1
|
Begni V, Marchesin A, Riva MA. IUPHAR review - Novel therapeutic targets for schizophrenia treatment: A translational perspective. Pharmacol Res 2025; 214:107690. [PMID: 40073951 DOI: 10.1016/j.phrs.2025.107690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Schizophrenia is a severe and debilitating psychiatric disorder that profoundly impacts cognitive, emotional, and social functioning. Despite its devastating personal and societal toll, current treatments often provide only partial relief, underscoring the urgent need for innovative therapeutic strategies. This review explores emerging approaches that target the complex neurobiological underpinnings of schizophrenia, moving beyond traditional dopamine-centric models. Among these, some novel drugs still employ multimodal mechanisms, simultaneously targeting dopaminergic and serotonergic systems to enhance efficacy and tolerability. Given the well-documented excitatory/inhibitory imbalance in schizophrenia, significant efforts have been directed toward addressing NMDA receptor hypofunctionality. However, strategies targeting this pathway have yet to demonstrate consistent clinical efficacy. In contrast, therapies targeting the cholinergic system have shown greater promise. For instance, the xanomeline-trospium combination, which modulates muscarinic receptors, has recently gained approval, and other molecules with similar mechanisms are currently under development. Beyond these approaches, novel strategies are being explored to target innovative pathways, including neuroplasticity, neuroinflammation, and mitochondrial dysfunction. These efforts are often designed as part of a combinatorial strategy to enhance the efficacy of currently available antipsychotic drugs. Despite significant progress, challenges remain in translating experimental discoveries into effective clinical applications. Future research should prioritize biomarker-driven approaches and precision medicine to optimize individualized treatment outcomes. By integrating these emerging therapeutic targets, schizophrenia treatment may evolve toward a more comprehensive and personalized approach, addressing the disorder's full spectrum of symptoms and improving patient quality of life.
Collapse
Affiliation(s)
- Veronica Begni
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, Brescia 25125, Italy
| | - Alessia Marchesin
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan 20133, Italy
| | - Marco Andrea Riva
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, Brescia 25125, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan 20133, Italy.
| |
Collapse
|
2
|
Sapienza J, Agostoni G, Repaci F, Spangaro M, Comai S, Bosia M. Metabolic Syndrome and Schizophrenia: Adding a Piece to the Interplay Between the Kynurenine Pathway and Inflammation. Metabolites 2025; 15:176. [PMID: 40137141 PMCID: PMC11944102 DOI: 10.3390/metabo15030176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/29/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
The biology of schizophrenia is highly complex and multifaceted. Numerous efforts have been made over the years to disentangle the heterogeneity of the disease, gradually leading to a more detailed understanding of its underlying pathogenic mechanisms. Two cardinal elements in the pathophysiology of schizophrenia are neuroinflammation and alterations of neurotransmission. The kynurenine (KYN) pathway (KP) is of particular importance because it is inducted by systemic low-grade inflammation in peripheral tissues, producing metabolites that are neuroactive (i.e., modulating glutamatergic and cholinergic neurotransmission), neuroprotective, or neurotoxic. Consequently, the KP is at the crossroads between two primary systems involved in the pathogenesis of schizophrenia. It bridges the central nervous system (CNS) and the periphery, as KP metabolites can cross the blood-brain barrier and modulate neuronal activity. Metabolic syndrome plays a crucial role in this context, as it frequently co-occurs with schizophrenia, contributing to a sub-inflammatory state able to activate the KP. This narrative review provides valuable insights into these complex interactions, offering a framework for developing targeted therapeutic interventions or precision psychiatry approaches of the disorder.
Collapse
Affiliation(s)
- Jacopo Sapienza
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy; (J.S.)
- Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, 27100 Pavia, Italy
| | - Giulia Agostoni
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy; (J.S.)
| | - Federica Repaci
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy; (J.S.)
| | - Marco Spangaro
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy; (J.S.)
| | - Stefano Comai
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35123 Padua, Italy
- Division of Neurosciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Biomedical Sciences, University of Padua, 35123 Padua, Italy
| | - Marta Bosia
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy; (J.S.)
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
3
|
Arbabi K, Newton DF, Oh H, Davie MC, Lewis DA, Wainberg M, Tripathy SJ, Sibille E. Transcriptomic pathology of neocortical microcircuit cell types across psychiatric disorders. Mol Psychiatry 2025; 30:1057-1068. [PMID: 39237723 DOI: 10.1038/s41380-024-02707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Psychiatric disorders such as major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SCZ) are characterized by altered cognition and mood, brain functions that depend on information processing by cortical microcircuits. We hypothesized that psychiatric disorders would display cell type-specific transcriptional alterations in neuronal subpopulations that make up cortical microcircuits: excitatory pyramidal (PYR) neurons and vasoactive intestinal peptide- (VIP), somatostatin- (SST), and parvalbumin- (PVALB) expressing inhibitory interneurons. Using laser capture microdissection followed by RNA sequencing (LCM-seq), we performed cell type-specific molecular profiling of subgenual anterior cingulate cortex, a region implicated in mood and cognitive control. We sequenced libraries from 130 whole cells pooled per neuronal subtype (VIP, SST, PVALB, superficial and deep PYR) in 76 subjects from the University of Pittsburgh Brain Tissue Donation Program, evenly split between MDD, BD and SCZ subjects and healthy controls (totaling 380 bulk transcriptomes from ~50,000 neurons). We identified hundreds of differentially expressed (DE) genes and biological pathways across disorders and neuronal subtypes, with the vast majority in interneurons, particularly PVALB. While DE genes were unique to each cell type, there was a partial overlap across disorders for genes involved in the formation and maintenance of neuronal circuits. We observed coordinated alterations in biological pathways between select pairs of microcircuit cell types, also partially shared across disorders. Finally, DE genes coincided with known risk variants from psychiatric genome-wide association studies, suggesting cell type-specific convergence between genetic and transcriptomic risk for psychiatric disorders. Our study suggests transdiagnostic cortical microcircuit pathology in SCZ, BD, and MDD and sets the stage for larger-scale studies investigating how cell circuit-based changes contribute to shared psychiatric risk.
Collapse
Affiliation(s)
- Keon Arbabi
- The Krembil Centre for Neuroinformatics, Centre for Addiction & Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Dwight F Newton
- Campbell Family Mental Health Research Institute, Centre for Addiction & Mental Health, Toronto, ON, Canada
| | - Hyunjung Oh
- Campbell Family Mental Health Research Institute, Centre for Addiction & Mental Health, Toronto, ON, Canada
| | - Melanie C Davie
- The Krembil Centre for Neuroinformatics, Centre for Addiction & Mental Health, Toronto, ON, Canada
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Wainberg
- The Krembil Centre for Neuroinformatics, Centre for Addiction & Mental Health, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Shreejoy J Tripathy
- The Krembil Centre for Neuroinformatics, Centre for Addiction & Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Etienne Sibille
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction & Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Maji S, Mishra A, Mohapatra D, Mishra BR, Jena M, Srinivasan A, Maiti R. Early augmentation therapy with dextromethorphan in mild to moderate major depressive disorder: A group sequential, response adaptive randomized controlled trial. Psychiatry Res 2024; 342:116257. [PMID: 39551007 DOI: 10.1016/j.psychres.2024.116257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024]
Abstract
AIM Therapeutic latency, lack of response, and adverse drug reactions are major challenges in current treatment approaches for major depressive disorder (MDD). Following the success of ketamine, more clinical research on NMDA antagonists is needed for a safe and long-term therapy in MDD. Hence, this study was conducted to evaluate the efficacy and safety of adjunct dextromethorphan to SSRIs in MDD. METHODS In this randomized, double-blind, add-on, placebo-controlled, group sequential design clinical trial, 60 patients with MDD were randomized to receive either adjunct dextromethorphan (30 mg) or adjunct placebo to SSRI for eight weeks. The primary outcome was the change in the MADRS score over eight weeks, and the secondary outcome parameters were response rate, remission rate, change in CGI-S, CGI-I, change in serum BDNF and serum dextromethorphan. RESULTS The results showed a significantly greater reduction in MADRS score from baseline (MD: -3.94; 95 %CI: -5.81 to -2.06; p < 0.001; Cohen's d: 1.05), reduction in CGI-S score (p = 0.002), higher response (p = 0.008) and remission (p = 0.007) rate in the test group compared to the control group. The test group also showed significantly better CGI-I score (p = 0.001) compared to the control group. However, no significant difference was found in the change in serum BDNF (p = 0.751) between the groups. In the test group, serum dextromethorphan levels in all patients were within the therapeutic range. The occurrence of adverse events was comparable in both study groups. CONCLUSION Early augmentation of SSRIs with dextromethorphan (30 mg/day) for the treatment of mild to moderate MDD may improve clinical outcomes significantly in terms of improvement in symptoms, response rate and remission rate. Trial registration ClinicalTrials.gov identifier: NCT05181527.
Collapse
Affiliation(s)
- Shampa Maji
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | - Archana Mishra
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | - Debadatta Mohapatra
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India.
| | - Biswa Ranjan Mishra
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India.
| | - Monalisa Jena
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India.
| | - Anand Srinivasan
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India.
| | - Rituparna Maiti
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India.
| |
Collapse
|
5
|
Parker N, Koch E, Shadrin AA, Fuhrer J, Hindley GFL, Stinson S, Jaholkowski P, Tesfaye M, Dale AM, Wingo TS, Wingo AP, Frei O, O'Connell KS, Smeland OB, Andreassen OA. Leveraging the Genetics of Psychiatric Disorders to Prioritize Potential Drug Targets and Compounds. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.24.24314069. [PMID: 39399035 PMCID: PMC11469398 DOI: 10.1101/2024.09.24.24314069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Background Genetics has the potential to inform biologically relevant drug treatment and repurposing which may ultimately improve patient care. In this study, we combine methods which leverage the genetics of psychiatric disorders to prioritize potential drug targets and compounds. Methods We used the largest available genome-wide association studies, in European ancestry, of four psychiatric disorders [i.e., attention deficit hyperactivity disorder (ADHD), bipolar disorder, depression, and schizophrenia] along with genes encoding drug targets. With this data, we conducted drug enrichment analyses incorporating the novel and biologically specific GSA-MiXeR tool. We then conducted a series of molecular trait analyses using large-scale transcriptomic and proteomic datasets sampled from brain and blood tissue. This included the novel use of the UK Biobank proteomic data for a proteome-wide association study of psychiatric disorders. With the accumulated evidence, we prioritize potential drug targets and compounds for each disorder. Findings We reveal candidate drug targets shared across multiple disorders as well as disorder-specific targets. Drug prioritization indicated genetic support for several currently used psychotropic medications including the antipsychotic paliperidone as the top ranked drug for schizophrenia. We also observed genetic support for other commonly used psychotropics (e.g., clozapine, risperidone, duloxetine, lithium, and valproic acid). Opportunities for drug repurposing were revealed such as cholinergic drugs for ADHD, estrogens for depression, and gabapentin enacarbil for schizophrenia. Our findings also indicate the genetic liability to schizophrenia is associated with reduced brain and blood expression of CYP2D6, a gene encoding a metabolizer of drugs and neurotransmitters, suggesting a genetic risk for poor drug response and altered neurotransmission. Interpretation Here we present a series of complimentary and comprehensive analyses that highlight the utility of genetics for informing drug development and repurposing for psychiatric disorders. Our findings present novel opportunities for refining psychiatric treatment.
Collapse
Affiliation(s)
- Nadine Parker
- Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Elise Koch
- Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Alexey A Shadrin
- Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Julian Fuhrer
- Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Guy F L Hindley
- Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Sara Stinson
- Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Piotr Jaholkowski
- Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Markos Tesfaye
- Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anders M Dale
- Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Thomas S Wingo
- Department of Neurology, University of California, Davis, Sacramento, CA USA
| | - Aliza P Wingo
- Department of Psychiatry, University of California, Davis, Sacramento, CA, USA
- Division of Mental Health, VA Medical Center, Mather, CA, USA
| | - Oleksandr Frei
- Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Kevin S O'Connell
- Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Olav B Smeland
- Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Pham M, Caglayan A. A Comprehensive Review of Schizophrenia and Antipsychotic Metabolism as a Predictor of Treatment Response. Cureus 2024; 16:e65279. [PMID: 39184784 PMCID: PMC11343069 DOI: 10.7759/cureus.65279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
Some patients with schizophrenia fail to respond to standard antipsychotics and are considered treatment-resistant. In these cases, clozapine is the only antipsychotic with proven efficacy, but its use is complicated by severe adverse effects, complex monitoring requirements, and non-response. Variation within the CYP450 enzymes CYP1A2, CYP2D6, CYP3A4, and CYP2C19 has been linked to the differential metabolism of antipsychotics. Testing for CYP450 single nucleotide polymorphisms may be a useful predictor of treatment resistance and could inform pharmacogenetic recommendations to identify potential treatment non-responders. Nonetheless, it remains uncertain whether differential antipsychotic metabolism is directly related to treatment efficacy. This comprehensive narrative review endeavours to delve into the molecular and genetic basis of schizophrenia, and discuss the current treatments available. In particular, we aim to examine the aetiology of treatment resistance in schizophrenia through available literature and discuss current challenges within the field.
Collapse
Affiliation(s)
- Mia Pham
- General Internal Medicine, St. George's Hospital, London, GBR
| | - Aydin Caglayan
- General Surgery, Medway NHS Foundation Trust, London, GBR
| |
Collapse
|
7
|
Singer P, Yee BK. Inhibition of astrocytic glycine transporter-1: friend or foe for ameliorating NMDA receptor hypofunction? Front Cell Neurosci 2024; 18:1389718. [PMID: 38854433 PMCID: PMC11158624 DOI: 10.3389/fncel.2024.1389718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Affiliation(s)
- Philipp Singer
- Roche Diagnostics International AG, Rotkreuz, Switzerland
| | - Benjamin K. Yee
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
8
|
Killebrew KW, Moser HR, Grant AN, Marjańska M, Sponheim SR, Schallmo MP. Faster bi-stable visual switching in psychosis. Transl Psychiatry 2024; 14:201. [PMID: 38714650 PMCID: PMC11076514 DOI: 10.1038/s41398-024-02913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 05/10/2024] Open
Abstract
Bi-stable stimuli evoke two distinct perceptual interpretations that alternate and compete for dominance. Bi-stable perception is thought to be driven at least in part by mutual suppression between distinct neural populations that represent each percept. Abnormal visual perception has been observed among people with psychotic psychopathology (PwPP), and there is evidence to suggest that these visual deficits may depend on impaired neural suppression in the visual cortex. However, it is not yet clear whether bi-stable visual perception is abnormal among PwPP. Here, we examined bi-stable perception in a visual structure-from-motion task using a rotating cylinder illusion in a group of 65 PwPP, 44 first-degree biological relatives, and 43 healthy controls. Data from a 'real switch' task, in which physical depth cues signaled real switches in rotation direction were used to exclude individuals who did not show adequate task performance. In addition, we measured concentrations of neurochemicals, including glutamate, glutamine, and γ-amino butyric acid (GABA), involved in excitatory and inhibitory neurotransmission. These neurochemicals were measured non-invasively in the visual cortex using 7 tesla MR spectroscopy. We found that PwPP and their relatives showed faster bi-stable switch rates than healthy controls. Faster switch rates also correlated with significantly higher psychiatric symptom levels, specifically disorganization, across all participants. However, we did not observe any significant relationships across individuals between neurochemical concentrations and SFM switch rates. Our results are consistent with a reduction in suppressive neural processes during structure-from-motion perception in PwPP, and suggest that genetic liability for psychosis is associated with disrupted bi-stable perception.
Collapse
Affiliation(s)
- Kyle W Killebrew
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Hannah R Moser
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Andrea N Grant
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Scott R Sponheim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Michael-Paul Schallmo
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
9
|
Yoshidome D, Hidaka M, Miyanaga T, Ito Y, Kosono S, Nishiyama M. Glutamate production from aerial nitrogen using the nitrogen-fixing bacterium Klebsiella oxytoca. Commun Biol 2024; 7:443. [PMID: 38605181 PMCID: PMC11009414 DOI: 10.1038/s42003-024-06147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
Glutamate is an essential biological compound produced for various therapeutic and nutritional applications. The current glutamate production process requires a large amount of ammonium, which is generated through the energy-consuming and CO2-emitting Haber-Bosch process; therefore, the development of bio-economical glutamate production processes is required. We herein developed a strategy for glutamate production from aerial nitrogen using the nitrogen-fixing bacterium Klebsiella oxytoca. We showed that a simultaneous supply of glucose and citrate as carbon sources enhanced the nitrogenase activity of K. oxytoca. In the presence of glucose and citrate, K. oxytoca strain that was genetically engineered to increase the supply of 2-oxoglutarate, a precursor of glutamate synthesis, produced glutamate extracellularly more than 1 g L-1 from aerial nitrogen. This strategy offers a sustainable and eco-friendly manufacturing process to produce various nitrogen-containing compounds using aerial nitrogen.
Collapse
Affiliation(s)
- Daisuke Yoshidome
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Makoto Hidaka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Toka Miyanaga
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yusuke Ito
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Kikkoman Corporation, Noda, Chiba, Japan
| | - Saori Kosono
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Makoto Nishiyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
10
|
Maddaford S, Huot P. Glycine and clozapine: potential relevance for the treatment of Parkinson's disease. Neurodegener Dis Manag 2024; 14:47-49. [PMID: 38602420 PMCID: PMC11457666 DOI: 10.2217/nmt-2024-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/20/2024] [Indexed: 04/12/2024] Open
Affiliation(s)
- Shawn Maddaford
- Talon Pharmaceuticals Inc, Mississauga, Ontario, L5L 1Y3, Canada
| | - Philippe Huot
- Talon Pharmaceuticals Inc, Mississauga, Ontario, L5L 1Y3, Canada
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, Quebec, H3A 2B4, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, H3A 2B4, Canada
- Movement Disorder Clinic, Division of Neurology, Department of Neuroscience, McGill University Health Centre, Montreal, Quebec, H3A 2B4, Canada
| |
Collapse
|
11
|
Sapienza J, Agostoni G, Dall'Acqua S, Sut S, Nasini S, Martini F, Marchesi A, Bechi M, Buonocore M, Cocchi F, Cavallaro R, Spangaro M, Comai S, Bosia M. The kynurenine pathway in treatment-resistant schizophrenia at the crossroads between pathophysiology and pharmacotherapy. Schizophr Res 2024; 264:71-80. [PMID: 38101180 DOI: 10.1016/j.schres.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/28/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Two cardinal elements in the complex and multifaceted pathophysiology of schizophrenia (SCZ) are neuroinflammation and dysregulation of glutamatergic neurotransmission, with the latter being especially involved in treatment-resistant schizophrenia (TRS). Interestingly, the Kynurenine (KYN) pathway (KP) is at the crossroad between them, constituting a potential causal link and a therapeutic target. Although there is preclinical and clinical evidence indicating a dysregulation of KP associated with the clinical phenotype of SCZ, clinical studies investigating the possible relationship between changes in biomarkers of the KP and response to pharmacotherapy are still limited. Therefore, we have studied possible differences in the circulating levels of biomarkers of the metabolism of tryptophan along the KP in 43 responders to first-line treatments (FLR) and 32 TRS patients treated with clozapine, and their possible associations with psychopathology in the two subgroups. Plasma levels of KYN were significantly higher in TRS patients than in FLR patients, indicating a greater activation of KP. Furthermore, the levels of quinolinic (NMDA receptor agonist) and kynurenic acid (NMDA negative allosteric modulator) showed a negative and a positive correlation with several dimensions and the overall symptomatology in the whole sample and in FLR, but not in TRS, suggesting a putative modulating effect of clozapine elicited through the NMDA receptors. Despite the cross-sectional design of the study that prevents us from demonstrating causation, these findings show a significant relationship among circulating KP biomarkers, psychopathology, and response to pharmacotherapy in SCZ. Therefore, plasma KP biomarkers should be further investigated for developing personalized medicine approaches in SCZ.
Collapse
Affiliation(s)
- Jacopo Sapienza
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, Pavia, Italy
| | - Giulia Agostoni
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Sofia Nasini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Francesca Martini
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Marchesi
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Margherita Bechi
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mariachiara Buonocore
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Cocchi
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Cavallaro
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy; School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Spangaro
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Stefano Comai
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy; Division of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Psychiatry, McGill University, Montreal, QC, Canada; Department of Biomedical Sciences, University of Padua, Padua, Italy.
| | - Marta Bosia
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy; School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
12
|
Lao-Peregrin C, Xiang G, Kim J, Srivastava I, Fall AB, Gerhard DM, Kohtala P, Kim D, Song M, Garcia-Marcos M, Levitz J, Lee FS. Synaptic plasticity via receptor tyrosine kinase/G-protein-coupled receptor crosstalk. Cell Rep 2024; 43:113595. [PMID: 38117654 PMCID: PMC10844890 DOI: 10.1016/j.celrep.2023.113595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023] Open
Abstract
Cellular signaling involves a large repertoire of membrane receptors operating in overlapping spatiotemporal regimes and targeting many common intracellular effectors. However, both the molecular mechanisms and the physiological roles of crosstalk between receptors, especially those from different superfamilies, are poorly understood. We find that the receptor tyrosine kinase (RTK) TrkB and the G-protein-coupled receptor (GPCR) metabotropic glutamate receptor 5 (mGluR5) together mediate hippocampal synaptic plasticity in response to brain-derived neurotrophic factor (BDNF). Activated TrkB enhances constitutive mGluR5 activity to initiate a mode switch that drives BDNF-dependent sustained, oscillatory Ca2+ signaling and enhanced MAP kinase activation. This crosstalk is mediated, in part, by synergy between Gβγ, released by TrkB, and Gαq-GTP, released by mGluR5, to enable physiologically relevant RTK/GPCR crosstalk.
Collapse
Affiliation(s)
| | - Guoqing Xiang
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jihye Kim
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA
| | - Ipsit Srivastava
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alexandra B Fall
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA
| | - Danielle M Gerhard
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA
| | - Piia Kohtala
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA
| | - Daegeon Kim
- Department of Life Sciences, Yeongnam University, Gyeongsan, Gyeongbuk 38451, South Korea
| | - Minseok Song
- Department of Life Sciences, Yeongnam University, Gyeongsan, Gyeongbuk 38451, South Korea
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Joshua Levitz
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA.
| |
Collapse
|
13
|
Warren TL, Tubbs JD, Lesh TA, Corona MB, Pakzad S, Albuquerque M, Singh P, Zarubin V, Morse S, Sham PC, Carter CS, Nord AS. Association of neurotransmitter pathway polygenic risk with specific symptom profiles in psychosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.24.23290465. [PMID: 37292649 PMCID: PMC10246134 DOI: 10.1101/2023.05.24.23290465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A primary goal of psychiatry is to better understand the pathways that link genetic risk to psychiatric symptoms. Here, we tested association of diagnosis and endophenotypes with overall and neurotransmitter pathway-specific polygenic risk in patients with early-stage psychosis. Subjects included 206 demographically diverse cases with a psychotic disorder who underwent comprehensive psychiatric and neurological phenotyping and 115 matched controls. Following genotyping, we calculated polygenic scores (PGSs) for schizophrenia (SZ) and bipolar disorder (BP) using Psychiatric Genomics Consortium GWAS summary statistics. To test if overall genetic risk can be partitioned into affected neurotransmitter pathways, we calculated pathway PGSs (pPGSs) for SZ risk affecting each of four major neurotransmitter systems: glutamate, GABA, dopamine, and serotonin. Psychosis subjects had elevated SZ PGS versus controls; cases with SZ or BP diagnoses had stronger SZ or BP risk, respectively. There was no significant association within psychosis cases between individual symptom measures and overall PGS. However, neurotransmitter-specific pPGSs were moderately associated with specific endophenotypes; notably, glutamate was associated with SZ diagnosis and with deficits in cognitive control during task-based fMRI, while dopamine was associated with global functioning. Finally, unbiased endophenotype-driven clustering identified three diagnostically mixed case groups that separated on primary deficits of positive symptoms, negative symptoms, global functioning, and cognitive control. All clusters showed strong genome-wide risk. Cluster 2, characterized by deficits in cognitive control and negative symptoms, additionally showed specific risk concentrated in glutamatergic and GABAergic pathways. Due to the intensive characterization of our subjects, the present study was limited to a relatively small cohort. As such, results should be followed up with additional research at the population and mechanism level. Our study suggests pathway-based PGS analysis may be a powerful path forward to study genetic mechanisms driving psychiatric endophenotypes.
Collapse
Affiliation(s)
| | - Justin D. Tubbs
- Department of Psychiatry, The University of Hong Kong
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital
- Department of Psychiatry, Harvard Medical School
| | | | | | | | | | | | | | | | - Pak Chung Sham
- Department of Psychiatry, The University of Hong Kong
- Centre for PanorOmic Sciences, The University of Hong Kong
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong
| | | | | |
Collapse
|
14
|
Guo Z, Zhong W, Zou Z. miR-98-5p Prevents Hippocampal Neurons from Oxidative Stress and Apoptosis by Targeting STAT3 in Epilepsy in vitro. Neuropsychiatr Dis Treat 2023; 19:2319-2329. [PMID: 37928166 PMCID: PMC10624118 DOI: 10.2147/ndt.s415597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/09/2023] [Indexed: 11/07/2023] Open
Abstract
Purpose Epilepsy is a serious mental disease, for which oxidative stress and hippocampal neuron death after seizure is crucial. Numerous miRNAs are involved in epilepsy. However, the function of miR-98-5p in oxidative stress and hippocampal neuron death after seizure is unclear, which is the purpose of current study. Methods Magnesium ion (Mg2+)-free solution was used to establish the in vitro epilepsy model in hippocampal neurons. Oxidative stress was exhibited by measuring malondialdehyde (MDA) level and superoxide Dismutase (SOD) activity using enzyme-linked immune sorbent assay (ELISA) kits. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry were applied for the examination of neuron viability and apoptosis, respectively. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and Western blot were used to evaluate the mRNA and protein levels of miR-98-5p and signal transducer and activator of transcription (STAT3), respectively. The relationship between miR-98-5p and STAT3 was predicted by TargetScan 7.2, and identified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Results miR-98-5p was decreased in the in vitro epileptic model of hippocampal neurons induced by Mg2+-free solution, whose overexpression rescued oxidative stress and neuron apoptosis in epileptic model. Moreover, overexpression of STAT3, one downstream target of miR-98-5p, partially eliminated the effects of miR-98-5p mimic. Conclusion We shed lights on a pivotal mechanism of miR-98-5p in regulating neuron oxidative stress and apoptosis after seizures, providing potential biomarkers for the diagnosis of epilepsy and therapeutic targets for the treatment of epilepsy.
Collapse
Affiliation(s)
- Zhizhuan Guo
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People’s Republic of China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Wenwen Zhong
- Department of Rehabilitation Medicine, Huangshi Maternal and Child Health Hospital, Edong Medical Group, Huang Shi, Hubei, 435000, People’s Republic of China
| | - Zhengshou Zou
- Department of Neurology, Huangshi Central Hospital, Edong Medical Group, Huangshi, Hubei, 435000, People’s Republic of China
| |
Collapse
|
15
|
Lao-Peregrin C, Xiang G, Kim J, Srivastava I, Fall AB, Gerhard DM, Kohtala P, Kim D, Song M, Garcia-Marcos M, Levitz J, Lee FS. Synaptic plasticity via receptor tyrosine kinase/G protein-coupled receptor crosstalk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555210. [PMID: 37693535 PMCID: PMC10491144 DOI: 10.1101/2023.08.28.555210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Cellular signaling involves a large repertoire of membrane receptors operating in overlapping spatiotemporal regimes and targeting many common intracellular effectors. However, both the molecular mechanisms and physiological roles of crosstalk between receptors, especially those from different superfamilies, are poorly understood. We find that the receptor tyrosine kinase (RTK), TrkB, and the G protein-coupled receptor (GPCR), metabotropic glutamate receptor 5 (mGluR5), together mediate a novel form of hippocampal synaptic plasticity in response to brain-derived neurotrophic factor (BDNF). Activated TrkB enhances constitutive mGluR5 activity to initiate a mode-switch that drives BDNF-dependent sustained, oscillatory Ca 2+ signaling and enhanced MAP kinase activation. This crosstalk is mediated, in part, by synergy between Gβγ, released by TrkB, and Gα q -GTP, released by mGluR5, to enable a previously unidentified form of physiologically relevant RTK/GPCR crosstalk.
Collapse
|
16
|
Ortí JEDLR, Cuerda-Ballester M, Sanchis-Sanchis CE, Lajara Romance JM, Navarro-Illana E, García Pardo MP. Exploring the impact of ketogenic diet on multiple sclerosis: obesity, anxiety, depression, and the glutamate system. Front Nutr 2023; 10:1227431. [PMID: 37693246 PMCID: PMC10485376 DOI: 10.3389/fnut.2023.1227431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Background Multiple sclerosis (MS) is a neurodegenerative disorder. Individuals with MS frequently present symptoms such as functional disability, obesity, and anxiety and depression. Axonal demyelination can be observed and implies alterations in mitochondrial activity and increased inflammation associated with disruptions in glutamate neurotransmitter activity. In this context, the ketogenic diet (KD), which promotes the production of ketone bodies in the blood [mainly β-hydroxybutyrate (βHB)], is a non-pharmacological therapeutic alternative that has shown promising results in peripheral obesity reduction and central inflammation reduction. However, the association of this type of diet with emotional symptoms through the modulation of glutamate activity in MS individuals remains unknown. Aim To provide an update on the topic and discuss the potential impact of KD on anxiety and depression through the modulation of glutamate activity in subjects with MS. Discussion The main findings suggest that the KD, as a source of ketone bodies in the blood, improves glutamate activity by reducing obesity, which is associated with insulin resistance and dyslipidemia, promoting central inflammation (particularly through an increase in interleukins IL-1β, IL-6, and IL-17). This improvement would imply a decrease in extrasynaptic glutamate activity, which has been linked to functional disability and the presence of emotional disorders such as anxiety and depression.
Collapse
Affiliation(s)
| | | | | | - Jose María Lajara Romance
- Faculty of Legal, Economic and Social Sciences, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
| | - Esther Navarro-Illana
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
| | | |
Collapse
|
17
|
Islam MK, Islam MR, Rahman MH, Islam MZ, Hasan MM, Mamun MMI, Moni MA. Integrated bioinformatics and statistical approach to identify the common molecular mechanisms of obesity that are linked to the development of two psychiatric disorders: Schizophrenia and major depressive disorder. PLoS One 2023; 18:e0276820. [PMID: 37494308 PMCID: PMC10370737 DOI: 10.1371/journal.pone.0276820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 10/13/2022] [Indexed: 07/28/2023] Open
Abstract
Obesity is a chronic multifactorial disease characterized by the accumulation of body fat and serves as a gateway to a number of metabolic-related diseases. Epidemiologic data indicate that Obesity is acting as a risk factor for neuro-psychiatric disorders such as schizophrenia, major depression disorder and vice versa. However, how obesity may biologically interact with neurodevelopmental or neurological psychiatric conditions influenced by hereditary, environmental, and other factors is entirely unknown. To address this issue, we have developed a pipeline that integrates bioinformatics and statistical approaches such as transcriptomic analysis to identify differentially expressed genes (DEGs) and molecular mechanisms in patients with psychiatric disorders that are also common in obese patients. Biomarker genes expressed in schizophrenia, major depression, and obesity have been used to demonstrate such relationships depending on the previous research studies. The highly expressed genes identify commonly altered signalling pathways, gene ontology pathways, and gene-disease associations across disorders. The proposed method identified 163 significant genes and 134 significant pathways shared between obesity and schizophrenia. Similarly, there are 247 significant genes and 65 significant pathways that are shared by obesity and major depressive disorder. These genes and pathways increase the likelihood that psychiatric disorders and obesity are pathogenic. Thus, this study may help in the development of a restorative approach that will ameliorate the bidirectional relation between obesity and psychiatric disorder. Finally, we also validated our findings using genome-wide association study (GWAS) and whole-genome sequence (WGS) data from SCZ, MDD, and OBE. We confirmed the likely involvement of four significant genes both in transcriptomic and GWAS/WGS data. Moreover, we have performed co-expression cluster analysis of the transcriptomic data and compared it with the results of transcriptomic differential expression analysis and GWAS/WGS.
Collapse
Affiliation(s)
- Md Khairul Islam
- Dept. of Information Communication Technology, Islamic University, Kushtia, Bangladesh
| | - Md Rakibul Islam
- Dept. of Information Communication Technology, Islamic University, Kushtia, Bangladesh
| | - Md Habibur Rahman
- Dept. of Computer Science Engineering, Islamic University, Kushtia, Bangladesh
| | - Md Zahidul Islam
- Dept. of Information Communication Technology, Islamic University, Kushtia, Bangladesh
| | - Md Mehedi Hasan
- Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Mainul Islam Mamun
- Department of Applied Physics and Electronic Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - Mohammad Ali Moni
- Dept. of Computer Science and Engineering, Pabna University of Science and Technology, Pabna, Bangladesh
| |
Collapse
|
18
|
Farmer CB, Roach EL, Bice LR, Falgout ME, Mata KG, Roche JK, Roberts RC. Excitatory and inhibitory imbalances in the trisynaptic pathway in the hippocampus in schizophrenia: a postmortem ultrastructural study. J Neural Transm (Vienna) 2023; 130:949-965. [PMID: 37193867 DOI: 10.1007/s00702-023-02650-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND A preponderance of evidence suggests that the hippocampus is a key region of dysfunction in schizophrenia. Neuroimaging and other studies indicate a relationship between hippocampal dysfunction and the degree of psychosis. Clinical data indicate hyperactivity in the hippocampus that precedes the onset of psychosis, and is correlated with symptom severity. In this study, we sought to identify circuitry at the electron microscopic level that could contribute to region-specific imbalances in excitation and inhibition in the hippocampus in schizophrenia. We used postmortem tissue from the anterior hippocampus from patients with schizophrenia and matched controls. Using stereological techniques, we counted and measured synapses, postsynaptic densities (PSDs), and evaluated size, number and optical density of mitochondria and parvalbumin-containing interneurons in key nodes of the trisynaptic pathway. Compared to controls, the schizophrenia group had decreased numbers of inhibitory synapses in CA3 and increased numbers of excitatory synapses in CA1; together, this indicates deficits in inhibition and an increase in excitation. The thickness of the PSD was larger in excitatory synapses in CA1, suggesting greater synaptic strength. In the schizophrenia group, there were fewer mitochondria in the dentate gyrus and a decrease in the optical density, a measure of functional integrity, in CA1. The number and optical density of parvalbumin interneurons were lower in CA3. The results suggest region-specific increases in excitatory circuitry, decreases in inhibitory neurotransmission and fewer or damaged mitochondria. These results are consistent with the hyperactivity observed in the hippocampus in schizophrenia in previous studies.
Collapse
Affiliation(s)
- Charlene B Farmer
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Erica L Roach
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Lily R Bice
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Madeleine E Falgout
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Kattia G Mata
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Joy K Roche
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Rosalinda C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
19
|
Chen WC, Wang TS, Chang FY, Chen PA, Chen YC. Age, Dose, and Locomotion: Decoding Vulnerability to Ketamine in C57BL/6J and BALB/c Mice. Biomedicines 2023; 11:1821. [PMID: 37509459 PMCID: PMC10376483 DOI: 10.3390/biomedicines11071821] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Ketamine has been abused as a psychedelic agent and causes diverse neurobehavioral changes. Adolescence is a critical developmental stage but vulnerable to substances and environmental stimuli. Growing evidence shows that ketamine affects glutamatergic neurotransmission, which is important for memory storage, addiction, and psychosis. To explore diverse biological responses, this study was designed to assess ketamine sensitivity in mice of different ages and strains. Male C57BL/6J and BALB/c mice were studied in adolescence and adulthood separately. An open field test assessed motor behavioral changes. After a 30-min baseline habituation, mice were injected with ketamine (0, 25, and 50 mg/kg), and their locomotion was measured for 60 min. Following ketamine injection, the travelled distance and speed significantly increased in C57BL/6J mice between both age groups (p < 0.01), but not in BALB/c mice. The pattern of hyperlocomotion showed that mice were delayed at the higher dose (50 mg/kg) compared to the lower dose (25 mg/kg) of ketamine treatment. Ketamine accentuated locomotor activation in adolescent C57BL/6J mice compared to adults, but not in the BALB/c strain. Here, we show that ketamine-induced locomotor behavior is modulated by dose and age. The discrepancy of neurobehaviors in the two strains of mice indicates that sensitivity to ketamine is biologically determined. This study suggests that individual vulnerability to ketamine's pharmacological responses varies biologically.
Collapse
Affiliation(s)
- Wen-Chien Chen
- Department of Psychiatry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Tzong-Shi Wang
- Department of Psychiatry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Fang-Yu Chang
- Department of Psychiatry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Po-An Chen
- Department of Psychiatry, China Medical University Hsinchu Hospital, China Medical University, Hsinchu 302, Taiwan
| | - Yi-Chyan Chen
- Department of Psychiatry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- Department of Psychiatry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
20
|
Killebrew KW, Moser HR, Grant AN, Marjańska M, Sponheim SR, Schallmo MP. Faster bi-stable visual switching in psychosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.13.23285774. [PMID: 36896020 PMCID: PMC9996680 DOI: 10.1101/2023.02.13.23285774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Bi-stable stimuli evoke two distinct perceptual interpretations that alternate and compete for dominance. Bi-stable perception is thought to be driven at least in part by mutual suppression between distinct neural populations that represent each percept. Abnormal visual perception is observed among people with psychotic psychopathology (PwPP), and there is evidence to suggest that these visual deficits may depend on impaired neural suppression in visual cortex. However, it is not yet clear whether bi-stable visual perception is abnormal among PwPP. Here, we examined bi-stable perception in a visual structure-from-motion task using a rotating cylinder illusion in a group of 65 PwPP, 44 first-degree biological relatives, and 43 healthy controls. Data from a 'real switch' task, in which physical depth cues signaled real switches in rotation direction were used to exclude individuals who did not show adequate task performance. In addition, we measured concentrations of neurochemicals, including glutamate, glutamine, and γ-amino butyric acid (GABA), involved in excitatory and inhibitory neurotransmission. These neurochemicals were measured non-invasively in visual cortex using 7 tesla MR spectroscopy. We found that PwPP and their relatives showed faster bi-stable switch rates than healthy controls. Faster switch rates also correlated with significantly higher psychiatric symptom levels across all participants. However, we did not observe any significant relationships across individuals between neurochemical concentrations and SFM switch rates. Our results are consistent with a reduction in suppressive neural processes during structure-from-motion perception in PwPP, and suggest that genetic liability for psychosis is associated with disrupted bi-stable perception.
Collapse
Affiliation(s)
- Kyle W. Killebrew
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Hannah R. Moser
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Andrea N. Grant
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Scott R. Sponheim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
- Veterans Affairs Medical Center, Minneapolis, MN
| | - Michael-Paul Schallmo
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| |
Collapse
|
21
|
Schallmo MP, Weldon KB, Kamath RS, Moser HR, Montoya SA, Killebrew KW, Demro C, Grant AN, Marjańska M, Sponheim SR, Olman CA. The psychosis human connectome project: Design and rationale for studies of visual neurophysiology. Neuroimage 2023; 272:120060. [PMID: 36997137 PMCID: PMC10153004 DOI: 10.1016/j.neuroimage.2023.120060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
Visual perception is abnormal in psychotic disorders such as schizophrenia. In addition to hallucinations, laboratory tests show differences in fundamental visual processes including contrast sensitivity, center-surround interactions, and perceptual organization. A number of hypotheses have been proposed to explain visual dysfunction in psychotic disorders, including an imbalance between excitation and inhibition. However, the precise neural basis of abnormal visual perception in people with psychotic psychopathology (PwPP) remains unknown. Here, we describe the behavioral and 7 tesla MRI methods we used to interrogate visual neurophysiology in PwPP as part of the Psychosis Human Connectome Project (HCP). In addition to PwPP (n = 66) and healthy controls (n = 43), we also recruited first-degree biological relatives (n = 44) in order to examine the role of genetic liability for psychosis in visual perception. Our visual tasks were designed to assess fundamental visual processes in PwPP, whereas MR spectroscopy enabled us to examine neurochemistry, including excitatory and inhibitory markers. We show that it is feasible to collect high-quality data across multiple psychophysical, functional MRI, and MR spectroscopy experiments with a sizable number of participants at a single research site. These data, in addition to those from our previously described 3 tesla experiments, will be made publicly available in order to facilitate further investigations by other research groups. By combining visual neuroscience techniques and HCP brain imaging methods, our experiments offer new opportunities to investigate the neural basis of abnormal visual perception in PwPP.
Collapse
Affiliation(s)
- Michael-Paul Schallmo
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Kimberly B Weldon
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA; Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Rohit S Kamath
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Hannah R Moser
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Samantha A Montoya
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Kyle W Killebrew
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Caroline Demro
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA; Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Andrea N Grant
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Małgorzata Marjańska
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Scott R Sponheim
- Veterans Affairs Medical Center, Minneapolis, MN, USA; Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Cheryl A Olman
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA; Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
22
|
Siddiqui F, Gallagher D, Shuster-Hyman H, Lopez L, Gauthier-Fisher A, Librach CL. First trimester human umbilical cord perivascular cells (HUCPVC) modulate the kynurenine pathway and glutamate neurotransmission in an LPS-induced mouse model of neuroinflammation. J Inflamm (Lond) 2023; 20:15. [PMID: 37127610 PMCID: PMC10152638 DOI: 10.1186/s12950-023-00340-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND The Kynurenine Pathway (KP) of tryptophan degradation and glutamate toxicity is implicated in several neurological disorders, including depression. The therapeutic potential of mesenchymal stromal cells (MSC), owing to their well documented phagocytosis-driven mechanism of immunomodulation and neuroprotection, has been tested in many neurological disorders. However, their potential to influence KP and the glutamatergic system has not yet been investigated. Hence, this study sought to investigate the effect of HUCPVC, a rich and potent source of MSC, on Lipopolysaccharide (LPS)-activated KP metabolites, KP enzymes, and key components of glutamate neurotransmission. METHODS The immunomodulatory effect of peripherally administered HUCPVC on the expression profile of kynurenine pathway metabolites and enzymes was assessed in the plasma and brain of mice treated with LPS using LCMS and QPCR. An assessment of the glutamatergic system, including selected receptors, transporters and related proteins was also conducted by QPCR, immunohistochemistry and Western blot. RESULTS HUCPVC were found to modulate LPS-induced activation of KP enzymes and metabolites in the brain associated with neurotoxicity. Moreover, the reduced expression of the glutamatergic components due to LPS was also found to be significantly improved by HUCPVC. CONCLUSIONS The immunomodulatory properties of HUCPVC appear to confer neuroprotection, at least in part, through their ability to modulate the KP in the brain. This KP modulation enhances neuroprotective regulators and downregulates neurotoxic consequences, including glutamate neurotoxicity, which is associated with neuroinflammation and depressive behavior.
Collapse
Affiliation(s)
- Fyyaz Siddiqui
- CReATe Fertility Centre, 790 Bay Street, Suite 1100, Toronto, ON, M5G 1N8, Canada.
| | - Denis Gallagher
- CReATe Fertility Centre, 790 Bay Street, Suite 1100, Toronto, ON, M5G 1N8, Canada
| | - Hannah Shuster-Hyman
- CReATe Fertility Centre, 790 Bay Street, Suite 1100, Toronto, ON, M5G 1N8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Lianet Lopez
- CReATe Fertility Centre, 790 Bay Street, Suite 1100, Toronto, ON, M5G 1N8, Canada
| | | | - Clifford L Librach
- CReATe Fertility Centre, 790 Bay Street, Suite 1100, Toronto, ON, M5G 1N8, Canada.
- Department of Obstetrics and Gynecology, Toronto, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
23
|
Piniella D, Zafra F. Functional crosstalk of the glycine transporter GlyT1 and NMDA receptors. Neuropharmacology 2023; 232:109514. [PMID: 37003571 DOI: 10.1016/j.neuropharm.2023.109514] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
NMDA-type glutamate receptors (NMDARs) constitute one of the main glutamate (Glu) targets in the central nervous system and are involved in synaptic plasticity, which is the molecular substrate of learning and memory. Hypofunction of NMDARs has been associated with schizophrenia, while overstimulation causes neuronal death in neurodegenerative diseases or in stroke. The function of NMDARs requires coincidental binding of Glu along with other cellular signals such as neuronal depolarization, and the presence of other endogenous ligands that modulate their activity by allosterism. Among these allosteric modulators are zinc, protons and Gly, which is an obligatory co-agonist. These characteristics differentiate NMDARs from other receptors, and their structural bases have begun to be established in recent years. In this review we focus on the crosstalk between Glu and glycine (Gly), whose concentration in the NMDAR microenvironment is maintained by various Gly transporters that remove or release it into the medium in a regulated manner. The GlyT1 transporter is particularly involved in this task, and has become a target of great interest for the treatment of schizophrenia since its inhibition leads to an increase in synaptic Gly levels that enhances the activity of NMDARs. However, the only drug that has completed phase III clinical trials did not yield the expected results. Notwithstanding, there are additional drugs that continue to be investigated, and it is hoped that knowledge gained from the recently published 3D structure of GlyT1 may allow the rational design of more effective new drugs.
Collapse
Affiliation(s)
- Dolores Piniella
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; IdiPAZ, Institute of Health Carlos III (ISCIII), Spain
| | - Francisco Zafra
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; IdiPAZ, Institute of Health Carlos III (ISCIII), Spain.
| |
Collapse
|
24
|
Parincu Z, Iosifescu DV. Combinations of dextromethorphan for the treatment of mood disorders - a review of the evidence. Expert Rev Neurother 2023; 23:205-212. [PMID: 36943010 DOI: 10.1080/14737175.2023.2192402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Major depressive disorder (MDD) is one of the leading causes of disability worldwide. However, many patients do not achieve an adequate clinical improvement with pharmacotherapies targeting monoamine receptors, and the onset of therapeutic benefit typically lags by 4-6 weeks. There is a significant need for mechanistically novel treatments with more rapid efficacy. Combinations of dextromethorphan, an oral N-methyl-D-aspartate (NMDA) receptor antagonist, can potentially fill this gap. AREAS COVERED US Clinical Trials registration was systematically searched for studies examining the effects of dextromethorphan in mood disorders. Results were gathered via a PubMed search, adding also press releases, and poster presentations. Two case reports and eight clinical trials were identified for the treatment of MDD or treatment resistant depression (TRD); we also reviewed additional studies in bipolar disorder. EXPERT OPINION Clinical studies show that the combinations of dextromethorphan with quinidine or bupropion have been effective in decreasing depressive symptomatology in MDD. However, dextromethorphan studies in adults with TRD or with bipolar depression have shown mixed results. The combination of dextromethorphan and bupropion is a well-tolerated, safe, and efficacious treatment option for adults with MDD. Additional studies analyzing the effects of dextromethorphan and bupropion for TRD and bipolar depression are needed.
Collapse
Affiliation(s)
- Zamfira Parincu
- Clinical Research Division, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Dan V Iosifescu
- Clinical Research Division, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, New York University Grossman School of Medicine, Orangeburg, NY, USA
| |
Collapse
|
25
|
Matrisciano F, Pinna G. The Strategy of Targeting Peroxisome Proliferator-Activated Receptor (PPAR) in the Treatment of Neuropsychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:513-535. [PMID: 36949324 DOI: 10.1007/978-981-19-7376-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nonsteroid nuclear receptors and transcription factors that regulate several neuroinflammatory and metabolic processes, recently involved in several neuropsychiatric conditions, including Alzheimer's disease, Parkinson's disease, major depressive disorder, post-traumatic stress disorder (PTSD), schizophrenia spectrum disorders, and autism spectrum disorders. PPARs are ligand-activated receptors that, following stimulation, induce neuroprotective effects by decreasing neuroinflammatory processes through inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) expression and consequent suppression of pro-inflammatory cytokine production. PPARs heterodimerize with the retinoid X-receptor (RXR) and bind to PPAR-responsive regulatory elements (PPRE) in the promoter region of target genes involved in lipid metabolism, synthesis of cholesterol, catabolism of amino acids, and inflammation. Interestingly, PPARs are considered functionally part of the extended endocannabinoid (eCB) system that includes the classic eCB, anandamide, which act at cannabinoid receptor types 1 (CB1) and 2 (CB2) and are implicated in the pathophysiology of stress-related neuropsychiatric disorders. In preclinical studies, PPAR stimulation improves anxiety and depression-like behaviors by enhancing neurosteroid biosynthesis. The peculiar functional role of PPARs by exerting anti-inflammatory and neuroprotective effects and their expression localization in neurons and glial cells of corticolimbic circuits make them particularly interesting as novel therapeutic targets for several neuropsychiatric disorders characterized by underlying neuroinflammatory/neurodegenerative mechanisms. Herein, we discuss the pathological hallmarks of neuropsychiatric conditions associated with neuroinflammation, as well as the pivotal role of PPARs with a special emphasis on the subtype alpha (PPAR-α) as a suitable molecular target for therapeutic interventions.
Collapse
Affiliation(s)
- Francesco Matrisciano
- Department of Psychiatry, College of Medicine, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA
| | - Graziano Pinna
- Department of Psychiatry, College of Medicine, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
26
|
Crapanzano C, Casolaro I, Damiani S, Amendola C. Efficacy of Olanzapine in Anxiety Dimension of Schizophrenia: A Systematic Review of Randomized Controlled Trials. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2022; 20:592-599. [DOI: 10.9758/cpn.2022.20.4.592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Stefano Damiani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | |
Collapse
|
27
|
Dogra S, Putnam J, Conn PJ. Metabotropic glutamate receptor 3 as a potential therapeutic target for psychiatric and neurological disorders. Pharmacol Biochem Behav 2022; 221:173493. [PMID: 36402243 PMCID: PMC9729465 DOI: 10.1016/j.pbb.2022.173493] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
Glutamate is a major excitatory neurotransmitter in the central nervous system (CNS) and abnormalities in the glutamatergic system underlie various CNS disorders. As metabotropic glutamate receptor 3 (mGlu3 receptor) regulates glutamatergic transmission in various brain areas, emerging literature suggests that targeting mGlu3 receptors can be a novel approach to the treatment of psychiatric and neurological disorders. For example, mGlu3 receptor negative allosteric modulators (NAMs) induce rapid antidepressant-like effects in both acute and chronic stress models. Activation of mGlu3 receptors can enhance cognition in the rodents modeling schizophrenia-like pathophysiology. The mGlu3 receptors expressed in the astrocytes induce neuroprotective effects. Although polymorphisms in GRM3 have been shown to be associated with addiction, there is not significant evidence about the efficacy of mGlu3 receptor ligands in rodent models of addiction. Collectively, drugs targeting mGlu3 receptors may provide an alternative approach to fill the unmet clinical need for safer and more efficacious therapeutics for CNS disorders.
Collapse
Affiliation(s)
- Shalini Dogra
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Jason Putnam
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
28
|
Roberts RC, McCollum LA, Schoonover KE, Mabry SJ, Roche JK, Lahti AC. Ultrastructural evidence for glutamatergic dysregulation in schizophrenia. Schizophr Res 2022; 249:4-15. [PMID: 32014360 PMCID: PMC7392793 DOI: 10.1016/j.schres.2020.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/14/2022]
Abstract
The aim of this paper is to summarize ultrastructural evidence for glutamatergic dysregulation in several linked regions in postmortem schizophrenia brain. Following a brief summary of glutamate circuitry and how synapses are identified at the electron microscopic (EM) level, we will review EM pathology in the cortex and basal ganglia. We will include the effects of antipsychotic drugs and the relation of treatment response. We will discuss how these findings support or confirm other postmortem findings as well as imaging results. Briefly, synaptic and mitochondrial density in anterior cingulate cortex was decreased in schizophrenia, versus normal controls (NCs), in a selective layer specific pattern. In dorsal striatum, increases in excitatory synaptic density were detected in caudate matrix, a compartment associated with cognitive and motor function, and in the putamen patches, a region associated with limbic function and in the core of the nucleus accumbens. Patients who were treatment resistant or untreated had significantly elevated numbers of excitatory synapses in limbic striatal areas in comparison to NCs and responders. Protein levels of vGLUT2, found in subcortical glutamatergic neurons, were increased in the nucleus accumbens in schizophrenia. At the EM level, schizophrenia subjects had an increase in density of excitatory synapses in several areas of the basal ganglia. In the substantia nigra, the protein levels of vGLUT2 were elevated in untreated patients compared to NCs. The density of inhibitory synapses was decreased in schizophrenia versus NCs. In schizophrenia, glutamatergic synapses are differentially affected depending on the brain region, treatment status, and treatment response.
Collapse
Affiliation(s)
- Rosalinda C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States of America.
| | - Lesley A McCollum
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States of America
| | - Kirsten E Schoonover
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States of America
| | - Samuel J Mabry
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States of America
| | - Joy K Roche
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States of America
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States of America
| |
Collapse
|
29
|
Antipsychotic-like effects of fasudil, a Rho-kinase inhibitor, in a pharmacologic animal model of schizophrenia. Eur J Pharmacol 2022; 931:175207. [PMID: 35987254 DOI: 10.1016/j.ejphar.2022.175207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022]
Abstract
Current antipsychotics used to treat schizophrenia have associated problems, including serious side effects and treatment resistance. We recently identified a significant association of schizophrenia with exonic copy number variations in the Rho GTPase activating protein 10 (ARHGAP10) gene using genome-wide analysis. ARHGAP10 encodes a RhoGAP superfamily member that is involved in small GTPase signaling. In mice, Arhgap10 gene variations result in RhoA/Rho-kinase pathway activation. We evaluated the pharmacokinetics of fasudil and hydroxyfasudil using liquid chromatography-tandem mass spectrometry in mice. The antipsychotic effects of fasudil on hyperlocomotion, social interaction deficits, prepulse inhibition deficits, and novel object recognition deficits were also investigated in a MK-801-treated pharmacological mouse schizophrenia model. Fasudil and its major metabolite, hydroxyfasudil, were detected in the brain at concentrations above their respective Ki values for Rho-kinase after intraperitoneal injection of 10 mg kg-1 fasudil. Fasudil improved the hyperlocomotion, social interaction deficits, prepulse inhibition deficits, and novel object recognition deficits in MK-801-treated mice in a dose-dependent manner. Following oral administration of fasudil, brain hydroxyfasudil was detected at concentration above the Ki value for Rho-kinase whilst fasudil was undetectable. MK-801-induced hyperlocomotion was also improved by oral fasudil administration. These results suggest that fasudil has antipsychotic-like effects on the MK-801-treated pharmacological mouse schizophrenia model. There are two isoforms in Rho-kinase, and further investigation is needed to clarify the isoforms involved in the antipsychotic-like effects of fasudil in the MK-801-treated mouse schizophrenia model.
Collapse
|
30
|
Sensitive and Rapid Detection of Glutamic Acid in Colloidal Solution by Surfactant Mediated Silver Nanoparticles. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Mizoguchi T, Fujimori H, Ohba T, Shimazawa M, Nakamura S, Shinohara M, Hara H. Glutamatergic dysfunction is associated with phenotypes of VGF-overexpressing mice. Exp Brain Res 2022; 240:2051-2060. [PMID: 35587282 DOI: 10.1007/s00221-022-06384-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/04/2022] [Indexed: 11/04/2022]
Abstract
VGF nerve growth factor inducible (VGF) is a neuropeptide precursor, which is induced by several neurotrophic factors, including nerve growth factor and brain-derived neurotrophic factor. Clinically, an upregulation of VGF levels has been reported in the cerebrospinal fluid and prefrontal cortex of patients with schizophrenia. In our previous study, mice overexpressing VGF exhibited schizophrenia-related behaviors. In the current study, we characterized the biochemical changes in the brains of VGF-overexpressing mice. Metabolomics analysis of neurotransmitters revealed that glutamic acid and N-acetyl-L-aspartic acid were increased in the striatum of VGF-overexpressing mice. Additionally, the present study revealed that MK-801, which causes the disturbance in glutamic acid metabolism, increased the expression level of VGF-derived peptide (NAPP129, named VGF20), and VGF-overexpressing mice had higher sensitivity to MK-801. These results suggest that VGF may modulate the regulation of glutamic acid levels and the degree of glutamic acid signaling.
Collapse
Affiliation(s)
- Takahiro Mizoguchi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Honoka Fujimori
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Takuya Ohba
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan.
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Masakazu Shinohara
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Epidemiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| |
Collapse
|
32
|
de Bartolomeis A, Barone A, Buonaguro EF, Tomasetti C, Vellucci L, Iasevoli F. The Homer1 family of proteins at the crossroad of dopamine-glutamate signaling: An emerging molecular "Lego" in the pathophysiology of psychiatric disorders. A systematic review and translational insight. Neurosci Biobehav Rev 2022; 136:104596. [PMID: 35248676 DOI: 10.1016/j.neubiorev.2022.104596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 12/17/2022]
Abstract
Once considered only scaffolding proteins at glutamatergic postsynaptic density (PSD), Homer1 proteins are increasingly emerging as multimodal adaptors that integrate different signal transduction pathways within PSD, involved in motor and cognitive functions, with putative implications in psychiatric disorders. Regulation of type I metabotropic glutamate receptor trafficking, modulation of calcium signaling, tuning of long-term potentiation, organization of dendritic spines' growth, as well as meta- and homeostatic plasticity control are only a few of the multiple endocellular and synaptic functions that have been linked to Homer1. Findings from preclinical studies, as well as genetic studies conducted in humans, suggest that both constitutive (Homer1b/c) and inducible (Homer1a) isoforms of Homer1 play a role in the neurobiology of several psychiatric disorders, including psychosis, mood disorders, neurodevelopmental disorders, and addiction. On this background, Homer1 has been proposed as a putative novel target in psychopharmacological treatments. The aim of this review is to summarize and systematize the growing body of evidence on Homer proteins, highlighting the role of Homer1 in the pathophysiology and therapy of mental diseases.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy.
| | - Annarita Barone
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Elisabetta Filomena Buonaguro
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Licia Vellucci
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Felice Iasevoli
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| |
Collapse
|
33
|
Optimized Clinical Strategies for Treatment-Resistant Depression: Integrating Ketamine Protocols with Trauma- and Attachment-Informed Psychotherapy. PSYCH 2022. [DOI: 10.3390/psych4010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Strategically timed trauma- and attachment-informed psychotherapy to address underlying emotional wounds, paired with ketamine administered in precision-calibrated doses to ensure high-entropy brain states, may be key to improving the quality and duration of ketamine’s therapeutic efficacy for treatment-resistant depression. This approach optimizes the opportunities for change created by ketamine’s known effects as a rapid antidepressant that stimulates synaptogenesis, normalizes neural connectivity and coherence, enhances neuroplasticity, reduces inflammation, and induces high-entropy brain states with associated subjective psychedelic experiences. Ketamine, a non-selective N-methyl-D-aspartate (NMDA) receptor antagonist is a safe, effective, fast-acting dissociative anesthetic that, as a standalone treatment, also exhibits rapid sustained antidepressant effects, even in many patients with treatment-resistant depression. A prior history of developmental trauma and attachment injuries are known primary factors in the etiology of treatment resistance in depression and other mental disorders. Thus, the adjunct of targeted psychotherapy attuned to trauma and attachment injuries may enhance and prolong ketamine efficacy and provide an opportunity for lasting therapeutic change. Psychotherapy engagement during repeated ketamine sessions for patient safety and integration of altered states, paired with separate individualized psychotherapy-only sessions timed 24–48 h post ketamine induction, takes advantage of peak ketamine-induced dendritic spine growth in the prefrontal cortex and limbic system, and normalized network connectivity across brain structures. This strategically timed paired-session approach also exploits the therapeutic potential created by precision-calibrated ketamine-linked high-entropy brain states and associated psychedelic experiences that are posited to disrupt overly rigid maladaptive thoughts, behaviors, and disturbing memories associated with treatment-resistant depression; paired sessions also support integration of the felt sense of happiness and connectivity associated with psychedelic experiences.
Collapse
|
34
|
Maleninska K, Jandourkova P, Brozka H, Stuchlik A, Nekovarova T. Selective impairment of timing in a NMDA hypofunction animal model of psychosis. Behav Brain Res 2022; 419:113671. [PMID: 34788697 DOI: 10.1016/j.bbr.2021.113671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/01/2022]
Abstract
Schizophrenia is severe neuropsychiatric disease, which is commonly accompanied not only by positive or negative symptoms, but also by cognitive impairment. To study neuronal mechanisms underlying cognitive distortions and mechanisms underlying schizophrenia, animal pharmacological models of cognitive symptoms are commonly used. Between various cognitive impairments in schizophrenia patients, disturbed time perception has often been reported. Here, we examined temporal and spatial cognition in a modified Carousel maze task in the animal model of schizophrenia induced by non-competitive NMDA-receptor antagonists MK-801. Male Long-Evans rats (n = 18) first learned to avoid the aversive sector on a rotating arena in both dark and light intervals. We verified that during dark, rats used temporal cues, while during light they relied predominantly on spatial cues. We demonstrated that the timing strategy depends on the stable rotation speed of the arena and on the repositioning clues such as aversive stimuli. During testing (both in light and dark intervals), half of the rats received MK-801 and the control half received saline solution. We observed dose-dependent disruptions of both temporal and spatial cognition. Namely, both doses of MK-801 (0.1 and 0.12 mg/kg) significantly impaired timing strategy in the dark and increased locomotor activity. MK-801 dose 0.1 mg/kg, but not 0.12, also impaired spatial avoidance strategy in light. We found that the timing strategy is more sensitive to NMDA antagonist MK-801 than the spatial strategy. To conclude, a modified version of the Carousel maze is a useful and sensitive tool for detecting timing impairments in the MK-801 induced rodent model of schizophrenia.
Collapse
Affiliation(s)
- Kristyna Maleninska
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; National Institute of Mental Health, Topolova 748, 25067 Klecany, Czech Republic; Department of Physiology, Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic.
| | - Pavla Jandourkova
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; Department of Physiology, Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic
| | - Hana Brozka
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Ales Stuchlik
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic.
| | - Tereza Nekovarova
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; National Institute of Mental Health, Topolova 748, 25067 Klecany, Czech Republic; Department of Zoology, Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic.
| |
Collapse
|
35
|
El-Said WA, Qaisi RM, Placide V, Choi JW. A stable naked-eye colorimetric sensor for monitoring release of extracellular gamma-aminobutyric acid (GABA) neurotransmitter from SH-SY5Y cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120517. [PMID: 34739892 DOI: 10.1016/j.saa.2021.120517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
A novel optical γ-aminobutyric acid (GABA)-based sensor was developed on interacting thiol compounds and o-phthalaldehyde (OPA) to form thiacetal compounds. Then, the thiacetal interacts with the GABA molecule to form an isoindole compound. The effects of four thiol compounds on the stability of the resulting isoindole compound were assessed. The 2-mercaptoethanol, "one of the most used derivatizing agents," is unexpectedly the least stable; while, 16-mercaptohexadecanoic acid resulted in the most durable isoindole compound. The developed sensor showed the capability for detecting GABA within a wide concentration range spanning from 500 nmol L-1 to 100 µmol L-1. The detection limit was about 330 nmol L-1, which indicated the high sensitivity of the developed sensor compared with those previously reported. The findings illustrated the ability to detect GABA at the physiological pH (pH = 7.4) without adjusting the pH value, opening the door for real applications. Furthermore, the sensor could detect various GABA concentrations in human serum with good recovery percentages (98% to 101.4%). In addition, this assay was applied to monitor GABA release from the SH-SY5Y cell line to convert glutamate into GABA. This result indicates the capability of the proposed assay for visually monitoring the release of GABA neurotransmitters.
Collapse
Affiliation(s)
- Waleed A El-Said
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia; Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 121-742, Republic of Korea; Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Ramy M Qaisi
- University of Jeddah, College of Engineering, Department of Electrical and Electronic Engineering, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Virginie Placide
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 121-742, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 121-742, Republic of Korea.
| |
Collapse
|
36
|
Role of miRNAs in diabetic neuropathy: mechanisms and possible interventions. Mol Neurobiol 2022; 59:1836-1849. [PMID: 35023058 DOI: 10.1007/s12035-021-02662-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022]
Abstract
Accelerating cases of diabetes worldwide have given rise to higher incidences of diabetic complications. MiRNAs, a much-explored class of non-coding RNAs, play a significant role in the pathogenesis of diabetes mellitus by affecting insulin release, β-cell proliferation, and dysfunction. Besides, disrupted miRNAs contribute to various complications, diabetic retinopathy, nephropathy, and neuropathy as well as severe conditions like diabetic foot. MiRNAs regulate various processes involved in diabetic complications like angiogenesis, vascularization, inflammations, and various signaling pathways like PI3K, MAPK, SMAD, and NF-KB signaling pathways. Diabetic neuropathy is the most common diabetic complication, characterized mainly by pain and numbness, especially in the legs and feet. MiRNAs implicated in diabetic neuropathy include mir-9, mir-106a, mir-146a, mir-182, miR-23a and b, miR-34a, and miR-503. The diabetic foot is the most common diabetic neuropathy, often leading to amputations. Mir-203, miR-23c, miR-145, miR-29b and c, miR-126, miR-23a and b, miR-503, and miR-34a are associated with diabetic foot. This review has been compiled to summarize miRNA involved in initiation, progression, and miRNAs affecting various signaling pathways involved in diabetic neuropathy including the diabetic foot. Besides, potential applications of miRNAs as biomarkers and therapeutic targets in this microvascular complication will also be discussed.
Collapse
|
37
|
Piszczek L, Constantinescu A, Kargl D, Lazovic J, Pekcec A, Nicholson JR, Haubensak W. Dissociation of impulsive traits by subthalamic metabotropic glutamate receptor 4. eLife 2022; 11:62123. [PMID: 34982027 PMCID: PMC8803315 DOI: 10.7554/elife.62123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/31/2021] [Indexed: 11/17/2022] Open
Abstract
Behavioral strategies require gating of premature responses to optimize outcomes. Several brain areas control impulsive actions, but the neuronal basis of natural variation in impulsivity between individuals remains largely unknown. Here, by combining a Go/No-Go behavioral assay with resting-state (rs) functional MRI in mice, we identified the subthalamic nucleus (STN), a known gate for motor control in the basal ganglia, as a major hotspot for trait impulsivity. In vivo recorded STN neural activity encoded impulsive action as a separable state from basic motor control, characterized by decoupled STN/substantia nigra pars reticulata (SNr) mesoscale networks. Optogenetic modulation of STN activity bidirectionally controlled impulsive behavior. Pharmacological and genetic manipulations showed that these impulsive actions are modulated by metabotropic glutamate receptor 4 (mGlu4) function in STN and its coupling to SNr in a behavioral trait-dependent manner, and independently of general motor function. In conclusion, STN circuitry multiplexes motor control and trait impulsivity, which are molecularly dissociated by mGlu4. This provides a potential mechanism for the genetic modulation of impulsive behavior, a clinically relevant predictor for developing psychiatric disorders associated with impulsivity.
Collapse
Affiliation(s)
- Lukasz Piszczek
- The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria
| | - Andreea Constantinescu
- The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria
| | - Dominic Kargl
- The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria.,Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Jelena Lazovic
- Preclinical Imaging Facility, Vienna BioCenter Core Facilities (VBCF), Vienna, Austria
| | - Anton Pekcec
- Div Research Germany, Boehringer Ingelheim, Biberach an der Riss, Germany
| | - Janet R Nicholson
- Div Research Germany, Boehringer Ingelheim, Biberach an der Riss, Germany
| | - Wulf Haubensak
- The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria.,Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
38
|
Guo P, Hu S, Jiang X, Zheng H, Mo D, Cao X, Zhu J, Zhong H. Associations of Neurocognition and Social Cognition With Brain Structure and Function in Early-Onset Schizophrenia. Front Psychiatry 2022; 13:798105. [PMID: 35222115 PMCID: PMC8866448 DOI: 10.3389/fpsyt.2022.798105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cognitive impairment is a core feature of schizophrenia that is more serious in patients with early-onset schizophrenia (EOS). However, the neuroimaging basis of cognitive functions, including neurocognition and social cognition, remains unclear in patients with EOS. METHODS Forty-three patients with EOS underwent structural and resting state functional magnetic resonance imaging scans. Brain structure and function were evaluated through the analysis of brain gray matter volume (GMV) and amplitude of low-frequency fluctuations (ALFF). They underwent comprehensive assessments for neurocognition (verbal memory, verbal expression, attention, and executive function) and social cognition (theory of mind and attributional bias). Correlation analyses were conducted to detect the potential link between cognitive function indices and brain imaging parameters. RESULTS First, neurocognition was linked to brain structure characterized by higher immediate recall scores associated with increased GMV in the left temporal pole, higher verbal fluency scores associated with increased GMV in the left temporal pole: middle temporal gyrus, and higher Stroop-word scores associated with increased GMV in the right middle frontal gyrus. Second, social cognition was related to brain function characterized by lower sense of reality scores associated with increased ALFF in the left precentral gyrus, higher scores of accidental hostility bias associated with increased ALFF in the right middle temporal gyrus, and higher scores of accidental aggression bias associated with increased ALFF in the left precentral gyrus. CONCLUSION These findings may add to the existing knowledge about the cognitive function-brain relationship. They may have clinical significance for studying the mechanism of neurocognitive and social cognitive impairment in patients with EOS and providing potential neural targets for their treatment and intervention.
Collapse
Affiliation(s)
- Pengfei Guo
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - Shuwen Hu
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - Xiaolu Jiang
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - Hongyu Zheng
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - Daming Mo
- Department of Child and Adolescent Mental Disorder, Anhui Mental Health Center, Hefei, China
| | - Xiaomei Cao
- Department of Child and Adolescent Mental Disorder, Anhui Mental Health Center, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui Zhong
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Child and Adolescent Mental Disorder, Anhui Mental Health Center, Hefei, China
| |
Collapse
|
39
|
Lu CW, Huang YC, Chiu KM, Lee MY, Lin TY, Wang SJ. Enmein Decreases Synaptic Glutamate Release and Protects against Kainic Acid-Induced Brain Injury in Rats. Int J Mol Sci 2021; 22:ijms222312966. [PMID: 34884781 PMCID: PMC8657722 DOI: 10.3390/ijms222312966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
This study investigated the effects of enmein, an active constituent of Isodon japonicus Hara, on glutamate release in rat cerebrocortical nerve terminals (synaptosomes) and evaluated its neuroprotective potential in a rat model of kainic acid (KA)-induced glutamate excitotoxicity. Enmein inhibited depolarization-induced glutamate release, FM1-43 release, and Ca2+ elevation in cortical nerve terminals but had no effect on the membrane potential. Removing extracellular Ca2+ and blocking vesicular glutamate transporters, N- and P/Q-type Ca2+ channels, or protein kinase C (PKC) prevented the inhibition of glutamate release by enmein. Enmein also decreased the phosphorylation of PKC, PKC-α, and myristoylated alanine-rich C kinase substrates in synaptosomes. In the KA rat model, intraperitoneal administration of enmein 30 min before intraperitoneal injection of KA reduced neuronal cell death, glial cell activation, and glutamate elevation in the hippocampus. Furthermore, in the hippocampi of KA rats, enmein increased the expression of synaptic markers (synaptophysin and postsynaptic density protein 95) and excitatory amino acid transporters 2 and 3, which are responsible for glutamate clearance, whereas enmein decreased the expression of glial fibrillary acidic protein (GFAP) and CD11b. These results indicate that enmein not only inhibited glutamate release from cortical synaptosomes by suppressing Ca2+ influx and PKC but also increased KA-induced hippocampal neuronal death by suppressing gliosis and decreasing glutamate levels by increasing glutamate uptake.
Collapse
Affiliation(s)
- Cheng-Wei Lu
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan; (C.-W.L.); (Y.-C.H.)
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Yu-Chen Huang
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan; (C.-W.L.); (Y.-C.H.)
| | - Kuan-Ming Chiu
- Division of Cardiovascular Surgery, Cardiovascular Center, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-M.C.); (M.-Y.L.)
- Department of Nursing, Asia Eastern University of Science and Technology, New Taipei City 22060, Taiwan
- Department of Photonics Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Ming-Yi Lee
- Division of Cardiovascular Surgery, Cardiovascular Center, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-M.C.); (M.-Y.L.)
| | - Tzu-Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan; (C.-W.L.); (Y.-C.H.)
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
- Correspondence: (T.-Y.L.); (S.-J.W.)
| | - Su-Jane Wang
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
- Correspondence: (T.-Y.L.); (S.-J.W.)
| |
Collapse
|
40
|
de la Rubia Ortí JE, Fernández D, Platero F, García-Pardo MP. Can Ketogenic Diet Improve Alzheimer's Disease? Association With Anxiety, Depression, and Glutamate System. Front Nutr 2021; 8:744398. [PMID: 34778340 PMCID: PMC8579917 DOI: 10.3389/fnut.2021.744398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Alzheimer's disease is the most common neurodegenerative disorder in our society, mainly characterized by loss of cognitive function. However, other symptoms such as anxiety and depression have been described in patients. The process is mediated by alterations in the synaptic and extrasynaptic activity of the neurotransmitter glutamate, which are linked to a hypometabolism of glucose as the main source of brain energy. In that respect, Ketogenic diet (KD) has been proposed as a non-pharmacological treatment serving as an alternative energy source to the neurons increasing the fat percentage and reducing the carbohydrates percentage, showing promising results to improve the cognitive symptoms associated with different neurodegenerative disorders, including AD. However, the association of this type of diet with emotional symptoms and the modulation of glutamate neurotransmission systems after this dietary reduction of carbohydrates are unknown. Objective: The aim of this short review is to provide update studies and discuss about the relationship between KD, anxiety, depression, and glutamate activity in AD patients. Discussion: The main results suggest that the KD is an alternative energy source for neurons in AD with positive consequences for the brain at different levels such as epigenetic, metabolic and signaling, and that the substitution of carbohydrates for fats is also associated with emotional symptoms and glutamate activity in AD.
Collapse
Affiliation(s)
| | - David Fernández
- Department of Nursing, Catholic University of Valencia, Valencia, Spain
| | - Félix Platero
- Department of Medicine, University of Valencia, Valencia, Spain
| | | |
Collapse
|
41
|
Cui Y, Xiong Y, Li H, Zeng M, Wang Y, Li Y, Zou X, Lv W, Gao J, Cao R, Meng L, Long J, Liu J, Feng Z. Chalcone-Derived Nrf2 Activator Protects Cognitive Function via Maintaining Neuronal Redox Status. Antioxidants (Basel) 2021; 10:antiox10111811. [PMID: 34829682 PMCID: PMC8615013 DOI: 10.3390/antiox10111811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 12/05/2022] Open
Abstract
NF-E2-related factor 2 (Nrf2), the key transcription regulator of phase II enzymes, has been considered beneficial for neuronal protection. We previously designed a novel chalcone analog, 1-(2,3,4-trimethoxyphenyl)-2-(3,4,5-trimethoxyphenyl)-acrylketone (Tak), that could specifically activate Nrf2 in vitro. Here, we report that Tak confers significant hippocampal neuronal protection both in vitro and in vivo. Treatment with Tak has no significant toxicity on cultured neuronal cells. Instead, Tak increases cellular ATP production by increasing mitochondrial function and decreases the levels of reactive oxygen species by activating Nrf2-mediated phase II enzyme expression. Tak pretreatment prevents glutamate-induced excitotoxic neuronal death accompanied by suppressed mitochondrial respiration, increased superoxide production, and activation of apoptosis. Further investigation indicates that the protective effect of Tak is mediated by the Akt signaling pathway. Meanwhile, Tak administration in mice can sufficiently abrogate scopolamine-induced cognitive impairment via decreasing hippocampal oxidative stress. In addition, consistent benefits are also observed in an energy stress mouse model under a high-fat diet, as the administration of Tak remarkably increases Akt signaling-mediated antioxidative enzyme expression and prevents hippocampal neuronal apoptosis without significant effect on the mouse metabolic status. Overall, our study demonstrates that Tak protects cognitive function by Akt-mediated Nrf2 activation to maintain redox status both vivo and in vitro, suggesting that Tak is a promising pharmacological candidate for the treatment of oxidative neuronal diseases.
Collapse
Affiliation(s)
- Yuting Cui
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.C.); (Y.X.); (H.L.); (M.Z.); (Y.W.); (W.L.); (J.G.); (J.L.)
| | - Yue Xiong
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.C.); (Y.X.); (H.L.); (M.Z.); (Y.W.); (W.L.); (J.G.); (J.L.)
| | - Hua Li
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.C.); (Y.X.); (H.L.); (M.Z.); (Y.W.); (W.L.); (J.G.); (J.L.)
| | - Mengqi Zeng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.C.); (Y.X.); (H.L.); (M.Z.); (Y.W.); (W.L.); (J.G.); (J.L.)
| | - Yan Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.C.); (Y.X.); (H.L.); (M.Z.); (Y.W.); (W.L.); (J.G.); (J.L.)
| | - Yuan Li
- Institute of Basic Medical Science, Xi’an Medical University, Xi’an 710021, China;
| | - Xuan Zou
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Shannxi 710004, China;
- Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Shannxi 710004, China
| | - Weiqiang Lv
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.C.); (Y.X.); (H.L.); (M.Z.); (Y.W.); (W.L.); (J.G.); (J.L.)
| | - Jing Gao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.C.); (Y.X.); (H.L.); (M.Z.); (Y.W.); (W.L.); (J.G.); (J.L.)
| | - Ruijun Cao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi’an Jiaotong University, Xi’an 710049, China; (R.C.); (L.M.)
| | - Lingjie Meng
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi’an Jiaotong University, Xi’an 710049, China; (R.C.); (L.M.)
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.C.); (Y.X.); (H.L.); (M.Z.); (Y.W.); (W.L.); (J.G.); (J.L.)
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.C.); (Y.X.); (H.L.); (M.Z.); (Y.W.); (W.L.); (J.G.); (J.L.)
- University of Health and Rehabilitation Sciences, Qingdao 266071, China
- Correspondence: (J.L.); (Z.F.)
| | - Zhihui Feng
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Shannxi 710004, China;
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Correspondence: (J.L.); (Z.F.)
| |
Collapse
|
42
|
Glutamate levels in the medial prefrontal cortex of healthy pregnant women compared to non-pregnant controls. Psychoneuroendocrinology 2021; 133:105382. [PMID: 34419762 DOI: 10.1016/j.psyneuen.2021.105382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/20/2021] [Accepted: 08/04/2021] [Indexed: 11/21/2022]
Abstract
Very little is known about maternal cerebral changes during pregnancy. Since there is an increased risk for major depression during pregnancy and postpartum, it is important to understand the structural and neurochemical changes that occur in the brain during pregnancy. Using proton magnetic resonance spectroscopy (1H-MRS) (3 T field strength), glutamate (Glu) levels were measured in the medial prefrontal cortex (MPFC) of 21 healthy gravid subjects 2-3 weeks before their due date (6.74 ± 1.39), and in 14 non-pregnant healthy controls during their follicular phase (8.53 ± 1.55). Water quantified MPFC Glu levels were decreased in pregnant women (p < 0.01). We also observed a 13.9% decrease in percentage grey matter (%GM) (p < 0.01) in our MPFC voxel. As Glu is mostly found in GM, we repeated the statistical analysis after adjustment for %GM and found that the difference in Glu levels was no longer statistically significant when adjusted for %GM (p = 0.10). This investigation is the only systematic direct investigation of brain tissue composition and Glu levels in pregnant women. The main finding of this investigation is the decreased %GM in healthy pregnant women compared to non-pregnant women. These findings of decreased %GM in pregnancy may be responsible for the frequent complaints by pregnant women of cognitive difficulties also described as pregnesia.
Collapse
|
43
|
Chlorogenic Acid Decreases Glutamate Release from Rat Cortical Nerve Terminals by P/Q-Type Ca 2+ Channel Suppression: A Possible Neuroprotective Mechanism. Int J Mol Sci 2021; 22:ijms222111447. [PMID: 34768876 PMCID: PMC8583876 DOI: 10.3390/ijms222111447] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022] Open
Abstract
The glutamatergic neurotransmitter system has received substantial attention in research on the pathophysiology and treatment of neurological disorders. The study investigated the effect of the polyphenolic compound chlorogenic acid (CGA) on glutamate release in rat cerebrocortical nerve terminals (synaptosomes). CGA inhibited 4-aminopyridine (4-AP)-induced glutamate release from synaptosomes. This inhibition was prevented in the absence of extracellular Ca2+ and was associated with the inhibition of 4-AP-induced elevation of Ca2+ but was not attributed to changes in synaptosomal membrane potential. In line with evidence observed through molecular docking, CGA did not inhibit glutamate release in the presence of P/Q-type Ca2+ channel inhibitors; therefore, CGA-induced inhibition of glutamate release may be mediated by P/Q-type Ca2+ channels. CGA-induced inhibition of glutamate release was also diminished by the calmodulin and Ca2+/calmodilin-dependent kinase II (CaMKII) inhibitors, and CGA reduced the phosphorylation of CaMKII and its substrate, synapsin I. Furthermore, pretreatment with intraperitoneal CGA injection attenuated the glutamate increment and neuronal damage in the rat cortex that were induced by kainic acid administration. These results indicate that CGA inhibits glutamate release from cortical synaptosomes by suppressing P/Q-type Ca2+ channels and CaMKII/synapsin I pathways, thereby preventing excitotoxic damage to cortical neurons.
Collapse
|
44
|
Lin TY, Lu CW, Hsieh PW, Chiu KM, Lee MY, Wang SJ. Natural Product Isoliquiritigenin Activates GABA B Receptors to Decrease Voltage-Gate Ca 2+ Channels and Glutamate Release in Rat Cerebrocortical Nerve Terminals. Biomolecules 2021; 11:biom11101537. [PMID: 34680170 PMCID: PMC8534184 DOI: 10.3390/biom11101537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/26/2022] Open
Abstract
Reduction in glutamate release is a key mechanism for neuroprotection and we investigated the effect of isoliquiritigenin (ISL), an active ingredient of Glycyrrhiza with neuroprotective activities, on glutamate release in rat cerebrocortical nerve terminals (synaptosomes). ISL produced a concentration-dependent inhibition of glutamate release and reduced the intraterminal [Ca2+] increase. The inhibition of glutamate release by ISL was prevented after removing extracellular Ca2+ or blocking P/Q-type Ca2+ channels. This inhibition was mediated through the γ-aminobutyric acid type B (GABAB) receptors because ISL was unable to inhibit glutamate release in the presence of baclofen (an GABAB agonist) or CGP3548 (an GABAB antagonist) and docking data revealed that ISL interacted with GABAB receptors. Furthermore, the ISL inhibition of glutamate release was abolished through the inhibition of Gi/o-mediated responses or Gβγ subunits, but not by 8-bromoadenosine 3′,5′-cyclic monophosphate or adenylate cyclase inhibition. The ISL inhibition of glutamate release was also abolished through the inhibition of protein kinase C (PKC), and ISL decreased the phosphorylation of PKC. Thus, we inferred that ISL, through GABAB receptor activation and Gβγ-coupled inhibition of P/Q-type Ca2+ channels, suppressed the PKC phosphorylation to cause a decrease in evoked glutamate release at rat cerebrocortical nerve terminals.
Collapse
Affiliation(s)
- Tzu-Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan; (T.-Y.L.); (C.-W.L.)
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Cheng-Wei Lu
- Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan; (T.-Y.L.); (C.-W.L.)
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Pei-Wen Hsieh
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan;
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Kuan-Ming Chiu
- Division of Cardiovascular Surgery, Cardiovascular Center, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-M.C.); (M.-Y.L.)
- Department of Nursing, Asia Eastern University of Science and Technology, New Taipei City 22060, Taiwan
- Department of Photonics Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Ming-Yi Lee
- Division of Cardiovascular Surgery, Cardiovascular Center, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-M.C.); (M.-Y.L.)
| | - Su-Jane Wang
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan;
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
- Correspondence: ; Tel.: +88-62-2905-3465; Fax: +88-62-2905-2096
| |
Collapse
|
45
|
Alteration of NMDA receptor trafficking as a cellular hallmark of psychosis. Transl Psychiatry 2021; 11:444. [PMID: 34462417 PMCID: PMC8405679 DOI: 10.1038/s41398-021-01549-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/24/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
A dysfunction of the glutamatergic transmission, especially of the NMDA receptor (NMDAR), constitutes one of the main biological substrate of psychotic disorders, such as schizophrenia. The NMDAR signaling hypofunction, through genetic and/or environmental insults, would cause a neurodevelopmental myriad of molecular, cellular, and network alterations that persist throughout life. Yet, the mechanisms underpinning NMDAR dysfunctions remain elusive. Here, we compared the membrane trafficking of NMDAR in three gold-standard models of schizophrenia, i.e., patient's cerebrospinal fluids, genetic manipulations of susceptibility genes, and prenatal developmental alterations. Using a combination of single nanoparticle tracking, electrophysiological, biochemical, and behavioral approaches in rodents, we identified that the NMDAR trafficking in hippocampal neurons was consistently altered in all these different models. Artificial manipulations of the NMDAR surface dynamics with competing ligands or antibody-induced receptor cross-link in the developing rat brain were sufficient to regulate the adult acoustic startle reflex and compensate for an early pathological challenge. Collectively, we show that the NMDAR trafficking is markedly altered in all clinically relevant models of psychosis, opening new avenues of therapeutical strategies.
Collapse
|
46
|
Zaongo SD, Liu Y, Harypursat V, Song F, Xia H, Ma P, Chen Y. P-Selectin Glycoprotein Ligand 1: A Potential HIV-1 Therapeutic Target. Front Immunol 2021; 12:710121. [PMID: 34434194 PMCID: PMC8380821 DOI: 10.3389/fimmu.2021.710121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/28/2021] [Indexed: 01/21/2023] Open
Abstract
Antiretroviral therapy (ART), which is a life-long therapeutic option, remains the only currently effective clinical method to treat HIV-1 infection. However, ART may be toxic to vital organs including the liver, brain, heart, and kidneys, and may result in systemic complications. In this context, to consider HIV-1 restriction factors from the innate immune system to explore novel HIV therapeutics is likely to be a promising investigative strategy. In light of this, P-selectin glycoprotein ligand 1 (PSGL-1) has recently become the object of close scrutiny as a recognized cell adhesion molecule, and has become a major focus of academic study, as researchers believe that PSGL-1 may represent a novel area of interest in the research inquiry into the field of immune checkpoint inhibition. In this article, we review PSGL-1's structure and functions during infection and/or inflammation. We also outline a comprehensive review of its role and potential therapeutic utility during HIV-1 infection as published in contemporary academic literature.
Collapse
Affiliation(s)
- Silvere D Zaongo
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China.,Basic Medicine College, Chongqing Medical University, Chongqing, China
| | - Yanqiu Liu
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Vijay Harypursat
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Fangzhou Song
- Basic Medicine College, Chongqing Medical University, Chongqing, China
| | - Huan Xia
- Department of Infectious Diseases, Tianjin Second People's Hospital, Tianjin, China.,School of Medicine, Nankai University, Tianjin, China
| | - Ping Ma
- Department of Infectious Diseases, Tianjin Second People's Hospital, Tianjin, China.,School of Medicine, Nankai University, Tianjin, China
| | - Yaokai Chen
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
47
|
Kadriu B, Musazzi L, Johnston JN, Kalynchuk LE, Caruncho HJ, Popoli M, Zarate CA. Positive AMPA receptor modulation in the treatment of neuropsychiatric disorders: A long and winding road. Drug Discov Today 2021; 26:2816-2838. [PMID: 34358693 DOI: 10.1016/j.drudis.2021.07.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022]
Abstract
Glutamatergic transmission is widely implicated in neuropsychiatric disorders, and the discovery that ketamine elicits rapid-acting antidepressant effects by modulating α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) signaling has spurred a resurgence of interest in the field. This review explores agents in various stages of development for neuropsychiatric disorders that positively modulate AMPARs, both directly and indirectly. Despite promising preclinical research, few direct and indirect AMPAR positive modulators have progressed past early clinical development. Challenges such as low potency have created barriers to effective implementation. Nevertheless, the functional complexity of AMPARs sets them apart from other drug targets and allows for specificity in drug discovery. Additional effective treatments for neuropsychiatric disorders that work through positive AMPAR modulation may eventually be developed.
Collapse
Affiliation(s)
- Bashkim Kadriu
- Experimental Therapeutics & Pathophysiology Branch, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - Jenessa N Johnston
- Experimental Therapeutics & Pathophysiology Branch, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Lisa E Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Italy
| | - Carlos A Zarate
- Experimental Therapeutics & Pathophysiology Branch, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
48
|
Ding JB, Dongas J, Hu K, Ding M. Autoimmune Limbic Encephalitis: A Review of Clinicoradiological Features and the Challenges of Diagnosis. Cureus 2021; 13:e17529. [PMID: 34603897 PMCID: PMC8476324 DOI: 10.7759/cureus.17529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 12/19/2022] Open
Abstract
Limbic encephalitis is an autoimmune cause of encephalitis. In addition to the usual symptoms of encephalitis such as altered consciousness, fever, and focal neurological deficits, limbic encephalitis can present with neuropsychiatric manifestations and seizures. Making a formal diagnosis involves a difficult and prolonged workup phase. The purpose of this review is to help readers delineate limbic encephalitis from other illnesses. This is done by presenting a spectrum of potential organic differential diagnoses and pertinent findings that distinguish them from limbic encephalitis. Instead of presenting a variety of psychiatric differential diagnoses, the authors present a review of psychiatric manifestations known to be associated with limbic encephalitis, as naturally, any psychiatric disorder could be a potential comorbid disease.
Collapse
Affiliation(s)
- Jack B Ding
- Internal Medicine, Royal Adelaide Hospital, Adelaide, AUS
- Internal Medicine, University of Adelaide, Adelaide, AUS
| | - John Dongas
- Internal Medicine, Royal Adelaide Hospital, Adelaide, AUS
| | - Kevin Hu
- Internal Medicine, Lyell McEwin Hospital, Adelaide, AUS
| | - Mark Ding
- Internal Medicine, University of Adelaide, Adelaide, AUS
| |
Collapse
|
49
|
Onaolapo AY, Onaolapo OJ. Glutamate and depression: Reflecting a deepening knowledge of the gut and brain effects of a ubiquitous molecule. World J Psychiatry 2021; 11:297-315. [PMID: 34327123 PMCID: PMC8311508 DOI: 10.5498/wjp.v11.i7.297] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
The versatility of glutamate as the brain’s foremost excitatory neurotransmitter and modulator of neurotransmission and function is considered common knowledge. Years of research have continued to uncover glutamate’s effects and roles in several neurological and neuropsychiatric disorders, including depression. It had been considered that a deeper understanding of the roles of glutamate in depression might open a new door to understanding the pathological basis of the disorder, improve the approach to patient management, and lead to the development of newer drugs that may benefit more patients. This review examines our current understanding of the roles of endogenous and exogenous sources of glutamate and the glutamatergic system in the aetiology, progression and management of depression. It also examines the relationships that link the gut-brain axis, glutamate and depression; as it emphasizes how the gut-brain axis could impact depression pathogenesis and management via changes in glutamate homeostasis. Finally, we consider what the likely future of glutamate-based therapies and glutamate-based therapeutic manipulations in depression are, and if with them, we are now on the final chapter of understanding the neurochemical milieu of depressive disorders.
Collapse
Affiliation(s)
- Adejoke Yetunde Onaolapo
- Behavioural Neuroscience Unit, Neurobiology Subdivision, Department of Anatomy, Ladoke Akintola University of Technology, Oyo State 234, Nigeria
| | - Olakunle James Onaolapo
- Behavioural Neuroscience Unit, Neuropharmacology Subdivision, Department of Pharmacology, Ladoke Akintola University of Technology, Oyo State 234, Nigeria
| |
Collapse
|
50
|
Suzuki A, Kunugi A, Tajima Y, Suzuki N, Suzuki M, Toyofuku M, Kuno H, Sogabe S, Kosugi Y, Awasaki Y, Kaku T, Kimura H. Strictly regulated agonist-dependent activation of AMPA-R is the key characteristic of TAK-653 for robust synaptic responses and cognitive improvement. Sci Rep 2021; 11:14532. [PMID: 34267258 PMCID: PMC8282797 DOI: 10.1038/s41598-021-93888-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/30/2021] [Indexed: 12/28/2022] Open
Abstract
Agonistic profiles of AMPA receptor (AMPA-R) potentiators may be associated with seizure risk and bell-shaped dose-response effects. Here, we report the pharmacological characteristics of a novel AMPA-R potentiator, TAK-653, which exhibits minimal agonistic properties. TAK-653 bound to the ligand binding domain of recombinant AMPA-R in a glutamate-dependent manner. TAK-653 strictly potentiated a glutamate-induced Ca2+ influx in hGluA1i-expressing CHO cells through structural interference at Ser743 in GluA1. In primary neurons, TAK-653 augmented AMPA-induced Ca2+ influx and AMPA-elicited currents via physiological AMPA-R with little agonistic effects. Interestingly, TAK-653 enhanced electrically evoked AMPA-R-mediated EPSPs more potently than AMPA (agonist) or LY451646 (AMPA-R potentiator with a prominent agonistic effect) in brain slices. Moreover, TAK-653 improved cognition for both working memory and recognition memory, while LY451646 did so only for recognition memory, and AMPA did not improve either. These data suggest that the facilitation of phasic AMPA-R activation by physiologically-released glutamate is the key to enhancing synaptic and cognitive functions, and nonselective activation of resting AMPA-Rs may negatively affect this process. Importantly, TAK-653 had a wide safety margin against convulsion; TAK-653 showed a 419-fold (plasma Cmax) and 1017-fold (AUC plasma) margin in rats. These findings provide insight into a therapeutically important aspect of AMPA-R potentiation.
Collapse
Affiliation(s)
- Atsushi Suzuki
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Kanagawa, 251-8555, Fujisawa, Japan
| | - Akiyoshi Kunugi
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Kanagawa, 251-8555, Fujisawa, Japan
| | - Yasukazu Tajima
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Kanagawa, 251-8555, Fujisawa, Japan
| | - Noriko Suzuki
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Kanagawa, 251-8555, Fujisawa, Japan
| | - Motohisa Suzuki
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Kanagawa, 251-8555, Fujisawa, Japan
| | - Masashi Toyofuku
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Kanagawa, 251-8555, Fujisawa, Japan
| | - Haruhiko Kuno
- Bio-Molecular Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Satoshi Sogabe
- Bio-Molecular Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yohei Kosugi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yasuyuki Awasaki
- Drug Safety Research and Evaluation, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Tomohiro Kaku
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Kanagawa, 251-8555, Fujisawa, Japan
| | - Haruhide Kimura
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Kanagawa, 251-8555, Fujisawa, Japan.
| |
Collapse
|