 6:e16623. [PMID: 21339820 PMCID: PMC3038855 DOI: 10.1371/journal.pone.0016623] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 01/07/2011] [Indexed: 12/25/2022] Open
Abstract
Therapy-related acute leukemia (t-AML), is a severe complication of cytotoxic therapy used for primary cancer treatment. The outcome of these patients is poor, compared to people who develop de novo acute leukemia (p-AML). Cytogenetic abnormalities in t-AML are similar to those found in p-AML but present more frequent unfavorable karyotypes depending on the inducting agent. Losses of chromosome 5 or 7 are observed after alkylating agents while balanced translocations are found after topoisomerase II inhibitors. This study compared t-AML to p-AML using high resolution array CGH in order to find copy number abnormalities (CNA) at a higher resolution than conventional cytogenetics. More CNAs were observed in 30 t-AML than in 36 p-AML: 104 CNAs were observed with 63 losses and 41 gains (mean number 3.46 per case) in t-AML, while in p-AML, 69 CNAs were observed with 32 losses and 37 gains (mean number of 1.9 per case). In primary leukemia with a previously "normal" karyotype, 18% exhibited a previously undetected CNA, whereas in the (few) t-AML with a normal karyotype, the rate was 50%. Several minimal critical regions (MCRs) were found in t-AML and p-AML. No common MCRs were found in the two groups. In t-AML a 40 kb deleted MCR pointed to RUNX1 on 21q22, a gene coding for a transcription factor implicated in frequent rearrangements in leukemia and in familial thrombocytopenia. In de novo AML, a 1 Mb MCR harboring ERG and ETS2 was observed from patients with complex aCGH profiles. High resolution cytogenomics obtained by aCGH and similar techniques already published allowed us to characterize numerous non random chromosome abnormalities. This work supports the hypothesis that they can be classified into several categories: abnormalities common to all AML; those more frequently found in t-AML and those specifically found in p-AML.
Collapse
Affiliation(s)
- Nathalie Itzhar
- Institut de la Santé et de la Reherche Médicale U985, Génétique des tumeurs, Institut Gustave Roussy, Villejuif, France
- Université Paris XI, Paris Sud, Orsay, France
- Molecular Pathology, Villejuif, France
| | - Philippe Dessen
- Institut de la Santé et de la Reherche Médicale U985, Génétique des tumeurs, Institut Gustave Roussy, Villejuif, France
- Université Paris XI, Paris Sud, Orsay, France
- Institut Gustave Roussy, Functional Genomics Unit, Institut Gustave Roussy, Villejuif, France
| | - Saloua Toujani
- Institut de la Santé et de la Reherche Médicale U985, Génétique des tumeurs, Institut Gustave Roussy, Villejuif, France
- Université Paris XI, Paris Sud, Orsay, France
| | - Nathalie Auger
- Institut de la Santé et de la Reherche Médicale U985, Génétique des tumeurs, Institut Gustave Roussy, Villejuif, France
- Université Paris XI, Paris Sud, Orsay, France
- Molecular Pathology, Villejuif, France
| | - Claude Preudhomme
- Department of Hematology, Centre de Biologie-Pathologie, Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | - Catherine Richon
- Institut Gustave Roussy, Functional Genomics Unit, Institut Gustave Roussy, Villejuif, France
| | - Vladimir Lazar
- Molecular Pathology, Villejuif, France
- Institut Gustave Roussy, Functional Genomics Unit, Institut Gustave Roussy, Villejuif, France
| | - Véronique Saada
- Molecular Pathology, Villejuif, France
- Department of Hematology, Institut Gustave Roussy, Villejuif, France
| | - Anelyse Bennaceur
- Molecular Pathology, Villejuif, France
- Department of Hematology, Institut Gustave Roussy, Villejuif, France
| | | | | | - Alain Bernheim
- Institut de la Santé et de la Reherche Médicale U985, Génétique des tumeurs, Institut Gustave Roussy, Villejuif, France
- Université Paris XI, Paris Sud, Orsay, France
- Molecular Pathology, Villejuif, France
- * E-mail:
| |
Collapse
|
24
|
Comprehensive array CGH of normal karyotype myelodysplastic syndromes reveals hidden recurrent and individual genomic copy number alterations with prognostic relevance. Leukemia 2011; 25:387-99. [DOI: 10.1038/leu.2010.293] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Lee JH, Kwon KA, Lee S, Oh SY, Kim SH, Kwon HC, Han JY, Song MK, Chung JS, Lee HS, Kim YS, Lee SM, Joo YD, Kim HJ. Incidence and clinical characteristics of clonal cytogenetic abnormalities of acquired aplastic anemia in adults. THE KOREAN JOURNAL OF HEMATOLOGY 2010; 45:242-6. [PMID: 21253425 PMCID: PMC3023049 DOI: 10.5045/kjh.2010.45.4.242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/30/2010] [Accepted: 11/18/2010] [Indexed: 12/02/2022]
Abstract
Background Cytogenetic abnormalities (CAs) have been reported frequently in patients with otherwise typical aplastic anemia (AA), but their implications in the prognosis and in the evolution to hematologic malignancies are controversial. Methods We retrospectively analyzed 127 adult AA patients who had successful cytogenetic analysis at initial diagnosis. Results The patients were classified into 3 groups according to the initial and follow-up results of cytogenetic profiles. Group 1 included patients who had persistent AA with normal cytogenetic profiles (N=117); Group 2, those who had a normal cytogenetic profile at initial diagnosis but later acquired CA (N=4, 3.1%); and Group 3, those who had CA at the initial diagnosis, regardless of follow-up cytogenetic status (N=6,4.7%). In Group 2, 2 patients later developed CA without progression to acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS); the other 2 patients later progressed to AML. None of the patients in Group 3 progressed to AML or MDS. There was no significant difference in overall survival between Groups 1 and 3. Conclusion AA patients with CA at initial diagnosis or follow-up may not be at greater risk for evolution to AML or MDS, or show shorter survival periods. Prospective studies and a larger patient samples are needed to establish the clinical relevance of CA.
Collapse
Affiliation(s)
- Ji Hyun Lee
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Sustained clinical cytopenia is a frequent laboratory finding in ambulatory and hospitalized patients. For pathologists and hematopathologists who examine the bone marrow (BM), a diagnosis of cytopenia secondary to an infiltrative BM process or acute leukemia can be readily established based on morphologic evaluation and flow cytometry immunophenotyping. However, it can be more challenging to establish a diagnosis of myelodysplastic syndrome (MDS). In this article, the practical approaches for establishing or excluding a diagnosis of MDS (especially low-grade MDS) in patients with clinical cytopenia are discussed along with the current diagnostic recommendations provided by the World Health Organization and the International Working Group for MDS.
Collapse
Affiliation(s)
- Sa A Wang
- Department of Hematopathology, University of Texas, MD Anderson Cancer Center, Unit 72, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA.
| |
Collapse
|
27
|
Neukirchen J, Haas R, Germing U. Prognostic molecular markers in myelodysplastic syndromes. Expert Rev Hematol 2010; 2:563-75. [PMID: 21083021 DOI: 10.1586/ehm.09.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cytogenetic findings in myelodysplastic syndromes play an important role in diagnosis, prognostication and clinical decision making. Therefore, they became an important aspect in scoring systems such as the International Prognostic Scoring System (IPSS) and the WHO-adapted Prognostic Scoring System (WPSS). Ongoing efforts to refine the categorization of karyotypes with regard to prognosis and therapeutic options will change scoring systems in the near future. In order to learn more about the pathophysiology of myelodysplastic syndromes, various molecular genetic aberrations are identified and their impact on prognosis discussed. New screening methods such as gene expression or single nucleotide polymorphism analysis are good candidates to find entrance in clinical practice in the future as they are useful tools in further elucidation of the underlying defects in myelodysplastic syndromes and the development of more specific classifications of the disease concerning risk assessment.
Collapse
Affiliation(s)
- Judith Neukirchen
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine-University of Duesseldorf, Moorenstraße 5, Düesseldorf, Germany.
| | | | | |
Collapse
|
28
|
Assessing karyotype precision by microarray-based comparative genomic hybridization in the myelodysplastic/myeloproliferative syndromes. Mol Cytogenet 2010; 3:23. [PMID: 21078186 PMCID: PMC3000833 DOI: 10.1186/1755-8166-3-23] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 11/15/2010] [Indexed: 11/11/2022] Open
Abstract
Background Recent genome-wide microarray-based research investigations have revealed a high frequency of submicroscopic copy number alterations (CNAs) in the myelodysplastic syndromes (MDS), suggesting microarray-based comparative genomic hybridization (aCGH) has the potential to detect new clinically relevant genomic markers in a diagnostic laboratory. Results We performed an exploratory study on 30 cases of MDS, myeloproliferative neoplasia (MPN) or evolving acute myeloid leukemia (AML) (% bone marrow blasts ≤ 30%, range 0-30%, median, 8%) by aCGH, using a genome-wide bacterial artificial chromosome (BAC) microarray. The sample data were compared to corresponding cytogenetics, fluorescence in situ hybridization (FISH), and clinical-pathological findings. Previously unidentified imbalances, in particular those considered submicroscopic aberrations (< 10 Mb), were confirmed by FISH analysis. CNAs identified by aCGH were concordant with the cytogenetic/FISH results in 25/30 (83%) of the samples tested. aCGH revealed new CNAs in 14/30 (47%) patients, including 28 submicroscopic or hidden aberrations verified by FISH studies. Cryptic 344-kb RUNX1 deletions were found in three patients at time of AML transformation. Other hidden CNAs involved 3q26.2/EVI1, 5q22/APC, 5q32/TCERG1,12p13.1/EMP1, 12q21.3/KITLG, and 17q11.2/NF1. Gains of CCND2/12p13.32 were detected in two patients. aCGH failed to detect a balanced translocation (n = 1) and low-level clonality (n = 4) in five karyotypically aberrant samples, revealing clinically important assay limitations. Conclusions The detection of previously known and unknown genomic alterations suggests that aCGH has considerable promise for identification of both recurring microscopic and submicroscopic genomic imbalances that contribute to myeloid disease pathogenesis and progression. These findings suggest that development of higher-resolution microarray platforms could improve karyotyping in clinical practice.
Collapse
|
29
|
Abstract
Genomic aberrations are of predominant importance to the biology and clinical outcome of patients with acute myelogenous leukemia (AML), and conventional karyotype-based risk classifications are routinely used in clinical decision making in AML. One of the known limitations of cytogenetic analysis is the inability to detect genomic abnormalities less than 5 Mb in size, and it is currently unclear whether overcoming this limitation with high-resolution genomic single-nucleotide polymorphism (SNP) array analysis would be clinically relevant. Furthermore, given the heterogeneity of molecular mechanisms/aberrations that underlie the conventional karyotype-based risk classifications, it is likely that further refinements in genomic risk prognostication can be achieved. In this study, we analyzed flow cytometer-sorted, AML blast-derived, and paired, buccal DNA from 114 previously untreated prospectively enrolled AML patients for acquired genomic copy number changes and loss of heterozygosity using Affymetrix SNP 6.0 arrays, and we correlated genomic lesion load and specific chromosomal abnormalities with patient survival. Using multivariate analyses, we found that having ≥ 2 genomic lesions detected through SNP 6.0 array profiling approximately doubles the risk of death when controlling for age- and karyotype-based risk. Finally, we identified an independent negative prognostic impact of p53 mutations, or p53 mutations and 17p-loss of heterozygosity combined on survival in AML.
Collapse
|
30
|
Parkin B, Ouillette P, Wang Y, Liu Y, Wright W, Roulston D, Purkayastha A, Dressel A, Karp J, Bockenstedt P, Al-Zoubi A, Talpaz M, Kujawski L, Liu Y, Shedden K, Shakhan S, Li C, Erba H, Malek SN. NF1 inactivation in adult acute myelogenous leukemia. Clin Cancer Res 2010; 16:4135-47. [PMID: 20505189 DOI: 10.1158/1078-0432.ccr-09-2639] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE This study was conducted to identify novel genes with importance to the biology of adult acute myelogenous leukemia (AML). EXPERIMENTAL DESIGN We analyzed DNA from highly purified AML blasts and paired buccal cells from 95 patients for recurrent genomic microdeletions using ultra-high density Affymetrix single nucleotide polymorphism 6.0 array-based genomic profiling. RESULTS Through fine mapping of microdeletions on 17q, we derived a minimal deleted region of approximately 0.9-Mb length that harbors 11 known genes; this region includes Neurofibromin 1 (NF1). Sequence analysis of all NF1 coding exons in the 11 AML cases with NF1 copy number changes identified acquired truncating frameshift mutations in two patients. These NF1 mutations were already present in the hematopoetic stem cell compartment. Subsequent expression analysis of NF1 mRNA in the entire AML cohort using fluorescence-activated cell sorting sorted blasts as a source of RNA identified six patients (one with a NF1 mutation) with absent NF1 expression. The NF1 null states were associated with increased Ras-bound GTP, and short hairpin RNA-mediated NF1 suppression in primary AML blasts with wild-type NF1 facilitated colony formation in methylcellulose. Primary AML blasts without functional NF1, unlike blasts with functional NF1, displayed sensitivity to rapamycin-induced apoptosis, thus identifying a dependence on mammalian target of rapamycin (mTOR) signaling for survival. Finally, colony formation in methylcellulose ex vivo of NF1 null CD34+/CD38- cells sorted from AML bone marrow samples was inhibited by low-dose rapamycin. CONCLUSIONS NF1 null states are present in 7 of 95 (7%) of adult AML and delineate a disease subset that could be preferentially targeted by Ras or mammalian target of rapamycin-directed therapeutics.
Collapse
Affiliation(s)
- Brian Parkin
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
High-resolution oligonucleotide array comparative genomic hybridization study and methylation status of the RPS14 gene in de novo myelodysplastic syndromes. ACTA ACUST UNITED AC 2010; 197:166-73. [PMID: 20193850 DOI: 10.1016/j.cancergencyto.2009.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 10/23/2009] [Accepted: 11/19/2009] [Indexed: 11/22/2022]
Abstract
In myelodysplastic syndromes (MDS), close to one half of patients do not have any visible karyotypic change. In order to study submicroscopic genomic alterations, we applied high-resolution array comparative genomic hybridization techniques (aCGH) in 37 patients with de novo MDS. Furthermore, we studied the methylation status of the RPS14 gene in 5q deletion (5q21.3q33.1) in 24 patients. In all, 21 of the 37 patients (57%) had copy number alterations. The most frequent copy number losses with minimal common overlapping areas were 5q21.3q33.1 (21%) and 7q22.1q33 (19%); the most frequent copy number gain was gain of the whole chromosome 8 (8%). Recurrent, but less frequent copy number losses were detected in two cases each: 11q14.1q22.1, 11q22.3q24.2, 12p12.2p13.31, 17p13.2, 18q12.1q12.2, 18q12.3q21.3, 18q21.2qter, and 20q11.23q12; the gains 8p23.2pter, 8p22p23.1, 8p12p21.1, and 8p11.21q21.2 were similarly found in two cases each. No homozygous losses or amplifications were observed. The RPS14 gene was not methylated in any of the patients.
Collapse
|
32
|
Cytogenetic evolution correlates with poor prognosis in myelodysplastic syndrome. ACTA ACUST UNITED AC 2010; 196:159-66. [PMID: 20082852 DOI: 10.1016/j.cancergencyto.2009.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 09/04/2009] [Accepted: 09/13/2009] [Indexed: 11/21/2022]
Abstract
Clonal chromosomal abnormalities are observed in 30-50% of primary myelodysplastic syndrome (MDS) patients. Although the prognostic relevance of cytogenetics is generally appreciated, the prognostic value of cytogenetic evolution has rarely been evaluated. In this study, we retrospectively analyzed cytogenetic features at diagnosis and during follow-up in 85 patients with primary MDS. Cytogenetic evolution occurred in 18 of the 85 patients (21%), with chromosomes 8, 5, and 1 most often involved. Patients with higher levels of marrow blasts (P = 0.034), more advanced stages of World Health Organization (WHO) subtypes (44% vs. 16%, P = 0.035), and higher risk International Prognostic Scoring System (IPSS) subgroups (47% vs. 16%, P = 0.021) had higher incidences of developing cytogenetic evolution. Furthermore, the median survival of patients in the group with cytogenetic evolution was 25.8 months, compared with 45.4 months for patients in the group without cytogenetic evolution (P = 0.01). The same result was also found for time to progression: patients with cytogenetic evolution progressed more rapidly than those without cytogenetic evolution (P = 0.007). Knowledge of cytogenetic evolution offers useful information for clinicians to make more accurate prognostic assessments for patients with MDS.
Collapse
|
33
|
SETBP1 overexpression is a novel leukemogenic mechanism that predicts adverse outcome in elderly patients with acute myeloid leukemia. Blood 2009; 115:615-25. [PMID: 19965692 DOI: 10.1182/blood-2009-06-227363] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Acute myeloid leukemias (AMLs) result from multiple genetic alterations in hematopoietic stem cells. We describe a novel t(12;18)(p13;q12) involving ETV6 in a patient with AML. The translocation resulted in overexpression of SETBP1 (18q12), located close to the breakpoint. Overexpression of SETBP1 through retroviral insertion has been reported to confer growth advantage in hematopoietic progenitor cells. We show that SETBP1 overexpression protects SET from protease cleavage, increasing the amount of full-length SET protein and leading to the formation of a SETBP1-SET-PP2A complex that results in PP2A inhibition, promoting proliferation of the leukemic cells. The prevalence of SETBP1 overexpression in AML at diagnosis (n = 192) was 27.6% and was associated with unfavorable cytogenetic prognostic group, monosomy 7, and EVI1 overexpression (P < .01). Patients with SETBP1 overexpression had a significantly shorter overall survival, and the prognosis impact was remarkably poor in patients older than 60 years in both overall survival (P = .015) and event-free survival (P = .015). In summary, our data show a novel leukemogenic mechanism through SETBP1 overexpression; moreover, multivariate analysis confirms the negative prognostic impact of SETBP1 overexpression in AML, especially in elderly patients, where it could be used as a predictive factor in any future clinical trials with PP2A activators.
Collapse
|
34
|
Makishima H, Rataul M, Gondek LP, Huh J, Cook JR, Theil KS, Sekeres MA, Kuczkowski E, O'Keefe C, Maciejewski JP. FISH and SNP-A karyotyping in myelodysplastic syndromes: improving cytogenetic detection of del(5q), monosomy 7, del(7q), trisomy 8 and del(20q). Leuk Res 2009; 34:447-53. [PMID: 19758696 DOI: 10.1016/j.leukres.2009.08.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 08/15/2009] [Accepted: 08/17/2009] [Indexed: 11/17/2022]
Abstract
Cytogenetic aberrations identified by metaphase cytogenetics (MC) have important diagnostic, prognostic and therapeutic roles in myelodysplastic syndromes (MDS). Fluorescence in situ hybridization (FISH) complements MC by the ability to evaluate large numbers of both interphase and metaphase nuclei. However, clinically practical FISH strategies are limited to detection of known lesions. Single nucleotide polymorphism array (SNP-A)-based karyotyping can reveal unbalanced defects with superior resolution over MC and FISH and identify segmental uniparental disomy (UPD) undetectable by either method. Using a standardized approach, we focused our investigation on detection of -5/del(5q), -7/del(7q), trisomy 8 and del(20q) in patients with MDS (N=52), MDS/myeloproliferative overlap syndromes (N=7) and acute myeloid leukemia (N=15) using MC, FISH and SNP-A karyotyping. The detection rate for del(5q) was 30, 32 and 32% by MC, FISH, and SNP-A, respectively. No single method detected all defects, and detection rates improved when all methods were used. The rate for detection of del(5q) increased incrementally to 35% (MC+FISH), 38% (MC+SNP-A), 38% (FISH+SNP-A) and 39% (all three methods). Similar findings were observed for -7/del(7q), trisomy 8 and -20/del(20q). We conclude that MC, FISH and SNP-A are complementary techniques that, when applied and interpreted together, can improve the diagnostic yield for identifying genetic lesions in MDS and contribute to the better description of abnormal karyotypes.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Chromosome Deletion
- Chromosomes, Human, Pair 20
- Chromosomes, Human, Pair 5
- Chromosomes, Human, Pair 7
- Chromosomes, Human, Pair 8
- DNA Mutational Analysis/methods
- Female
- Humans
- In Situ Hybridization, Fluorescence
- Karyotyping/methods
- Male
- Middle Aged
- Monosomy/diagnosis
- Myelodysplastic Syndromes/diagnosis
- Myelodysplastic Syndromes/genetics
- Polymorphism, Single Nucleotide
- Trisomy/diagnosis
- Young Adult
Collapse
Affiliation(s)
- Hideki Makishima
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Valent P, Wieser R. Update on genetic and molecular markers associated with myelodysplastic syndromes. Leuk Lymphoma 2009; 50:341-8. [PMID: 19263296 DOI: 10.1080/10428190902756107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of myeloid neoplasms defined by morphologic dysplasia, peripheral cytopenia and clonal instability with enhanced risk of transformation into acute myeloid leukemia. The prognosis and clinical picture in MDS vary depending on patient-related factors (age, gender, comorbidity), the disease variant, cell types affected and genes involved in the malignant process. In fact, more and more data suggest that cytogenetic and molecular defects and gene variants are associated with the clinical course and prognosis in MDS. Although certain molecular defects are indicative of distinct cytogenetic abnormalities, others represent point mutations in critical target genes (RUNX1, N-RAS, JAK2, KIT, others) and sometimes are associated with a particular type of MDS, an overlap disease, a co-existing hematopoietic neoplasm or disease progression. Although most are somatic mutations, germ line mutations and gene polymorphisms have also been described in MDS. Some of these mutations may influence the natural course of disease, iron accumulation or disease progression. The present article provides a summary of our current knowledge about molecular and genetic markers in MDS, with special reference to their potential prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Peter Valent
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria.
| | | |
Collapse
|
36
|
Acquired copy number alterations in adult acute myeloid leukemia genomes. Proc Natl Acad Sci U S A 2009; 106:12950-5. [PMID: 19651600 DOI: 10.1073/pnas.0903091106] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cytogenetic analysis of acute myeloid leukemia (AML) cells has accelerated the identification of genes important for AML pathogenesis. To complement cytogenetic studies and to identify genes altered in AML genomes, we performed genome-wide copy number analysis with paired normal and tumor DNA obtained from 86 adult patients with de novo AML using 1.85 million feature SNP arrays. Acquired copy number alterations (CNAs) were confirmed using an ultra-dense array comparative genomic hybridization platform. A total of 201 somatic CNAs were found in the 86 AML genomes (mean, 2.34 CNAs per genome), with French-American-British system M6 and M7 genomes containing the most changes (10-29 CNAs per genome). Twenty-four percent of AML patients with normal cytogenetics had CNA, whereas 40% of patients with an abnormal karyotype had additional CNA detected by SNP array, and several CNA regions were recurrent. The mRNA expression levels of 57 genes were significantly altered in 27 of 50 recurrent CNA regions <5 megabases in size. A total of 8 uniparental disomy (UPD) segments were identified in the 86 genomes; 6 of 8 UPD calls occurred in samples with a normal karyotype. Collectively, 34 of 86 AML genomes (40%) contained alterations not found with cytogenetics, and 98% of these regions contained genes. Of 86 genomes, 43 (50%) had no CNA or UPD at this level of resolution. In this study of 86 adult AML genomes, the use of an unbiased high-resolution genomic screen identified many genes not previously implicated in AML that may be relevant for pathogenesis, along with many known oncogenes and tumor suppressor genes.
Collapse
|
37
|
Ou JJ, Bagg A. Diagnostic challenges in the myelodysplastic syndromes: the current and future role of genetic and immunophenotypic studies. EXPERT OPINION ON MEDICAL DIAGNOSTICS 2009; 3:275-91. [PMID: 23488463 DOI: 10.1517/17530050902813947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Myelodysplastic syndromes (MDS) comprise a clinically and pathologically diverse collection of hematopoietic neoplasms, most commonly presenting with peripheral cytopenias typically in the context of bone marrow hypercellularity. Mechanistically, at least in the early phases of the disease, this apparently paradoxical picture is primarily due to ineffective hematopoiesis, which is accompanied by a variety of morphologic abnormalities in hematopoietic cells. The identification of recurrent, clinically relevant cytogenetic defects in MDS has spurred the research of molecular mechanisms that contribute to its inception as well as to the development of heterogeneous subtypes. Although conventional cytogenetic analyses remain a diagnostic mainstay in MDS, the application of contemporary techniques including molecular cytogenetics, microarray technologies and multiparametric flow cytometry may ultimately reveal new diagnostic parameters that are theoretically more objective and sensitive than current morphologic approaches. This review aims to outline the role of genetic and immunophenotypic studies in the evaluation of MDS, including findings that may potentially influence future diagnostic classifications, which could refine prognostication and ultimately facilitate the growth of targeted therapies.
Collapse
Affiliation(s)
- Joyce J Ou
- University of Pennsylvania, Department of Pathology and Laboratory Medicine, 3400 Spruce Street, 6 Founders Pavilion, PA 19406-4283, USA
| | | |
Collapse
|
38
|
Fujita K, Sanada M, Harada H, Mori H, Niikura H, Omine M, Inazawa J, Imoto I. Molecular cloning of t(2;7)(p24.3;p14.2), a novel chromosomal translocation in myelodysplastic syndrome-derived acute myeloid leukemia. J Hum Genet 2009; 54:355-9. [DOI: 10.1038/jhg.2009.40] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
|
40
|
Pozdnyakova O, Miron PM, Tang G, Walter O, Raza A, Woda B, Wang SA. Cytogenetic abnormalities in a series of 1,029 patients with primary myelodysplastic syndromes: a report from the US with a focus on some undefined single chromosomal abnormalities. Cancer 2008; 113:3331-40. [PMID: 18988232 DOI: 10.1002/cncr.23977] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Conventional karyotype has an established role in myelodysplastic syndrome (MDS) and is included in the International Prognostic Scoring System (IPSS) for patient risk stratification and treatment selection. Although some chromosomal abnormalities have been well characterized, the significance of several miscellaneous, infrequent, single chromosomal abnormalities remains to be defined. In addition, the emerging therapeutic agents may change the natural course of disease in patients with MDS and the cytogenetic impact on risk stratification. METHODS Clinicopathologic data were retrieved on 1029 patients who had a diagnosis of primary MDS and had available cytogenetic data (karyotype) on file. RESULTS Cytogenetic abnormalities were identified in 458 patients (45%) and occurred most frequently in patients who had refractory anemia with excess blasts (62%). Overall, the 3 cytogenetic risk groups defined by the IPSS -- good, intermediate, and poor -- effectively stratified the patients' overall survival (OS) (64 months, 31 months, and 12 months, respectively; P < .001). With the exception of gain of chromosome 8, single cytogenetic abnormalities within the intermediate group were extremely infrequent in the series but demonstrated variable OS ranging from 10 months for patients who had isochromosome (17q) to 69 months for patients who had deletion of 12p [del(12p)], suggesting different prognostic significance. In the poor cytogenetic risk group, patients with isolated del(7q) and derivative (1;7)(q10;p10) had a significantly better median OS than patients who had either loss of chromosome 7 or a complex karyotype (P < .05). CONCLUSIONS The current data generated from a large cohort of patients with primary MDS indicated that some specific cytogenetic abnormalities carry different risk than their IPSS cytogenetic risk-group assignment, especially in the new treatment era. Because of the extreme low frequency, additional combined studies are needed to better categorize some rare single cytogenetic abnormalities within the intermediate cytogenetic risk group.
Collapse
Affiliation(s)
- Olga Pozdnyakova
- Department of Pathology, University of Massachusetts Memorial Medical Center, University of Massachusetts School of Medicine, Worcester, MA, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 2008; 456:66-72. [PMID: 18987736 PMCID: PMC2603574 DOI: 10.1038/nature07485] [Citation(s) in RCA: 961] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 09/16/2008] [Indexed: 12/16/2022]
Abstract
Acute myeloid leukemia is a highly malignant hematopoietic tumor that affects about 13,000 adults yearly in the United States. The treatment of this disease has changed little in the past two decades, since most of the genetic events that initiate the disease remain undiscovered. Whole genome sequencing is now possible at a reasonable cost and timeframe to utilize this approach for unbiased discovery of tumor-specific somatic mutations that alter the protein-coding genes. Here we show the results obtained by sequencing a typical acute myeloid leukemia genome and its matched normal counterpart, obtained from the patient’s skin. We discovered 10 genes with acquired mutations; two were previously described mutations thought to contribute to tumor progression, and 8 were novel mutations present in virtually all tumor cells at presentation and relapse, whose function is not yet known. Our study establishes whole genome sequencing as an unbiased method for discovering initiating mutations in cancer genomes, and for identifying novel genes that may respond to targeted therapies. We used massively parallel sequencing technology to sequence the genomic DNA of tumor and normal skin cells obtained from a patient with a typical presentation of FAB M1 Acute Myeloid Leukemia (AML) with normal cytogenetics. 32.7-fold ‘haploid’ coverage (98 billion bases) was obtained for the tumor genome, and 13.9-fold coverage (41.8 billion bases) was obtained for the normal sample. Of 2,647,695 well-supported Single Nucleotide Variants (SNVs) found in the tumor genome, 2,588,486 (97.7%) also were detected in the patient’s skin genome, limiting the number of variants that required further study. For the purposes of this initial study, we restricted our downstream analysis to the coding sequences of annotated genes: we found only eight heterozygous, non-synonymous somatic SNVs in the entire genome. All were novel, including mutations in protocadherin/cadherin family members (CDH24 and PCLKC), G-protein coupled receptors (GPR123 and EBI2), a protein phosphatase (PTPRT), a potential guanine nucleotide exchange factor (KNDC1), a peptide/drug transporter (SLC15A1), and a glutamate receptor gene (GRINL1B). We also detected previously described, recurrent somatic insertions in the FLT3 and NPM1 genes. Based on deep readcount data, we determined that all of these mutations (except FLT3) were present in nearly all tumor cells at presentation, and again at relapse 11 months later, suggesting that the patient had a single dominant clone containing all of the mutations. These results demonstrate the power of whole genome sequencing to discover novel cancer-associated mutations.
Collapse
|
42
|
High-resolution whole genome tiling path array CGH analysis of CD34+ cells from patients with low-risk myelodysplastic syndromes reveals cryptic copy number alterations and predicts overall and leukemia-free survival. Blood 2008; 112:3412-24. [PMID: 18663149 DOI: 10.1182/blood-2007-11-122028] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Myelodysplastic syndromes (MDSs) pose an important diagnostic and treatment challenge because of the genetic heterogeneity and poorly understood biology of the disease. To investigate initiating genomic alterations and the potential prognostic significance of cryptic genomic changes in low-risk MDS, we performed whole genome tiling path array comparative genomic hybridization (aCGH) on CD34+ cells from 44 patients with an International Prognostic Scoring System score less than or equal to 1.0. Clonal copy number differences were detected in cells from 36 of 44 patients. In contrast, cells from only 16 of the 44 patients displayed karyotypic abnormalities. Although most patients had normal karyotype, aCGH identified 21 recurring copy number alterations. Examples of frequent cryptic alterations included gains at 11q24.2-qter, 17q11.2, and 17q12 and losses at 2q33.1-q33.2, 5q13.1-q13.2, and 10q21.3. Maintenance of genomic integrity defined as less than 3 Mb total disruption of the genome correlated with better overall survival (P = .002) and was less frequently associated with transformation to acute myeloid leukemia (P = .033). This study suggests a potential role for the use of aCGH in the clinical workup of MDS patients.
Collapse
|
43
|
Puces à ADN (CGH-array) : application pour le diagnostic de déséquilibres cytogénétiques cryptiques. ACTA ACUST UNITED AC 2008; 56:368-74. [DOI: 10.1016/j.patbio.2008.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 04/16/2008] [Indexed: 01/05/2023]
|
44
|
A decade of genome-wide gene expression profiling in acute myeloid leukemia: flashback and prospects. Blood 2008; 113:291-8. [PMID: 18703705 DOI: 10.1182/blood-2008-04-153239] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The past decade has shown a marked increase in the use of high-throughput assays in clinical research into human cancer, including acute myeloid leukemia (AML). In particular, genome-wide gene expression profiling (GEP) using DNA microarrays has been extensively used for improved understanding of the diagnosis, prognosis, and pathobiology of this heterogeneous disease. This review discusses the progress that has been made, places the technologic limitations in perspective, and highlights promising future avenues.
Collapse
|
45
|
Abstract
Over the years, methods of cytogenetic analysis evolved and became part of routine laboratory testing, providing valuable diagnostic and prognostic information in hematologic disorders. Karyotypic aberrations contribute to the understanding of the molecular pathogenesis of disease and thereby to rational application of therapeutic modalities. Most of the progress in this field stems from the application of metaphase cytogenetics (MC), but recently, novel molecular technologies have been introduced that complement MC and overcome many of the limitations of traditional cytogenetics, including a need for cell culture. Whole genome scanning using comparative genomic hybridization and single nucleotide polymorphism arrays (CGH-A; SNP-A) can be used for analysis of somatic or clonal unbalanced chromosomal defects. In SNP-A, the combination of copy number detection and genotyping enables diagnosis of copy-neutral loss of heterozygosity, a lesion that cannot be detected using MC but may have important pathogenetic implications. Overall, whole genome scanning arrays, despite the drawback of an inability to detect balanced translocations, allow for discovery of chromosomal defects in a higher proportion of patients with hematologic malignancies. Newly detected chromosomal aberrations, including somatic uniparental disomy, may lead to more precise prognostic schemes in many diseases.
Collapse
|
46
|
Microdeletions are a general feature of adult and adolescent acute lymphoblastic leukemia: Unexpected similarities with pediatric disease. Proc Natl Acad Sci U S A 2008; 105:6708-13. [PMID: 18458336 DOI: 10.1073/pnas.0800408105] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present here a genome-wide map of abnormalities found in diagnostic samples from 45 adults and adolescents with acute lymphoblastic leukemia (ALL). A 500K SNP array analysis uncovered frequent genetic abnormalities, with cryptic deletions constituting half of the detected changes, implying that microdeletions are a characteristic feature of this malignancy. Importantly, the pattern of deletions resembled that recently reported in pediatric ALL, suggesting that adult, adolescent, and childhood cases may be more similar on the genetic level than previously thought. Thus, 70% of the cases displayed deletion of one or more of the CDKN2A, PAX5, IKZF1, ETV6, RB1, and EBF1 genes. Furthermore, several genes not previously implicated in the pathogenesis of ALL were identified as possible recurrent targets of deletion. In total, the SNP array analysis identified 367 genetic abnormalities not corresponding to known copy number polymorphisms, with all but two cases (96%) displaying at least one cryptic change. The resolution level of this SNP array study is the highest used to date to investigate a malignant hematologic disorder. Our findings provide insights into the leukemogenic process and may be clinically important in adult and adolescent ALL. Most importantly, we report that microdeletions of key genes appear to be a common, characteristic feature of ALL that is shared among different clinical, morphological, and cytogenetic subgroups.
Collapse
|
47
|
Marti S, Galan FM, Casero JM, Merino J, Rubio G. Characterization of trisomic natural killer cell abnormalities in a patient with constitutional trisomy 8 mosaicism. Pediatr Hematol Oncol 2008; 25:135-46. [PMID: 18363181 DOI: 10.1080/08880010801890135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Malignancies found in children and adults with constitutional trisomy 8 mosaicism (CT8M) could be in part the consequence of dysfunction of trisomic immune cells. An adult patient exhibiting trisomy in the entire natural killer (NK) cell population has made possible the characterization of trisomy 8-positive NK cells. The study showed normal cytotoxic activity but predominance of an immunosenescent phenotype (CD56(dim)CD94/NKG2(bright)) characterized by a weak response to IL-2, increased upregulation of CD95/Fas, and impaired TNF-alpha production. As these defects may contribute to the escape and expansion of neoplastic cells, the authors hypothesize that cancer predisposition in CT8M may be partly a result of altered immunosurveillance.
Collapse
Affiliation(s)
- Salvador Marti
- Area of Immunology, Miguel Hernandez University, Sant Joan, Alicante, Spain
| | | | | | | | | |
Collapse
|
48
|
Calasanz MJ, Cigudosa JC. Molecular cytogenetics in translational oncology: when chromosomes meet genomics. Clin Transl Oncol 2008; 10:20-9. [DOI: 10.1007/s12094-008-0149-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Evers C, Beier M, Poelitz A, Hildebrandt B, Servan K, Drechsler M, Germing U, Royer HD, Royer-Pokora B. Molecular definition of chromosome arm 5q deletion end points and detection of hidden aberrations in patients with myelodysplastic syndromes and isolated del(5q) using oligonucleotide array CGH. Genes Chromosomes Cancer 2007; 46:1119-28. [PMID: 17823930 DOI: 10.1002/gcc.20498] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Isolated deletions of the long arm of chromosome 5, del(5q), are observed in 10% of myelodysplastic syndromes (MDS) and are associated with a more favorable prognosis, although the clinical course varies considerably. If one or more additional chromosomal aberrations are present, this correlates with a significantly shorter overall survival. To assess the frequency of hidden abnormalities in cases with an isolated cytogenetic del(5q), we have performed a genome wide high resolution 44 K 60mer oligonucleotide array comparative genomic hybridization (aCGH) study using DNA from bone marrow cells of 12 MDS and one AML patient. In one case a single additional hidden 5.6 Mb deletion of 13q14 and in another case multiple larger aberrations involving many chromosomes were found. Fluorescence in situ hybridization demonstrated that aberrations present in 35% of the bone marrow cells can be detected by aCGH. Furthermore with oligonucleotide aCGH the deletion end points in 5q were mapped precisely, revealing a cluster of proximal breakpoints in band q14.3 (n = 8) and a distal cluster between bands q33.2 and q34 (n = 11). This study shows the high resolution of oligonucleotide CGH arrays for precisely mapping genomic alterations and for refinement of deletion end points. In addition, the high sensitivity of this method enables the study of whole bone marrow cells from MDS patients, a disease with a low blast count.
Collapse
Affiliation(s)
- Christina Evers
- Institute of Human Genetics and Anthropology, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
O’Keefe CL, Tiu R, Gondek LP, Powers J, Theil KS, Kalaycio M, Lichtin A, Sekeres MA, Maciejewski JP. High-resolution genomic arrays facilitate detection of novel cryptic chromosomal lesions in myelodysplastic syndromes. Exp Hematol 2007; 35:240-51. [PMID: 17258073 PMCID: PMC2613764 DOI: 10.1016/j.exphem.2006.09.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 09/20/2006] [Accepted: 09/22/2006] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Unbalanced chromosomal aberrations are common in myelodysplastic syndromes and have prognostic implications. An increased frequency of cytogenetic changes may reflect an inherent chromosomal instability due to failure of DNA repair. Therefore, it is likely that chromosomal defects in myelodysplastic syndromes may be more frequent than predicted by metaphase cytogenetics and new cryptic lesions may be revealed by precise analysis methods. METHODS We used a novel high-resolution karyotyping technique, array-based comparative genomic hybridization, to investigate the frequency of cryptic chromosomal lesions in a cohort of 38 well-characterized myelodysplastic syndromes patients; results were confirmed by microsatellite quantitative PCR or single nucleotide polymorphism analysis. RESULTS As compared to metaphase karyotyping, chromosomal abnormalities detected by array-based analysis were encountered more frequently and in a higher proportion of patients. For example, chromosomal defects were found in patients with a normal karyotype by traditional cytogenetics. In addition to verifying common abnormalities, previously cryptic defects were found in new regions of the genome. Cryptic changes often overlapped chromosomes and regions frequently identified as abnormal by metaphase cytogenetics. CONCLUSION The results underscore the instability of the myelodysplastic syndromes genome and highlight the utility of array-based karyotyping to study cryptic chromosomal changes which may provide new diagnostic information.
Collapse
Affiliation(s)
- Christine L. O’Keefe
- Experimental Hematology and Hematopoiesis Section, Cleveland Clinic, Cleveland OH
| | - Ramon Tiu
- Department of Internal Medicine, Cleveland Clinic, Cleveland OH
| | - Lukasz P. Gondek
- Experimental Hematology and Hematopoiesis Section, Cleveland Clinic, Cleveland OH
| | - Jennifer Powers
- Experimental Hematology and Hematopoiesis Section, Cleveland Clinic, Cleveland OH
| | - Karl S. Theil
- Department of Clinical Pathology, Cleveland Clinic, Cleveland OH
| | - Matt Kalaycio
- Department of Hematologic Malignancy and Blood Disorders, Cleveland Clinic, Cleveland OH
| | - Alan Lichtin
- Department of Hematologic Malignancy and Blood Disorders, Cleveland Clinic, Cleveland OH
| | - Mikkael A. Sekeres
- Department of Hematologic Malignancy and Blood Disorders, Cleveland Clinic, Cleveland OH
| | - Jaroslaw P. Maciejewski
- Experimental Hematology and Hematopoiesis Section, Cleveland Clinic, Cleveland OH
- Department of Hematologic Malignancy and Blood Disorders, Cleveland Clinic, Cleveland OH
| |
Collapse
|