1
|
RNA-binding protein MEX3D promotes cervical carcinoma tumorigenesis by destabilizing TSC22D1 mRNA. Cell Death Dis 2022; 8:250. [PMID: 35513372 PMCID: PMC9072549 DOI: 10.1038/s41420-022-01049-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/11/2022]
Abstract
RNA-binding proteins (RBPs) have been related to cancer development. Their functions in cervical cancer, however, are virtually unknown. One of these proteins, Mex-3 RNA-binding family member D (MEX3D), has been recently found to exhibit oncogenic properties in a variety of cancer types. In this present study, the functional roles and the regulatory mechanisms underlying MEX3D were examined in cervical cancer. The detection of MEX3D mRNA expression levels in cervical tissues was performed using reverse transcription-quantitative PCR. For functional analysis, for detecting apoptosis and cell proliferation in cervical cancer cells, the Cell Counting Kit-8, colony formation, and flow cytometry were utilized (SiHa and CaSki). The potential mechanisms of MEX3D were assessed and elucidated utilizing western blot analysis, RNA pull-down, RNA immunoprecipitation, and mRNA stability assays. For verification of MEX3D role in vivo, mouse xenograft models were established. When compared to normal cervical tissues, MEX3D expression was observed to be higher in cervical cancer tissues. MEX3D expression was increased in human papillomavirus (HPV) 16 positive cervical cancer tissues and positively regulated by HPV16 E7. When MEX3D expression was knocked down in cervical cancer cells, cell proliferation was decreased, colony formation was inhibited, and apoptosis was promoted. Furthermore, in a mouse xenograft model, knocking down MEX3D expression reduced cervical cancer tumor growth. In addition, MEX3D acted as an RBP to reduce TSC22 domain family protein 1 (TSC22D1) mRNA stability by directly binding to TSC22D1 mRNA. The findings revealed that MEX3D is upregulated by HPV16 E7 and has a crucial oncogenic in cervical cancer development via sponging TSC22D1 for destabilizing its mRNA levels. According to the findings of this study, MEX3D may be a potential therapeutic target for treating cervical cancer patients.
Collapse
|
2
|
Overexpression of TSC-22 (transforming growth factor- β-stimulated clone-22) causes marked obesity, splenic abnormality and B cell lymphoma in transgenic mice. Oncotarget 2016; 7:14310-23. [PMID: 26872059 PMCID: PMC4924717 DOI: 10.18632/oncotarget.7308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/29/2016] [Indexed: 11/30/2022] Open
Abstract
In this study, we generated transgenic (Tg) mice, which overexpressed transforming growth factor (TGF)-β stimulated clone-22 (TSC-22), and investigate the functional role of TSC-22 on their development and pathogenesis. We obtained 13 Tg-founders (two mice from C57BL6/J and 11 mice from BDF1). Three of 13 Tg-founders were sterile, and the remaining Tg-founders also could generate only a limited number of the F1 generation. We obtained 32 Tg-F1 mice. Most of the Tg-mice showed marked obesity. Histopathological examination could be performed on 31 Tg-mice; seventeen mice died by some disease in their entire life and 14 mice were killed for examination. Most of the Tg-mice examined showed splenic abnormality, in which marked increase of the megakaryocytes, unclearness of the margin of the red pulp and the white pulp, and the enlargement of the white pulp was observed. B cell lymphoma was developed in 10 (71%) of 14 disease-died F1 mice. These results indicate that constitutive over-expression of TSC-22 might disturb the normal embryogenesis and the normal lipid metabolism, and induce the oncogenic differentiation of hematopoietic cells.
Collapse
|
3
|
Bruserud Ø, Reikvam H, Fredly H, Skavland J, Hagen KM, van Hoang TT, Brenner AK, Kadi A, Astori A, Gjertsen BT, Pendino F. Expression of the potential therapeutic target CXXC5 in primary acute myeloid leukemia cells - high expression is associated with adverse prognosis as well as altered intracellular signaling and transcriptional regulation. Oncotarget 2015; 6:2794-811. [PMID: 25605239 PMCID: PMC4413618 DOI: 10.18632/oncotarget.3056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 12/21/2014] [Indexed: 12/24/2022] Open
Abstract
The CXXC5 gene encodes a transcriptional activator with a zinc-finger domain, and high expression in human acute myeloid leukemia (AML) cells is associated with adverse prognosis. We now characterized the biological context of CXXC5 expression in primary human AML cells. The global gene expression profile of AML cells derived from 48 consecutive patients was analyzed; cells with high and low CXXC5 expression then showed major differences with regard to extracellular communication and intracellular signaling. We observed significant differences in the phosphorylation status of several intracellular signaling mediators (CREB, PDK1, SRC, STAT1, p38, STAT3, rpS6) that are important for PI3K-Akt-mTOR signaling and/or transcriptional regulation. High CXXC5 expression was also associated with high mRNA expression of several stem cell-associated transcriptional regulators, the strongest associations being with WT1, GATA2, RUNX1, LYL1, DNMT3, SPI1, and MYB. Finally, CXXC5 knockdown in human AML cell lines caused significantly increased expression of the potential tumor suppressor gene TSC22 and genes encoding the growth factor receptor KIT, the cytokine Angiopoietin 1 and the selenium-containing glycoprotein Selenoprotein P. Thus, high CXXC5 expression seems to affect several steps in human leukemogenesis, including intracellular events as well as extracellular communication.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line, Tumor
- DNA-Binding Proteins
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Male
- Middle Aged
- Phosphorylation
- Primary Cell Culture
- Prognosis
- RNA Interference
- RNA, Messenger/metabolism
- Signal Transduction
- Transcription Factors
- Transcription, Genetic
- Transfection
- Tumor Cells, Cultured
- Up-Regulation
Collapse
Affiliation(s)
- Øystein Bruserud
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Håkon Reikvam
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Hanne Fredly
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Jørn Skavland
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Karen-Marie Hagen
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
| | - Tuyen Thy van Hoang
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
| | - Annette K. Brenner
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
| | - Amir Kadi
- Inserm, U1016, Institut Cochin, F-75014, Paris, France
- CNRS, UMR8104, F-75014, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Audrey Astori
- Inserm, U1016, Institut Cochin, F-75014, Paris, France
- CNRS, UMR8104, F-75014, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Bjørn Tore Gjertsen
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Frederic Pendino
- Department of Molecular Biology, University of Bergen, Bergen, Norway
- Inserm, U1016, Institut Cochin, F-75014, Paris, France
- CNRS, UMR8104, F-75014, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
4
|
Togami K, Kitaura J, Uchida T, Inoue D, Nishimura K, Kawabata KC, Nagase R, Horikawa S, Izawa K, Fukuyama T, Nakahara F, Oki T, Harada Y, Harada H, Aburatani H, Kitamura T. A C-terminal mutant of CCAAT-enhancer-binding protein α (C/EBPα-Cm) downregulates Csf1r, a potent accelerator in the progression of acute myeloid leukemia with C/EBPα-Cm. Exp Hematol 2014; 43:300-8.e1. [PMID: 25534203 DOI: 10.1016/j.exphem.2014.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 11/28/2022]
Abstract
Two types of CCAAT-enhancer-binding protein α (C/EBPα) mutants are found in acute myeloid leukemia (AML) patients: N-terminal frame-shift mutants (C/EBPα-N(m)) generating p30 as a dominant form and C-terminal basic leucine zipper domain mutants (C/EBPα-C(m)). We have previously shown that C/EBPα-K304_R323dup belonging to C/EBPα-C(m), but not C/EBPα-T60fsX159 belonging to C/EBPα-N(m), alone induced AML in mouse bone marrow transplantation (BMT) models. Here we show that various C/EBPα-C(m) mutations have a similar, but not identical, potential in myeloid leukemogenesis. Notably, like C/EBPα-K304_R323dup, any type of C/EBPα-C(m) tested (C/EBPα-S299_K304dup, K313dup, or N321D) by itself induced AML, albeit with different latencies after BMT; C/EBPα-N321D induced AML with the shortest latency. By analyzing the gene expression profiles of C/EBPα-N321D- and mock-transduced c-kit(+)Sca-1(+)Lin(-) cells, we identified Csf1r as a gene downregulated by C/EBPα-N321D. In addition, leukemic cells expressing C/EBPα-C(m) exhibited low levels of colony stimulating factor 1 receptor in mice. On the other hand, transduction with C/EBPα-N(m) did not influence Csf1r expression in c-kit(+)Sca-1(+)Lin(-) cells, implying a unique role for C/EBPα-C(m) in downregulating Csf1r. Importantly, Csf1r overexpression collaborated with C/EBPα-N321D to induce fulminant AML with leukocytosis in mouse BMT models to a greater extent than did C/EBPα-N321D alone. Collectively, these results suggest that C/EBPα-C(m)-mediated downregulation of Csf1r has a negative, rather than a positive, impact on the progression of AML involving C/EBPα-C(m), which might possibly be accelerated by additional genetic and/or epigenetic alterations inducing Csf1r upregulation.
Collapse
Affiliation(s)
- Katsuhiro Togami
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jiro Kitaura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Uchida
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Daichi Inoue
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koutarou Nishimura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kimihito C Kawabata
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Reina Nagase
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Sayuri Horikawa
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kumi Izawa
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomofusa Fukuyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Fumio Nakahara
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Toshihiko Oki
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuka Harada
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan; Division of Radiation Information Registry, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hironori Harada
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan; Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
5
|
Souza Melo CP, Campos CB, Dutra ÁP, Neto JCA, Fenelon AJS, Neto AH, Carbone EK, Pianovski MAD, Ferreira ACDS, Assumpcão JG. Correlation between FLT3-ITD status and clinical, cellular and molecular profiles in promyelocytic acute leukemias. Leuk Res 2014; 39:131-7. [PMID: 25530565 DOI: 10.1016/j.leukres.2014.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/11/2014] [Accepted: 11/20/2014] [Indexed: 10/24/2022]
Abstract
Internal tandem duplications (ITD) of FLT3 gene occur in about a third of acute promyelocytic leukemias (APL). We investigated the patterns of blood count, surface antigen, expression, chromosome aberrations, PML-RARa isoform, gene expression profile (GEP) and survival in 34 APL patients according to FLT3-ITD status. 97% had a t(15;17) and all of them carried PML-RARa gene fusion, 8 (23.5%) had a FLT3-ITD mutation. Presence of ITD was associated with higher Hb and WBC levels, bcr3 isoform, CD34 expression, CD2 or CD2/CD34 expression. In a multivariate analysis, Hb>9.6g/dL and WBC≥20 × 10(9)/L were important factors for predicting ITD presence. GEP showed that FLT3-ITD carriers clustered separately, even when as few as 5 genes were considered. This study provides further evidence that FLT3-ITDs carriers constitute a biologically distinct group of APL patients.
Collapse
Affiliation(s)
- Carolina Pereira Souza Melo
- Laboratório BIOCOD Biotecnologia Ltda., Av. das Nações 2448, Portaria A, Vespasiano CEP 33200-000, MG, Brazil.
| | - Catharina Brant Campos
- Laboratório BIOCOD Biotecnologia Ltda., Av. das Nações 2448, Portaria A, Vespasiano CEP 33200-000, MG, Brazil.
| | - Álvaro Pimenta Dutra
- Hospital Santa Casa de Misericórdia de Belo Horizonte, Av. Francisco Sales 1111, Belo Horizonte CEP 30150-221, MG, Brazil.
| | - Joaquim Caetano Aguirre Neto
- Hospital Santa Casa de Misericórdia de Belo Horizonte, Av. Francisco Sales 1111, Belo Horizonte CEP 30150-221, MG, Brazil.
| | - Alexandre José Silva Fenelon
- Hospital Santa Casa de Misericórdia de Belo Horizonte, Av. Francisco Sales 1111, Belo Horizonte CEP 30150-221, MG, Brazil.
| | - Abrahão Hallack Neto
- Hospital Universitário da Universidade Federal de Juiz de Fora, Rua Catulo Breviglieri s/n, Juiz de Fora CEP 36036-110, MG, Brazil.
| | - Edna Kakitani Carbone
- Hospital Pequeno Príncipe, Rua Desembargador Motta 1070, Curitiba CEP 80250-060, PR, Brazil.
| | | | | | - Juliana Godoy Assumpcão
- Laboratório BIOCOD Biotecnologia Ltda., Av. das Nações 2448, Portaria A, Vespasiano CEP 33200-000, MG, Brazil; Setor de Pesquisa e Desenvolvimento-Instituto Hermes Pardini, Av. das Nações 2448, Portaria A, Vespasiano CEP 33200-000, MG, Brazil.
| |
Collapse
|
6
|
Establishment and Validation of an Orthotopic Metastatic Mouse Model of Colorectal Cancer. ISRN HEPATOLOGY 2013; 2013:206875. [PMID: 27340651 PMCID: PMC4907346 DOI: 10.1155/2013/206875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/17/2013] [Indexed: 12/24/2022]
Abstract
Metastases are largely responsible for cancer deaths in solid tumors due to the lack of effective therapies against disseminated disease, and there is an urgent need to fill this gap. This study demonstrates an orthotopic colorectal cancer (CRC) mouse model system to develop spontaneous metastasis in vivo and compare its reproducibility against human CRC. IGF1R-dependent GEO human CRC cells were used to study metastatic colonization using orthotopic transplantation procedures and demonstrated robust liver metastasis. Cell proliferation assays were performed both in the orthotopic primary colon and liver metastatic tumors, and human CRC patient's specimen and similar patterns in H&E and Ki67 staining were observed between the orthotopically generated primary and liver metastatic tumors and human CRC specimens. Microarray analysis was performed to generate gene signatures, compared with deposited human CRC gene expression data sets, analyzed by Oncomine, and revealed similarity in gene signatures with increased aggressive markers expression associated with CRC in orthotopically generated liver metastasis. Thus, we have developed an orthotopic mouse model that reproduces human CRC metastasis. This model system can be effective in developing new therapeutic strategies against disseminated disease and could be implemented for identifying genes that regulate the development and/or maintenance of established metastasis.
Collapse
|
7
|
Kazi JU, Sun J, Rönnstrand L. The presence or absence of IL-3 during long-term culture of Flt3-ITD and c-Kit-D816V expressing Ba/F3 cells influences signaling outcome. Exp Hematol 2013; 41:585-7. [PMID: 23528808 DOI: 10.1016/j.exphem.2013.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 03/07/2013] [Accepted: 03/14/2013] [Indexed: 01/17/2023]
|
8
|
Takahashi M, Izawa K, Kashiwakura JI, Yamanishi Y, Enomoto Y, Kaitani A, Maehara A, Isobe M, Ito S, Matsukawa T, Nakahara F, Oki T, Kajikawa M, Ra C, Okayama Y, Kitamura T, Kitaura J. Human CD300C delivers an Fc receptor-γ-dependent activating signal in mast cells and monocytes and differs from CD300A in ligand recognition. J Biol Chem 2013; 288:7662-7675. [PMID: 23372157 DOI: 10.1074/jbc.m112.434746] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD300C is highly homologous with an inhibitory receptor CD300A in an immunoglobulin-like domain among the human CD300 family of paired immune receptors. To clarify the precise expression and function of CD300C, we generated antibodies discriminating between CD300A and CD300C, which recognized a unique epitope involving amino acid residues CD300A(F56-L57) and CD300C(L63-R64). Notably, CD300C was highly expressed in human monocytes and mast cells. Cross-linking of CD300C by its specific antibody caused cytokine/chemokine production of human monocytes and mast cells. Fc receptor γ was indispensable for both efficient surface expression and activating functions of CD300C. To identify a ligand for CD300A or CD300C, we used reporter cell lines expressing a chimera receptor harboring extracellular CD300A or CD300C and intracellular CD3ζ, in which its unknown ligand induced GFP expression. Our results indicated that phosphatidylethanolamine (PE) among the lipids tested and apoptotic cells were possible ligands for both CD300C and CD300A. PE and apoptotic cells more strongly induced GFP expression in the reporter cells through binding to extracellular CD300A as compared with CD300C. Differential recognition of PE by extracellular CD300A and CD300C depended on different amino acid residues CD300A(F56-L57) and CD300C(L63-R64). Interestingly, GFP expression induced by extracellular CD300C-PE binding in the reporter cells was dampened by co-expression of full-length CD300A, indicating the predominance of CD300A over CD300C in PE recognition/signaling. PE consistently failed to stimulate cytokine production in monocytes expressing CD300C with CD300A. In conclusion, specific engagement of CD300C led to Fc receptor γ-dependent activation of mast cells and monocytes.
Collapse
Affiliation(s)
- Mariko Takahashi
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kumi Izawa
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Jun-Ichi Kashiwakura
- Department of Molecular Cell Immunology and Allergology, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi, Tokyo 173-8610, Japan; Research Unit for Allergy, RIKEN Research Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshinori Yamanishi
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yutaka Enomoto
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ayako Kaitani
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Akie Maehara
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Masamichi Isobe
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Shinichi Ito
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Toshihiro Matsukawa
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Fumio Nakahara
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Toshihiko Oki
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Masunori Kajikawa
- ACTGen Inc., 15-502, Akaho, Komagane-shi, Nagano-ken, 399-4117, Japan
| | - Chisei Ra
- Department of Molecular Cell Immunology and Allergology, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi, Tokyo 173-8610, Japan
| | - Yoshimichi Okayama
- Department of Molecular Cell Immunology and Allergology, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi, Tokyo 173-8610, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Jiro Kitaura
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
9
|
Canterini S, Bosco A, Carletti V, Fuso A, Curci A, Mangia F, Fiorenza MT. Subcellular TSC22D4 localization in cerebellum granule neurons of the mouse depends on development and differentiation. CEREBELLUM (LONDON, ENGLAND) 2012; 11:28-40. [PMID: 20878296 DOI: 10.1007/s12311-010-0211-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We previously demonstrated that TSC22D4, a protein encoded by the TGF-β1-activated gene Tsc22d4 (Thg-1pit) and highly expressed in postnatal and adult mouse cerebellum with multiple post-translationally modified protein forms, moves to nucleus when in vitro differentiated cerebellum granule neurons (CGNs) are committed to apoptosis by hyperpolarizing KCl concentrations in the culture medium. We have now studied TSC22D4 cytoplasmic/nuclear localization in CGNs and Purkinje cells: (1) during CGN differentiation/maturation in vivo, (2) during CGN differentiation in vitro, and (3) by in vitro culturing ex vivo cerebellum slices under conditions favoring/inhibiting CGN/Purkinje cell differentiation. We show that TSC22D4 displays both nuclear and cytoplasmic localizations in undifferentiated, early postnatal cerebellum CGNs, irrespectively of CGN proliferation/migration from external to internal granule cell layer, and that it specifically accumulates in the somatodendritic and synaptic compartments when CGNs mature, as indicated by TSC22D4 abundance at the level of adult cerebellum glomeruli and apparent lack in CGN nuclei. These features were also observed in cerebellum slices cultured in vitro under conditions favoring/inhibiting CGN/Purkinje cell differentiation. In vitro TSC22D4 silencing with siRNAs blocked CGN differentiation and inhibited neurite elongation in N1E-115 neuroblastoma cells, pinpointing the relevance of this protein to CGN differentiation.
Collapse
Affiliation(s)
- Sonia Canterini
- Department of Psychology, Section of Neuroscience, Istituto Pasteur-Fondazione Cenci Bolognetti and D. Bovet Research Center, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Nakamura M, Kitaura J, Enomoto Y, Lu Y, Nishimura K, Isobe M, Ozaki K, Komeno Y, Nakahara F, Oki T, Kume H, Homma Y, Kitamura T. Transforming growth factor-β-stimulated clone-22 is a negative-feedback regulator of Ras / Raf signaling: Implications for tumorigenesis. Cancer Sci 2012; 103:26-33. [PMID: 21943131 PMCID: PMC11164176 DOI: 10.1111/j.1349-7006.2011.02108.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transforming growth factor-β (TGF-β)-stimulated clone-22 (TSC-22), also called TSC22D1-2, is a putative tumor suppressor. We previously identified TSC-22 downstream of an active mutant of fms-like tyrosine kinase-3 (Flt3). Here, we show that TSC-22 works as a tumor suppressor through inhibiting Ras/Raf signaling. Notably, TSC-22 was upregulated by Ras/Raf activation, whereas its upregulation was inhibited by concurrent STAT5 activation. Although TSC-22 was normally retained in the cytoplasm by its nuclear export signal (NES), Ras/Raf activation caused nuclear translocation of TSC-22, but not TSC22D1-1. Unlike glucocorticoid-induced leucine zipper (GILZ/TSC22D3-2) previously characterized as a negative regulator of Ras/Raf signaling, TSC-22 failed to interact physically with Ras/Raf. Importantly, transduction with TSC-22, but not TSC22D1-1, suppressed the growth, transformation and tumorigenesis of NIH3T3 cells expressing oncogenic H-Ras: this suppression was enhanced by transduction with a TSC-22 mutant lacking NES that had accumulated in the nucleus. Collectively, upregulation and nuclear translocation of TSC-22 played an important role in the feedback suppression of Ras/Raf signaling. Consistently, TSC22D1-deficient mice were susceptible to tumorigenesis in a mouse model of chemically-induced liver tumors bearing active mutations of Ras/Raf. Thus, TSC-22 negatively regulated Ras/Raf signaling through a mechanism different from GILZ, implicating TSC-22 as a novel suppressor of oncogenic Ras/Raf-induced tumors.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- Diethylnitrosamine/toxicity
- Gene Expression Regulation, Neoplastic
- Immunoprecipitation
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NIH 3T3 Cells
- Precursor Cells, B-Lymphoid
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Repressor Proteins/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- STAT5 Transcription Factor/genetics
- STAT5 Transcription Factor/metabolism
- Signal Transduction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- raf Kinases/genetics
- raf Kinases/metabolism
- ras Proteins/genetics
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Masaki Nakamura
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Aberrant expression of RasGRP1 cooperates with gain-of-function NOTCH1 mutations in T-cell leukemogenesis. Leukemia 2011; 26:1038-45. [PMID: 22116551 DOI: 10.1038/leu.2011.328] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ras guanyl nucleotide-releasing proteins (RasGRPs) are activators of Ras. Previous studies have indicated the possible involvement of RasGRP1 and RasGRP4 in leukemogenesis. Here, the predominant role of RasGRP1 in T-cell leukemogenesis is clarified. Notably, increased expression of RasGRP1, but not RasGRP4, was frequently observed in human T-cell malignancies. In a mouse bone marrow transplantation model, RasGRP1 exclusively induced T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) after a shorter latency when compared with RasGRP4. Accordingly, Ba/F3 cells transduced with RasGRP1 survived longer under growth factor withdrawal or phorbol ester stimulation than those transduced with RasGRP4, presumably due to the efficient activation of Ras. Intriguingly, NOTCH1 mutations resulting in a gain of function were found in 77% of the RasGRP1-mediated mouse T-ALL samples. In addition, gain-of-function NOTCH1 mutation was found in human T-cell malignancy with elevated expression of RasGRP1. Importantly, RasGRP1 and NOTCH1 signaling cooperated in the progression of T-ALL in the murine model. The leukemogenic advantage of RasGRP1 over RasGRP4 was attenuated by the disruption of a protein kinase C phosphorylation site (RasGRP1(Thr184)) not present on RasGRP4. In conclusion, cooperation between aberrant expression of RasGRP1, a strong activator of Ras, and secondary gain-of-function mutations of NOTCH1 have an important role in T-cell leukemogenesis.
Collapse
|
12
|
Wang C, Lu J, Wang Y, Bai S, Wang Y, Wang L, Sheng G. Combined effects of FLT3 and NF-κB selective inhibitors on acute myeloid leukemia in vivo. J Biochem Mol Toxicol 2011; 26:35-43. [DOI: 10.1002/jbt.20411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 07/14/2011] [Accepted: 07/31/2011] [Indexed: 01/30/2023]
|
13
|
Regulation of TGF-β signaling by PKC depends on Tsc-22 inducibility. Mol Cell Biochem 2011; 360:47-50. [PMID: 21881999 DOI: 10.1007/s11010-011-1042-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 08/13/2011] [Indexed: 10/17/2022]
Abstract
Interactions between various signaling pathways enable a fine control of cellular activities. When the cells are subjected to activation of TGF-β signaling and PKC signaling, PKC phosphorylation of Smad3 abrogates binding and transcriptional activity of Smad3 leading to suppression of TGF-β response. We studied this interaction between Smads and PKC in different cell types to examine cell specificity of the interaction. We found that the outcome of the interaction between Smads and PKC depends on cell types and inducibility of a regulatory molecule Tsc-22. In this report, we showed that induced Tsc-22 leads to enhancement of TGF-β-dependent signaling and the enhancement was blocked by expression of a dominant-negative Tsc-22 mutant. Its effect on cellular differentiation was also examined.
Collapse
|
14
|
Chan PM. Differential signaling of Flt3 activating mutations in acute myeloid leukemia: a working model. Protein Cell 2011; 2:108-15. [PMID: 21359601 DOI: 10.1007/s13238-011-1020-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 02/07/2011] [Indexed: 12/13/2022] Open
Abstract
Receptor tyrosine kinases couple a wide variety of extracellular cues to cellular responses. The class III subfamily comprises the platelet-derived growth factor receptor, c-Kit, Flt3 and c-Fms, all of which relay cell proliferation signals upon ligand binding. Accordingly, mutations in these proteins that confer ligand-independent activation are found in a subset of cancers. These mutations cluster in the juxtamembrane (JM) and catalytic tyrosine kinase domain (TKD) regions. In the case of acute myeloid leukemia (AML), the juxtamembrane (named ITD for internal tandem duplication) and TKD Flt3 mutants differ in their spectra of clinical outcomes. Although the mechanism of aberrant activation has been largely elucidated by biochemical and structural analyses of mutant kinases, the differences in disease presentation cannot be attributed to a change in substrate specificity or signaling strength of the catalytic domain. This review discusses the latest literature and presents a working model of differential Flt3 signaling based on mis-localized juxtamembrane autophosphorylation, to account for the disease variation. This will have bearing on therapeutic approaches in a complex disease such as AML, for which no efficacious drug yet exists.
Collapse
Affiliation(s)
- Perry M Chan
- Neuroscience Research Partnership, Biomedical Sciences Institute, affiliated with Institute of Molecular and Cell Biology, ASTAR, Singapore 138673, Singapore.
| |
Collapse
|
15
|
Two types of C/EBPα mutations play distinct but collaborative roles in leukemogenesis: lessons from clinical data and BMT models. Blood 2011; 117:221-33. [DOI: 10.1182/blood-2010-02-270181] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Abstract
Two types of mutations of a transcription factor CCAAT-enhancer binding protein α (C/EBPα) are found in leukemic cells of 5%-14% of acute myeloid leukemia (AML) patients: N-terminal mutations expressing dominant negative p30 and C-terminal mutations in the basic leucine zipper domain. Our results showed that a mutation of C/EBPα in one allele was observed in AML after myelodysplastic syndrome, while the 2 alleles are mutated in de novo AML. Unlike an N-terminal frame-shift mutant (C/EBPα-Nm)–transduced cells, a C-terminal mutant (C/EBPα-Cm)–transduced cells alone induced AML with leukopenia in mice 4-12 months after bone marrow transplantation. Coexpression of both mutants induced AML with marked leukocytosis with shorter latencies. Interestingly, C/EBPα-Cm collaborated with an Flt3-activating mutant Flt3-ITD in inducing AML. Moreover, C/EBPα-Cm strongly blocked myeloid differentiation of 32Dcl3 cells, suggesting its class II mutation-like role in leukemogenesis. Although C/EBPα-Cm failed to inhibit transcriptional activity of wild-type C/EBPα, it suppressed the synergistic effect between C/EBPα and PU.1. On the other hand, C/EBPα-Nm inhibited C/EBPα activation in the absence of PU.1, despite low expression levels of p30 protein generated by C/EBPα-Nm. Thus, 2 types of C/EBPα mutations are implicated in leukemo-genesis, involving different and cooperating molecular mechanisms.
Collapse
|
16
|
Sprenger CCT, Haugk K, Sun S, Coleman I, Nelson PS, Vessella RL, Ludwig DL, Wu JD, Plymate SR. Transforming Growth Factor-{beta}-Stimulated Clone-22 Is an Androgen-Regulated Gene That Enhances Apoptosis in Prostate Cancer following Insulin-Like Growth Factor-I Receptor Inhibition. Clin Cancer Res 2009; 15:7634-7641. [PMID: 19996218 DOI: 10.1158/1078-0432.ccr-09-0264] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE: Inhibition of insulin-like growth factor (IGF) signaling using the human IGF-I receptor monoclonal antibody A12 is most effective at inducing apoptosis in prostate cancer xenografts in the presence of androgen. We undertook this study to determine mechanisms for increased apoptosis by A12 in the presence of androgens. Experimental Methods: The castrate-resistant human xenograft LuCaP 35 V was implanted into intact or castrate severe combined immunodeficient mice and treated with A12 weekly. After 6 weeks of tumor growth, animals were sacrificed and tumors were removed and analyzed for cell cycle distribution/apoptosis and cDNA arrays were done. RESULTS: In castrate mice, the tumors were delayed in G(2) with no apoptosis; in contrast, tumors from intact mice underwent apoptosis with either G(1) or G(2) delay. Transforming growth factor-beta-stimulated clone-22 (TSC-22) was significantly elevated in tumors from the intact mice compared with castrate mice, especially in those tumors with the highest levels of apoptosis. To further determine the function of TSC-22, we transfected various human prostate cancer cell lines with a plasmid expressing TSC-22. Cell lines overexpressing TSC-22 showed an increase in apoptosis and a delay in G(1). When these cell lines were placed subcutaneously in athymic nude mice, a decreased number of animals formed tumors and the rate of tumor growth was decreased compared with control tumors. CONCLUSIONS: These data indicate that IGF-I receptor inhibition in the presence of androgen has an enhanced effect on decreasing tumor growth, in part, through increased expression of the tumor suppressor gene TSC-22. (Clin Cancer Res 2009;15(24):7634-41).
Collapse
Affiliation(s)
- Cynthia C T Sprenger
- Authors' Affiliations: Departments of Medicine and Urology, University of Washington; Puget Sound Veterans Affairs Health Care System; Fred Hutchinson Cancer Research Center, Seattle, Washington and Imclone Systems, Inc., New York, New York
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Masson K, Rönnstrand L. Oncogenic signaling from the hematopoietic growth factor receptors c-Kit and Flt3. Cell Signal 2009; 21:1717-26. [PMID: 19540337 DOI: 10.1016/j.cellsig.2009.06.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 06/04/2009] [Accepted: 06/09/2009] [Indexed: 01/01/2023]
Abstract
Signal transduction in response to growth factors is a strictly controlled process with networks of feedback systems, highly selective interactions and finely tuned on-and-off switches. In the context of cancer, detailed signaling studies have resulted in the development of some of the most frequently used means of therapy, with several well established examples such as the small molecule inhibitors imatinib and dasatinib in the treatment of chronic myeloid leukemia. Impaired function of receptor tyrosine kinases is implicated in various types of tumors, and much effort is put into mapping the many interactions and downstream pathways. Here we discuss the hematopoietic growth factor receptors c-Kit and Flt3 and their downstream signaling in normal as well as malignant cells. Both receptors are members of the same family of tyrosine kinases and crucial mediators of stem-and progenitor-cell proliferation and survival in response to ligand stimuli from the surrounding microenvironment. Gain-of-function mutations/alterations render the receptors constitutively and ligand-independently activated, resulting in aberrant signaling which is a crucial driving force in tumorigenesis. Frequently found mutations in c-Kit and Flt3 are point mutations of aspartic acid 816 and 835 respectively, in the activation loop of the kinase domains. Several other point mutations have been identified, but in the case of Flt3, the most common alterations are internal tandem duplications (ITDs) in the juxtamembrane region, reported in approximately 30% of patients with acute myeloid leukemia (AML). During the last couple of years, the increasing understanding of c-Kit and Flt3 signaling has also revealed the complexity of these receptor systems. The impact of gain-of-function mutations of c-Kit and Flt3 in different malignancies is well established and shown to be of clinical relevance in both prognosis and therapy. Many inhibitors of both c-Kit or Flt3 or of their downstream substrates are in clinical trials with encouraging results, and targeted therapy using a combination of such inhibitors is considered a promising approach for future treatments.
Collapse
Affiliation(s)
- Kristina Masson
- Experimental Clinical Chemistry, Wallenberg Laboratory, Department of Laboratory Medicine, Malmö University Hospital, Lund University, 20502 Malmö, Sweden
| | | |
Collapse
|
18
|
TSC-22 contributes to hematopoietic precursor cell proliferation and repopulation and is epigenetically silenced in large granular lymphocyte leukemia. Blood 2009; 113:5558-67. [PMID: 19329776 DOI: 10.1182/blood-2009-02-205732] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aberrant methylation of tumor suppressor genes can lead to their silencing in many cancers. TSC-22 is a gene silenced in several solid tumors, but its function and the mechanism(s) responsible for its silencing are largely unknown. Here we demonstrate that the TSC-22 promoter is methylated in primary mouse T or natural killer (NK) large granular lymphocyte (LGL) leukemia and this is associated with down-regulation or silencing of TSC-22 expression. The TSC-22 deregulation was reversed in vivo by a 5-aza-2'-deoxycytidine therapy of T or NK LGL leukemia, which significantly increased survival of the mice bearing this disease. Ectopic expression of TSC-22 in mouse leukemia or lymphoma cell lines resulted in delayed in vivo tumor formation. Targeted disruption of TSC-22 in wild-type mice enhanced proliferation and in vivo repopulation efficiency of hematopoietic precursor cells (HPCs). Collectively, our data suggest that TSC-22 normally contributes to the regulation of HPC function and is a putative tumor suppressor gene that is hypermethylated and silenced in T or NK LGL leukemia.
Collapse
|
19
|
The Drosophila homolog of human tumor suppressor TSC-22 promotes cellular growth, proliferation, and survival. Proc Natl Acad Sci U S A 2008; 105:5414-9. [PMID: 18375761 DOI: 10.1073/pnas.0800945105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TSC22D1, which encodes transforming growth factor beta-stimulated clone 22 (TSC-22), is thought to be a tumor suppressor because its expression is lost in many glioblastoma, salivary gland, and prostate cancers. TSC-22 is the founding member of the TSC-22/DIP/Bun family of leucine zipper transcription factors; its functions have not been investigated in a multicellular environment. Genetic studies in the model organism Drosophila melanogaster often provide fundamental insights into mechanisms disrupted in carcinogenesis, because of the strong evolutionary conservation of molecular mechanisms between flies and humans. Whereas humans and mice have four TSC-22 domain genes with numerous isoforms, Drosophila has only one TSC-22 domain gene, bunched (bun), which encodes both large and small protein isoforms. Surprisingly, Drosophila Bun proteins promote cellular growth and proliferation in ovarian follicle cells. Loss of both large isoforms has the strongest phenotypes, including increased apoptosis. Cultured S2 cells depleted for large Bun isoforms show increased apoptosis and less frequent cell division, with decreased cell size. Altogether, these data indicate that Drosophila TSC-22/DIP/Bun proteins are necessary for cellular growth, proliferation, and survival both in culture and in an epithelial context. Previous work demonstrated that bun prevents recruitment of epithelial cells to a migratory fate and, thus, maintains epithelial organization. We speculate that reduced TSC22D1 expression generally reduces cellular fitness and only contributes to carcinogenesis in specific tissue environments.
Collapse
|
20
|
Lee JH, Rho SB, Park SY, Chun T. Interaction between fortilin and transforming growth factor-beta stimulated clone-22 (TSC-22) prevents apoptosis via the destabilization of TSC-22. FEBS Lett 2008; 582:1210-8. [PMID: 18325344 DOI: 10.1016/j.febslet.2008.01.066] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 01/10/2008] [Accepted: 01/18/2008] [Indexed: 10/22/2022]
Abstract
Yeast two-hybrid screening was conducted using a human ovary cDNA library to search for a novel binding protein using transforming growth factor-beta stimulated clone-22 (TSC-22). The selected protein was fortilin, which has been characterized as a nuclear anti-apoptotic protein. Overexpression of fortilin in ovarian carcinoma cells reversed TSC-22-mediated apoptosis, and the inhibition of fortilin expression via small interfering RNA (siRNA) resulted in an increase in the apoptosis of ovarian carcinoma cells. Moreover, fortilin overexpression promoted the degradation of TSC-22. Thus, an interaction between fortilin and TSC-22 prevents apoptosis via the destabilization of TSC-22 in ovarian carcinoma cells.
Collapse
Affiliation(s)
- Jeong Heon Lee
- Department of Obstetrics and Gynecology, Chonbuk National University Medical School, Jeonju 561-712, Republic of Korea
| | | | | | | |
Collapse
|