1
|
Wagstaff M, Sevim O, Goff A, Raynor M, Park H, Mancini EJ, Nguyen DTT, Chevassut T, Blair A, Castellano L, Newbury S, Towler B, Morgan RG. β-Catenin interacts with canonical RBPs including MSI2 to associate with a Wnt signalling mRNA network in myeloid leukaemia cells. Oncogene 2025:10.1038/s41388-025-03415-y. [PMID: 40301545 DOI: 10.1038/s41388-025-03415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 05/01/2025]
Abstract
Wnt/β-catenin signalling is important for normal hematopoietic stem/progenitor cell (HSPC) biology and heavily implicated in acute and chronic myeloid leukaemia (AML and CML). The central mediator β-catenin is an attractive therapeutic target in myeloid neoplasms however its targeting has been hampered by a poor characterisation of its molecular interactions in haematopoietic cells, which will differ from its network in solid tissues. Our previous β-catenin interactome study identified the significant enrichment of RNA-binding proteins (RBP) implying post-transcriptional roles for β-catenin in myeloid cells. To identify β-catenin interacting mRNAs we performed β-catenin RNA-immunoprecipitation coupled to RNA-sequencing (RIP-seq) and identified significantly enriched Wnt signalling pathway transcripts. Using β-catenin cross-linking immunoprecipitation (CLIP) we demonstrated a limited capacity for β-catenin to bind RNA directly, implying dependence on other RBPs. β-Catenin was found to interact with Musashi-2 (MSI2) in both myeloid cell lines and primary AML patient samples, where expression was significantly correlated. MSI2 knockdown reduced Wnt signalling output (TCF/LEF activity), through suppression of LEF-1 expression and nuclear localisation. Through both RIP and CLIP we demonstrate MSI2 binds LEF1 mRNA in a partly β-catenin dependent fashion, and may impact the post-transcriptional control of LEF-1 expression. Finally, we show that MSI2-mediated expansion of human HSPCs could be partly driven through LEF1 regulation. This is the first study to experimentally demonstrate functional crosstalk between MSI2 and Wnt signalling in human cells, and indicates potential novel post-transcriptional roles for β-catenin in a haematological context.
Collapse
Affiliation(s)
- M Wagstaff
- School of Life Sciences, University of Sussex, Brighton, UK
| | - O Sevim
- School of Life Sciences, University of Sussex, Brighton, UK
| | - A Goff
- School of Life Sciences, University of Sussex, Brighton, UK
| | - M Raynor
- Leeds Institute of Medical Research, Next Generation Sequencing Facility, University of Leeds, Leeds, UK
| | - H Park
- Brighton & Sussex Medical School, University of Sussex, Brighton, UK
- University Hospitals Sussex NHS Foundation Trust, Brighton, UK
| | - E J Mancini
- School of Life Sciences, University of Sussex, Brighton, UK
| | - D T T Nguyen
- Centre for Haemato-oncology, Cancer Research UK Barts Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - T Chevassut
- Brighton & Sussex Medical School, University of Sussex, Brighton, UK
- University Hospitals Sussex NHS Foundation Trust, Brighton, UK
| | - A Blair
- Bristol Institute for Transfusion Sciences, NHS Blood & Transplant, Bristol, UK
| | - L Castellano
- School of Life Sciences, University of Sussex, Brighton, UK
- Department of Surgery and Cancer, Division of Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College London, London, UK
| | - S Newbury
- Brighton & Sussex Medical School, University of Sussex, Brighton, UK
| | - B Towler
- School of Life Sciences, University of Sussex, Brighton, UK
| | - R G Morgan
- School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
2
|
Chang TC, Lin CF, Lu YJ, Liang SM, Wei JY, Chin CH, Shyue SK, Kuo CC, Liou JY. The effects of acetylated cordycepin derivatives on promoting vascular angiogenesis and attenuating myocardial ischemic injury. Heliyon 2024; 10:e40026. [PMID: 39553596 PMCID: PMC11567033 DOI: 10.1016/j.heliyon.2024.e40026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Background Enhanced angiogenesis following myocardial infarction (MI) is beneficial to preserve cardiac function. The present study aimed to investigate whether acetylated derivatives of cordycepin altered its original antitumor properties and exerted cardioprotective effects by promoting angiogenesis in vitro and in vivo. Methods Cordycepin and its derivatives with single (DA), double (DAA), and triple acetyl groups (DAAA) were assessed. The cell viability of leukemia U937 cells, malignant hepatoma Huh-7 cells, and human umbilical vascular endothelial cells (HUVECs) treated with cordycepin, DA, DAA, and DAAA were determined. The expression of β-catenin in U937 cells, as well as the expression of p65, p38 and other related signal regulators in HUVECs elicited by lipopolysaccharides (LPS) were also observed. Angiogenesis was determined by tube formation in HUVECs and Matrigel plug assay in mice. Cardiac function following administration of DAAA was evaluated in mice MI model simulated by coronary artery ligation. Results The inhibitory effects of cordycepin and its acetylated derivatives on U937 cells, Huh-7 cells, HUVECs, and the expression of β-catenin in U937 cells were mitigated with increasing acetylation. Intriguingly, DAAA preserved the cell viability of HUVECs compared to other acetylated derivatives. Although DAAA had a significantly diminished antitumor effect compared to cordycepin, it promoted angiogenesis in mice and tube formation in HUVECs and attenuated LPS-induced phosphorylation of p65 and p38. Additionally, administration of DAAA improved cardiac function following coronary artery ligation in mice. Conclusion DAAA could be considered a promising adjunctive therapy to prevent post-MI heart failure through promoting angiogenesis.
Collapse
Affiliation(s)
- Tzu-Ching Chang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chao-Feng Lin
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yi-Jhu Lu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Shu-Man Liang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Jia-Yi Wei
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chih-Hui Chin
- Cardiovascular Center, Cathay General Hospital, Taipei, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Song-Kun Shyue
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Cheng-Chin Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Jun-Yang Liou
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Wen X, Li P, Ma Y, Wang D, Jia R, Xia Y, Li W, Li Y, Li G, Sun T, Lu F, Ye J, Ji C. RHOF activation of AKT/β-catenin signaling pathway drives acute myeloid leukemia progression and chemotherapy resistance. iScience 2024; 27:110221. [PMID: 39021805 PMCID: PMC11253531 DOI: 10.1016/j.isci.2024.110221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/29/2024] [Accepted: 06/05/2024] [Indexed: 07/20/2024] Open
Abstract
Acute myeloid leukemia (AML) is a clonal malignancy originating from leukemia stem cells, characterized by a poor prognosis, underscoring the necessity for novel therapeutic targets and treatment methodologies. This study focuses on Ras homolog family member F, filopodia associated (RHOF), a Rho guanosine triphosphatase (GTPase) family member. We found that RHOF is overexpressed in AML, correlating with an adverse prognosis. Our gain- and loss-of-function experiments revealed that RHOF overexpression enhances proliferation and impedes apoptosis in AML cells in vitro. Conversely, genetic suppression of RHOF markedly reduced the leukemia burden in a human AML xenograft mouse model. Furthermore, we investigated the synergistic effect of RHOF downregulation and chemotherapy, demonstrating significant therapeutic efficacy in vivo. Mechanistically, RHOF activates the AKT/β-catenin signaling pathway, thereby accelerating the progression of AML. Our findings elucidate the pivotal role of RHOF in AML pathogenesis and propose RHOF inhibition as a promising therapeutic approach for AML management.
Collapse
Affiliation(s)
- Xin Wen
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, People’s Republic of China
| | - Peng Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, People’s Republic of China
| | - Yuechan Ma
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, People’s Republic of China
| | - Dongmei Wang
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan 250012, People’s Republic of China
| | - Ruinan Jia
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, People’s Republic of China
| | - Yuan Xia
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, People’s Republic of China
| | - Wei Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, People’s Republic of China
| | - Yongjian Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, People’s Republic of China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, People’s Republic of China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan 250012, People’s Republic of China
| | - Tao Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, People’s Republic of China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan 250012, People’s Republic of China
| | - Fei Lu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, People’s Republic of China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, People’s Republic of China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan 250012, People’s Republic of China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, People’s Republic of China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan 250012, People’s Republic of China
| |
Collapse
|
4
|
Yıldırım C. Galectin-9, a pro-survival factor inducing immunosuppression, leukemic cell transformation and expansion. Mol Biol Rep 2024; 51:571. [PMID: 38662155 DOI: 10.1007/s11033-024-09563-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Leukemia is a malignancy of the bone marrow and blood originating from self-renewing cancerous immature blast cells or transformed leukocytes. Despite improvements in treatments, leukemia remains still a serious disease with poor prognosis because of disease heterogeneity, drug resistance and relapse. There is emerging evidence that differentially expression of co-signaling molecules play a critical role in tumor immune evasion. Galectin-9 (Gal-9) is one of the key proteins that leukemic cells express, secrete, and use to proliferate, self-renew, and survive. It also suppresses host immune responses controlled by T and NK cells, enabling leukemic cells to evade immune surveillance. The present review provides the molecular mechanisms of Gal-9-induced immune evasion in leukemia. Understanding the complex immune evasion machinery driven by Gal-9 expressing leukemic cells will enable the identification of novel therapeutic strategies for efficient immunotherapy in leukemic patients. Combined treatment approaches targeting T-cell immunoglobulin and mucin domain-3 (Tim-3)/Gal-9 and other immune checkpoint pathways can be considered, which may enhance the efficacy of host effector cells to attack leukemic cells.
Collapse
Affiliation(s)
- Cansu Yıldırım
- Atatürk Vocational School of Health Services, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey.
| |
Collapse
|
5
|
Lynch J, Troadec E, Fung TK, Gladysz K, Virely C, Lau PNI, Cheung N, Zeisig B, Wong JWH, Lopes M, Huang S, So CWE. Hematopoietic stem cell quiescence and DNA replication dynamics maintained by the resilient β-catenin/Hoxa9/Prmt1 axis. Blood 2024; 143:1586-1598. [PMID: 38211335 PMCID: PMC11103100 DOI: 10.1182/blood.2023022082] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024] Open
Abstract
ABSTRACT Maintenance of quiescence and DNA replication dynamics are 2 paradoxical requirements for the distinct states of dormant and active hematopoietic stem cells (HSCs), which are required to preserve the stem cell reservoir and replenish the blood cell system in response to hematopoietic stress, respectively. Here, we show that key self-renewal factors, β-catenin or Hoxa9, largely dispensable for HSC integrity, in fact, have dual functions in maintaining quiescence and enabling efficient DNA replication fork dynamics to preserve the functionality of hematopoietic stem and progenitor cells (HSPCs). Although β-catenin or Hoxa9 single knockout (KO) exhibited mostly normal hematopoiesis, their coinactivation led to severe hematopoietic defects stemmed from aberrant cell cycle, DNA replication, and damage in HSPCs. Mechanistically, β-catenin and Hoxa9 function in a compensatory manner to sustain key transcriptional programs that converge on the pivotal downstream target and epigenetic modifying enzyme, Prmt1, which protects the quiescent state and ensures an adequate supply of DNA replication and repair factors to maintain robust replication fork dynamics. Inactivation of Prmt1 phenocopied both cellular and molecular phenotypes of β-catenin/Hoxa9 combined KO, which at the same time could also be partially rescued by Prmt1 expression. The discovery of the highly resilient β-catenin/Hoxa9/Prmt1 axis in protecting both quiescence and DNA replication dynamics essential for HSCs at different key states provides not only novel mechanistic insights into their intricate regulation but also a potential tractable target for therapeutic intervention.
Collapse
Affiliation(s)
- Jennifer Lynch
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Estelle Troadec
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Tsz Kan Fung
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
- Department of Haematological Medicine, King’s College Hospital, London, United Kingdom
| | - Kornelia Gladysz
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Clemence Virely
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Priscilla Nga Ieng Lau
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Ngai Cheung
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Bernd Zeisig
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
- Department of Haematological Medicine, King’s College Hospital, London, United Kingdom
| | - Jason W. H. Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Suming Huang
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Chi Wai Eric So
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
- Department of Haematological Medicine, King’s College Hospital, London, United Kingdom
| |
Collapse
|
6
|
Xie Y, Tan L, Wu K, Li D, Li C. miR-26b-5p Affects the Progression of Acute Myeloid Leukemia by Regulating the USP48-Mediated Wnt/β-Catenin Pathway. Crit Rev Eukaryot Gene Expr 2024; 34:33-44. [PMID: 38505871 DOI: 10.1615/critreveukaryotgeneexpr.2024049380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous disease. Exploring the pathogenesis of AML is still an important topic in the treatment of AML. The expression levels of miR-26b-5p and USP48 were measured by qRT-PCR. The expression levels of related proteins were detected by Western blot. Cell proliferation and apoptosis were detected by CCK-8 and flow cytometry, respectively. Coimmunoprecipitation was used to examine the interaction between USP48 and Wnt5a. Bioinformatics analysis showed that high levels of miR-26b-5p and low levels of USP48 were associated with poor prognosis in AML. miR-26b-5p can negatively regulate the expression of USP48. Downregulation of miR-26b-5p inhibited EMT, cell viability and proliferation of AML cells and accelerated apoptosis. Furthermore, the influence of miR-26b-5p inhibition and USP48 knockdown on AML progression could be reversed by a Wnt/β-catenin signaling pathway inhibitor. This study revealed that miR-26b-5p regulates AML progression, possibly by targeting the USP48-mediated Wnt/β-catenin molecular axis to affect AML cell biological behavior.
Collapse
Affiliation(s)
- Yu Xie
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Lin Tan
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Kun Wu
- Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Deyun Li
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Chengping Li
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| |
Collapse
|
7
|
Aanei CM, Devêvre E, Șerban A, Tavernier-Tardy E, Guyotat D, Campos Catafal L. High-Dimensional Mass Cytometry Analysis of Embryonic Antigens and Their Signaling Pathways in Myeloid Cells from Bone Marrow Aspirates in AML Patients at Diagnosis. Cancers (Basel) 2023; 15:4707. [PMID: 37835401 PMCID: PMC10571794 DOI: 10.3390/cancers15194707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Embryonic antigens (EA) regulate pluripotency, self-renewal, and differentiation in embryonic stem (ES) cells during their development. In adult somatic cells, EA expression is normally inhibited; however, EAs can be re-expressed by cancer cells and are involved in the deregulation of different signaling pathways (SPs). In the context of AML, data concerning the expression of EAs are scarce and contradictory. METHODS We used mass cytometry to explore the expression of EAs and three SPs in myeloid cells from AML patients and normal bone marrow (NBM). Imaging flow cytometry was used for morphological assessment of cells in association with their OCT3/4 expression status (positive vs. negative). RESULTS An overall reduction in or absence of EA expression was observed in immature myeloid cells from AML patients compared to their normal counterparts. Stage-specific embryonic antigen-3 (SSEA-3) was consistently expressed at low levels in immature myeloid cells, whereas SSEA-1 was overexpressed in hematopoietic stem cells (HSCs) and myeloblasts from AML with monocytic differentiation (AML M4/M5). Therefore, these markers are valuable for distinguishing between normal and abnormal myeloid cells. These preliminary results show that the exploration of myeloid cell intracellular SPs in the setting of AML is very informative. Deregulation of three important leukemogenic SPs was also observed in myeloid cells from AML. CONCLUSIONS Exploring EAs and SPs in myeloid cells from AML patients by mass cytometry may help identify characteristic phenotypes and facilitate AML follow-up.
Collapse
Affiliation(s)
- Carmen-Mariana Aanei
- Laboratory of Hematology, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France; (A.Ș.); (L.C.C.)
- Santé Ingénierie Biologie Saint-Etienne, INSERM SainBiose U1059, 42270 Saint-Priest-en-Jarez, France
| | - Estelle Devêvre
- Plateau de Cytométrie AniRA, SFR BioSciences (UAR3444-US8), 69367 Lyon, France;
| | - Adrian Șerban
- Laboratory of Hematology, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France; (A.Ș.); (L.C.C.)
| | - Emmanuelle Tavernier-Tardy
- Department of Clinical Hematology, University Hospital of Saint-Etienne, 42100 Saint-Etienne, France; (E.T.-T.); (D.G.)
| | - Denis Guyotat
- Department of Clinical Hematology, University Hospital of Saint-Etienne, 42100 Saint-Etienne, France; (E.T.-T.); (D.G.)
| | - Lydia Campos Catafal
- Laboratory of Hematology, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France; (A.Ș.); (L.C.C.)
| |
Collapse
|
8
|
Egbuna C, Patrick‐Iwuanyanwu KC, Onyeike EN, Uche CZ, Ogoke UP, Riaz M, Ibezim EN, Khan J, Adedokun KA, Imodoye SO, Bello IO, Awuchi CG. Wnt/β-catenin signaling pathway inhibitors, glycyrrhizic acid, solanine, polyphyllin I, crocin, hypericin, tubeimoside-1, diosmin, and rutin in medicinal plants have better binding affinities and anticancer properties: Molecular docking and ADMET study. Food Sci Nutr 2023; 11:4155-4169. [PMID: 37457177 PMCID: PMC10345731 DOI: 10.1002/fsn3.3405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 07/18/2023] Open
Abstract
Wnt/β-catenin signaling pathway plays a role in cancer development, organogenesis, and embryogenesis. The abnormal activation promotes cancer stem cell renewal, proliferation, and differentiation. In the present study, molecular docking simulation and ADMET studies were carried out on selected bioactive compounds in search of β-catenin protein inhibitors for drug discovery against cancer. Blind docking simulation was performed using PyRx software on Autodock Vina. β-catenin protein (PDB ID: 1jdh) and 313 bioactive compounds (from PubChem database) with selected standard anticancer drugs were used for molecular docking. The ADMET properties of the best-performing compounds were calculated using SwissADME and pkCMS web servers. The results obtained from the molecular docking study showed that glycyrrhizic acid, solanine, polyphyllin I, crocin, hypericin, tubeimoside-1, diosmin, and rutin had the best binding interactions with β-catenin protein based on their binding affinities. Glycyrrhizic acid and solanine had the same and lowest binding energy of -8.5 kcal/mol. This was followed by polyphyllin I with -8.4 kcal/mol, and crocin, hypericin, and tubeimoside-1 which all had a binding energy of 8.1 kcal/mol. Other top-performing compounds include diosmin and rutin with binding energy of -8.0 kcal/mol. The ADMET study revealed that the following compounds glycyrrhizic acid, solanine, polyphyllin I, crocin, hypericin, tubeimoside-1, diosmin, rutin, and baicalin all violated Lipinski's rule of 5 which implies poor oral bioavailability. However, based on the binding energy score, it was suggested that these pharmacologically active compounds are potential molecules to be tested against cancer.
Collapse
Affiliation(s)
- Chukwuebuka Egbuna
- Africa Centre of Excellence in Public Health and Toxicological Research (ACE‐PUTOR)University of Port‐HarcourtPort HarcourtNigeria
- Department of Biochemistry, Faculty of ScienceUniversity of Port HarcourtPort HarcourtNigeria
- Department of Biochemistry, Faculty of Natural SciencesChukwuemeka Odumegwu Ojukwu UniversityUliNigeria
| | - Kingsley C. Patrick‐Iwuanyanwu
- Africa Centre of Excellence in Public Health and Toxicological Research (ACE‐PUTOR)University of Port‐HarcourtPort HarcourtNigeria
- Department of Biochemistry, Faculty of ScienceUniversity of Port HarcourtPort HarcourtNigeria
| | - Eugene N. Onyeike
- Africa Centre of Excellence in Public Health and Toxicological Research (ACE‐PUTOR)University of Port‐HarcourtPort HarcourtNigeria
- Department of Biochemistry, Faculty of ScienceUniversity of Port HarcourtPort HarcourtNigeria
| | - Chukwuemelie Zedech Uche
- Department of Medical Biochemistry and Molecular Biology, Faculty of Basic Medical SciencesUniversity of NigeriaNsukkaNigeria
| | - Uchenna Petronilla Ogoke
- Biostatistics and Computation Unit, Department of Mathematics and StatisticsUniversity of Port HarcourtPort HarcourtNigeria
| | - Muhammad Riaz
- Department of Allied Health SciencesUniversity of SargodhaSargodhaPakistan
| | - Ebube Nnamdi Ibezim
- Department of Biochemistry, Faculty of Natural SciencesChukwuemeka Odumegwu Ojukwu UniversityUliNigeria
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesMajmaah UniversityAl MajmaahSaudi Arabia
- Health and Basic Sciences Research CenterMajmaah UniversityAl MajmaahSaudi Arabia
| | - Kamoru A. Adedokun
- Department of ImmunologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Sikiru O. Imodoye
- Department of Oncological Sciences, Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUtahUSA
| | - Ibrahim O. Bello
- Department of Biological SciencesSouthern Illinois University EdwardsvilleEdwardsvilleIllinoisUSA
| | | |
Collapse
|
9
|
Mathur A, Gangwar A, Saluja D. Esculetin releases maturation arrest and induces terminal differentiation in leukemic blast cells by altering the Wnt signaling axes. BMC Cancer 2023; 23:387. [PMID: 37127581 PMCID: PMC10150528 DOI: 10.1186/s12885-023-10818-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/06/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND The "Differentiation therapy" has been emerging as a promising and more effective strategy against acute leukemia relapses. OBJECTIVE In extension to the revolutionising therapeutic outcomes of All Trans Retinoic Acid (ATRA) to induce terminal differentiation of Acute Promyelocytic Leukemic (APL) blast cells, we decipher the potential effect of a natural compound "Esculetin" to serve as a differentiating agent in Acute Myeloid Leukemia (AML). Underlaying role of Wnt signaling pathways in esculetin mediated blast cell differentiation was also evaluated. METHODS Human acute myeloid leukemic cells (Kasumi-1) with t(8;21/AML-ETO) translocation were used as a model system. Growth inhibitory and cytotoxic activity of esculetin were analysed using growth kinetics and MTT assay. Morphological alterations, cell scatter characteristics, NBT reduction assay and cell surface marker expression patterns were analysed to detect terminally differentiated phenotypes. We employed RT2profiler PCR array system for the analysis of transcriptome profile of Wnt signaling components. Calcium inhibitors (TMB8 and Amlodipine) and Transforming growth factor beta (TGF-β) were used to modulate the Wnt signaling axes. RESULTS We illustrate cytotoxic as well as blast cell differentiation potential of esculetin on Kasumi-1 cells. Morphological alterations akin to neutrophilic differentiation as well as the corresponding acquisition of myeloid lineage markers indicate terminal differentiation potential of esculetin in leukemic blast cells. Exposure to esculetin also resulted in downregulation of canonical Wnt axis while upto ~ 21 fold upregulation of non-canonical axis associated genes. CONCLUSIONS Our study highlights the importance of selective use of calcium pools as well as "axis shift" of the canonical to non-canonical Wnt signaling upon esculetin treatment which might abrogate the inherent proliferation to release maturation arrest and induce the differentiation in leukemic blast cells. The current findings provide further therapeutic interventions to consider esculetin as a potent differentiating agent to counteract AML relapses.
Collapse
Affiliation(s)
- Ankit Mathur
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi, 110007, India
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Aman Gangwar
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Daman Saluja
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi, 110007, India.
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
10
|
Caliskan C, Yuce Z, Ogun Sercan H. Dvl proteins regulate SMAD1, AHR, mTOR, BRD7 protein expression while differentially regulating canonical and non-canonical Wnt signaling pathways in CML cell lines. Gene X 2023; 854:147109. [PMID: 36509295 DOI: 10.1016/j.gene.2022.147109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Dishevelled (Dvl) is a scaffold protein that transmits Wnt signals to downstream effector molecules via both canonical and non-canonical Wnt signaling pathways. Deregulated activation of Dvl proteins has been reported in various solid tumors. However, it is not clear which pathway and proteins are responsible for observed aberrant activities and their relevance in disease prognosis. In addition, there is relatively limited knowledge on the role Dvl proteins may have in hematologic malignancy etiopathogenesis. In this study, we demonstrated that Dvl genes are not expressed in normal bone marrow but are expressed at different levels in the bone marrow of patients with chronic myeloid leukemia. We showed SMAD1, AHR, mTOR, BRD7 protein expressions are significantly affected by Dvl silencing and overexpression in CML cell lines. Wnt/β-catenin and Wnt/PCP signaling pathway components are effectively repressed after Dvl silencing in K562 cells, while regulator of Wnt/Ca2+ signaling showed increase in both CML cell lines. Targeting Dvl proteins increases imatinib susceptibility of the K562 and MEG-01 cell lines. In light of our data, Dvl could be a potential therapeutic target in the treatment of CML.
Collapse
Affiliation(s)
- Ceyda Caliskan
- Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, Balcova, Izmir, Turkey; School of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Zeynep Yuce
- Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, Balcova, Izmir, Turkey
| | - Hakki Ogun Sercan
- Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, Balcova, Izmir, Turkey.
| |
Collapse
|
11
|
Novel Insights into the Role of Kras in Myeloid Differentiation: Engaging with Wnt/β-Catenin Signaling. Cells 2023; 12:cells12020322. [PMID: 36672256 PMCID: PMC9857056 DOI: 10.3390/cells12020322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Cells of the HL-60 myeloid leukemia cell line can be differentiated into neutrophil-like cells by treatment with dimethyl sulfoxide (DMSO). The molecular mechanisms involved in this differentiation process, however, remain unclear. This review focuses on the differentiation of HL-60 cells. Although the Ras proteins, a group of small GTP-binding proteins, are ubiquitously expressed and highly homologous, each has specific molecular functions. Kras was shown to be essential for normal mouse development, whereas Hras and Nras are not. Kras knockout mice develop profound hematopoietic defects, indicating that Kras is required for hematopoiesis in adults. The Wnt/β-catenin signaling pathway plays a crucial role in regulating the homeostasis of hematopoietic cells. The protein β-catenin is a key player in the Wnt/β-catenin signaling pathway. A great deal of evidence shows that the Wnt/β-catenin signaling pathway is deregulated in malignant tumors, including hematological malignancies. Wild-type Kras acts as a tumor suppressor during DMSO-induced differentiation of HL-60 cells. Upon DMSO treatment, Kras translocates to the plasma membrane, and its activity is enhanced. Inhibition of Kras attenuates CD11b expression. DMSO also elevates levels of GSK3β phosphorylation, resulting in the release of unphosphorylated β-catenin from the β-catenin destruction complex and its accumulation in the cytoplasm. The accumulated β-catenin subsequently translocates into the nucleus. Inhibition of Kras attenuates Lef/Tcf-sensitive transcription activity. Thus, upon treatment of HL-60 cells with DMSO, wild-type Kras reacts with the Wnt/β-catenin pathway, thereby regulating the granulocytic differentiation of HL-60 cells. Wild-type Kras and the Wnt/β-catenin signaling pathway are activated sequentially, increasing the levels of expression of C/EBPα, C/EBPε, and granulocyte colony-stimulating factor (G-CSF) receptor.
Collapse
|
12
|
Shahid AM, Um IH, Elshani M, Zhang Y, Harrison DJ. NUC-7738 regulates β-catenin signalling resulting in reduced proliferation and self-renewal of AML cells. PLoS One 2022; 17:e0278209. [PMID: 36520954 PMCID: PMC9754587 DOI: 10.1371/journal.pone.0278209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/13/2022] [Indexed: 12/23/2022] Open
Abstract
Acute myeloid leukemia (AML) stem cells are required for the initiation and maintenance of the disease. Activation of the Wnt/β-catenin pathway is required for the survival and development of AML leukaemia stem cells (LSCs) and therefore, targeting β-catenin is a potential therapeutic strategy. NUC-7738, a phosphoramidate transformation of 3'-deoxyadenosine (3'-dA) monophosphate, is specifically designed to generate the active anti-cancer metabolite 3'-deoxyadenosine triphosphate (3'-dATP) intracellularly, bypassing key limitations of breakdown, transport, and activation. NUC-7738 is currently in a Phase I/II clinical study for the treatment of patients with advanced solid tumors. Protein expression and immunophenotypic profiling revealed that NUC-7738 caused apoptosis in AML cell lines through reducing PI3K-p110α, phosphorylated Akt (Ser473) and phosphorylated GSK3β (Ser9) resulting in reduced β-catenin, c-Myc and CD44 expression. NUC-7738 reduced β-catenin nuclear expression in AML cells. NUC-7738 also decreased the percentage of CD34+ CD38- CD123+ (LSC-like cells) from 81% to 47% and reduced the total number and size of leukemic colonies. These results indicate that therapeutic targeting of the PI3K/Akt/GSK3β axis can inhibit β-catenin signalling, resulting in reduced clonogenicity and eventual apoptosis of AML cells.
Collapse
Affiliation(s)
| | - In Hwa Um
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Mustafa Elshani
- School of Medicine, University of St Andrews, St Andrews, United Kingdom,NuCana plc, Edinburgh, United Kingdom
| | - Ying Zhang
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - David James Harrison
- School of Medicine, University of St Andrews, St Andrews, United Kingdom,NuCana plc, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Han H, Zhu B, Xie J, Huang Y, Geng Y, Chen K, Wang W. Expression level and prognostic potential of beta-catenin-interacting protein in acute myeloid leukemia. Medicine (Baltimore) 2022; 101:e30022. [PMID: 35984200 PMCID: PMC9387945 DOI: 10.1097/md.0000000000030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Inhibitor of beta-catenin and TCF (ICAT) is a key protein in the Wnt-β-catenin signaling pathway. However, its role in acute myeloid leukemia (AML) remains unknown. In this study, we evaluated its expression level as well as its prognostic value in AML patients. A total of 72 patients with AML and 30 control subjects were enrolled in this study during the period of January 2017 and December 2019 at Zhongshan Hospital of SunYat-sen University. ICAT and β-catenin expression levels in peripheral blood were determined via enzyme-linked immunosorbent assays. ICAT levels in AML patients were significantly lower and β-catenin levels were higher than those of the control group. After the first course of standard chemotherapy, the concentration of ICAT in the partial remission group (93.79 ng/mL) was significantly higher than that in the initial diagnosis group (49.38 ng/mL) and the no response group (39.94 ng/mL). AML subtypes had lower ICAT expression levels than controls, and ICAT levels were significantly correlated with body mass index, bone marrow/peripheral blood blast cell proportions, and white blood cell and red blood cell counts at initial diagnosis. Furthermore, low ICAT expression was found to be associated with poor disease-free survival and overall survival in AML. ICAT is closely associated with AML progression and can be used as an indicator to monitor AML treatment efficacy.
Collapse
Affiliation(s)
- Hui Han
- Department of Laboratory Medicine, Zhongshan Hospital of SunYat-sen University, Zhongshan, GuangdongChina
| | - Baofang Zhu
- Department of Laboratory Medicine, Zhongshan Hospital of SunYat-sen University, Zhongshan, GuangdongChina
| | - Jinye Xie
- Department of Laboratory Medicine, Zhongshan Hospital of SunYat-sen University, Zhongshan, GuangdongChina
| | - Yunxiu Huang
- Department of Laboratory Medicine, Zhongshan Hospital of SunYat-sen University, Zhongshan, GuangdongChina
| | - Yiyun Geng
- Department of Laboratory Medicine, Zhongshan Hospital of SunYat-sen University, Zhongshan, GuangdongChina
| | - Kang Chen
- Department of Laboratory Medicine, Zhongshan Hospital of SunYat-sen University, Zhongshan, GuangdongChina
| | - Weijia Wang
- Department of Laboratory Medicine, Zhongshan Hospital of SunYat-sen University, Zhongshan, GuangdongChina
- *Correspondence: Weijia Wang, Department of Laboratory Medicine Zhongshan Hospital of Sun Yat-sen University, 2 East of Sun Wen Road, Shi Qi District, Zhongshan 528403, Guangdong Province, China (e-mail: )
| |
Collapse
|
14
|
Wagstaff M, Tsaponina O, Caalim G, Greenfield H, Milton-Harris L, Mancini EJ, Blair A, Heesom KJ, Tonks A, Darley RL, Roberts SG, Morgan RG. Crosstalk between β-catenin and WT1 signaling activity in acute myeloid leukemia. Haematologica 2022; 108:283-289. [PMID: 35443562 PMCID: PMC9827145 DOI: 10.3324/haematol.2021.280294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 02/05/2023] Open
Affiliation(s)
| | | | - Gilian Caalim
- School of Life Sciences, University of Sussex, Brighton
| | | | | | | | - Allison Blair
- Bristol Institute for Transfusion Sciences, NHS Blood & Transplant Filton, Bristol,School of Cellular & Molecular Medicine, University of Bristol, Bristol
| | | | - Alex Tonks
- Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Richard L. Darley
- Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Stefan G Roberts
- School of Cellular & Molecular Medicine, University of Bristol, Bristol
| | - Rhys G. Morgan
- School of Life Sciences, University of Sussex, Brighton,RHYS G. MORGAN -
| |
Collapse
|
15
|
Targeting β-catenin in acute myeloid leukaemia: past, present, and future perspectives. Biosci Rep 2022; 42:231097. [PMID: 35352805 PMCID: PMC9069440 DOI: 10.1042/bsr20211841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022] Open
Abstract
Acute myeloid leukaemia (AML) is an aggressive disease of the bone marrow with a poor prognosis. Evidence suggests long established chemotherapeutic regimens used to treat AML are reaching the limits of their efficacy, necessitating the urgent development of novel targeted therapies. Canonical Wnt signalling is an evolutionary conserved cascade heavily implicated in normal developmental and disease processes in humans. For over 15 years its been known that the central mediator of this pathway, β-catenin, is dysregulated in AML promoting the emergence, maintenance, and drug resistance of leukaemia stem cells. Yet, despite this knowledge, and subsequent studies demonstrating the therapeutic potential of targeting Wnt activity in haematological cancers, β-catenin inhibitors have not yet reached the clinic. The aim of this review is to summarise the current understanding regarding the role and mechanistic dysregulation of β-catenin in AML, and assess the therapeutic merit of pharmacologically targeting this molecule, drawing on lessons from other disease contexts.
Collapse
|
16
|
Islam MS, Junod SL, Zhang S, Buuh ZY, Guan Y, Zhao M, Kaneria KH, Kafley P, Cohen C, Maloney R, Lyu Z, Voelz VA, Yang W, Wang RE. Unprotected peptide macrocyclization and stapling via a fluorine-thiol displacement reaction. Nat Commun 2022; 13:350. [PMID: 35039490 PMCID: PMC8763920 DOI: 10.1038/s41467-022-27995-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/19/2021] [Indexed: 12/31/2022] Open
Abstract
We report the discovery of a facile peptide macrocyclization and stapling strategy based on a fluorine thiol displacement reaction (FTDR), which renders a class of peptide analogues with enhanced stability, affinity, cellular uptake, and inhibition of cancer cells. This approach enabled selective modification of the orthogonal fluoroacetamide side chains in unprotected peptides in the presence of intrinsic cysteines. The identified benzenedimethanethiol linker greatly promoted the alpha helicity of a variety of peptide substrates, as corroborated by molecular dynamics simulations. The cellular uptake of benzenedimethanethiol stapled peptides appeared to be universally enhanced compared to the classic ring-closing metathesis (RCM) stapled peptides. Pilot mechanism studies suggested that the uptake of FTDR-stapled peptides may involve multiple endocytosis pathways in a distinct pattern in comparison to peptides stapled by RCM. Consistent with the improved cell permeability, the FTDR-stapled lead Axin and p53 peptide analogues demonstrated enhanced inhibition of cancer cells over the RCM-stapled analogues and the unstapled peptides. Strategies capable of stapling unprotected peptides in a straightforward, chemoselective, and clean manner, as well as promoting cellular uptake are of great interest. Here the authors report a peptide macrocyclization and stapling strategy which satisfies those criteria, based on a fluorine thiol displacement reaction.
Collapse
Affiliation(s)
- Md Shafiqul Islam
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Samuel L Junod
- Department of Biology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| | - Si Zhang
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Zakey Yusuf Buuh
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Yifu Guan
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Mi Zhao
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Kishan H Kaneria
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Parmila Kafley
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Carson Cohen
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Robert Maloney
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Zhigang Lyu
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Vincent A Voelz
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Weidong Yang
- Department of Biology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| | - Rongsheng E Wang
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA.
| |
Collapse
|
17
|
Hassan JJ, Lieske A, Dörpmund N, Klatt D, Hoffmann D, Kleppa MJ, Kustikova OS, Stahlhut M, Schwarzer A, Schambach A, Maetzig T. A Multiplex CRISPR-Screen Identifies PLA2G4A as Prognostic Marker and Druggable Target for HOXA9 and MEIS1 Dependent AML. Int J Mol Sci 2021; 22:ijms22179411. [PMID: 34502319 PMCID: PMC8431012 DOI: 10.3390/ijms22179411] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/03/2022] Open
Abstract
HOXA9 and MEIS1 are frequently upregulated in acute myeloid leukemia (AML), including those with MLL-rearrangement. Because of their pivotal role in hemostasis, HOXA9 and MEIS1 appear non-druggable. We, thus, interrogated gene expression data of pre-leukemic (overexpressing Hoxa9) and leukemogenic (overexpressing Hoxa9 and Meis1; H9M) murine cell lines to identify cancer vulnerabilities. Through gene expression analysis and gene set enrichment analyses, we compiled a list of 15 candidates for functional validation. Using a novel lentiviral multiplexing approach, we selected and tested highly active sgRNAs to knockout candidate genes by CRISPR/Cas9, and subsequently identified a H9M cell growth dependency on the cytosolic phospholipase A2 (PLA2G4A). Similar results were obtained by shRNA-mediated suppression of Pla2g4a. Remarkably, pharmacologic inhibition of PLA2G4A with arachidonyl trifluoromethyl ketone (AACOCF3) accelerated the loss of H9M cells in bulk cultures. Additionally, AACOCF3 treatment of H9M cells reduced colony numbers and colony sizes in methylcellulose. Moreover, AACOCF3 was highly active in human AML with MLL rearrangement, in which PLA2G4A was significantly higher expressed than in AML patients without MLL rearrangement, and is sufficient as an independent prognostic marker. Our work, thus, identifies PLA2G4A as a prognostic marker and potential therapeutic target for H9M-dependent AML with MLL-rearrangement.
Collapse
MESH Headings
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- CRISPR-Cas Systems
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Group IV Phospholipases A2/antagonists & inhibitors
- Group IV Phospholipases A2/genetics
- High-Throughput Screening Assays
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Myeloid Ecotropic Viral Integration Site 1 Protein/genetics
- Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Jacob Jalil Hassan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
| | - Anna Lieske
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Nicole Dörpmund
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Denise Klatt
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
| | - Dirk Hoffmann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
| | - Marc-Jens Kleppa
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
| | - Olga S. Kustikova
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
| | - Maike Stahlhut
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
| | - Adrian Schwarzer
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tobias Maetzig
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
- Correspondence:
| |
Collapse
|
18
|
Kikushige Y. TIM-3 in normal and malignant hematopoiesis: Structure, function, and signaling pathways. Cancer Sci 2021; 112:3419-3426. [PMID: 34159709 PMCID: PMC8409405 DOI: 10.1111/cas.15042] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/03/2021] [Accepted: 06/20/2021] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is hierarchically organized by self-renewing leukemic stem cells (LSCs). LSCs originate from hematopoietic stem cells (HSCs) by acquiring multistep leukemogenic events. To specifically eradicate LSCs, while keeping normal HSCs intact, the discrimination of LSCs from HSCs is important. We have identified T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) as an LSC-specific surface molecule in human myeloid malignancies and demonstrated its essential function in maintaining the self-renewal ability of LSCs. TIM-3 has been intensively investigated as a "coinhibitory" or "immune checkpoint" molecule of T cells. However, little is known about its distinct function in T cells and myeloid malignancies. In this review, we discuss the structure of TIM-3 and its function in normal blood cells and LSCs, emphasizing the specific signaling pathways involved, as well as the therapeutic applications of TIM-3 molecules in human myeloid malignancies.
Collapse
Affiliation(s)
- Yoshikane Kikushige
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, Japan.,Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
19
|
Phase 1 study of CWP232291 in patients with relapsed or refractory acute myeloid leukemia and myelodysplastic syndrome. Blood Adv 2021; 4:2032-2043. [PMID: 32396615 DOI: 10.1182/bloodadvances.2019000757] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/16/2020] [Indexed: 01/06/2023] Open
Abstract
CWP232291 (CWP291) is a small-molecule inhibitor of Wnt signaling that causes degradation of β-catenin via apoptosis induction through endoplasmic reticulum stress activation. This first-in-human, open-label, dose-escalation study to evaluate the safety, maximum tolerated dose (MTD), and preliminary efficacy of CWP291 enrolled 69 patients with hematologic malignancies (acute myeloid leukemia [AML], n = 64; myelodysplastic syndrome, n = 5) in 15 dose-escalation cohorts of 4 to 334 mg/m2 using a modified 3+3 design and 1 dose-expansion cohort. CWP291 was administered IV daily for 7 days every 21 days. The most common treatment-emergent adverse events (TEAEs) were nausea (n = 44, 64%), vomiting (n = 32, 46%), diarrhea (n = 25, 36%), and infusion-related reactions (n = 20, 29%). Grade ≥3 TEAEs in >3 patients (5%) were pneumonia (n = 8, 12%); hypophosphatemia (n = 6, 8%); leukocytosis, nausea, cellulitis, sepsis, and hypokalemia (n = 5 each, 7% each); and hypertension (n = 4, 6%). Dose-limiting toxicities included nausea (n = 3) and abdominal pain, anaphylactic reaction, myalgia, and rash (n = 1, each); the MTD was defined at 257 mg/m2. CWP232204, the active metabolite of CWP291, showed pharmacokinetic linearity on both days 1 and 7, and a terminal half-life of ∼12 hours. Among 54 response-evaluable AML patients, there was one complete response at a dose of 153 mg/m2 and one partial response at 198 mg/m2; bone marrow blast percentage reduced from a median of 58.3% to 3.5% and 15.0% to 4.2%, respectively. Future studies will explore CWP291, with a mechanism of action aimed at eradication of earlier progenitors via Wnt pathway blockade, as combination therapy. This trial was registered at www.clinicaltrials.gov as #NCT01398462.
Collapse
|
20
|
Wakabayashi R, Hattori Y, Hosogi S, Toda Y, Takata K, Ashihara E. A novel dipeptide type inhibitor of the Wnt/β-catenin pathway suppresses proliferation of acute myelogenous leukemia cells. Biochem Biophys Res Commun 2020; 535:73-79. [PMID: 33341676 DOI: 10.1016/j.bbrc.2020.12.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022]
Abstract
The Wnt/β-catenin pathway is an attractive target for the treatment of acute myelogenous leukemia (AML), since aberrant activation of the Wnt/β-catenin pathway contributes to carcinogenesis in various types of cancers including AML. Screening of an in-house compound library, constructed at Kyoto Pharmaceutical University, identified a novel compound designated "31" that was found to be an inhibitor of the Wnt/β-catenin pathway. The compound inhibited T-cell factor (TCF) activity in a TCF firefly luciferase-reporter assay and suppressed the proliferation of several human AML cell lines in a dose-dependent manner. Compound 31 arrested the cell cycle of AML cells at the G1 stage and induced apoptosis. Decrease in protein and mRNA expression level of Wnt pathway-related molecules was confirmed by the analyses of western blotting and quantitative reverse transcription-polymerase chain reaction. In addition, compound 31 combined with idarubicin synergistically inhibited the proliferation of AML cells. In conclusion, these results strongly suggest that compound 31 has potential as a novel anti-AML agent targeting the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Ryosuke Wakabayashi
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yasunao Hattori
- Center for Instrumental Analysis, Kyoto Pharmaceutical University, Kyoto, Japan.
| | - Shigekuni Hosogi
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan.
| | - Yuki Toda
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kazuyuki Takata
- Division of Integrated Pharmaceutical Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Eishi Ashihara
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
21
|
Cardona-Echeverry A, Prada-Arismendy J. Deciphering the role of Wnt signaling in acute myeloid leukemia prognosis: how alterations in DNA methylation come into play in patients' prognosis. J Cancer Res Clin Oncol 2020; 146:3097-3109. [PMID: 32980885 DOI: 10.1007/s00432-020-03407-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
Acute myeloid leukemia (AML) is a malignant clonal disorder affecting myeloid differentiation through mechanisms that include epigenetic dysregulation. Abnormal changes in DNA methylation and gene expression profiles of pathways involved in hematopoietic development, such as Wnt/β-catenin, contribute to the transformation, development, and maintenance of leukemic cells. This review summarizes the alterations of Wnt signaling-related genes at the epigenetic and transcriptional level and their implications for AML prognosis. Among the implications of epigenetic alterations in AML, methylation of Wnt antagonists is related to poor prognosis, whereas their upregulation has been associated with a better clinical outcome. Furthermore, Wnt target genes c-Myc and LEF-1 present distinct implications. LEF-1 expression positively influences the patient overall survival. c-Myc upregulation has been associated with treatment resistance in AML, although c-Myc expression is not exclusively dependent of Wnt signaling. Understanding the signaling abnormalities could help us to further understand leukemogenesis, improve the current risk stratification for AML patients, and even serve to propose novel therapeutic targets.
Collapse
Affiliation(s)
- Andrés Cardona-Echeverry
- Grupo de Investigación e innovación Biomédica-GI2B, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano-ITM, 050034, Medellín, Colombia
| | - Jeanette Prada-Arismendy
- Grupo de Investigación e innovación Biomédica-GI2B, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano-ITM, 050034, Medellín, Colombia.
| |
Collapse
|
22
|
Yang X, Wen Y, Song X, He S, Bo X. Exploring the classification of cancer cell lines from multiple omic views. PeerJ 2020; 8:e9440. [PMID: 32874774 PMCID: PMC7441922 DOI: 10.7717/peerj.9440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/08/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cancer classification is of great importance to understanding its pathogenesis, making diagnosis and developing treatment. The accumulation of extensive omics data of abundant cancer cell line provide basis for large scale classification of cancer with low cost. However, the reliability of cell lines as in vitro models of cancer has been controversial. METHODS In this study, we explore the classification on pan-cancer cell line with single and integrated multiple omics data from the Cancer Cell Line Encyclopedia (CCLE) database. The representative omics data of cancer, mRNA data, miRNA data, copy number variation data, DNA methylation data and reverse-phase protein array data were taken into the analysis. TumorMap web tool was used to illustrate the landscape of molecular classification.The molecular classification of patient samples was compared with cancer cell lines. RESULTS Eighteen molecular clusters were identified using integrated multiple omics clustering. Three pan-cancer clusters were found in integrated multiple omics clustering. By comparing with single omics clustering, we found that integrated clustering could capture both shared and complementary information from each omics data. Omics contribution analysis for clustering indicated that, although all the five omics data were of value, mRNA and proteomics data were particular important. While the classifications were generally consistent, samples from cancer patients were more diverse than cancer cell lines. CONCLUSIONS The clustering analysis based on integrated omics data provides a novel multi-dimensional map of cancer cell lines that can reflect the extent to pan-cancer cell lines represent primary tumors, and an approach to evaluate the importance of omic features in cancer classification.
Collapse
Affiliation(s)
- Xiaoxi Yang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuqi Wen
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xinyu Song
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, China
| | - Song He
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaochen Bo
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
23
|
Salik B, Yi H, Hassan N, Santiappillai N, Vick B, Connerty P, Duly A, Trahair T, Woo AJ, Beck D, Liu T, Spiekermann K, Jeremias I, Wang J, Kavallaris M, Haber M, Norris MD, Liebermann DA, D'Andrea RJ, Murriel C, Wang JY. Targeting RSPO3-LGR4 Signaling for Leukemia Stem Cell Eradication in Acute Myeloid Leukemia. Cancer Cell 2020; 38:263-278.e6. [PMID: 32559496 DOI: 10.1016/j.ccell.2020.05.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/10/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022]
Abstract
Signals driving aberrant self-renewal in the heterogeneous leukemia stem cell (LSC) pool determine aggressiveness of acute myeloid leukemia (AML). We report that a positive modulator of canonical WNT signaling pathway, RSPO-LGR4, upregulates key self-renewal genes and is essential for LSC self-renewal in a subset of AML. RSPO2/3 serve as stem cell growth factors to block differentiation and promote proliferation of primary AML patient blasts. RSPO receptor, LGR4, is epigenetically upregulated and works through cooperation with HOXA9, a poor prognostic predictor. Blocking the RSPO3-LGR4 interaction by clinical-grade anti-RSPO3 antibody (OMP-131R10/rosmantuzumab) impairs self-renewal and induces differentiation in AML patient-derived xenografts but does not affect normal hematopoietic stem cells, providing a therapeutic opportunity for HOXA9-dependent leukemia.
Collapse
MESH Headings
- Acute Disease
- Animals
- Antibodies, Monoclonal/pharmacology
- Cell Line, Tumor
- Gene Expression Profiling/methods
- Gene Expression Regulation, Leukemic/drug effects
- HL-60 Cells
- Humans
- K562 Cells
- Kaplan-Meier Estimate
- Leukemia, Myeloid/drug therapy
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/metabolism
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/immunology
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- THP-1 Cells
- Thrombospondins/genetics
- Thrombospondins/immunology
- Thrombospondins/metabolism
- Xenograft Model Antitumor Assays/methods
Collapse
Affiliation(s)
- Basit Salik
- Cancer and Stem Cell Biology Group, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Hangyu Yi
- Cancer and Stem Cell Biology Group, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nunki Hassan
- Cancer and Stem Cell Biology Group, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nancy Santiappillai
- Cancer and Stem Cell Biology Group, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Binje Vick
- German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany; Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Patrick Connerty
- Cancer and Stem Cell Biology Group, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alastair Duly
- Cancer and Stem Cell Biology Group, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Toby Trahair
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Andrew J Woo
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, WA 6009, Australia
| | - Dominik Beck
- Centre for Health Technologies and the School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia; Lowy Cancer Research Centre and the Prince of Wales Clinical School, University of New South Wales, Australia, Sydney, Australia
| | - Tao Liu
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Karsten Spiekermann
- German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany; Experimental Leukemia and Lymphoma Research (ELLF) Department of Internal Medicine 3, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Irmela Jeremias
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany; Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Pediatrics, Dr. von Hauner Childrens Hospital, Ludwig Maximilians University, Munich, Germany
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia; Australian Centre for NanoMedicine and ARC Centre of Excellence in Convergent Bio-Nano-Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dan A Liebermann
- Fels Institute for Cancer Research and Molecular Biology and Department of Medical Genetics & Molecular Biochemistry, School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Richard J D'Andrea
- Acute Leukaemia Laboratory, Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | | | - Jenny Y Wang
- Cancer and Stem Cell Biology Group, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
24
|
Mastelaro de Rezende M, Zenker Justo G, Julian Paredes-Gamero E, Gosens R. Wnt-5A/B Signaling in Hematopoiesis throughout Life. Cells 2020; 9:cells9081801. [PMID: 32751131 PMCID: PMC7465103 DOI: 10.3390/cells9081801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 02/08/2023] Open
Abstract
Wnt signaling is well-known to play major roles in the hematopoietic system, from embryogenesis to aging and disease. In addition to the main β-catenin-dependent pathway, it is now clear that Wnt5a and the structurally related Wnt5b are essential for hematopoiesis, bone marrow colonization and the final steps of hematopoietic stem cell (HSC) maturation via β-catenin-independent signaling. Wnt5a and Wnt5b ligands prevent hematopoietic exhaustion (by maintaining quiescent, long-term HSCs), induce the proliferation of progenitors, and guide myeloid development, in addition to being involved in the development of aging-related alterations. The aim of this review is to summarize the current knowledge on these roles of Wnt5a and Wn5b signaling in the hematopoietic field.
Collapse
Affiliation(s)
- Marina Mastelaro de Rezende
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, Brazil; (M.M.d.R.); (G.Z.J.); (E.J.P.-G.)
- Department of Molecular Pharmacology, University of Groningen, Groningen 9713 AV, The Netherlands
| | - Giselle Zenker Justo
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, Brazil; (M.M.d.R.); (G.Z.J.); (E.J.P.-G.)
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Diadema 09913-030, Brazil
| | - Edgar Julian Paredes-Gamero
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, Brazil; (M.M.d.R.); (G.Z.J.); (E.J.P.-G.)
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen 9713 AV, The Netherlands
- Correspondence: ; Tel.: +31-50363-8177
| |
Collapse
|
25
|
Li C, Xin H, Shi Y, Mu J. Knockdown of TRIM24 suppresses growth and induces apoptosis in acute myeloid leukemia through downregulation of Wnt/GSK-3β/β-catenin signaling. Hum Exp Toxicol 2020; 39:1725-1736. [PMID: 32672070 DOI: 10.1177/0960327120938845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tripartite motif-containing protein 24 (TRIM24) has currently emerged as a crucial cancer-related gene present in a wide range of human cancer types. However, the involvement of TRIM24 in acute myeloid leukemia (AML) has not been well investigated. The present study aims to investigate the significance, cellular function, and potential regulatory mechanism of TRIM24 in AML. We found that TRIM24 expression was significantly upregulated in AML compared with normal tissues. AML patients with low expression of TRIM24 had higher survival rates than those expressing TRIM24 at higher levels. High expression of TRIM24 was also detected in AML cells and its knockdown markedly restricted proliferation and promoted apoptosis in AML cells. Further investigation revealed that TRIM24 contributed to the regulation of Wnt/β-catenin signaling, which was associated with modulating the phosphorylation status of glycogen synthase kinase-3β (GSK-3β). Inactivation of GSK-3β partially reversed the TRIM24 knockdown-mediated antitumor effects observed in AML cells. Furthermore, knockdown of TRIM24 retarded the growth of AML-derived xenograft tumors in nude mice in vivo. Overall, these findings demonstrate that knockdown of TRIM24 impedes the AML tumor growth through the modulation of Wnt/GSK-3β/β-catenin signaling. These findings highlight the potential TRIM24 as an attractive anticancer target to treat AML.
Collapse
Affiliation(s)
- C Li
- Department of General Practice, 162798The First Affiliated Hospital of Xi'an Medical University, Xi'an, China.,Department of Cardiology, 162798The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - H Xin
- Department of Cardiology, 162798The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Y Shi
- Department of General Practice, 162798The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - J Mu
- Department of Cardiology, 162798The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
26
|
Li C, Gao Q, Wang M, Xin H. LncRNA SNHG1 contributes to the regulation of acute myeloid leukemia cell growth by modulating miR-489-3p/SOX12/Wnt/β-catenin signaling. J Cell Physiol 2020; 236:653-663. [PMID: 32592199 DOI: 10.1002/jcp.29892] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/28/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022]
Abstract
The long noncoding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) is a critical regulator for the development and progression of multiple tumors. Yet, the role of SNHG1 in acute myeloid leukemia (AML) is unknown. The present study demonstrated that SNHG1 expression was upregulated in AML. SNHG1 silencing markedly repressed AML cell growth, whereas SNHG1 overexpression had the opposite effect. MicroRNA-489-3p (miR-489-3p) was identified as a SNHG1-targeting miRNA. SNHG1 knockdown increased miR-489-3p expression. Low expression of miR-489-3p was correlated with high expression of SNHG1 in AML tissues. miR-489-3p overexpression restricted AML cell growth, and SRY-related high-mobility-group box 12 (SOX12) was identified as a miR-489-3p-targeting gene. SNHG1 inhibition or miR-489-3p overexpression inactivated Wnt/β-catenin signaling through downregulation of SOX12. SOX12 overexpression partially reversed the SNHG1 knockdown- or miR-489-3p overexpression-mediated effects. Taken together, these data indicate that suppression of SNHG1 downregulates AML cell growth by inactivating SOX12/Wnt/β-catenin signaling via upregulating miR-489-3p.
Collapse
Affiliation(s)
- Chengliang Li
- Department of Hematology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Qiuying Gao
- Department of Haematology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Minjuan Wang
- Department of General Practice, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Hong Xin
- Department of Cardiovasology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| |
Collapse
|
27
|
Chowdhury A, Loaiza S, Yebra-Fernandez E, Nadal-Melsio E, Apperley JF, Khorashad JS. An ex vivo investigation of interactions between primary acute myeloid leukaemia and mesenchymal stromal cells yields novel therapeutic targets. Br J Haematol 2020; 190:e236-e239. [PMID: 32519342 DOI: 10.1111/bjh.16810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/11/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Avirup Chowdhury
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Sandra Loaiza
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Eva Yebra-Fernandez
- SIHMDS North West London Pathology, Imperial College Healthcare NHS Trust, London, UK
| | - Elisabet Nadal-Melsio
- SIHMDS North West London Pathology, Imperial College Healthcare NHS Trust, London, UK
| | - Jane F Apperley
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Jamshid S Khorashad
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| |
Collapse
|
28
|
Fathi E, Valipour B, Sanaat Z, Nozad Charoudeh H, Farahzadi R. Interleukin-6, -8, and TGF-β Secreted from Mesenchymal Stem Cells Show Functional Role in Reduction of Telomerase Activity of Leukemia Cell Via Wnt5a/β-Catenin and P53 Pathways. Adv Pharm Bull 2020; 10:307-314. [PMID: 32373501 PMCID: PMC7191235 DOI: 10.34172/apb.2020.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose: The effect of mesenchymal stem cells (MSCs) on the immortality features of malignant cells, such as hematologic cancerous cells, are controversial, and the associated mechanisms are yet to be well understood. The aim of the present study was to investigate the in vitro effect of bone marrow-derived MSCs (BMSCs) on the chronic myeloid leukemia cell line K562 through telomere length measurements, telomerase activity assessments, and hTERT gene expression. The possible signaling pathways involved in this process, including Wnt-5a/β-catenin and P53, were also evaluated. Methods: Two cell populations (BMSCs and K562 cell line) were co-cultured on transwell plates for 7 days. Next, K562 cells were collected and subjected to quantitative real-time PCR, PCR-ELISA TRAP assay, and the ELISA sandwich technique for telomere length, hTERT gene expression, telomerase activity assay, and cytokine measurement, respectively. Also, the involvement of the mentioned signaling pathways in this process was reported by real-time PCR and Western blotting through gene and protein expression, respectively. Results: The results showed that BMSCs caused significant decreases in telomere length, telomerase activity, and the mRNA level of hTERT as a regulator of telomerase activity. The significant presence of interleukin (IL)-6, IL-8, and transforming growth factor beta (TGF-β) was obvious in the co-cultured media. Also, BMSCs significantly decreased and increased the gene and protein expression of β-catenin and P53, respectively. Conclusion: It was concluded that the mentioned effects of IL-6, IL-8, and TGF-β cytokines secreted from MSCs on K562 cells as therapeutic agents were applied by Wnt-5a/β-catenin and P53 pathways.
Collapse
Affiliation(s)
- Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Behnaz Valipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Xiao Y, Deng T, Ming X, Xu J. TRIM31 promotes acute myeloid leukemia progression and sensitivity to daunorubicin through the Wnt/β-catenin signaling. Biosci Rep 2020; 40:BSR20194334. [PMID: 32232394 PMCID: PMC7160243 DOI: 10.1042/bsr20194334] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/27/2020] [Accepted: 03/09/2020] [Indexed: 12/27/2022] Open
Abstract
Tripartite motif (TRIM) 31 is a member of TRIM family and exerts oncogenic role in the progression and drug resistance of several cancers. However, little is known about the relevance of TRIM31 in acute myeloid leukemia (AML). Herein, we investigated the role of TRIM31 in AML. We examined the expression levels of TRIM31 in the blood samples from 34 patients with AML and 34 healthy volunteers using qRT-PCR. The mRNA levels of TRIM31 in human bone marrow stromal cells (HS-5) and five AML cell lines were also detected. Loss/gain-of-function assays were performed to assess the role of TRIM31 in AML cells proliferation, apoptosis and sensitivity to daunorubicin. The expression levels of pro-caspase 3, cleaved caspase 3, Wnt3a, β-catenin, cyclin D1 and c-Myc were measured using Western blot. TRIM31 expression levels were significantly up-regulated in AML patients and cell lines. Knockdown of TRIM31 suppressed cell proliferation and promoted apoptosis in AML-5 and U937 cells. The IC50 of daunorubicin was significantly decreased in TRIM31 siRNA (si-TRIM31) transfected cells. Oppositely, induced cell proliferation and decreased cell apoptosis were observed in pcDNA-3.1-TRIM31 transfected cells. Furthermore, knockdown of TRIM31 suppressed the activation of Wnt/β-catenin pathway in AML cells. Activation of Wnt/β-catenin pathway by LiCl abolished the effects of si-TRIM31 on cell proliferation, apoptosis and sensitivity to daunorubicin in AML cells. In conclusion, the results indicated that TRIM31 promoted leukemogenesis and chemoresistance to daunorubicin in AML. The oncogenic role of TRIM31 in AML was mediated by the Wnt/β-catenin pathway. Thus, TRIM31 might serve as a therapeutic target for the AML treatment.
Collapse
MESH Headings
- Antibiotics, Antineoplastic/pharmacology
- Antibiotics, Antineoplastic/therapeutic use
- Apoptosis/drug effects
- Case-Control Studies
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Daunorubicin/pharmacology
- Daunorubicin/therapeutic use
- Disease Progression
- Drug Resistance, Neoplasm
- Healthy Volunteers
- Humans
- Leukemia, Myeloid, Acute/blood
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Lithium Chloride/pharmacology
- RNA, Small Interfering/metabolism
- Tripartite Motif Proteins/blood
- Tripartite Motif Proteins/genetics
- Tripartite Motif Proteins/metabolism
- Ubiquitin-Protein Ligases/blood
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
- Wnt Signaling Pathway/drug effects
Collapse
Affiliation(s)
- Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Taoran Deng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xi Ming
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinhuang Xu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
30
|
Qian J, Huang X, Zhang Y, Ye X, Qian W. γ-Catenin Overexpression in AML Patients May Promote Tumor Cell Survival via Activation of the Wnt/β-Catenin Axis. Onco Targets Ther 2020; 13:1265-1276. [PMID: 32103994 PMCID: PMC7024797 DOI: 10.2147/ott.s230873] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/03/2020] [Indexed: 12/14/2022] Open
Abstract
Background Canonical Wnt/β-catenin signaling is frequently dysregulated in acute myeloid leukemia (AML) and has been implicated in leukemogenesis. γ-catenin was previously demonstrated to be associated with the nuclear localization of β-catenin, the central mediator, and to exert oncogenic effects in AML; however, the underlying mechanisms remain unclear. Our study aimed to investigate the expression characteristics of γ-catenin in AML patients, explore the mechanisms by which γ-catenin regulates β-catenin, and discuss the feasibility of targeting γ-catenin for AML treatment. Methods The mRNA expression levels of γ-catenin in AML patients were measured by qRT-PCR. Cell proliferation was examined via Cell Counting Kit-8 (CCK-8) assays. The expression levels of related proteins were measured via Western blotting. Specific siRNA was used to modulate the expression level of the γ-catenin gene. Apoptosis and cell cycle distribution were quantified by flow cytometry. The subcellular localization of γ-catenin and β-catenin was examined via immunofluorescence with a confocal laser scanning microscope. Results Overexpression of γ-catenin was frequently observed in AML and correlated with poor prognosis. Consistent with this finding, suppression of γ-catenin in the AML cell line THP-1 induced growth inhibition, promoted apoptosis and blocked β-catenin nuclear translocation. Interestingly, γ-catenin knockdown sensitized THP-1 cells to cytotoxic chemotherapeutic agents such as cytarabine and homoharringtonine and further inhibited β-catenin nuclear localization. Moreover, our data implied the relationship between γ-catenin and GSK3β (whose effect on β-catenin is mediated by its own phosphorylation), which may be the principal mechanism underlying the anti-AML effect of γ-catenin inhibition. Conclusion Taken together, our results revealed a potential role of γ-catenin in AML pathogenesis–mainly through the inhibition of GSK3β-mediated nuclear localization of β-catenin–and indicate that targeting γ-catenin might offer new AML treatments.
Collapse
Affiliation(s)
- Jiejin Qian
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Xianbo Huang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Yinyin Zhang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China.,Malignant Lymphoma Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Xiujin Ye
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Wenbin Qian
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China.,Malignant Lymphoma Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| |
Collapse
|
31
|
Wnt Signalling in Acute Myeloid Leukaemia. Cells 2019; 8:cells8111403. [PMID: 31703382 PMCID: PMC6912424 DOI: 10.3390/cells8111403] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a group of malignant diseases of the haematopoietic system. AML occurs as the result of mutations in haematopoietic stem/progenitor cells, which upregulate Wnt signalling through a variety of mechanisms. Other mechanisms of Wnt activation in AML have been described such as Wnt antagonist inactivation through promoter methylation. Wnt signalling is necessary for the maintenance of leukaemic stem cells. Several molecules involved in or modulating Wnt signalling have a prognostic value in AML. These include: β-catenin, LEF-1, phosphorylated-GSK3β, PSMD2, PPARD, XPNPEP, sFRP2, RUNX1, AXIN2, PCDH17, CXXC5, LLGL1 and PTK7. Targeting Wnt signalling for tumour eradication is an approach that is being explored in haematological and solid tumours. A number of preclinical studies confirms its feasibility, albeit, so far no reliable clinical trial data are available to prove its utility and efficacy.
Collapse
|
32
|
HDAC3 Activity is Essential for Human Leukemic Cell Growth and the Expression of β-catenin, MYC, and WT1. Cancers (Basel) 2019; 11:cancers11101436. [PMID: 31561534 PMCID: PMC6826998 DOI: 10.3390/cancers11101436] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/11/2019] [Accepted: 09/20/2019] [Indexed: 01/23/2023] Open
Abstract
Therapy of acute myeloid leukemia (AML) is unsatisfactory. Histone deacetylase inhibitors (HDACi) are active against leukemic cells in vitro and in vivo. Clinical data suggest further testing of such epigenetic drugs and to identify mechanisms and markers for their efficacy. Primary and permanent AML cells were screened for viability, replication stress/DNA damage, and regrowth capacities after single exposures to the clinically used pan-HDACi panobinostat (LBH589), the class I HDACi entinostat/romidepsin (MS-275/FK228), the HDAC3 inhibitor RGFP966, the HDAC6 inhibitor marbostat-100, the non-steroidal anti-inflammatory drug (NSAID) indomethacin, and the replication stress inducer hydroxyurea (HU). Immunoblotting was used to test if HDACi modulate the leukemia-associated transcription factors β-catenin, Wilms tumor (WT1), and myelocytomatosis oncogene (MYC). RNAi was used to delineate how these factors interact. We show that LBH589, MS-275, FK228, RGFP966, and HU induce apoptosis, replication stress/DNA damage, and apoptotic fragmentation of β-catenin. Indomethacin destabilizes β-catenin and potentiates anti-proliferative effects of HDACi. HDACi attenuate WT1 and MYC caspase-dependently and -independently. Genetic experiments reveal a cross-regulation between MYC and WT1 and a regulation of β-catenin by WT1. In conclusion, reduced levels of β-catenin, MYC, and WT1 are molecular markers for the efficacy of HDACi. HDAC3 inhibition induces apoptosis and disrupts tumor-associated protein expression.
Collapse
|
33
|
Almars A, Chondrou PS, Onyido EK, Almozyan S, Seedhouse C, Babaei-Jadidi R, Nateri AS. Increased FLYWCH1 Expression is Negatively Correlated with Wnt/β-catenin Target Gene Expression in Acute Myeloid Leukemia Cells. Int J Mol Sci 2019; 20:ijms20112739. [PMID: 31167387 PMCID: PMC6600431 DOI: 10.3390/ijms20112739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukaemia (AML) is a heterogeneous clonal malignancy of hematopoietic progenitor cells. The Wnt pathway and its downstream targets are tightly regulated by β-catenin. We recently discovered a new protein, FLYWCH1, which can directly bind nuclear β-catenin. Herein, we studied the FLYWCH1/β-catenin pathway in AML cells using qRT-PCR, Western blot, and immunofluorescence assays. In addition, the stemness activity and cell cycle were analysed by the colony-forming unit (CFU) using methylcellulose-based and Propidium iodide/flow cytometry assays. We found that FLYWCH1 mRNA and protein were differentially expressed in the AML cell lines. C-Myc, cyclin D1, and c-Jun expression decreased in the presence of higher FLYWCH1 expression, and vice versa. There appeared to be the loss of FLYWCH1 expression in dividing cells. The sub-G0 phase was prolonged and shortened in the low and high FLYWCH1 expression cell lines, respectively. The G0/G1 arrest correlated with FLYWCH1-expression, and these cell lines also formed colonies, whereas the low FLYWCH1 expression cell lines could not. Thus, FLYWCH1 functions as a negative regulator of the Wnt/β-catenin pathway in AML.
Collapse
Affiliation(s)
- Amany Almars
- Cancer Genetics & Stem Cell Group, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Panagiota S Chondrou
- Cancer Genetics & Stem Cell Group, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Emenike K Onyido
- Cancer Genetics & Stem Cell Group, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Sheema Almozyan
- Cancer Genetics & Stem Cell Group, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Claire Seedhouse
- Haematology, Nottingham City Hospital, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK.
| | - Roya Babaei-Jadidi
- Cancer Genetics & Stem Cell Group, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.
- Respiratory Medicine, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Abdolrahman S Nateri
- Cancer Genetics & Stem Cell Group, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
34
|
CD82 supports survival of childhood acute myeloid leukemia cells via activation of Wnt/β-catenin signaling pathway. Pediatr Res 2019; 85:1024-1031. [PMID: 30862962 DOI: 10.1038/s41390-019-0370-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/11/2019] [Accepted: 02/27/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Stem cell marker CD82 plays a vital role in the oncogenesis and progression of acute myelogenous leukemia (AML), especially in sharing properties of leukemia stem cells (LSCs). The Wnt/β-catenin pathway is required for the development of LSCs in AML. The present study aimed to validate whether CD82 supports the survival of LSCs in pediatric AML via activation of Wnt/β-catenin signaling pathway. METHODS CD82 expression and its correlation with molecules downstream of Wnt/β-catenin pathway in samples from pediatric AML patients were analyzed. Forced or downregulated expression of CD82 in AML cells was evaluated for the effects of CD82 on cell proliferation, cycle regulation, apoptosis, and adriamycin chemoresistance and to validate the underlying mechanism. RESULT Aberrant expression of CD82 in pediatric AML patients was found. CD82 messenger RNA expression correlated positively with downstream molecules of Wnt/β-catenin pathway in AML children. Knockdown of CD82 induced apoptosis, suppressed growth, and decreased adriamycin chemoresistance in AML cells. CD82 accelerated β-catenin nuclear location and then stimulated the expression of downstream molecules of Wnt/β-catenin pathway. CONCLUSION CD82 regulates the proliferation and chemotherapy resistance of AML cells via activation of the Wnt/β-catenin pathway, which suggest that the CD82 may be a potential therapeutic target in AML children.
Collapse
|
35
|
Lima K, Coelho-Silva JL, Kinker GS, Pereira-Martins DA, Traina F, Fernandes PACM, Markus RP, Lucena-Araujo AR, Machado-Neto JA. PIP4K2A and PIP4K2C transcript levels are associated with cytogenetic risk and survival outcomes in acute myeloid leukemia. Cancer Genet 2019; 233-234:56-66. [PMID: 31109595 DOI: 10.1016/j.cancergen.2019.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 01/06/2023]
Abstract
Phosphoinositide signaling pathway orchestrates primordial molecular and cellular functions in both healthy and pathologic conditions. Phosphatidylinositol-5-phosphate 4-kinase type 2 lipid kinase (PIP4K2) family, which compromises PIP4K2A, PIP4K2B and PIP4K2C, has drawn the attention in human cancers. Particularly in hematological malignancies, PIP4K2A was already described as an essential protein for a malignant phenotype, although the clinical and biological impact of PIP4K2B and PIP4K2C proteins have not being explored in the same extent. In the present study, we investigated the impact on clinical outcomes and gene network of PIP4K2A, PIP4K2B and PIP4K2C mRNA transcripts in acute myeloid leukemia (AML) patients included in The Cancer Genome Atlas (2013) study. Our results indicate that PIP4K2A and PIP4K2C, but not PIP4K2B, mRNA levels were significantly reduced in AML patients assigned to the favorable risk group (p < 0.05) and low levels of PIP4K2A and PIP4K2C positively affect clinical outcomes of AML patients (p < 0.05). Gene set enrichment analyses indicate that the expression of PIP4K2 genes is associated with biological process such as signal transduction, metabolism of RNA and genomic instability related-gene sets. In summary, our study provides additional evidence of the involvement of members of the PIP4K2 family, in particular PIP4K2A and PIP4K2C, in AML.
Collapse
Affiliation(s)
- Keli Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, CEP 05508-900, São Paulo, SP, Brazil
| | - Juan Luiz Coelho-Silva
- Department of Internal Medicine, Medical School of Ribeirão Preto, Ribeirão Preto, Brazil; Department of Genetics, Federal University of Pernambuco, Recife, Brazil
| | - Gabriela Sarti Kinker
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Diego Antonio Pereira-Martins
- Department of Internal Medicine, Medical School of Ribeirão Preto, Ribeirão Preto, Brazil; Department of Genetics, Federal University of Pernambuco, Recife, Brazil
| | - Fabiola Traina
- Department of Internal Medicine, Medical School of Ribeirão Preto, Ribeirão Preto, Brazil
| | | | - Regina Pekelmann Markus
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | | | - João Agostinho Machado-Neto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, CEP 05508-900, São Paulo, SP, Brazil.
| |
Collapse
|
36
|
Fetisov TI, Lesovaya EA, Yakubovskaya MG, Kirsanov KI, Belitsky GA. Alterations in WNT Signaling in Leukemias. BIOCHEMISTRY (MOSCOW) 2019; 83:1448-1458. [PMID: 30878020 DOI: 10.1134/s0006297918120039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The WNT/β-catenin signaling pathway plays an important role in the differentiation and proliferation of hematopoietic cells. In recent years, special attention has been paid to the role of impairments in the WNT signaling pathway in pathogenesis of malignant neoplasms of the hematopoietic system. Disorders in the WNT/β-catenin signaling in leukemias identified to date include hypersensitivity to the WNT ligands, epigenetic repression of WNT antagonists, overexpression of WNT ligands, impaired β-catenin degradation in the cytoplasm, and changes in the activity of the TCF/Lef transcription factors. At the molecular level, these impairments involve overexpression of the FZD protein, hypermethylation of the SFRP, DKK, WiF, Sox, and CXXC gene promoters, overexpression of Lef1 and plakoglobin, mutations in GSK3β, and β-catenin phosphorylation by the BCR-ABL kinase. This review is devoted to the systematization of these data.
Collapse
Affiliation(s)
- T I Fetisov
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - E A Lesovaya
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia.,Pavlov Ryazan State Medical University, Ryazan, 390026, Russia
| | - M G Yakubovskaya
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - K I Kirsanov
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia.,Peoples' Friendship University of Russia, Moscow, 117198, Russia
| | - G A Belitsky
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia.
| |
Collapse
|
37
|
CD8+ T cells expand stem and progenitor cells in favorable but not adverse risk acute myeloid leukemia. Leukemia 2019; 33:2379-2392. [DOI: 10.1038/s41375-019-0441-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/08/2019] [Accepted: 02/21/2019] [Indexed: 12/17/2022]
|
38
|
Perumal V, Corica T, Dharmarajan AM, Sun Z, Dhaliwal SS, Dass CR, Dass J. Circulating Tumour Cells (CTC), Head and Neck Cancer and Radiotherapy; Future Perspectives. Cancers (Basel) 2019; 11:E367. [PMID: 30875950 PMCID: PMC6468366 DOI: 10.3390/cancers11030367] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023] Open
Abstract
Head and neck cancer is the seventh most common cancer in Australia and globally. Despite the current improved treatment modalities, there is still up to 50⁻60% local regional recurrence and or distant metastasis. High-resolution medical imaging technologies such as PET/CT and MRI do not currently detect the early spread of tumour cells, thus limiting the potential for effective minimal residual detection and early diagnosis. Circulating tumour cells (CTCs) are a rare subset of cells that escape from the primary tumour and enter into the bloodstream to form metastatic deposits or even re-establish themselves in the primary site of the cancer. These cells are more aggressive and accumulate gene alterations by somatic mutations that are the same or even greater than the primary tumour because of additional features acquired in the circulation. The potential application of CTC in clinical use is to acquire a liquid biopsy, by taking a reliable minimally invasive venous blood sample, for cell genotyping during radiotherapy treatment to monitor the decline in CTC detectability, and mutational changes in response to radiation resistance and radiation sensitivity. Currently, very little has been published on radiation therapy, CTC, and circulating cancer stem cells (CCSCs). The prognostic value of CTC in cancer management and personalised medicine for head and neck cancer radiotherapy patients requires a deeper understanding at the cellular level, along with other advanced technologies. With this goal, this review summarises the current research of head and neck cancer CTC, CCSC and the molecular targets for personalised radiotherapy response.
Collapse
Affiliation(s)
- Vanathi Perumal
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia.
- Radiation Oncology, Sir Charles Gairdner Hospital, Cancer Centre, Nedlands, Perth, WA 6009, Australia.
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| | - Tammy Corica
- Radiation Oncology, Sir Charles Gairdner Hospital, Cancer Centre, Nedlands, Perth, WA 6009, Australia.
| | - Arun M Dharmarajan
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia.
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| | - Zhonghua Sun
- Discipline of Medical Radiation Sciences, School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth, WA 6102, Australia.
| | - Satvinder S Dhaliwal
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia.
| | - Crispin R Dass
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia.
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| | - Joshua Dass
- Radiation Oncology, Sir Charles Gairdner Hospital, Cancer Centre, Nedlands, Perth, WA 6009, Australia.
| |
Collapse
|
39
|
Chattopadhyay S, Chaklader M, Law S. Aberrant Wnt Signaling Pathway in the Hematopoietic Stem/Progenitor Compartment in Experimental Leukemic Animal. J Cell Commun Signal 2019; 13:39-52. [PMID: 29978347 PMCID: PMC6381377 DOI: 10.1007/s12079-018-0470-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/22/2018] [Indexed: 10/28/2022] Open
Abstract
The evolutionarily conserved Wnt signaling pathway regulates physiological hematopoiesis, a process of formation of blood cells and has been shown to play crucial role in the development of both myeloid and lymphoid malignancies. The Wnt signaling pathway can be broadly divided into canonical and non-canonical pathways. In the present study, we investigated the pathobiology of leukemia by studying the expression profile of Wnt proteins, receptors, key signaling intermediates and endogenous Wnt antagonist involved in canonical and non-canonical pathways in the bone marrow (BM) hematopoietic stem/progenitor cell (HSPC) compartment of experimental leukemic mice. Cell adhesion molecule N-Cadherin and leukemic BM microenvironment with reference to Wnt were also studied. We used ENU, a potent carcinogen, to induce leukemia in wild type Swiss albino mice and malignant transformation was cofirmed by peripheral blood and BM studies. Flow cytometric expression analysis revealed profound up-regulation of canonical Wnt3a/β-catenin/CyclinD1 signaling axis along with N-Cadherin whereas down-regulation of non-canonical Wnt5a/Ca2+/CaMKII signaling axis in the leukemic HSPC compartment. Subsequent use of anti-Wnt3a antibody in the in vitro clonogenicity assay uncovered that anti-Wnt3a antibody preferentially inhibited the growth and number of the primitive leukemic hematopoietic CFU-GEMM and BFU-E colonies. Stromal cells derived from the leukemic BM also exhibited aberrant Wnt3a and Wnt5a protein expression. Taken together, alteration of canonical and non-canonical Wnt signaling pathways in the HSPC compartment along with classical Wnt protein expression pattern in the leukemic stromal microenvironment resulted in progression of leukemia.
Collapse
Affiliation(s)
- Sukalpa Chattopadhyay
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C.R. Avenue, Kolkata, West Bengal, 700 073, India
| | - Malay Chaklader
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C.R. Avenue, Kolkata, West Bengal, 700 073, India
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, Box 81313, 3000, Leuven, Belgium
| | - Sujata Law
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C.R. Avenue, Kolkata, West Bengal, 700 073, India.
| |
Collapse
|
40
|
Chong PSY, Zhou J, Chooi JY, Chan ZL, Toh SHM, Tan TZ, Wee S, Gunaratne J, Zeng Q, Chng WJ. Non-canonical activation of β-catenin by PRL-3 phosphatase in acute myeloid leukemia. Oncogene 2019; 38:1508-1519. [PMID: 30305722 DOI: 10.1038/s41388-018-0526-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/13/2018] [Accepted: 09/17/2018] [Indexed: 11/09/2022]
Abstract
Aberrant activation of Wnt/β-catenin signaling pathway is essential for the development of AML; however, the mechanistic basis for this dysregulation is unclear. PRL-3 is an oncogenic phosphatase implicated in the development of LSCs. Here, we identified Leo1 as a direct and specific substrate of PRL-3. Serine-dephosphorylated form of Leo1 binds directly to β-catenin, promoting the nuclear accumulation of β-catenin and transactivation of TCF/LEF downstream target genes such as cyclin D1 and c-myc. Importantly, overexpression of PRL-3 in AML cells displayed enhanced sensitivity towards β-catenin inhibition in vitro and in vivo, suggesting that these cells are addicted to β-catenin signaling. Altogether, our study revealed a novel regulatory role of PRL-3 in the sustenance of aberrant β-catenin signaling in AML. PRL-3 may serve as a biomarker to select for the subset of AML patients who are likely to benefit from treatment with β-catenin inhibitors. Our study presents a new avenue of cancer inhibition driven by PRL-3 overexpression or β-catenin hyperactivation.
Collapse
Affiliation(s)
- Phyllis S Y Chong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jing-Yuan Chooi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zit-Liang Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Sabrina Hui Min Toh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Sheena Wee
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Qi Zeng
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore.
| |
Collapse
|
41
|
Carter BZ, Mak PY, Wang X, Tao W, Ruvolo V, Mak D, Mu H, Burks JK, Andreeff M. An ARC-Regulated IL1β/Cox-2/PGE2/β-Catenin/ARC Circuit Controls Leukemia-Microenvironment Interactions and Confers Drug Resistance in AML. Cancer Res 2019; 79:1165-1177. [PMID: 30674535 DOI: 10.1158/0008-5472.can-18-0921] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/17/2018] [Accepted: 01/16/2019] [Indexed: 12/29/2022]
Abstract
The apoptosis repressor with caspase recruitment domain (ARC) protein is a strong independent adverse prognostic marker in acute myeloid leukemia (AML). We previously reported that ARC regulates leukemia-microenvironment interactions through the NFκB/IL1β signaling network. Malignant cells have been reported to release IL1β, which induces PGE2 synthesis in mesenchymal stromal cells (MSC), in turn activating β-catenin signaling and inducing the cancer stem cell phenotype. Although Cox-2 and its enzymatic product PGE2 play major roles in inflammation and cancer, the regulation and role of PGE2 in AML are largely unknown. Here, we report that AML-MSC cocultures greatly increase Cox-2 expression in MSC and PGE2 production in an ARC/IL1β-dependent manner. PGE2 induced the expression of β-catenin, which regulated ARC and augmented chemoresistance in AML cells; inhibition of β-catenin decreased ARC and sensitized AML cells to chemotherapy. NOD/SCIDIL2RγNull-3/GM/SF mice transplanted with ARC-knockdown AML cells had significantly lower leukemia burden, lower serum levels of IL1β/PGE2, and lower tissue human ARC and β-catenin levels, prolonged survival, and increased sensitivity to chemotherapy than controls. Collectively, we present a new mechanism of action of antiapoptotic ARC by which ARC regulates PGE2 production in the tumor microenvironment and microenvironment-mediated chemoresistance in AML.Significance: The antiapoptotic protein ARC promotes AML aggressiveness by enabling detrimental cross-talk with bone marrow mesenchymal stromal cells.
Collapse
Affiliation(s)
- Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Po Yee Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiangmeng Wang
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wenjing Tao
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vivian Ruvolo
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Duncan Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong Mu
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jared K Burks
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
42
|
Morgan RG, Ridsdale J, Payne M, Heesom KJ, Wilson MC, Davidson A, Greenhough A, Davies S, Williams AC, Blair A, Waterman ML, Tonks A, Darley RL. LEF-1 drives aberrant β-catenin nuclear localization in myeloid leukemia cells. Haematologica 2019; 104:1365-1377. [PMID: 30630973 PMCID: PMC6601079 DOI: 10.3324/haematol.2018.202846] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/03/2019] [Indexed: 12/24/2022] Open
Abstract
Canonical Wnt/β-catenin signaling is frequently dysregulated in myeloid leukemias and is implicated in leukemogenesis. Nuclear-localized β-catenin is indicative of active Wnt signaling and is frequently observed in acute myeloid leukemia (AML) patients; however, some patients exhibit little or no nuclear β-catenin even where cytosolic β-catenin is abundant. Control of the subcellular localization of β-catenin therefore represents an additional mechanism regulating Wnt signaling in hematopoietic cells. To investigate the factors mediating the nuclear-localization of β-catenin, we carried out the first nuclear/cytoplasmic proteomic analysis of the β-catenin interactome in myeloid leukemia cells and identified putative novel β-catenin interactors. Comparison of interacting factors between Wnt-responsive cells (high nuclear β-catenin) versus Wnt-unresponsive cells (low nuclear β-catenin) suggested the transcriptional partner, LEF-1, could direct the nuclear-localization of β-catenin. The relative levels of nuclear LEF-1 and β-catenin were tightly correlated in both cell lines and in primary AML blasts. Furthermore, LEF-1 knockdown perturbed β-catenin nuclear-localization and transcriptional activation in Wnt-responsive cells. Conversely, LEF-1 overexpression was able to promote both nuclear-localization and β-catenin-dependent transcriptional responses in previously Wnt-unresponsive cells. This is the first β-catenin interactome study in hematopoietic cells and reveals LEF-1 as a mediator of nuclear β- catenin level in human myeloid leukemia.
Collapse
Affiliation(s)
- Rhys G Morgan
- School of Life Sciences, University of Sussex, Brighton, UK .,School of Cellular and Molecular Medicine, University of Bristol, UK
| | - Jenna Ridsdale
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, UK
| | - Megan Payne
- School of Life Sciences, University of Sussex, Brighton, UK
| | | | | | | | | | - Sara Davies
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, UK
| | - Ann C Williams
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Allison Blair
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Marian L Waterman
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | - Alex Tonks
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, UK
| | - Richard L Darley
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, UK
| |
Collapse
|
43
|
Cartledge Wolf DM, Langhans SA. Moving Myeloid Leukemia Drug Discovery Into the Third Dimension. Front Pediatr 2019; 7:314. [PMID: 31417884 PMCID: PMC6682595 DOI: 10.3389/fped.2019.00314] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
The development of therapies aimed at leukemia has progressed substantially in the past years but childhood acute myeloid leukemia (AML) remains one of the most challenging cancers to treat. Genomic profiling of AML has greatly enhanced our understanding of the genetic and epigenetic landscape of this high-risk leukemia. With it comes the opportunity to develop targeted therapies that are expected to be more effective and less toxic than current treatment regimens. Nevertheless, often overlooked in leukemia drug discovery are the dynamic interactions between leukemic cells and the bone marrow environment. The interplay between leukemic cells, stromal cells and the extracellular matrix plays critical roles in the development, progression and relapse of AML as well as in drug response and the development of resistance. Here we will review pediatric leukemia with a special focus on acute myeloid disease in children, and discuss the tumor microenvironment in the context of drug resistance and leukemia stem cell survival. We will emphasize how three-dimensional (3D) cell-based drug discovery may offer hope for both the identification and advancement of more effective treatment options for patients suffering from this devastating disease.
Collapse
Affiliation(s)
- Donna M Cartledge Wolf
- Nemours Center for Childhood Cancer Research, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Sigrid A Langhans
- Nemours Center for Childhood Cancer Research, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| |
Collapse
|
44
|
Zheng Y, Feng W, Wang YJ, Sun Y, Shi G, Yu Q. Galectins as potential emerging key targets in different types of leukemia. Eur J Pharmacol 2018; 844:73-78. [PMID: 30452910 DOI: 10.1016/j.ejphar.2018.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/20/2018] [Accepted: 11/14/2018] [Indexed: 01/11/2023]
Abstract
Galectins are carbohydrate-binding proteins and these have very high affinity for β-galactoside containing glycoproteins and glycolipids. Amongst sixteen types of galectin, the role of galectin 1, 3, 9 and 12 is defined in the development and progression of different types of leukemia including acute myeloid leukemia, acute promyelocytic leukemia, B-cell precursor acute lymphoblastic leukemia, adult T cell leukemia and chronic lymphocytic leukemia. There are multiple mechanisms through which these galectins may affect tumor proliferation. These may include increased production of tumor resistance conferring proteins such as multidrug resistance (MDR-1) and myeloid cell leukemia (MCL-1). Moreover, galectin-9 may act on Tim-3 receptors present on the circulating CD8+ T cells to impair immune system function and the latter provide an ideal environment for the proliferation of leukemic cells. The present review describes the role and mechanisms involved in galectin-mediated development and progression of different types of leukemia.
Collapse
Affiliation(s)
- Yan Zheng
- The Department of Anesthesia, China-Japan Union Hospital of Jilin University, China.
| | - Wei Feng
- The Department of Anesthesia, China-Japan Union Hospital of Jilin University, China
| | - Yu-Juan Wang
- The Department of Hematology and Oncology, The Second Hospital of Jilin University, China.
| | - Yan Sun
- The Department of Hematology and Oncology, The Second Hospital of Jilin University, China.
| | - Guang Shi
- The Department of Hematology and Oncology, The Second Hospital of Jilin University, China.
| | - Qiong Yu
- The Department of Hematology and Oncology, The Second Hospital of Jilin University, China.
| |
Collapse
|
45
|
Cui Y, Fang W, Li C, Tang K, Zhang J, Lei Y, He W, Peng S, Kuang M, Zhang H, Chen L, Xu D, Tang C, Zhang W, Zhu Y, Jiang W, Jiang N, Sun Y, Chen Y, Wang H, Lai Y, Li S, He Q, Zhou J, Zhang Y, Lin M, Chen H, Zhou C, Wang C, Wang J, Zou X, Wang L, Ke Z. Development and Validation of a Novel Signature to Predict Overall Survival in "Driver Gene-negative" Lung Adenocarcinoma (LUAD): Results of a Multicenter Study. Clin Cancer Res 2018; 25:1546-1556. [PMID: 30389658 DOI: 10.1158/1078-0432.ccr-18-2545] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/16/2018] [Accepted: 10/30/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Examining the role of developmental signaling pathways in "driver gene-negative" lung adenocarcinoma (patients with lung adenocarcinoma negative for EGFR, KRAS, BRAF, HER2, MET, ALK, RET, and ROS1 were identified as "driver gene-negative") may shed light on the clinical research and treatment for this lung adenocarcinoma subgroup. We aimed to investigate whether developmental signaling pathways activation can stratify the risk of "driver gene-negative" lung adenocarcinoma. EXPERIMENTAL DESIGN In the discovery phase, we profiled the mRNA expression of each candidate gene using genome-wide microarrays in 52 paired lung adenocarcinoma and adjacent normal tissues. In the training phase, tissue microarrays and LASSO Cox regression analysis were applied to further screen candidate molecules in 189 patients, and we developed a predictive signature. In the validation phase, one internal cohort and two external cohorts were used to validate our novel prognostic signature. RESULTS Kyoto Encyclopedia of Genes and Genomes pathway analysis based on whole-genome microarrays indicated that the Wnt/β-catenin pathway was activated in "driver gene-negative" lung adenocarcinoma. Furthermore, the Wnt/β-catenin pathway-based gene expression profiles revealed 39 transcripts differentially expressed. Finally, a Wnt/β-catenin pathway-based CSDW signature comprising 4 genes (CTNNB1 or β-catenin, SOX9, DVL3, and Wnt2b) was developed to classify patients into high-risk and low-risk groups in the training cohort. Patients with high-risk scores in the training cohort had shorter overall survival [HR, 10.42; 6.46-16.79; P < 0.001) than patients with low-risk scores. CONCLUSIONS The CSDW signature is a reliable prognostic tool and may represent genes that are potential drug targets for "driver gene-negative" lung adenocarcinoma.
Collapse
Affiliation(s)
- Yongmei Cui
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Chaofeng Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Kejing Tang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Zhang
- Department of Thoracic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yiyan Lei
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weiling He
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sui Peng
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Kuang
- Division of Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Zhang
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lili Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Di Xu
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Jiang'an District, Wuhan, Hubei, China
| | - Cuilan Tang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenhui Zhang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuxin Zhu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenting Jiang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Neng Jiang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Sun
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yangshan Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Han Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingrong Lai
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuhua Li
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiong He
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianwen Zhou
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yang Zhang
- Biomedical Engineering, The University of Texas at El Paso, El Paso, Texas
| | - Millicent Lin
- Genetics Department, Harvard Medical School, Boston, Massachusetts
| | - Honglei Chen
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, Hubei, China
| | - Chenzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | | | - Jianhong Wang
- Shen Zhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liantang Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China. .,Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
46
|
Liu X, Klein PS. Glycogen synthase kinase-3 and alternative splicing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1501. [PMID: 30118183 DOI: 10.1002/wrna.1501] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a highly conserved negative regulator of receptor tyrosine kinase, cytokine, and Wnt signaling pathways. Stimulation of these pathways inhibits GSK-3 to modulate diverse downstream effectors that include transcription factors, nutrient sensors, glycogen synthesis, mitochondrial function, circadian rhythm, and cell fate. GSK-3 also regulates alternative splicing in response to T-cell receptor activation, and recent phosphoproteomic studies have revealed that multiple splicing factors and regulators of RNA biosynthesis are phosphorylated in a GSK-3-dependent manner. Furthermore, inhibition of GSK-3 alters the splicing of hundreds of mRNAs, indicating a broad role for GSK-3 in the regulation of RNA processing. GSK-3-regulated phosphoproteins include SF3B1, SRSF2, PSF, RBM8A, nucleophosmin 1 (NPM1), and PHF6, many of which are mutated in leukemia and myelodysplasia. As GSK-3 is inhibited by pathways that are pathologically activated in leukemia and loss of Gsk3 in hematopoietic cells causes a severe myelodysplastic neoplasm in mice, these findings strongly implicate GSK-3 as a critical regulator of mRNA processing in normal and malignant hematopoiesis. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Xiaolei Liu
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Peter S Klein
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
47
|
Wu S, Du Y, Beckford J, Alachkar H. Upregulation of the EMT marker vimentin is associated with poor clinical outcome in acute myeloid leukemia. J Transl Med 2018; 16:170. [PMID: 29925392 PMCID: PMC6009962 DOI: 10.1186/s12967-018-1539-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/06/2018] [Indexed: 01/27/2023] Open
Abstract
Background Vimentin (VIM) is a type III intermediate filament that maintains cell integrity, and is involved in cell migration, motility and adhesion. When overexpressed in solid cancers, vimentin drives epithelial to mesenchymal transition (EMT) and ultimately, metastasis. The effects of its overexpression in AML are unclear. Methods In this study, we analyzed the TCGA data of 173 AML patients for which complete clinical and expression data were available. In this analysis, we assessed the association between VIM mRNA expression and patient’s clinical and molecular characteristics including clinical outcome. Results VIM overexpression was associated with higher white blood count (< p = 0.0001). Patients with high VIM expression have worse overall survival (OS) and disease-free survival (DFS) compared with patients with low VIM expression (median OS; 7.95 months vs 19.2 months; p = 0.029). After age-stratification, high VIM expression was significantly associated with worse overall survival in older patients (age ≥ 60; median OS: 5.4 vs 9.9 months: p = 0.0257) but not in younger patients (age < 60). In stratification analysis according to cytogenetic status, high VIM expression was significantly associated with shorter OS (7.95 vs 24.6 months: p = 0.0102) in cytogenetically normal, but not in cytogenetic abnormal AML. Conclusions Collectively, the data indicate that overexpression of the EMT marker vimentin is associated with poor clinical outcome in older patients with cytogenetically normal AML; and therefore may play a role in this disease. Electronic supplementary material The online version of this article (10.1186/s12967-018-1539-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sharon Wu
- School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Yang Du
- School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - John Beckford
- School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Houda Alachkar
- School of Pharmacy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
48
|
Jiang X, Mak PY, Mu H, Tao W, Mak DH, Kornblau S, Zhang Q, Ruvolo P, Burks JK, Zhang W, McQueen T, Pan R, Zhou H, Konopleva M, Cortes J, Liu Q, Andreeff M, Carter BZ. Disruption of Wnt/β-Catenin Exerts Antileukemia Activity and Synergizes with FLT3 Inhibition in FLT3-Mutant Acute Myeloid Leukemia. Clin Cancer Res 2018; 24:2417-2429. [PMID: 29463558 DOI: 10.1158/1078-0432.ccr-17-1556] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/14/2017] [Accepted: 02/14/2018] [Indexed: 12/26/2022]
Abstract
Purpose: Wnt/β-catenin signaling is required for leukemic stem cell function. FLT3 mutations are frequently observed in acute myeloid leukemia (AML). Anomalous FLT3 signaling increases β-catenin nuclear localization and transcriptional activity. FLT3 tyrosine kinase inhibitors (TKI) are used clinically to treat FLT3-mutated AML patients, but with limited efficacy. We investigated the antileukemia activity of combined Wnt/β-catenin and FLT3 inhibition in FLT3-mutant AML.Experimental Design: Wnt/β-catenin signaling was inhibited by the β-catenin/CBP antagonist C-82/PRI-724 or siRNAs, and FLT3 signaling by sorafenib or quizartinib. Treatments on apoptosis, cell growth, and cell signaling were assessed in cell lines, patient samples, and in vivo in immunodeficient mice by flow cytometry, Western blot, RT-PCR, and CyTOF.Results: We found significantly higher β-catenin expression in cytogenetically unfavorable and relapsed AML patient samples and in the bone marrow-resident leukemic cells compared with circulating blasts. Disrupting Wnt/β-catenin signaling suppressed AML cell growth, induced apoptosis, abrogated stromal protection, and synergized with TKIs in FLT3-mutated AML cells and stem/progenitor cells in vitro The aforementioned combinatorial treatment improved survival of AML-xenografted mice in two in vivo models and impaired leukemia cell engraftment. Mechanistically, the combined inhibition of Wnt/β-catenin and FLT3 cooperatively decreased nuclear β-catenin and the levels of c-Myc and other Wnt/β-catenin and FLT3 signaling proteins. Importantly, β-catenin inhibition abrogated the microenvironmental protection afforded the leukemic stem/progenitor cells.Conclusions: Disrupting Wnt/β-catenin signaling exerts potent activities against AML stem/progenitor cells and synergizes with FLT3 inhibition in FLT3-mutant AML. These findings provide a rationale for clinical development of this strategy for treating FLT3-mutated AML patients. Clin Cancer Res; 24(10); 2417-29. ©2018 AACR.
Collapse
Affiliation(s)
- Xuejie Jiang
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Po Yee Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong Mu
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wenjing Tao
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Duncan H Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven Kornblau
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qi Zhang
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter Ruvolo
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jared K Burks
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Weiguo Zhang
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Teresa McQueen
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rongqing Pan
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hongsheng Zhou
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Marina Konopleva
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jorge Cortes
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
49
|
Liu S, Guo Y, Wang J, Zhu H, Han Y, Jin M, Wang J, Zhou C, Ma J, Lin Q, Wang Z, Meng K, Fu X. A novel anticancer agent SNG1153 inhibits growth of lung cancer stem/progenitor cells. Oncotarget 2018; 7:45158-45170. [PMID: 27281614 PMCID: PMC5216713 DOI: 10.18632/oncotarget.9783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/20/2016] [Indexed: 02/05/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death in both men and women. Lung cancer contains a small population of cancer cells with stem-like features known as cancer stem cells (CSCs). CSCs are often more resistant to current therapeutic treatments. Thus, it is urgent to develop a novel agent that is able to inhibit CSCs growth. In this study, we examined the ability of SNG1153, a novel chemical agent to inhibit the growth of lung CSCs. We found that SNG1153 inhibited growth and induced apoptosis in established lung cancer cells. We also found that SNG1153 inhibited the tumorsphere formation and decreased CD133-positive (lung CSC marker) cancer cells. SNG1153 was able to attenuate tumor formation in NOD/SCID (non-obese diabetic/severe combined immunodeficient) mice injected with lung tumorsphere cells. We further demonstrated that SNG1153 induced β-catenin phosphorylation and down-regulated β-catenin. Our results thus demonstrate that SNG1153 effectively inhibits the growth of lung CSCs and suggest that SNG1153 may be a novel therapeutic agent to treat human lung cancer.
Collapse
Affiliation(s)
- Shiyang Liu
- School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Yuming Guo
- Beijing Shenogen Biomedical Co., Ltd, Beijing, P.R. China
| | - Jing Wang
- Beijing Shenogen Biomedical Co., Ltd, Beijing, P.R. China
| | - Hai Zhu
- Beijing Shenogen Biomedical Co., Ltd, Beijing, P.R. China
| | - Yuqing Han
- Beijing Shenogen Biomedical Co., Ltd, Beijing, P.R. China
| | - Mingji Jin
- Beijing Shenogen Biomedical Co., Ltd, Beijing, P.R. China
| | - Jun Wang
- Beijing Shenogen Biomedical Co., Ltd, Beijing, P.R. China
| | - Congya Zhou
- Beijing Shenogen Biomedical Co., Ltd, Beijing, P.R. China
| | - Junfeng Ma
- School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Qingcong Lin
- Beijing Shenogen Biomedical Co., Ltd, Beijing, P.R. China
| | - Zhaoyi Wang
- Beijing Shenogen Biomedical Co., Ltd, Beijing, P.R. China
| | - Kun Meng
- Beijing Shenogen Biomedical Co., Ltd, Beijing, P.R. China
| | - Xueqi Fu
- School of Life Sciences, Jilin University, Changchun, P.R. China
| |
Collapse
|
50
|
Wang YH, Imai Y, Shiseki M, Tanaka J, Motoji T. Knockdown of the Wnt receptor Frizzled-1 (FZD1) reduces MDR1/P-glycoprotein expression in multidrug resistant leukemic cells and inhibits leukemic cell proliferation. Leuk Res 2018; 67:99-108. [PMID: 29482174 DOI: 10.1016/j.leukres.2018.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/08/2017] [Accepted: 01/24/2018] [Indexed: 12/27/2022]
Abstract
Multidrug resistance (MDR) is a major obstacle to leukemia treatment. The Frizzled-1 (FZD1) Wnt receptor is involved in MDR in some solid cancers, but has rarely been reported to act in acute myeloid leukemia (AML). We investigated whether the knockdown of FZD1 affects MDR1 expression and P-glycoprotein (P-gp) function in multidrug resistant leukemic cell lines, as well as FZD1 and MDR1/P-gp expression in leukemic cells taken from patients with AML (n = 112). FZD1 knockdown significantly reduced MDR1 expression through the Wnt/β-catenin pathway, disrupted the P-gp efflux function, induced the recovery of sensitivity to chemotherapeutic agents, and hindered cell proliferation in cell lines. FZD1 expression in leukemic cells was significantly higher in patients experiencing relapse (n = 34) than in those with no relapse (n = 44, P = .003). Leukemic cells unable to achieve complete response (CR) showed an increased expression of MDR1 and P-gp, compared to patients who achieved CR. Obtaining CR in patients with higher FZD1 expression at diagnosis is difficult. Moreover, they tend to present instances of relapse, suggesting that AML cells with increased FZD1 expression are resistant to chemotherapy. We conclude that the activated FZD1 observed in leukemic cells likely confers acquired drug resistance, whereas FZD1 silencing may be more effective in reversing MDR.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Frizzled Receptors/genetics
- Gene Knockdown Techniques
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Protein Transport
- RNA Interference
- RNA, Small Interfering/genetics
- Remission Induction
- Signal Transduction
- Wnt Signaling Pathway
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Yan-Hua Wang
- Department of Hematology, Tokyo Women's Medical University, Tokyo Japan.
| | - Yoichi Imai
- Department of Hematology, Tokyo Women's Medical University, Tokyo Japan
| | - Masayuki Shiseki
- Department of Hematology, Tokyo Women's Medical University, Tokyo Japan
| | - Junji Tanaka
- Department of Hematology, Tokyo Women's Medical University, Tokyo Japan
| | - Toshiko Motoji
- Department of Hematology, Tokyo Women's Medical University, Tokyo Japan
| |
Collapse
|