1
|
Yang J, Wang H, Chen H, Hou H, Hu Q. The association of genetic polymorphisms within the dopaminergic system with nicotine dependence: A narrative review. Heliyon 2024; 10:e33158. [PMID: 39021905 PMCID: PMC11253068 DOI: 10.1016/j.heliyon.2024.e33158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Nicotine, the main compound in cigarettes, leads to smoking addiction. Nicotine acts on the limbic dopamine reward loop in the midbrain by binding to nicotinic acetylcholine receptors, promoting the release of dopamine, and resulting in a rewarding effect or satisfaction. This satisfaction is essential for continued and compulsive tobacco use, and therefore dopamine plays a crucial role in nicotine dependence. Numerous studies have identified genetic polymorphisms of dopaminergic pathways which may influence susceptibility to nicotine addiction. Dopamine levels are greatly influenced by synthesis, storage, release, degradation, and reuptake-related genes, including genes encoding tyrosine hydroxylase, dopamine decarboxylase, dopamine transporter, dopamine receptor, dopamine 3-hydroxylase, catechol-O-methyltransferase, and monoamine oxidase. In this paper, we review research progress on the effects of polymorphisms in the above genes on downstream smoking behavior and nicotine dependence, to offer a theoretical basis for the elucidation of the genetic mechanism underlying nicotine dependence and future personalized treatment for smoking cessation.
Collapse
Affiliation(s)
- Jingjing Yang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102209, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 102209, China
| | - Hongjuan Wang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102209, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 102209, China
| | - Huan Chen
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102209, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 102209, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102209, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 102209, China
| | - Qingyuan Hu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102209, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 102209, China
| |
Collapse
|
2
|
Yang HM, Lung H, Yang MC, Lung FW. DRD4 VNTR 4/4 homozygosity as a genetic biomarker for treatment selection in patients with schizophrenia. Asian J Psychiatr 2024; 91:103831. [PMID: 37988928 DOI: 10.1016/j.ajp.2023.103831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/03/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023]
Abstract
OBJECTIVE There seems to be an association between the DRD4 48-bp VNTR polymorphisms and antipsychotic treatment response, but there is a rare reference to confirm this finding. Hence, the present study tried to investigate the association between DRD4 48-bp VNTR polymorphisms and the treatment response of antipsychotics in patients with schizophrenia in Taiwan, using a propensity score matching (PSM) method. METHODS A total of 882 participants were enrolled in this study and completed informed consent, research questionnaires, including demographic information and the revised Chinese version Beliefs about Voices Questionnaire, and blood sampling. For descreasing of the selection bias and confounding variables, the PSM nearest neighbor matching method was used to select 765 paitents with schizophrenia (ratio of 1:8 between 85 persistent auditory hallucination and 680 controls) with matched and controlled the age and gender. RESULTS Schizophrenia patients with DRD4 4 R homozygosity had a lower rate of good antipsychotic treatment response than the other DRD4 genotype carriers (DRD4 non-4/4). Among those 4 R homozygosity carriers, 60 cases of 503 (11.9%) retain persistent auditory hallucinations. Furthermore, this subgroup of patients is accounted for up to 70.6% of cases with poor neuroleptic treatment response. CONCLUSIONS A poor treatment outcome for patients with the 4 R homozygosity had presented,that comparing with those DRD non-4/4 genotype carriers. DRD4 VNTR 4 R homozygosity could be a genetic biomarker to predict poor antipsychotic treatment response in schizophrenia. Patients with DRD 4/4 probably receive novel antipsychotic medications preferentially or in combination with alternative therapy, such as psychotherapy or milieu therapy.
Collapse
Affiliation(s)
- Hao-Ming Yang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, Taiwan; Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Hsuan Lung
- Department of Dentistry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; School of Dentistry and Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | - For-Wey Lung
- Calo Psychiatric Center, Pingtung County, Taiwan; Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan; International Graduate Program of Education and Human Development, National SunYat-sen University, Kaohsiung, Taiwan; Institute of Education, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
3
|
Dougnon G, Matsui H. Modelling Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) Using Mice and Zebrafish. Int J Mol Sci 2022; 23:ijms23147550. [PMID: 35886894 PMCID: PMC9319972 DOI: 10.3390/ijms23147550] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD) are two debilitating neurodevelopmental disorders. The former is associated with social impairments whereas the latter is associated with inattentiveness, hyperactivity, and impulsivity. There is recent evidence that both disorders are somehow related and that genes may play a large role in these disorders. Despite mounting human and animal research, the neurological pathways underlying ASD and ADHD are still not well understood. Scientists investigate neurodevelopmental disorders by using animal models that have high similarities in genetics and behaviours with humans. Mice have been utilized in neuroscience research as an excellent animal model for a long time; however, the zebrafish has attracted much attention recently, with an increasingly large number of studies using this model. In this review, we first discuss ASD and ADHD aetiology from a general point of view to their characteristics and treatments. We also compare mice and zebrafish for their similarities and discuss their advantages and limitations in neuroscience. Finally, we summarize the most recent and existing research on zebrafish and mouse models of ASD and ADHD. We believe that this review will serve as a unique document providing interesting information to date about these models, thus facilitating research on ASD and ADHD.
Collapse
|
4
|
Wakefield JC. Klerman's "credo" reconsidered: neo-Kraepelinianism, Spitzer's views, and what we can learn from the past. World Psychiatry 2022; 21:4-25. [PMID: 35015356 PMCID: PMC8751581 DOI: 10.1002/wps.20942] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In 1978, G. Klerman published an essay in which he named the then-nascent "neo-Kraepelinian" movement and formulated a "credo" of nine propositions expressing the movement's essential claims and aspirations. Klerman's essay appeared on the eve of the triumph of neo-Kraepelinian ideas in the DSM-III. However, this diagnostic system has subsequently come under attack, opening the way for competing proposals for the future of psychiatric nosology. To better understand what is at stake, in this paper I provide a close reading and consideration of Klerman's credo in light of the past forty years of research and reflection. The credo is placed in the context of two equally seminal publications in the same year, one by S. Guze, the leading neo-Kraepelinian theorist, and the other by R. Spitzer and J. Endicott, defining mental disorder. The divergences between Spitzer and standard neo-Kraepelinianism are highlighted and argued to be much more important than is generally realized. The analysis of Klerman's credo is also argued to have implications for how to satisfactorily resolve the current nosological ferment in psychiatry. In addition to issues such as creating descriptive syndromal diagnostic criteria, overthrowing psychoanalytic dominance of psychiatry, and making psychiatry more scientific, neo-Kraepelinians were deeply concerned with the conceptual issue of the nature of mental disorder and the defense of psychiatry's medical legitimacy in response to antipsychiatric criticisms. These issues cannot be ignored, and I argue that proposals currently on offer to replace the neo-Kraepelinian system, especially popular proposals to replace it with dimensional measures, fail to adequately address them.
Collapse
Affiliation(s)
- Jerome C Wakefield
- Center for Bioethics, School of Global Public Health, and Silver School of Social Work, New York University, New York, NY, USA
| |
Collapse
|
5
|
Palumbo S, Mariotti V, Vellucci S, Antonelli K, Anderson N, Harenski C, Pietrini P, Kiehl KA, Pellegrini S. ANKK1 and TH gene variants in combination with paternal maltreatment increase susceptibility to both cognitive and attentive impulsivity. Front Psychiatry 2022; 13:868804. [PMID: 35935430 PMCID: PMC9352854 DOI: 10.3389/fpsyt.2022.868804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Recent scientific findings suggest that dopamine exerts a central role on impulsivity, as well as that aversive life experiences may promote the high levels of impulsivity that often underlie violent behavior. To deepen our understanding of the complex gene by environment interplay on impulsive behavior, we genotyped six dopaminergic allelic variants (ANKK1-rs1800497, TH-rs6356, DRD4-rs1800955, DRD4-exonIII-VNTR, SLC6A3-VNTR and COMT-rs4680) in 655 US White male inmates convicted for violent crimes, whose impulsivity was assessed by BIS-11 (Barratt Impulsiveness Scale). Furthermore, in a subsample of 216 inmates from the whole group, we also explored the potential interplay between the genotyped dopaminergic variants and parental maltreatment measured by MOPS (Measure of Parental Style) in promoting impulsivity. We found a significant interaction among paternal MOPS scores, ANKK1-rs1800497-T allele and TH-rs6356-A allele, which increased the variance of BIS-11 cognitive/attentive scores explained by paternal maltreatment from 1.8 up to 20.5%. No direct association between any of the individual genetic variants and impulsivity was observed. Our data suggest that paternal maltreatment increases the risk of attentive/cognitive impulsivity and that this risk is higher in carriers of specific dopaminergic alleles that potentiate the dopaminergic neurotransmission. These findings add further evidence to the mutual role that genetics and early environmental factors exert in modulating human behavior and highlight the importance of childhood care interventions.
Collapse
Affiliation(s)
- Sara Palumbo
- Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Veronica Mariotti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Vellucci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Klizia Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nathaniel Anderson
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States
| | - Carla Harenski
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States
| | - Pietro Pietrini
- Molecular Mind Lab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Kent A Kiehl
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States.,Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Silvia Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Regan SL, Williams MT, Vorhees CV. Review of rodent models of attention deficit hyperactivity disorder. Neurosci Biobehav Rev 2022; 132:621-637. [PMID: 34848247 PMCID: PMC8816876 DOI: 10.1016/j.neubiorev.2021.11.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a polygenic neurodevelopmental disorder that affects 8-12 % of children and >4 % of adults. Environmental factors are believed to interact with genetic predispositions to increase susceptibility to ADHD. No existing rodent model captures all aspects of ADHD, but several show promise. The main genetic models are the spontaneous hypertensive rat, dopamine transporter knock-out (KO) mice, dopamine receptor subtype KO mice, Snap-25 KO mice, guanylyl cyclase-c KO mice, and latrophilin-3 KO mice and rats. Environmental factors thought to contribute to ADHD include ethanol, nicotine, PCBs, lead (Pb), ionizing irradiation, 6-hydroxydopamine, neonatal hypoxia, some pesticides, and organic pollutants. Model validation criteria are outlined, and current genetic models evaluated against these criteria. Future research should explore induced multiple gene KOs given that ADHD is polygenic and epigenetic contributions. Furthermore, genetic models should be combined with environmental agents to test for interactions.
Collapse
Affiliation(s)
- Samantha L. Regan
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45229
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229,Corresponding author: Charles V. Vorhees, Ph.D., Div. of Neurology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA:
| |
Collapse
|
7
|
Daurio AM, Deschaine SL, Modabbernia A, Leggio L. Parsing out the role of dopamine D4 receptor gene (DRD4) on alcohol-related phenotypes: A meta-analysis and systematic review. Addict Biol 2020; 25:e12770. [PMID: 31149768 DOI: 10.1111/adb.12770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/28/2019] [Accepted: 04/07/2019] [Indexed: 11/29/2022]
Abstract
Genetics account for moderate variation of individual differences in developing alcohol use disorder (AUD), but it is unclear which genetic variations contribute to AUD risk. One candidate gene investigated due to its association with AUD is the dopamine D4 receptor gene (DRD4), which contains a 48-base pair variable number tandem repeat (VNTR) in exon 3 of its coding region. To date, no quantitative synthesis of the published literature on the effects of DRD4 VNTR variation on alcohol-related phenotypes has been conducted. MEDLINE, Embase, Web of Science, and PsycInfo were searched for studies that reported on alcohol craving, alcohol consumption, severity of AUD, and case-control (AUD versus no diagnosis of AUD) studies in DRD4L (seven repeats or more) carriers compared with DRD4S (six repeats or less) homozygotes. Random-effects meta-analysis was used for all analyses. A pooled sample size of 655 to 13,360 of 28 studies were included. Compared with DRD4S homozygotes, DRD4L carriers had increased number of drinking days (SMD: 0.205; 95% CI: 0.008 to 0.402), binge drinking days (SMD: 0.217; 95% CI: 0.0532 to 0.380), and severity of AUD (SMD: 0.143; 95% CI: 0.028 to 0.259). There was no difference between DRD4 VNTR genotypes on drinks per drinking day, largest number of drinks per day/occasion, and case-control analysis. It was not possible to conduct a meta-analysis of the craving data, but a systematic review of this literature found mixed results on DRD4 VNTR genotype effect. The present meta-analysis suggests DRD4 VNTR variation may be a risk factor for problematic alcohol use. Our findings are limited, however, by the absence of ancestry data from studies included in our analysis, precluding our ability to adjust for population stratification. Due to the likelihood of type I error in candidate gene approaches, our work highlights the critical need for studies with larger and more inclusive samples that account for sex and genetic ancestry to fully understand this relationship.
Collapse
Affiliation(s)
- Allison M. Daurio
- Department of PsychologyFlorida State University Tallahassee FL USA
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Basic Research and National Institute on Drug Abuse Intramural Research ProgramNational Institutes of Health Bethesda MD USA
| | - Sara L. Deschaine
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Basic Research and National Institute on Drug Abuse Intramural Research ProgramNational Institutes of Health Bethesda MD USA
| | - Amirhossein Modabbernia
- Department of Psychiatry and Seaver Autism CenterIcahn School of Medicine at Mount Sinai New York NY USA
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Basic Research and National Institute on Drug Abuse Intramural Research ProgramNational Institutes of Health Bethesda MD USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social SciencesBrown University Providence RI USA
| |
Collapse
|
8
|
DRD4 48 bp multiallelic variants as age-population-specific biomarkers in attention-deficit/hyperactivity disorder. Transl Psychiatry 2020; 10:70. [PMID: 32075956 PMCID: PMC7031506 DOI: 10.1038/s41398-020-0755-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 12/10/2019] [Accepted: 12/20/2019] [Indexed: 01/09/2023] Open
Abstract
The identification of biomarkers to support the diagnosis and prediction of treatment response for attention-deficit/hyperactivity disorder (ADHD) is still a challenge. Our previous works highlighted the DRD4 (dopamine receptor D4) as the best potential genetic marker for childhood diagnosis and methylphenidate (MPH) response. Here, we aimed to provide additional evidence on biomarkers for ADHD diagnosis and treatment response, by using more specific approaches such as meta-analytic and bioinformatics tools. Via meta-analytic approaches including over 3000 cases and 16,000 controls, we demonstrated that, among the different variants studied in DRD4 gene, the 48-base pair, Variable Tandem Repeat Polymorphism, VNTR in exon 3 showed an age/population-specificity and an allelic heterogeneity. In particular, the 7R/"long" allele was identified as an ADHD risk factor in European-Caucasian populations (d = 1.31, 95%CI: 1.17-1.47, Z = 4.70/d = 1.36, 95%CI: 1.20-1.55, Z = 4.78, respectively), also, from the results of last meta-analysis, linked to the poor MPH efficacy. The 4R/"short" allele was a protective factor in European-Caucasian and South American populations (d = 0.83, 95%CI: 0.75-0.92, Z = 3.58), and was also associated to positive MPH response. These results refer to children with ADHD. No evidence of such associations was detected for adults with persistent ADHD (data from the last meta-analysis). Moreover, we found evidence that the 4R allele leads to higher receptor expression and increased sensitivity to dopamine, as compared with the 7R allele (d = 1.20, 95%CI: 0.71-1.69, Z = 4.81), and this is consistent with the ADHD protection/susceptibility effects of the respective alleles. Using bioinformatics tools, based on the latest genome-wide association (GWAS) meta-analysis of the Psychiatry Genomic Consortium (PGC), we demonstrated that the 48 bp VNTR is not in Linkage Disequilibrium with the DRD4 SNPs (Single Nucleotide Polymorphisms), which were not found to be associated with ADHD. Moreover, a DRD4 expression downregulation was found in ADHD specific brain regions (Putamen, Z score = -3.02, P = 0.00252). Overall, our results suggest that DRD4 48 bp VNTR variants should be considered as biomarkers to support the diagnosis of ADHD and to predict MPH response, although the accuracy of such a biomarker remains to be further elucidated.
Collapse
|
9
|
Genetic risk factors and gene–environment interactions in adult and childhood attention-deficit/hyperactivity disorder. Psychiatr Genet 2019; 29:63-78. [DOI: 10.1097/ypg.0000000000000220] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Muda R, Kicia M, Michalak-Wojnowska M, Ginszt M, Filip A, Gawda P, Majcher P. The Dopamine Receptor D4 Gene ( DRD4) and Financial Risk-Taking: Stimulating and Instrumental Risk-Taking Propensity and Motivation to Engage in Investment Activity. Front Behav Neurosci 2018; 12:34. [PMID: 29551965 PMCID: PMC5840237 DOI: 10.3389/fnbeh.2018.00034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/14/2018] [Indexed: 01/04/2023] Open
Abstract
The Dopamine receptor D4 gene (DRD4) has been previously linked to financial risk-taking propensity. Past works demonstrated that individuals with a specific variant of the DRD4 gene (7R+) are more risk-seeking than people without it (7R−). The most prominent explanation for this effect is the fact that 7R+ individuals are less sensitive to dopamine and thus seek more stimulation to generate “normal” dopaminergic activity and feel pleasure. However, results about this relationship have not been conclusive, and some revealed a lack of the relationship. In the current work, we tested if those unclear results might be explained by the motivation that underlies the risk-taking activity; i.e., if people take risks to feel excitement or if they take risk to obtain a specific goal. In our study we tested the differences in risk-taking between 7R+ and 7R− among people who are experienced in financial risk-taking (113 investors) and non-experienced financial decision makers (104 non-investors). We measured risk-taking propensity with the Holt-Laury test and the Stimulating-Instrumental Risk Inventory. Moreover, we asked investors about their motivations for engaging in investment activity. Our study is the next one to report a lack of differences in risk-taking between 7R+ and 7R− individuals. As well, our results did not indicate any differences between the 7R+ and 7R− investors in motivation to engage in investment activity. We only observed that risk-taking propensity was higher among investors than non-investors and this was noticed for all measures. More research is needed to better understand the genetic foundations of risk-taking, which could answer the question about the substantial variation in the domain of risky financial decisions.
Collapse
Affiliation(s)
- Rafał Muda
- Faculty of Economics, Maria Curie-Sklodowska University, Lublin, Poland
| | - Mariusz Kicia
- Faculty of Economics, Maria Curie-Sklodowska University, Lublin, Poland
| | | | - Michał Ginszt
- Department of Rehabilitation and Physiotherapy, Medical University of Lublin, Lublin, Poland
| | - Agata Filip
- Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, Lublin, Poland
| | - Piotr Gawda
- Department of Rehabilitation and Physiotherapy, Medical University of Lublin, Lublin, Poland
| | - Piotr Majcher
- Department of Rehabilitation and Physiotherapy, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
11
|
Bonvicini C, Faraone SV, Scassellati C. Common and specific genes and peripheral biomarkers in children and adults with attention-deficit/hyperactivity disorder. World J Biol Psychiatry 2018; 19:80-100. [PMID: 28097908 PMCID: PMC5568996 DOI: 10.1080/15622975.2017.1282175] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Elucidating the biological mechanisms involved in attention-deficit/hyperactivity disorder (ADHD) has been challenging. Relatively unexplored is the fact that these mechanisms can differ with age. METHODS We present an overview on the major differences between children and adults with ADHD, describing several studies from genomics to metabolomics performed in ADHD children and in adults (cADHD and aADHD, respectively). A systematic search (up until February 2016) was conducted. RESULTS From a PRISMA flow-chart, a total of 350 and 91 genomics and metabolomics studies were found to be elligible for cADHD and aADHD, respectively. For children, associations were found for genes belonging to dopaminergic (SLC6A3, DRD4 and MAOA) and neurodevelopmental (LPHN3 and DIRAS2) systems and OPRM1 (Yates corrected P = 0.016; OR = 2.27 95%CI: 1.15-4.47). Studies of adults have implicated circadian rhythms genes, HTR2A, MAOB and a more generic neurodevelopmental/neurite outgrowth network (BCHE, SNAP25, BAIAP2, NOS1/NO, KCNIP4 and SPOCK3; Yates corrected P = 0.007; OR = 3.30 95%CI: 1.33-8.29). In common among cADHD and aADHD, the most significant findings are for oxidative stress proteins (MAD, SOD, PON1, ARES, TOS, TAS and OSI), and, in the second level, DISC1, DBH, DDC, microRNA and adiponectin. CONCLUSIONS Through a convergent functional genomics, this review contributes to clarification of which genetic/biological mechanisms differ with age. The effects of some genes do not change throughout the lifetime, whereas others are linked to age-specific stages. Additional research and further studies are needed to generate firmer conclusions that might someday be useful for predicting the remission and persistence of the disorder. Despite the limitations, some of these genes/proteins could be potential useful biomarkers to discriminate cADHD from aADHD.
Collapse
Affiliation(s)
- Cristian Bonvicini
- Genetics Unit, IRCCS “Centro S. Giovanni di Dio” Fatebenefratelli, Brescia, Italy
| | - Stephen V. Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA; K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Catia Scassellati
- Genetics Unit, IRCCS “Centro S. Giovanni di Dio” Fatebenefratelli, Brescia, Italy
| |
Collapse
|
12
|
Abstract
Oppositional defiant disorder (ODD) is diagnosed broadly on the basis of frequent and persistent angry or irritable mood, argumentativeness/defiance, and vindictiveness. Since its inception in the third Diagnostic and Statistical Manual of Mental Disorders, epidemiological and longitudinal studies have strongly suggested a distinct existence of ODD that is different from other closely related externalizing disorders, with different course and outcome and possibly discrete subtypes. However, several issues, such as symptom threshold, dimensional versus categorical conceptualization, and sex-specific symptoms, are yet to be addressed. Although ODD was found to be highly heritable, no genetic polymorphism has been identified with confidence. There has been a definite genetic overlap with other externalizing disorders. Studies have begun to explore its epigenetics and gene–environment interaction. Neuroimaging findings converge to implicate various parts of the prefrontal cortex, amygdala, and insula. Alteration in cortisol levels has also been demonstrated consistently. Although a range of environmental factors, both familial and extrafamilial, have been studied in the past, current research has combined these with other biological parameters. Psychosocial treatment continues to be time-tested and effective. These include parental management training, school-based training, functional family therapy/brief strategic family therapy, and cognitive behavior therapy. Management of severe aggression and treatment of co-morbid disorders are indications for pharmacotherapy. In line with previous conceptualization of chronic irritability as a bipolar spectrum abnormality, most studies have explored antipsychotics and mood stabilizers in the management of aggression, with limited effects.
Collapse
Affiliation(s)
- Abhishek Ghosh
- Drug De-addiction and Treatment Centre, Department of Psychiatry, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh
| | - Anirban Ray
- Department of Psychiatry, Institute of Psychiatry, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Aniruddha Basu
- Drug De-addiction and Treatment Centre, Department of Psychiatry, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh
| |
Collapse
|
13
|
Pellegrini S, Palumbo S, Iofrida C, Melissari E, Rota G, Mariotti V, Anastasio T, Manfrinati A, Rumiati R, Lotto L, Sarlo M, Pietrini P. Genetically-Driven Enhancement of Dopaminergic Transmission Affects Moral Acceptability in Females but Not in Males: A Pilot Study. Front Behav Neurosci 2017; 11:156. [PMID: 28900390 PMCID: PMC5581873 DOI: 10.3389/fnbeh.2017.00156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/08/2017] [Indexed: 11/13/2022] Open
Abstract
Moral behavior has been a key topic of debate for philosophy and psychology for a long time. In recent years, thanks to the development of novel methodologies in cognitive sciences, the question of how we make moral choices has expanded to the study of neurobiological correlates that subtend the mental processes involved in moral behavior. For instance, in vivo brain imaging studies have shown that distinct patterns of brain neural activity, associated with emotional response and cognitive processes, are involved in moral judgment. Moreover, while it is well-known that responses to the same moral dilemmas differ across individuals, to what extent this variability may be rooted in genetics still remains to be understood. As dopamine is a key modulator of neural processes underlying executive functions, we questioned whether genetic polymorphisms associated with decision-making and dopaminergic neurotransmission modulation would contribute to the observed variability in moral judgment. To this aim, we genotyped five genetic variants of the dopaminergic pathway [rs1800955 in the dopamine receptor D4 (DRD4) gene, DRD4 48 bp variable number of tandem repeat (VNTR), solute carrier family 6 member 3 (SLC6A3) 40 bp VNTR, rs4680 in the catechol-O-methyl transferase (COMT) gene, and rs1800497 in the ankyrin repeat and kinase domain containing 1 (ANKK1) gene] in 200 subjects, who were requested to answer 56 moral dilemmas. As these variants are all located in genes belonging to the dopaminergic pathway, they were combined in multilocus genetic profiles for the association analysis. While no individual variant showed any significant effects on moral dilemma responses, the multilocus genetic profile analysis revealed a significant gender-specific influence on human moral acceptability. Specifically, those genotype combinations that improve dopaminergic signaling selectively increased moral acceptability in females, by making their responses to moral dilemmas more similar to those provided by males. As females usually give more emotionally-based answers and engage the "emotional brain" more than males, our results, though preliminary and therefore in need of replication in independent samples, suggest that this increase in dopamine availability enhances the cognitive and reduces the emotional components of moral decision-making in females, thus favoring a more rationally-driven decision process.
Collapse
Affiliation(s)
- Silvia Pellegrini
- Department of Experimental and Clinical Medicine, University of PisaPisa, Italy
| | - Sara Palumbo
- Department of Surgical, Medical, Molecular Pathology and Critical Care, University of PisaPisa, Italy
| | | | - Erika Melissari
- Department of Surgical, Medical, Molecular Pathology and Critical Care, University of PisaPisa, Italy
| | - Giuseppina Rota
- Clinical Psychology Branch, Azienda Ospedaliero-Universitaria PisanaPisa, Italy
| | - Veronica Mariotti
- Department of Experimental and Clinical Medicine, University of PisaPisa, Italy
| | - Teresa Anastasio
- Department of Experimental and Clinical Medicine, University of PisaPisa, Italy
| | - Andrea Manfrinati
- Applied Research Division for Cognitive and Psychological Science, European Institute of OncologyMilan, Italy
| | - Rino Rumiati
- Department of Developmental Psychology and Socialization and Center for Cognitive Neuroscience, University of PadovaPadova, Italy
| | - Lorella Lotto
- Department of Developmental Psychology and Socialization and Center for Cognitive Neuroscience, University of PadovaPadova, Italy
| | - Michela Sarlo
- Department of General Psychology and Center for Cognitive Neuroscience, University of PadovaPadova, Italy
| | | |
Collapse
|
14
|
Family-based association study of DRD4 gene in methylphenidate-responded Attention Deficit/Hyperactivity Disorder. PLoS One 2017; 12:e0173748. [PMID: 28282463 PMCID: PMC5345875 DOI: 10.1371/journal.pone.0173748] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/24/2017] [Indexed: 11/24/2022] Open
Abstract
The 48-basepair (48-bp) variable number tandem repeat (VNTR) polymorphism in exon 3 of the dopamine receptor D4 gene (DRD4) is implicated in the etiology of attention-deficit/ hyperactivity disorder (ADHD). In particular, ADHD in European-ancestry population is associated with an increased prevalence of the 7-repeat (7R) allele of the exon 3 VNTR. However, it is intriguing to note that the 7R allele has been found to be of very low prevalence in the Chinese general population. In a previous case-control study, our research team had found that the 7R allele was similarly absent in Chinese ADHD children in Hong Kong. Instead, there was an increased prevalence of the 2R allele in Chinese ADHD children. Interestingly, in Asian samples, the 2R allele had been found to be an evolutionary derivative of the 7R allele with equivalent biochemical functionality. So, the finding of an association between ADHD and 2R allele in Chinese population does not exactly contradict the original 7R allele finding in European-ancestry population. However, given the potential pitfall of population stratification in the previous case-control design, this current study tested the 2R allele and ADHD association using a methodologically more rigorous family-based approach on 33 Chinese ADHD probands who had favorable clinical responses to stimulant medication (methylphenidate). Haplotype Relative Risk (HRR) analysis and Transmission Disequilibrium Test (TDT) both showed a significant preferential transmission of the 2R allele from the biological parents to ADHD probands (pone-tailed = 0.038, OR = 2.04; pone-tailed = 0.048, OR = 2.29, respectively). A second hypothesis speculates that it is the deviation, including 7R and 2R alleles, from the conserved ancestral 4R allele which confers risk to ADHD. Thus, a preferential transmission of non-4R alleles, against the 4R allele, from biological parents to their ADHD probands is predicted. Both HRR analysis and TDT confirmed such prediction (pone-tailed = 0.029, OR = 2.07; pone-tailed = 0.032, OR = 2.43, respectively). This study re-confirmed the original finding of a previous study that in Chinese population, the 2R allele of the DRD4 exon 3 VNTR was related to ADHD. This endorses the general thesis that DRD4 exon 3 VNTR polymorphism is related to ADHD, despite that the exact length or number of repeats of the associated alleles varies across ethnicity. This in turn supports the dopamine dysregulation theory of ADHD.
Collapse
|
15
|
Szekely A, Kotyuk E, Bircher J, Vereczkei A, Balota DA, Sasvari-Szekely M, Ronai Z. Association between Age and the 7 Repeat Allele of the Dopamine D4 Receptor Gene. PLoS One 2016; 11:e0167753. [PMID: 27992450 PMCID: PMC5167255 DOI: 10.1371/journal.pone.0167753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/18/2016] [Indexed: 01/08/2023] Open
Abstract
Longevity is in part (25%) inherited, and genetic studies aim to uncover allelic variants that play an important role in prolonging life span. Results to date confirm only a few gene variants associated with longevity, while others show inconsistent results. However, GWAS studies concentrate on single nucleotide polymorphisms, and there are only a handful of studies investigating variable number of tandem repeat variations related to longevity. Recently, Grady and colleagues (2013) reported a remarkable (66%) accumulation of those carrying the 7 repeat allele of the dopamine D4 receptor gene in a large population of 90-109 years old Californian centenarians, as compared to an ancestry-matched young population. In the present study we demonstrate the same association using continuous age groups in an 18-97 years old Caucasian sample (N = 1801, p = 0.007). We found a continuous pattern of increase from 18-75, however frequency of allele 7 carriers decreased in our oldest age groups. Possible role of gene-environment interaction effects driven by historical events are discussed. In accordance with previous findings, we observed association preferentially in females (p = 0.003). Our results underlie the importance of investigating non-disease related genetic variants as inherited components of longevity, and confirm, that the 7-repeat allele of the dopamine D4 receptor gene is a longevity enabling genetic factor, accumulating in the elderly female population.
Collapse
Affiliation(s)
- Anna Szekely
- Institute of Psychology, Eötvös Loránd University, Budapest, Hungary
| | - Eszter Kotyuk
- Institute of Psychology, Eötvös Loránd University, Budapest, Hungary
- Postdoctoral Research Program, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| | - Julianna Bircher
- Institute of Psychology, Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Psychology, Eötvös Loránd University, Budapest, Hungary
| | - Andrea Vereczkei
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - David A. Balota
- Department of Psychology, Washington University in St. Louis, United States of America
| | - Maria Sasvari-Szekely
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Zsolt Ronai
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
16
|
Qin L, Liu W, Ma K, Wei J, Zhong P, Cho K, Yan Z. The ADHD-linked human dopamine D4 receptor variant D4.7 induces over-suppression of NMDA receptor function in prefrontal cortex. Neurobiol Dis 2016; 95:194-203. [PMID: 27475724 PMCID: PMC5391260 DOI: 10.1016/j.nbd.2016.07.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 06/16/2016] [Accepted: 07/25/2016] [Indexed: 12/15/2022] Open
Abstract
The human dopamine D4 receptor (hD4R) variants with long tandem repeats in the third intracellular loop have been strongly associated with attention deficit hyperactivity disorder (ADHD) and risk taking behaviors. To understand the potential molecular mechanism underlying the connection, we have investigated the synaptic function of human D4R polymorphism by virally expressing the ADHD-linked 7-repeat allele, hD4.7, or its normal counterpart, hD4.4, in the prefrontal cortex (PFC) of D4R knockout mice. We found that hD4R bound to the SH3 domain of PSD-95 in a state-dependent manner. Activation of hD4.7 caused more reduction of NR1/PSD-95 binding and NR1 surface expression than hD4.4 in PFC slices. Moreover, the NMDAR-mediated excitatory postsynaptic currents (NMDAR-EPSC) in PFC pyramidal neurons were suppressed to a larger extent by hD4.7 than hD4.4 activation. Direct stimulation of NMDARs with the partial agonist d-cycloserine prevented the NMDAR hypofunction induced by hD4.7 activation. Moreover, hD4.7-expressing mice exhibited the increased exploratory and novelty seeking behaviors, mimicking the phenotypic hallmark of human ADHD. d-cycloserine administration ameliorated the ADHD-like behaviors in hD4.7-expressing mice. Our results suggest that over-suppression of NMDAR function may underlie the role of hD4.7 in ADHD, and enhancing NMDAR signaling may be a viable therapeutic strategy to ADHD humans carrying the D4.7 allele.
Collapse
Affiliation(s)
- Luye Qin
- Dept. of Physiology & Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | - Wenhua Liu
- Dept. of Physiology & Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA; School of Life Science, Zhaoqing University, Zhaoqing 526061, China
| | - Kaijie Ma
- Dept. of Physiology & Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | - Jing Wei
- Dept. of Physiology & Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | - Ping Zhong
- Dept. of Physiology & Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | - Kei Cho
- The MRC Centre for Synaptic Plasticity, University of Bristol Whitson, Bristol, UK
| | - Zhen Yan
- Dept. of Physiology & Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA.
| |
Collapse
|
17
|
Taub DR, Page J. Molecular Signatures of Natural Selection for Polymorphic Genes of the Human Dopaminergic and Serotonergic Systems: A Review. Front Psychol 2016; 7:857. [PMID: 27375535 PMCID: PMC4896960 DOI: 10.3389/fpsyg.2016.00857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022] Open
Abstract
A large body of research has examined the behavioral and mental health consequences of polymorphisms in genes of the dopaminergic and serotonergic systems. Along with this, there has been considerable interest in the possibility that these polymorphisms have developed and/or been maintained due to the action of natural selection. Episodes of natural selection on a gene are expected to leave molecular “footprints” in the DNA sequences of the gene and adjacent genomic regions. Here we review the research literature investigating molecular signals of selection for genes of the dopaminergic and serotonergic systems. The gene SLC6A4, which codes for a serotonin transport protein, was the one gene for which there was consistent support from multiple studies for a selective episode. Positive selection on SLC6A4 appears to have been initiated ∼ 20–25,000 years ago in east Asia and possibly in Europe. There are scattered reports of molecular signals of selection for other neurotransmitter genes, but these have generally failed at replication across studies. In spite of speculation in the literature about selection on these genes, current evidence from population genomic analyses supports selectively neutral processes, such as genetic drift and population dynamics, as the principal drivers of recent evolution in dopaminergic and serotonergic genes other than SLC6A4.
Collapse
Affiliation(s)
- Daniel R Taub
- Department of Biology, Southwestern University, Georgetown TX, USA
| | - Joshua Page
- Department of Biology, Southwestern University, GeorgetownTX, USA; School of Medicine, Washington University, St LouisMO, USA
| |
Collapse
|
18
|
Attention-deficit hyperactivity disorder in adults: A systematic review and meta-analysis of genetic, pharmacogenetic and biochemical studies. Mol Psychiatry 2016; 21:872-84. [PMID: 27217152 PMCID: PMC5414093 DOI: 10.1038/mp.2016.74] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/09/2016] [Accepted: 04/01/2016] [Indexed: 01/16/2023]
Abstract
The adult form of attention-deficit/hyperactivity disorder has a prevalence of up to 5% and is the most severe long-term outcome of this common disorder. Family studies in clinical samples as well as twin studies suggest a familial liability and consequently different genes were investigated in association studies. Pharmacotherapy with methylphenidate (MPH) seems to be the first-line treatment of choice in adults with attention-deficit hyperactive disorder (ADHD) and some studies were conducted on the genes influencing the response to this drug. Finally some peripheral biomarkers were identified in ADHD adult patients. We believe this work is the first systematic review and meta-analysis of candidate gene association studies, pharmacogenetic and biochemical (metabolomics) studies performed in adults with ADHD to identify potential genetic, predictive and peripheral markers linked specifically to ADHD in adults. After screening 5129 records, we selected 87 studies of which 61 were available for candidate gene association studies, 5 for pharmacogenetics and 21 for biochemical studies. Of these, 15 genetic, 2 pharmacogenetic and 6 biochemical studies were included in the meta-analyses. We obtained an association between adult ADHD and the gene BAIAP2 (brain-specific angiogenesis inhibitor 1-associated protein 2), even after Bonferroni correction, with any heterogeneity in effect size and no publication bias. If we did not apply the Bonferroni correction, a trend was found for the carriers allele 9R of dopamine transporter SLC6A3 40 bp variable tandem repeat polymorphism (VNTR) and for 6/6 homozygotes of SLC6A3 30 bp VNTR. Negative results were obtained for the 9-6 haplotype, the dopamine receptor DRD4 48 bp VNTR, and the enzyme COMT SNP rs4680. Concerning pharmacogenetic studies, no association was found for the SLC6A3 40 bp and response to MPH with only two studies selected. For the metabolomics studies, no differences between ADHD adults and controls were found for salivary cortisol, whereas lower serum docosahexaenoic acid (DHA) levels were found in ADHD adults. This last association was significant even after Bonferroni correction and in absence of heterogeneity. Other polyunsaturated fatty acids (PUFAs) such as AA (arachidonic acid), EPA (eicosapentaenoic acid) and DyLA (dihomogammalinolenic acid) levels were not different between patients and controls. No publication biases were observed for these markers. Genes linked to dopaminergic, serotoninergic and noradrenergic signaling, metabolism (DBH, TPH1, TPH2, DDC, MAOA, MAOB, BCHE and TH), neurodevelopment (BDNF and others), the SNARE system and other forty genes/proteins related to different pathways were not meta-analyzed due to insufficient data. In conclusion, we found that there were not enough genetic, pharmacogenetic and biochemical studies of ADHD in adults and that more investigations are needed. Moreover we confirmed a significant role of BAIAP2 and DHA in the etiology of ADHD exclusively in adults. Future research should be focused on the replication of these findings and to assess their specificity for ADHD.
Collapse
|
19
|
Akutagava-Martins GC, Rohde LA, Hutz MH. Genetics of attention-deficit/hyperactivity disorder: an update. Expert Rev Neurother 2016; 16:145-56. [DOI: 10.1586/14737175.2016.1130626] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Zhong P, Liu W, Yan Z. Aberrant regulation of synchronous network activity by the attention-deficit/hyperactivity disorder-associated human dopamine D4 receptor variant D4.7 in the prefrontal cortex. J Physiol 2015; 594:135-47. [PMID: 26541360 DOI: 10.1113/jp271317] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/29/2015] [Indexed: 01/28/2023] Open
Abstract
KEY POINTS The hD4.7 variant has been linked to attention-deficit/hyperactivity disorder (ADHD); however, the underlying mechanism is unknown. We found that activation of hD4.7 induced over-suppression of glutamatergic excitatory network bursts and under-suppression of GABAergic inhibitory network bursts in the prefrontal cortex (PFC) circuitry. Methylphenidate, a psychostimulant drug used to treat ADHD, normalized the effects of hD4.7 on synchronous network bursts in PFC pyramidal neurons. The findings of the present study suggest that the aberrant regulation of PFC synchronous network activity by hD4.7 may underlie its involvement in ADHD. A unique feature of the human D4 receptor (hD4 R) gene is the existence of a large number of polymorphisms in exon 3 coding for the third intracellular loop, which consists of a variable number of tandem repeats. The hD4 R variants with long repeats have been linked to attention-deficit/hyperactivity disorder (ADHD); however, the underlying mechanism is unknown. Emerging evidence suggests that selective attention is controlled by the rhythmic synchronization in the prefrontal cortex (PFC) and its connected networks. In the present study, we examined the role of hD4 R variants in regulating PFC synchronous network activity. D4 R knockout mice with viral infection of hD4.4 or hD4.7 in the medial PFC were used. Whole-cell patch-clamp recordings were performed to examine the effects of activating hD4.x on the spontaneous large scale correlated activity in PFC pyramidal neurons. We found that, compared to the normal four-repeat variant hD4.4, the ADHD-linked variant hD4.7 induces more suppression of glutamatergic excitatory network bursts and less suppression of GABAergic inhibitory network bursts in the PFC circuitry. Methylphenidate, a psychostimulant drug used to treat ADHD, normalized the effects of hD4.7 on synchronous network bursts in PFC pyramidal neurons. These results reveal the differential effects of hD4 R variants on the integrated excitability of PFC circuits. It is suggested that the aberrant regulation of PFC network activity by hD4.7 may underlie its involvement in ADHD. The methylphenidate-induced normalization of synaptic circuitry regulation may contribute to its effectiveness in ADHD treatment.
Collapse
Affiliation(s)
- Ping Zhong
- Department of Physiology & Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA.,VA Western New York Healthcare System, Buffalo, NY, USA
| | - Wenhua Liu
- Department of Physiology & Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA.,School of Lifescience, Zhaoqing University, Zhaoqing, China
| | - Zhen Yan
- Department of Physiology & Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA.,VA Western New York Healthcare System, Buffalo, NY, USA
| |
Collapse
|
21
|
Gehricke JG, Swanson J, Duong S, Nguyen J, Wigal T, Fallon J, Caburian C, Muftuler LT, Moyzis R. Increased brain activity to unpleasant stimuli in individuals with the 7R allele of the DRD4 gene. Psychiatry Res 2015; 231:58-63. [PMID: 25481571 PMCID: PMC4272659 DOI: 10.1016/j.pscychresns.2014.10.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 03/27/2014] [Accepted: 10/27/2014] [Indexed: 01/06/2023]
Abstract
The aim of the study was to examine functional brain activity in response to unpleasant images in individuals with the 7-repeat (7R) allele compared to individuals with the 4-repeat (4R) allele of the dopamine receptor D4 (DRD4) gene (VNTR in exon 3). Based on the response ready hypothesis, individuals with the DRD4-4R/7R genotype were expected to show greater functional brain activity in response to unpleasant compared to neutral stimuli in specific regions of the frontal, temporal, parietal and limbic lobes, which form the networks involved in attentional, emotional, and preparatory responses. Functional Magnetic Resonance Imaging activity was studied in 26 young adults (13 with the DRD4-4R/7R genotype and 13 with the DRD4-4R/4R genotype). Participants were asked to look at and subjectively rate unpleasant and neutral images. Results showed increased brain activity in response to unpleasant images compared to neutral images in the right temporal lobe in participants with the DRD4-4R/7R genotype versus participants with the DRD4-4R/4R genotype. The increase in right temporal lobe activity in individuals with DRD4-4R/7R suggests greater involvement in processing negative emotional stimuli. Intriguingly, no differences were found between the two genotypes in the subjective ratings of the images. The findings corroborate the response ready hypothesis, which suggests that individuals with the 7R allele are more responsive to negative emotional stimuli compared to individuals with the 4R allele of the DRD4 gene.
Collapse
Affiliation(s)
- Jean-G. Gehricke
- Department of Pediatrics, University of California, Irvine,
Irvine CA, USA,The Center for Autism & Neurodevelopmental
Disorders, Santa Ana, CA 92705, USA,Corresponding author: University of California,
Irvine, The Center for Autism & Neurodevelopmental Disorders, 2500 Red
Hill Avenue, Ste. 100, Santa Ana, CA 92705, USA. Tel.: + 1 949-267-0484.
(J.-G. Gehricke)
| | - James Swanson
- Department of Pediatrics, University of California, Irvine,
Irvine CA, USA
| | - Sophie Duong
- Department of Pediatrics, University of California, Irvine,
Irvine CA, USA
| | - Jenny Nguyen
- The Center for Autism & Neurodevelopmental
Disorders, Santa Ana, CA 92705, USA
| | - Timothy Wigal
- Department of Pediatrics, University of California, Irvine,
Irvine CA, USA
| | - James Fallon
- Department of Psychiatry and Human Behavior, University of
California, Irvine, Irvine CA, USA
| | - Cyrus Caburian
- The Center for Autism & Neurodevelopmental
Disorders, Santa Ana, CA 92705, USA
| | - L. Tugan Muftuler
- Department of Neurosurgery, Medical College of Wisconsin,
Milwaukee, WI, USA
| | - Robert Moyzis
- Department of Biological Chemistry, College of Medicine and
Institute of Genomics and Bioinformatics, University of California, Irvine, Irvine
CA, USA
| |
Collapse
|
22
|
KHAN SIMI, THAKUR SUNIL, SINGH HUIDROMSURAJ, SARASWATHY KALLURNAVA. Dopamine receptor D4 (DRD4) gene polymorphism among Gaddi tribe of Himachal Pradesh. J Genet 2014. [DOI: 10.1007/s12041-014-0453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Aguirre-Samudio AJ, Cruz-Fuentes CS, González-Sobrino BZ, Gutiérrez-Pérez V, Medrano-González L. Haplotype and nucleotide variation in the exon 3-VNTR of the DRD4 gene from indigenous and urban populations of Mexico. Am J Hum Biol 2014; 26:682-9. [PMID: 24979719 DOI: 10.1002/ajhb.22581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 05/23/2014] [Accepted: 06/09/2014] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE To describe the population structure of the 48-bp variable number of tandem repeats (VNTR), located in exon 3 of the dopamine receptor D4 gene (DRD4), in 41 Tarahumara from northern Mexico, 20 Mixe from southern Mexico, and 169 people from Mexico City. METHODS Genotypes for the DRD4-VNTR were determined, from which 15 Tarahumara, eight Mixe, and 37 urban homozygous individuals were sequenced. Repeat-allele frequencies were compared with other world populations. RESULTS The DRD4-VNTR variation in Mexico City appeared similar to the world mean. For the Mixe and Maya, DRD4-VNTR diversity appeared closer to South American groups whereas the Tarahumara were similar to North American groups. People from Mexico City and the Mixe exhibited attributes of a large and admixed population and an isolated population, respectively. The Tarahumara showed endogamy associated with a substructure as suggested by a preliminary regional differentiation. For the DRD4-VNTR and/or the adjacent 5'-173 bp sequence, the three populations exhibited negative Tajima's D. Two new VNTR haplotypes were discovered: one in Mexico City and another among the Tarahumara. CONCLUSIONS A differentiation in the DRD4-VNTR of global relevance occurs between northern and southern populations of Mexico suggesting that the Mexican Trans-volcanic Belt has been a major frontier for human dispersion in the Americas. Ancient trespass of this barrier appears thus related to a major change in the population structure of the DRD4-VNTR. Distinctive and independent patterns of DRD4-VNTR diversity occur among the two Mexican indigenous populations by a still undefined combination of drift and selection.
Collapse
Affiliation(s)
- Ana Julia Aguirre-Samudio
- Departamento de Genética Psiquiátrica, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México, DF, México; Laboratorio de Antropología Genética, Instituto de Investigaciones Antropológicas, Universidad Nacional Autónoma de México, México, DF, México; Programa de Becas Posdoctorales, Coordinación de Humanidades, Instituto de Investigaciones Antropológicas, Universidad Nacional Autónoma de México, México, DF, México
| | | | | | | | | |
Collapse
|
24
|
Akutagava-Martins GC, Salatino-Oliveira A, Kieling CC, Rohde LA, Hutz MH. Genetics of attention-deficit/hyperactivity disorder: current findings and future directions. Expert Rev Neurother 2014; 13:435-45. [DOI: 10.1586/ern.13.30] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Michealraj KA, Jatana N, Jafurulla, Narayanan L, Chattopadhyay A, Thelma BK. Functional characterization of rare variants in human dopamine receptor D4 gene by genotype-phenotype correlations. Neuroscience 2014; 262:176-89. [PMID: 24406443 DOI: 10.1016/j.neuroscience.2013.12.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/28/2013] [Accepted: 12/20/2013] [Indexed: 01/11/2023]
Abstract
Next generation sequencing technologies have facilitated a notable shift from common disease common variant hypothesis to common disease rare variant, as also witnessed in recent literature on schizophrenia. Dopamine receptor D4 (DRD4), a G-protein-coupled receptor is associated with psychiatric disorders and has high affinity for atypical antipsychotic clozapine. We investigated the functional role of rare genetic variants in DRD4 which may have implications for translational medicine. CHO-K1 cells independently expressing four rare non-synonymous variants of DRD4 namely R237L, A281P, S284G located in the third cytosolic loop and V194G, located in the fifth transmembrane domain were generated. Their genotype-phenotype correlations were evaluated using [³H]spiperone binding, G-protein activation and molecular dynamics-simulation studies. A281P and S284G were functionally similar to wildtype (WT). With R237L, potency of dopamine and quinpirole reduced ∼sixfold and threefold respectively compared to WT; [³H]spiperone binding studies showed a reduction in total number of binding sites (∼40%) but not binding affinity, in silico docking studies revealed that binding of both dopamine and spiperone to R237L was structurally similar to WT. Of note, V194G variant failed to inhibit forskolin-stimulated adenylate cyclase activity and phosphorylate extracellular signal-regulated kinase; showed significant reduction in binding affinity (K(d)=2.16 nM) and total number of binding sites (∼66%) compared to WT in [³H]spiperone binding studies; and ligand docking studies showed that binding of dopamine and spiperone is superficial due to probable structural alteration. Transmembrane variant V194G in DRD4.4 results in functional alteration warranting continuing functional analysis of rare variants.
Collapse
Affiliation(s)
- K A Michealraj
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - N Jatana
- Bioinformatics Infrastructure Facility, Sri Venkateswara College, New Delhi, India
| | - Jafurulla
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - L Narayanan
- Bioinformatics Infrastructure Facility, Sri Venkateswara College, New Delhi, India
| | - A Chattopadhyay
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - B K Thelma
- Department of Genetics, University of Delhi South Campus, New Delhi, India.
| |
Collapse
|
26
|
Tovo-Rodrigues L, Rohde LA, Menezes AMB, Polanczyk GV, Kieling C, Genro JP, Anselmi L, Hutz MH. DRD4 rare variants in Attention-Deficit/Hyperactivity Disorder (ADHD): further evidence from a birth cohort study. PLoS One 2013; 8:e85164. [PMID: 24391992 PMCID: PMC3877354 DOI: 10.1371/journal.pone.0085164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 11/24/2013] [Indexed: 01/02/2023] Open
Abstract
The dopamine receptor D4 (DRD4) is one of the most studied candidate genes for Attention-Deficit/Hyperactivity Disorder (ADHD). An excess of rare variants and non-synonymous mutations in the VNTR region of 7R allele in ADHD subjects was observed in previous studies with clinical samples. We hypothesize that genetic heterogeneity in the VNTR is an important factor in the pathophysiology of ADHD. The subjects included in the present study are members of the 1993 Pelotas Birth Cohort Study (N=5,249). We conducted an association study with the 4,101 subjects who had DNA samples collected. The hyperactivity-inattention scores were assessed through the parent version of the Strengths and Difficulties Questionnaire at 11 and 15 years of age. The contribution of allele’s length and rare variants to high hyperactivity/inattention scores predisposition was evaluated by multivariate logistic regression. No effect of allele length was observed on high scores of hyperactivity-inattention. By contrast, when resequencing/haplotyping was conducted in a subsample, all 7R rare variants as well as non-synonymous 7R rare variants were associated with high hyperactivity/inattention scores (OR=2.561; P=0.024 and OR=3.216; P=0.008 respectively). A trend for association was observed with 4R rare variants. New coding mutations covered 10 novel motifs and many of them are previously unreported deletions leading to different stop codons. Our findings suggest a contribution of DRD4 7R rare variants to high hyperactivity-inattention scores in a population-based sample from a large birth cohort. These findings provide further evidence for an effect of DRD4 7R rare variants and allelic heterogeneity in ADHD genetic susceptibility.
Collapse
Affiliation(s)
- Luciana Tovo-Rodrigues
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luis A. Rohde
- Child and Adolescent Psychiatric Division, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), Brazil
| | - Ana M. B. Menezes
- Graduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Guilherme V. Polanczyk
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), Brazil
- Department of Psychiatry, Medical School and Research Support Center on Neurodevelopment and Mental Health, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Christian Kieling
- Child and Adolescent Psychiatric Division, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Julia P. Genro
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luciana Anselmi
- Child and Adolescent Psychiatric Division, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), Brazil
| | - Mara H. Hutz
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| |
Collapse
|
27
|
Olsson CA, Moyzis RK, Williamson E, Ellis JA, Parkinson-Bates M, Patton GC, Dwyer T, Romaniuk H, Moore EE. Gene-environment interaction in problematic substance use: interaction between DRD4 and insecure attachments. Addict Biol 2013; 18:717-26. [PMID: 22126256 DOI: 10.1111/j.1369-1600.2011.00413.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To investigate the combined effect of an exon III variable number tandem repeat in the dopamine receptor gene (DRD4) and insecure attachment style on risk for tobacco, cannabis and alcohol use problems in young adulthood. It was hypothesized that (1) individuals with 5, 6, 7 or 8 repeats (labelled 7R+) would be at increased risk for problematic drug use, and (2) risk for drug use would be further increased in individuals with 7R+ repeats who also have a history of insecure parent-child attachment relations. Data were drawn from the Victorian Adolescent Health Cohort Study, an eight-wave longitudinal study of adolescent and young adult development. DRD4 genotypes were available for 839 participants. Risk attributable to the combined effects of 7R+ genotype and insecure attachments was evaluated within a sufficient causes framework under the assumptions of additive interaction using a two-by-four table format with a common reference group. 7R+ alleles were associated with higher tobacco, cannabis and alcohol use (binging). Insecure attachments were associated with higher tobacco and cannabis use but lower alcohol use. For tobacco, there was evidence of interaction for anxious but not avoidant attachments. For cannabis, there was evidence of interaction for both anxious and avoidant attachments, although the interaction for anxious attachments was more substantial. There is no evidence of interaction for binge drinking. Results are consistent with a generic reward deficit hypothesis of drug addiction for which the 7R+ disposition may play a role. Interaction between 7R+ alleles and attachment insecurity may intensify risk for problematic tobacco and cannabis use.
Collapse
Affiliation(s)
- Craig A Olsson
- Department of Psychology, Deakin University, Australia Murdoch Children's Research Institute, Royal Children's Hospital, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Leo D, Gainetdinov RR. Transgenic mouse models for ADHD. Cell Tissue Res 2013; 354:259-71. [PMID: 23681253 PMCID: PMC3785710 DOI: 10.1007/s00441-013-1639-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/15/2013] [Indexed: 12/20/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a developmental disorder characterized by symptoms of inattention, impulsivity and hyperactivity that adversely affect many aspects of life. Whereas the etiology of ADHD remains unknown, growing evidence indicates a genetic involvement in the development of this disorder. The brain circuits associated with ADHD are rich in monoamines, which are involved in the mechanism of action of psychostimulants and other medications used to treat this disorder. Dopamine (DA) is believed to play a major role in ADHD but other neurotransmitters are certainly also involved. Genetically modified mice have become an indispensable tool used to analyze the contribution of genetic factors in the pathogenesis of human disorders. Although rodent models cannot fully recapitulate complex human psychiatric disorders such as ADHD, transgenic mice offer an opportunity to directly investigate in vivo the specific roles of novel candidate genes identified in ADHD patients. Several knock-out and transgenic mouse models have been proposed as ADHD models, mostly based on targeting genes involved in DA transmission, including the gene encoding the dopamine transporter (DAT1). These mutant models provided an opportunity to evaluate the contribution of dopamine-related processes to brain pathology, to dissect the neuronal circuitry and molecular mechanisms involved in the antihyperkinetic action of psychostimulants and to evaluate novel treatments for ADHD. New transgenic models mouse models targeting other genes have recently been proposed for ADHD. Here, we discuss the recent advances and pitfalls in modeling ADHD endophenotypes in genetically altered animals.
Collapse
Affiliation(s)
- Damiana Leo
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, Genoa, Italy,
| | | |
Collapse
|
29
|
El-Mallakh RS, McKenzie C. The dopamine D4/D2 receptor antagonist affinity ratio as a predictor of anti-aggression medication efficacy. Med Hypotheses 2013; 80:530-3. [DOI: 10.1016/j.mehy.2012.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/16/2012] [Accepted: 10/18/2012] [Indexed: 01/04/2023]
|
30
|
Abstract
Longevity is influenced by genetic and environmental factors. The brain's dopamine system may be particularly relevant, since it modulates traits (e.g., sensitivity to reward, incentive motivation, sustained effort) that impact behavioral responses to the environment. In particular, the dopamine D4 receptor (DRD4) has been shown to moderate the impact of environments on behavior and health. We tested the hypothesis that the DRD4 gene influences longevity and that its impact is mediated through environmental effects. Surviving participants of a 30-year-old population-based health survey (N = 310; age range, 90-109 years; the 90+ Study) were genotyped/resequenced at the DRD4 gene and compared with a European ancestry-matched younger population (N = 2902; age range, 7-45 years). We found that the oldest-old population had a 66% increase in individuals carrying the DRD4 7R allele relative to the younger sample (p = 3.5 × 10(-9)), and that this genotype was strongly correlated with increased levels of physical activity. Consistent with these results, DRD4 knock-out mice, when compared with wild-type and heterozygous mice, displayed a 7-9.7% decrease in lifespan, reduced spontaneous locomotor activity, and no lifespan increase when reared in an enriched environment. These results support the hypothesis that DRD4 gene variants contribute to longevity in humans and in mice, and suggest that this effect is mediated by shaping behavioral responses to the environment.
Collapse
|
31
|
Brody GH, Chen YF, Beach SRH, Kogan SM, Yu T, Diclemente RJ, Wingood GM, Windle M, Philibert RA. Differential sensitivity to prevention programming: a dopaminergic polymorphism-enhanced prevention effect on protective parenting and adolescent substance use. Health Psychol 2013; 33:182-91. [PMID: 23379386 DOI: 10.1037/a0031253] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate a genetic moderation effect of dopamine receptor-4 gene (DRD4) alleles that have 7 or more repeats on the efficacy of a preventive intervention to deter rural African American adolescents' substance use. METHODS Adolescents (N = 502, M age = 16 years) were assigned randomly to the Strong African American Families-Teen (SAAF-T) program or to a control condition and were followed for 22 months. Adolescents provided data on substance use, and both adolescents and their primary caregivers provided data on intervention-targeted protective parenting practices. RESULTS Male adolescents who carried at least one allele of DRD4 with 7 or more repeats who were assigned to the control condition evinced more substance use across 22 months than did (a) carriers of at least one allele of DRD4 with 7 or more repeats who were assigned to SAAF-T or (b) adolescents assigned to either condition who carried two alleles of DRD4 with 6 or fewer repeats. These findings were mediated by DRD4 × SAAF-T interaction effects on increases in intervention-targeted protective parenting practices, a mediated moderation effect. CONCLUSIONS The results imply that prevention effects on health-relevant outcomes for genetically susceptible individuals, such as carriers of at least one allele of DRD4 with 7 or more repeats, may be underestimated.
Collapse
Affiliation(s)
- Gene H Brody
- Center for Family Research, University of Georgia
| | - Yi-Fu Chen
- Center for Family Research, University of Georgia
| | | | - Steven M Kogan
- Department of Child and Family Development, University of Georgia
| | - Tianyi Yu
- Center for Family Research, University of Georgia
| | - Ralph J Diclemente
- Department of Behavioral Sciences and Health Education, Rollins School of Public Health, Emory University
| | - Gina M Wingood
- Department of Behavioral Sciences and Health Education, Rollins School of Public Health, Emory University
| | - Michael Windle
- Department of Behavioral Sciences and Health Education, Rollins School of Public Health, Emory University
| | | |
Collapse
|
32
|
Keck TM, Suchland KL, Jimenez CC, Grandy DK. Dopamine D4 receptor deficiency in mice alters behavioral responses to anxiogenic stimuli and the psychostimulant methylphenidate. Pharmacol Biochem Behav 2013; 103:831-41. [DOI: 10.1016/j.pbb.2012.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 11/30/2012] [Accepted: 12/08/2012] [Indexed: 12/31/2022]
|
33
|
SARASWATHY KALLURNAVA, MEITEI SANJENBAMYAIPHABA, SINGH HUIDROMSURAJ, JOSEPH ANTONETATERESA, MONDAL PRAKASHRANJAN, MURRY BENRITHUNG, SACHDEVA MOHINDERPAL, GHOSH PRADEEPKUMAR. Dopaminergic D4 receptor polymorphism among 24 populations of India: an anthropological insight. ANTHROPOL SCI 2013. [DOI: 10.1537/ase.130609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- KALLUR NAVA SARASWATHY
- Molecular Anthropology Laboratory, Department of Anthropology, University of Delhi, Delhi
| | | | - HUIDROM SURAJ SINGH
- Molecular Anthropology Laboratory, Department of Anthropology, University of Delhi, Delhi
| | | | - PRAKASH RANJAN MONDAL
- Molecular Anthropology Laboratory, Department of Anthropology, University of Delhi, Delhi
| | - BENRITHUNG MURRY
- Molecular Anthropology Laboratory, Department of Anthropology, University of Delhi, Delhi
| | - MOHINDER PAL SACHDEVA
- Molecular Anthropology Laboratory, Department of Anthropology, University of Delhi, Delhi
| | - PRADEEP KUMAR GHOSH
- Molecular Anthropology Laboratory, Department of Anthropology, University of Delhi, Delhi
| |
Collapse
|
34
|
Bergen AW, Javitz HS, Su L, He Y, Conti DV, Benowitz NL, Tyndale RF, Lerman C, Swan GE. The DRD4 exon III VNTR, bupropion, and associations with prospective abstinence. Nicotine Tob Res 2012; 15:1190-200. [PMID: 23212438 DOI: 10.1093/ntr/nts245] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION DRD4 Exon III Variable Number of Tandem Repeat (VNTR) variation was found to interact with bupropion to influence prospective smoking abstinence, in a recently published longitudinal analyses of N = 331 individuals from a randomized double-blind placebo-controlled trial of bupropion and intensive cognitive-behavioral mood management therapy. METHODS We used univariate, multivariate, and longitudinal logistic regression to evaluate gene, treatment, time, and interaction effects on point prevalence and continuous abstinence at end of treatment, 6 months, and 12 months, respectively, in N = 416 European ancestry participants in a double-blind pharmacogenetic efficacy trial randomizing participants to active or placebo bupropion. Participants received 10 weeks of pharmacotherapy and 7 sessions of behavioral therapy, with a target quit date 2 weeks after initiating both therapies. VNTR genotypes were coded with the long allele dominant resulting in 4 analysis categories. Covariates included demographics, dependence measures, depressive symptoms, and genetic ancestry. We also performed genotype-stratified secondary analyses. RESULTS We observed significant effects of time in longitudinal analyses of both abstinence outcomes, of treatment in individuals with VNTR long allele genotypes for both abstinence outcomes, and of covariates in some analyses. We observed non-significantly larger differences in active versus placebo effect sizes in individuals with VNTR long allele genotypes than in individuals without the VNTR long allele, in the directions previously reported. CONCLUSIONS VNTR by treatment interaction differences between these and previous analyses may be attributable to insufficient size of the replication sample. Analyses of multiple randomized clinical trials will enable identification and validation of factors mediating treatment response.
Collapse
Affiliation(s)
- Andrew W Bergen
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rivkin A, Alexander RC, Knighton J, Hutson PH, Wang XJ, Snavely DB, Rosah T, Watt AP, Reimherr FW, Adler LA. A randomized, double-blind, crossover comparison of MK-0929 and placebo in the treatment of adults with ADHD. J Atten Disord 2012; 16:664-74. [PMID: 22090395 DOI: 10.1177/1087054711423633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Preclinical models, receptor localization, and genetic linkage data support the role of D4 receptors in the etiology of ADHD. This proof-of-concept study was designed to evaluate MK-0929, a selective D4 receptor antagonist as treatment for adult ADHD. METHOD A randomized, double-blind, placebo-controlled, crossover study was conducted in adults with primary ADHD. The primary end point was changed from baseline in total score on the Adult ADHD Investigator Symptom Rating Scale following a 4-week treatment regimen. Additional measures included Clinical Global Impression-Severity Scale, Hospital Anxiety and Depression Scale, and Brown Attention Deficit Disorder Scale and D4 genotype analysis. RESULTS No statistically significant treatment differences were found between MK-0929 and placebo in any of the primary or secondary assessments. CONCLUSION Results from this study suggest that blockade of the D4 receptor alone is not efficacious in the treatment of adult ADHD.
Collapse
Affiliation(s)
- Anna Rivkin
- Merck Research Laboratories, North Wales, PA 19486, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tovo-Rodrigues L, Rohde LA, Roman T, Schmitz M, Polanczyk G, Zeni C, Marques FZC, Contini V, Grevet EH, Belmonte-de-Abreu P, Bau CHD, Hutz MH. Is there a role for rare variants in DRD4 gene in the susceptibility for ADHD? Searching for an effect of allelic heterogeneity. Mol Psychiatry 2012; 17:520-6. [PMID: 21403674 DOI: 10.1038/mp.2011.12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although several studies have demonstrated an association between the 7-repeat (7R) allele in the 48-bp variable number of tandem repeats (VNTRs) in the exon 3 at dopamine receptor D4 (DRD4) gene and attention-deficit/hyperactivity disorder (ADHD), others failed to replicate this finding. In this study, a total of 786 individuals with ADHD were genotyped for DRD4 exon 3 VNTR. All 7R homozygous subjects were selected for VNTR re-sequencing. Subjects homozygous for the 4R allele were selected paired by age, ancestry and disorder subtypes in order to have a sample as homogeneous as possible with 7R/7R individuals. Using these criteria, 103 individuals (66 with ADHD and 37 control individuals) were further investigated. An excess of rare variants were observed in the 7R alleles of ADHD patient when compared with controls (P=0.031). This difference was not observed in 4R allele. Furthermore, nucleotide changes that predict synonymous and non-synonymous substitutions were more common in the 7R sample (P=0.008 for total substitutions and P=0.043 for non-synonymous substitutions). In silico prediction of structural/functional alterations caused by these variants have also been observed. Our findings suggest that not only repeat length but also DNA sequence should be assessed to better understand the role of DRD4 exon 3 VNTR in ADHD genetic susceptibility.
Collapse
Affiliation(s)
- L Tovo-Rodrigues
- Departament of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Genetics of dopamine receptors and drug addiction. Hum Genet 2012; 131:803-22. [PMID: 22350797 DOI: 10.1007/s00439-012-1145-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 02/04/2012] [Indexed: 01/18/2023]
Abstract
Dopamine plays a key role in reward behavior, yet the association of drug dependence as a chronic, relapsing disorder with the genes encoding the various dopaminergic receptor subtypes remains difficult to delineate. In the context of subsequent genome-wide association (GWAS) research and post-GWAS investigations, we summarize the novel data that link genes encoding molecules involved in the dopaminergic system (dopamine receptors, transporter and enzymes in charge of its metabolism) to drug addiction. Recent reports indicate that the heritability of drug addiction should be high enough to allow a significant role for a specific set of genes, and the available genetic studies, which might not be already conclusive because of the heterogeneity of designs, methods and recruited samples, should support the idea of a significant role of at least one gene related to dopaminergic system. Evolutionary changes in primates and non-primate animals of genes coding for molecules involved in dopaminergic system highlight why addictive disorders are mainly limited to humans. Restricting the analyses to more specific intermediate phenotypes (or endophenotypes) such as attention allocation, stress reactivity, novelty seeking, behavioral disinhibition and impulsivity, instead of the broad addictive disorder concept can be instrumental to identify novel genes associated with these traits in the context of genome-wide studies.
Collapse
|
38
|
Yuan A, Chen G, Zhou Y, Bentley A, Rotimi C. A novel approach for the simultaneous analysis of common and rare variants in complex traits. Bioinform Biol Insights 2012; 6:1-9. [PMID: 22346348 PMCID: PMC3273305 DOI: 10.4137/bbi.s8852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Genome-wide association studies (GWAS) have been successful in detecting common genetic variants underlying common traits and diseases. Despite the GWAS success stories, the percent trait variance explained by GWAS signals, the so called "missing heritability" has been, at best, modest. Also, the predictive power of common variants identified by GWAS has not been encouraging. Given these observations along with the fact that the effects of rare variants are often, by design, unaccounted for by GWAS and the availability of sequence data, there is a growing need for robust analytic approaches to evaluate the contribution of rare variants to common complex diseases. Here we propose a new method that enables the simultaneous analysis of the association between rare and common variants in disease etiology. We refer to this method as SCARVA (simultaneous common and rare variants analysis). SCARVA is simple to use and is efficient. We used SCARVA to analyze two independent real datasets to identify rare and common variants underlying variation in obesity among participants in the Africa America Diabetes Mellitus (AADM) study and plasma triglyceride levels in the Dallas Heart Study (DHS). We found common and rare variants associated with both traits, consistent with published results.
Collapse
Affiliation(s)
- Ao Yuan
- National Human Genome Center, Howard University, Washington DC, USA
| | | | | | | | | |
Collapse
|
39
|
Bhaduri N, Das M, Das AB, Mukhopadhyay K. Dopamine receptor D4 exon 3 variable number of tandem repeat polymorphism: Distribution in eastern Indian population. INDIAN JOURNAL OF HUMAN GENETICS 2011; 13:54-8. [PMID: 21957346 PMCID: PMC3168159 DOI: 10.4103/0971-6866.34707] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND: A 48bp variable number of tandem repeat (VNTR), in the dopamine receptor D4 (DRD4), has been extensively studied in association with a variety of traits and neuropsychiatric disorders in different ethnic groups; the VNTR has been found to affect receptor binding. AIMS: This investigation, for the first time, compared distribution of DRD4 VNTR in different Indian populations from the eastern part of the country, belonging to Indo-Caucasoid and Indo-Mongoloid ethnicity. MATERIALS AND METHODS: 852 individuals were recruited and divided into six population groups; Brahmin, Kayastha, Scheduled Caste, Mahishya, Muslim and Manipuri (Meitei). Allele and genotype frequencies were compared among groups as well as with data available for south-western Indian population. RESULTS: A total of six alleles (2-7-repeats) were observed, of which the 4-repeat (4R) was most frequent. Gross genetic dissimilarities were noticed between the Indo-Caucasoid and Indo-Mongoloid ethnic groups. Muslim group lacked 5R and 7R, while Manipuri group exhibited a very high frequency of 2R. Populations from eastern India revealed lower 7R frequencies as compared to the south-western populations. CONCLUSIONS: The DRD4 VNTR has been reported to play important role in cognition and alleles with higher repeats have been found to be associated with novelty seeking and personality traits. The present comparative analysis of different eastern Indian population would be helpful in extending our knowledge on this particular DRD4 variant. It will also be useful in understanding the behavioural differences between populations in the light of their genetic make up.
Collapse
Affiliation(s)
- Nipa Bhaduri
- Manovikas Biomedical Research and Diagnostic Centre, 482, Madudah, Plot I-24, Sec.-J, E. M. Bypass, Kolkata - 700107, India
| | | | | | | |
Collapse
|
40
|
Sánchez-Mora C, Ribasés M, Casas M, Bayés M, Bosch R, Fernàndez-Castillo N, Brunso L, Jacobsen KK, Landaas ET, Lundervold AJ, Gross-Lesch S, Kreiker S, Jacob CP, Lesch KP, Buitelaar JK, Hoogman M, Kiemeney LALM, Kooij JJS, Mick E, Asherson P, Faraone SV, Franke B, Reif A, Johansson S, Haavik J, Ramos-Quiroga JA, Cormand B. Exploring DRD4 and its interaction with SLC6A3 as possible risk factors for adult ADHD: a meta-analysis in four European populations. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:600-12. [PMID: 21595008 DOI: 10.1002/ajmg.b.31202] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 04/25/2011] [Indexed: 01/20/2023]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a common behavioral disorder affecting about 4-8% of children. ADHD persists into adulthood in around 65% of cases, either as the full condition or in partial remission with persistence of symptoms. Pharmacological, animal and molecular genetic studies support a role for genes of the dopaminergic system in ADHD due to its essential role in motor control, cognition, emotion, and reward. Based on these data, we analyzed two functional polymorphisms within the DRD4 gene (120 bp duplication in the promoter and 48 bp VNTR in exon 3) in a clinical sample of 1,608 adult ADHD patients and 2,352 controls of Caucasian origin from four European countries that had been recruited in the context of the International Multicentre persistent ADHD CollaboraTion (IMpACT). Single-marker analysis of the two polymorphisms did not reveal association with ADHD. In contrast, multiple-marker meta-analysis showed a nominal association (P = 0.02) of the L-4R haplotype (dup120bp-48bpVNTR) with adulthood ADHD, especially with the combined clinical subtype. Since we previously described association between adulthood ADHD and the dopamine transporter SLC6A3 9R-6R haplotype (3'UTR VNTR-intron 8 VNTR) in the same dataset, we further tested for gene × gene interaction between DRD4 and SLC6A3. However, we detected no epistatic effects but our results rather suggest additive effects of the DRD4 risk haplotype and the SLC6A3 gene.
Collapse
Affiliation(s)
- Cristina Sánchez-Mora
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Matthews LJ, Butler PM. Novelty-seeking DRD4 polymorphisms are associated with human migration distance out-of-Africa after controlling for neutral population gene structure. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 145:382-9. [DOI: 10.1002/ajpa.21507] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 01/11/2011] [Indexed: 11/08/2022]
|
42
|
Das M, Das Bhowmik A, Bhaduri N, Sarkar K, Ghosh P, Sinha S, Ray A, Chatterjee A, Mukhopadhyay K. Role of gene-gene/gene-environment interaction in the etiology of eastern Indian ADHD probands. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:577-87. [PMID: 21216270 DOI: 10.1016/j.pnpbp.2010.12.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 12/23/2010] [Accepted: 12/23/2010] [Indexed: 11/20/2022]
Abstract
Associations between attention deficit hyperactivity disorder (ADHD) and genetic polymorphisms in the dopamine receptors, transporter and metabolizing enzymes have been reported in different ethnic groups. Gene variants may affect disease outcome by acting synergistically or antagonistically and thus their combined effect becomes an important aspect to study in the disease etiology. In the present investigation, interaction between ten functional polymorphisms in DRD4, DAT1, MAOA, COMT, and DBH genes were explored in the Indo-Caucasoid population. ADHD cases were recruited based on DSM-IV criteria. Peripheral blood samples were collected from ADHD probands (N=126), their parents (N=233) and controls (N=96) after obtaining informed written consent for participation. Genomic DNA was subjected to PCR based analysis of single nucleotide polymorphisms and variable number of tandem repeats (VNTRs). Data obtained was examined for population as well as family-based association analyses. While case-control analysis revealed higher occurrence of DAT1 intron 8 VNTR 5R allele (P=0.02) in cases, significant preferential transmission of the 7R-T (DRD4 exon3 VNTR-rs1800955) and 3R-T (MAOA-u VNTR-rs6323) haplotypes were noticed from parents to probands (P=0.02 and 0.002 respectively). Gene-gene interaction analysis revealed significant additive effect of DBH rs1108580 and DRD4 rs1800955 with significant main effects of DRD4 exon3 VNTR, DAT1 3'UTR and intron 8 VNTR, MAOA u-VNTR, rs6323, COMT rs4680, rs362204, DBH rs1611115 and rs1108580 thereby pointing towards a strong association of these markers with ADHD. Correlation between gene variants, high ADHD score and low DBH enzymatic activity was also noticed, especially in male probands. From these observations, an impact of the studied sites on the disease etiology could be speculated in this ethnic group.
Collapse
Affiliation(s)
- Manali Das
- Manovikas Biomedical Research and Diagnostic Centre, E.M. Bypass, Kolkata, 700107, India
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tovo-Rodrigues L, Callegari-Jacques SM, Petzl-Erler ML, Tsuneto L, Salzano FM, Hutz MH. Dopamine receptor D4 allele distribution in Amerindians: a reflection of past behavior differences? AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 143:458-64. [PMID: 20623607 DOI: 10.1002/ajpa.21358] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The DRD4 variable number of tandem repeats (VNTR) allele distribution of 172 Guarani (Kaiowá and Ñandeva subgroups) and Kaingang Brazilian Amerindians is reported. These results are integrated with those previously obtained for this ethnic group. Allele frequencies for the three populations are within the interval observed for 15 other Native American populations and show intermediate values between those observed in Amazonia and Patagonia. Significant differences in allele distribution between recent past hunter-gatherer and agriculturalist populations are observed, with an increase of the 7R allele among hunter-gatherers (P < 0.001). Analysis of molecular variance (AMOVA) and pairwise F(ST) data suggest three distinct sectors for the genetic landscape of Native South America: Andes, Center/Southeast region, and Amazonia. Common traits among hunter-gatherers such as novelty-seeking temperament, hyperactivity, and impulsivity could have been important and advantageous in new environments during America's prehistoric colonization.
Collapse
Affiliation(s)
- Luciana Tovo-Rodrigues
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, 91501-970 Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
44
|
Sheridan M, Drury S, McLaughlin K, Almas A. Early institutionalization: neurobiological consequences and genetic modifiers. Neuropsychol Rev 2010; 20:414-29. [PMID: 21042937 PMCID: PMC3100174 DOI: 10.1007/s11065-010-9152-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 10/18/2010] [Indexed: 11/26/2022]
Abstract
Children raised in the profound deprivation associated with institutionalization are at elevated risk for negative outcomes across a host of social and cognitive domains. This risk appears to be mitigated by early foster care or adoption into a family setting. Although pervasive developmental problems have been noted in a substantial proportion of previously institutionalized children, marked variation exists in the nature and severity of these deficits. Increasing evidence suggests that institutional deprivation impacts the developing brain, potentially underlying the wide range of outcomes with which it is associated. In the current review we examine the neural consequences of institutionalization and genetic factors associated with differences in outcome in an effort to characterize the consequences of early deprivation at a neurobiological level. Although the effects of institutional deprivation have been studied for more than 50 years much remains unanswered regarding the pathways through which institutionalization impacts child development. Through a more complete and nuanced assessment of the neural correlates of exposure and recovery as well as a better understanding of the individual factors involved we will be better able to delineate the impact of early adversity in the setting of severe social deprivation.
Collapse
|
45
|
Lacivita E, De Giorgio P, Lee IT, Rodeheaver SI, Weiss BA, Fracasso C, Caccia S, Berardi F, Perrone R, Zhang MR, Maeda J, Higuchi M, Suhara T, Schetz JA, Leopoldo M. Design, synthesis, radiolabeling, and in vivo evaluation of carbon-11 labeled N-[2-[4-(3-cyanopyridin-2-yl)piperazin-1-yl]ethyl]-3-methoxybenzamide, a potential positron emission tomography tracer for the dopamine D(4) receptors. J Med Chem 2010; 53:7344-55. [PMID: 20873719 DOI: 10.1021/jm100925m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we describe the design, synthesis, and evaluation of physicochemical and pharmacological properties of D(4) dopamine receptor ligands related to N-[2-[4-(4-chlorophenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide (2). Structural features were incorporated to increase affinity for the target receptor, to improve selectivity over D(2) and σ(1) receptors, to enable labeling with carbon-11 or fluorine-18, and to adjust lipophilicity within the range considered optimal for brain penetration and low nonspecific binding. Compounds 7 and 13 showed the overall best characteristics: nanomolar affinity for the D(4) receptor, >100-fold selectivity over D(2) and D(3) dopamine receptors, 5-HT(1A), 5-HT(2A), and 5-HT(2C) serotonin receptors and σ(1) receptors, and log P = 2.37-2.55. Following intraperitoneal administration in mice, both compounds rapidly entered the central nervous system. The methoxy of N-[2-[4-(3-cyanopyridin-2-yl)piperazin-1-yl]ethyl]-3-methoxybenzamide (7) was radiolabeled with carbon-11 and subjected to PET analysis in non-human primate. [(11)C]7 time-dependently accumulated to saturation in the posterior eye in the region of the retina, a tissue containing a high density of D(4) receptors.
Collapse
Affiliation(s)
- Enza Lacivita
- Dipartimento Farmaco-Chimico, Università degli Studi di Bari A Moro, Via Orabona 4, 70125 Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Smith TF. Meta-analysis of the heterogeneity in association of DRD4 7-repeat allele and AD/HD: stronger association with AD/HD combined type. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:1189-99. [PMID: 20468072 DOI: 10.1002/ajmg.b.31090] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The purpose of this meta-analysis was to examine whether association studies between attention deficit/hyperactivity disorder (AD/HD) and the dopamine receptor 4 gene 7-repeat (DRD4 7R) allele vary systematically based on study characteristics. A total of 27 empirical studies with 28 distinct samples using either case-control or family-based association analyses were included. Consistent with previous meta-analytic work [Gizer et al. (2009), Hum Genet 126:51-90], the DRD4 7R allele was associated with AD/HD across studies (OR = 1.33; 95% CI = 1.16-1.53, z = 4.04, P = 0.00005) and there was significant systematic variability among studies (Q = 54.24; P = 0.001; I(2) = 50.22). To account for the variability among studies, sample and study level covariates were examined. No differences in overall effect size emerged between family-based and case-control studies. However, the risk allele frequency in the control population accounted for a significant portion of the variance in overall effect size within case-control studies. In addition, evidence for the association between the DRD4 7R allele and distinct AD/HD subtypes emerged across family-based and case-control studies. The proportion of AD/HD, combined type individuals within the AD/HD sample was associated with a significant increase in the magnitude of association between the DRD4 7R allele and AD/HD. Conversely, an increase in the proportion of AD/HD, predominantly inattentive type individuals within the AD/HD sample was associated with a decrease in study effect size. Implications regarding AD/HD etiological and phenotypic heterogeneity are discussed.
Collapse
Affiliation(s)
- Taylor F Smith
- Department of Psychology, University of North Carolina at Greensboro, 1100 W. Market Street, Greensboro, NC 27402, USA.
| |
Collapse
|
47
|
Thanos PK, Bermeo C, Rubinstein M, Suchland KL, Wang GJ, Grandy DK, Volkow ND. Conditioned place preference and locomotor activity in response to methylphenidate, amphetamine and cocaine in mice lacking dopamine D4 receptors. J Psychopharmacol 2010; 24:897-904. [PMID: 19282420 PMCID: PMC2878389 DOI: 10.1177/0269881109102613] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Methylphenidate (MP) and amphetamine (AMPH) are the most frequently prescribed medications for the treatment of attention-deficit/hyperactivity disorder (ADHD). Both drugs are believed to derive their therapeutic benefit by virtue of their dopamine (DA)-enhancing effects, yet an explanation for the observation that some patients with ADHD respond well to one medication but not to the other remains elusive. The dopaminergic effects of MP and AMPH are also thought to underlie their reinforcing properties and ultimately their abuse. Polymorphisms in the human gene that codes for the DA D4 receptor (D4R) have been repeatedly associated with ADHD and may correlate with the therapeutic as well as the reinforcing effects of responses to these psychostimulant medications. Conditioned place preference (CPP) for MP, AMPH and cocaine were evaluated in wild-type (WT) mice and their genetically engineered littermates, congenic on the C57Bl/6J background, that completely lack D4Rs (knockout or KO). In addition, the locomotor activity in these mice during the conditioning phase of CPP was tested in the CPP chambers. D4 receptor KO and WT mice showed CPP and increased locomotor activity in response to each of the three psychostimulants tested. D4R differentially modulates the CPP responses to MP, AMPH and cocaine. While the D4R genotype affected CPP responses to MP (high dose only) and AMPH (low dose only) it had no effects on cocaine. Inasmuch as CPP is considered an indicator of sensitivity to reinforcing responses to drugs these data suggest a significant but limited role of D4Rs in modulating conditioning responses to MP and AMPH. In the locomotor test, D4 receptor KO mice displayed attenuated increases in AMPH-induced locomotor activity whereas responses to cocaine and MP did not differ. These results suggest distinct mechanisms for D4 receptor modulation of the reinforcing (perhaps via attenuating dopaminergic signalling) and locomotor properties of these stimulant drugs. Thus, individuals with D4 receptor polymorphisms might show enhanced reinforcing responses to MP and AMPH and attenuated locomotor response to AMPH.
Collapse
Affiliation(s)
- P K Thanos
- Laboratory of Neuroimaging, NIAAA Intramural Program, NIH, Bethesda, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Chien CC, Lin CH, Chang YY, Lung FW. Association of VNTR polymorphisms in the MAOA promoter and DRD4 exon 3 with heroin dependence in male Chinese addicts. World J Biol Psychiatry 2010; 11:409-16. [PMID: 20218801 DOI: 10.3109/15622970903304459] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To explore the involvement of variable number tandem repeat (VNTR) polymorphisms in the monoamine oxidase A (MAOA) promoter and exon 3 of the dopamine D4 receptor (DRD4) gene in heroin addiction modulate the vulnerability of individuals to heroin addiction. METHODS Eight hundred and ninety-four male heroin addicts without other psychiatric disorders, were recruited as subjects. Another community 180 males were selected randomly as controls. RESULTS The geno-distribution of the DRD4 exon 3 VNTR polymorphism in controls was in Hardy-Weinberg equilibrium (HWEchi(2)=0.925), but the distribution in heroin addicts was not (HWEchi(2)=28.35). The long-repeat alleles of the DRD4 exon 3 VNTR polymorphism were found more frequently in the heroin addicts (P=0.019). However, the long-repeat alleles of the MAOA promoter VNTR polymorphism were not (P=0.828). No interaction between these two VNTR polymorphisms was found by using multiple logistic regression analysis (P=0.261). CONCLUSION The long-repeat allelic variants (>4-repeats) and 2-repeat allele of the DRD4 exon 3 VNTR polymorphism might be risk alleles for individual vulnerability to heroin addiction in Chinese men, but the MAOA promoter VNTR polymorphism does not mean that the partial dominant inherited mode might involved in the genetics of heroin dependence.
Collapse
Affiliation(s)
- Chia-Chang Chien
- Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | | | | | | |
Collapse
|
49
|
Ray LA, Miranda R, Tidey JW, McGeary JE, MacKillop J, Gwaltney CJ, Rohsenow DJ, Swift RM, Monti PM. Polymorphisms of the mu-opioid receptor and dopamine D4 receptor genes and subjective responses to alcohol in the natural environment. JOURNAL OF ABNORMAL PSYCHOLOGY 2010; 119:115-25. [PMID: 20141248 PMCID: PMC3703617 DOI: 10.1037/a0017550] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Polymorphisms of the mu-opioid receptor (OPRM1) and dopamine D4 receptor (DRD4) genes are associated with subjective responses to alcohol and urge to drink under laboratory conditions. This study examined these associations in the natural environment using ecological momentary assessment. Participants were non-treatment-seeking heavy drinkers (n = 112, 52% female, 61% alcohol dependent) who enrolled in a study of naltrexone effects on craving and drinking in the natural environment. Data were culled from 5 consecutive days of drinking reports prior to medication randomization. Analyses revealed that, after drinking, carriers of the Asp40 allele of the OPRM1 gene reported higher overall levels of vigor and lower levels negative mood, as compared to homozygotes for the Asn40 variant. Carriers of the long allele (i.e., >or=7 tandem repeats) of the DRD4 endorsed greater urge to drink than homozygotes for the short allele. Effects of OPRM1 and DRD4 variable-number-of-tandem-repeats genotypes appear to be alcohol dose-dependent. Specifically, carriers of the DRD4-L allele reported slight decreases in urge to drink at higher levels of estimated blood alcohol concentration (eBAC), and Asp40 carriers reported decreases in vigor and increases in negative mood as eBAC rose, as compared to carriers of the major allele for each gene. Self-reported vigor and urge to drink were positively associated with alcohol consumption within the same drinking episode. This study extends findings on subjective intoxication, urge to drink, and their genetic bases from controlled laboratory to naturalistic settings.
Collapse
Affiliation(s)
- Lara A Ray
- Center for Alcohol and Addiction Studies, Brown University and Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095-1563, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sontag TA, Tucha O, Walitza S, Lange KW. Animal models of attention deficit/hyperactivity disorder (ADHD): a critical review. ACTA ACUST UNITED AC 2010; 2:1-20. [DOI: 10.1007/s12402-010-0019-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 01/02/2010] [Indexed: 01/04/2023]
|