1
|
Cao C, Liu W, Hou C, Chen Y, Liao F, Long H, Chen D, Chen X, Li F, Huang J, Zhou X, Luo D, Qu H, Zhao G. Disrupted default mode network connectivity and its role in negative symptoms of schizophrenia. Psychiatry Res 2025; 348:116489. [PMID: 40203641 DOI: 10.1016/j.psychres.2025.116489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Schizophrenia is a complex mental disorder characterised by positive symptoms, negative symptoms, and cognitive deficits, with recent studies suggesting that disruptions in the default mode network (DMN) may underlie many of these symptoms. In this study, we used graph theory analysis of resting-state functional magnetic resonance imaging data to investigate differences in the topological organisation and functional connectivity of the DMN in patients with schizophrenia, using two independent datasets of patients and healthy controls. The findings revealed significant group differences in the DMN of patients with schizophrenia, particularly within the core-medial temporal lobe (MTL) subsystem, characterised by lower shortest path length, clustering coefficient, and small-worldness, indicating less efficient network organisation. Weaker functional connectivity in the core-MTL subsystem was correlated with higher avolition-apathy scores, highlighting the role of DMN connectivity patterns in negative symptoms. These results, validated across two independent datasets, emphasise the robust and generalisable association between schizophrenia and DMN network features, less efficient topological properties, and weaker functional connectivity. This underscores the importance of targeting DMN connectivity to alleviate negative symptoms, improve clinical outcomes, and potentially serve as a biomarker for monitoring symptom severity and guiding treatment.
Collapse
Affiliation(s)
- Chuanlong Cao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, PR China; Department of Radiology, The Fourth People's Hospital of Chengdu, Chengdu, PR China.
| | - Wanqing Liu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, PR China.
| | - Chengshi Hou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, PR China; Department of Radiology, The Fourth People's Hospital of Chengdu, Chengdu, PR China
| | - Yu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, PR China; Department of Radiology, The Fourth People's Hospital of Chengdu, Chengdu, PR China
| | - Fang Liao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, PR China; Department of Radiology, The Fourth People's Hospital of Chengdu, Chengdu, PR China
| | - Hui Long
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, PR China; Department of Radiology, The Fourth People's Hospital of Chengdu, Chengdu, PR China
| | - Dacai Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, PR China; Department of Radiology, The Fourth People's Hospital of Chengdu, Chengdu, PR China
| | - Xinyu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, PR China; Department of Radiology, The Fourth People's Hospital of Chengdu, Chengdu, PR China
| | - Fang Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, PR China; Department of Radiology, The Fourth People's Hospital of Chengdu, Chengdu, PR China
| | - Ju Huang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, PR China; Department of Radiology, The Fourth People's Hospital of Chengdu, Chengdu, PR China
| | - Xuanyi Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, PR China; Department of Radiology, The Fourth People's Hospital of Chengdu, Chengdu, PR China
| | - Dinghao Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, PR China; Department of Radiology, The Fourth People's Hospital of Chengdu, Chengdu, PR China
| | - Haibo Qu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, PR China.
| | - Guocheng Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, PR China; Department of Radiology, The Fourth People's Hospital of Chengdu, Chengdu, PR China.
| |
Collapse
|
2
|
Wu H, Li S, Zeng Y. Normalization and cross-entropy connectivity in brain disease classification. iScience 2025; 28:112226. [PMID: 40235587 PMCID: PMC11999650 DOI: 10.1016/j.isci.2025.112226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/30/2024] [Accepted: 03/12/2025] [Indexed: 04/17/2025] Open
Abstract
In resting-state functional magnetic resonance imaging (rs-fMRI), Pearson correlation has traditionally been the dominant method for constructing brain connectivity. This paper introduces an entropy-based connectivity approach utilizing subject-level Z score normalization, which not only standardizes signal amplitudes across subjects but also preserves interregional signal differences more effectively than Pearson correlation. Furthermore, the proposed method incorporates cross-entropy techniques, offering an advanced perspective on the temporal ordering of signals between brain regions rather than merely capturing their synchronization. Experimental results demonstrate that the proposed subject-normalized cross-joint entropy achieves superior classification accuracy in schizophrenia, mild cognitive impairment, and autism spectrum disorder, outperforming the conventional normalized correlation method by approximately 4%, 6%, and 7%, respectively. Additionally, the observed performance improvement may be attributed to changes in the symmetry of functional connectivity between brain regions-an aspect often overlooked in traditional functional connectivity analyses.
Collapse
Affiliation(s)
- Haifeng Wu
- School of Electrical and Information Technology, Yunnan Minzu University, Kunming 650504, China
- Yunnan Key Laboratory of Unmanned Autonomous System, Kunming 650504, China
- Multivariate Sensor Network & Information System of Science & Technology Innovation Team in University of Yunnan Province, Yunnan Minzu University, Kunming 650504, China
| | - Shunliang Li
- School of Electrical and Information Technology, Yunnan Minzu University, Kunming 650504, China
- Yunnan Key Laboratory of Unmanned Autonomous System, Kunming 650504, China
- Multivariate Sensor Network & Information System of Science & Technology Innovation Team in University of Yunnan Province, Yunnan Minzu University, Kunming 650504, China
| | - Yu Zeng
- School of Electrical and Information Technology, Yunnan Minzu University, Kunming 650504, China
- Yunnan Key Laboratory of Unmanned Autonomous System, Kunming 650504, China
- Multivariate Sensor Network & Information System of Science & Technology Innovation Team in University of Yunnan Province, Yunnan Minzu University, Kunming 650504, China
| |
Collapse
|
3
|
Pourebrahim S, Ahmad T, Rottmann E, Schulze J, Scheller B. Does Cannabis Use Contribute to Schizophrenia? A Causation Analysis Based on Epidemiological Evidence. Biomolecules 2025; 15:368. [PMID: 40149904 PMCID: PMC11940535 DOI: 10.3390/biom15030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/29/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Cannabis abuse has been linked to acute psychotic symptoms as well as to the development of schizophrenia. Although the association has been well described, causation has not yet been investigated. Therefore, we investigated whether cannabis or cannabinoid use is causal for the development of schizophrenia, conducting a systematic literature review according to the PRISM guidelines. Epidemiological studies and randomized clinical trials investigating the links between cannabis and psychosis-like events (PLE) and schizophrenia were identified (according to PRISM guidelines), and relevant studies were included in a Forest plot analysis. Confounder analysis was performed using a funnel plot, and the Hill causality criteria were used to estimate causation. A total of 18 studies fulfilled the search criteria; 10 studies were included in a forest plot. All studies reported an increased risk for PLE or schizophrenia, and nine of the ten studies, a significant increase; the overall OR was calculated to be 2.88 (CI 2.24 to 3.70), with a twofold-higher risk calculated for cannabis use during adolescence. Confounder effects were indicated by a funnel plot. The Hill criteria indicated a high likelihood for the contribution of cannabis to schizophrenia development. Cannabinoids likely contribute to chronic psychotic events and schizophrenia, especially if taken during adolescence. This effect likely increases with a high cannabis THC concentration and increased frequency of cannabis use, and is stronger in males than in females. This points to the possibility of a selective cannabis toxicity on synaptic plasticity in adolescence, as compared to adult cannabis use. Cannabis use should be regulated and discouraged, and prevention efforts should be strengthened, especially with reference to adolescence.
Collapse
Affiliation(s)
- Sepehr Pourebrahim
- Clinic of Anesthesiology, Surgical Intensive Care, Emergency Medicine and Pain Medicine, Main-Kinzig-Kliniken, Herzbachweg 14, D-63571 Gelnhausen, Germany (E.R.)
- Institute of Occupational, Social and Environmental Medicine, Goethe-University Frankfurt/Main, Theodor-Stern-Kai 7, D-60590 Frankfurt/Main, Germany;
| | - Tooba Ahmad
- Institute of Occupational, Social and Environmental Medicine, Goethe-University Frankfurt/Main, Theodor-Stern-Kai 7, D-60590 Frankfurt/Main, Germany;
- Paediatric Department, Epsom General Hospital, Epsom and St Helier University Hospitals NHS Trust, Dorking Road, Epsom KT18 7EG, Surrey, UK
| | - Elisabeth Rottmann
- Clinic of Anesthesiology, Surgical Intensive Care, Emergency Medicine and Pain Medicine, Main-Kinzig-Kliniken, Herzbachweg 14, D-63571 Gelnhausen, Germany (E.R.)
- Institute of Occupational, Social and Environmental Medicine, Goethe-University Frankfurt/Main, Theodor-Stern-Kai 7, D-60590 Frankfurt/Main, Germany;
| | - Johannes Schulze
- Institute of Occupational, Social and Environmental Medicine, Goethe-University Frankfurt/Main, Theodor-Stern-Kai 7, D-60590 Frankfurt/Main, Germany;
| | - Bertram Scheller
- Anesthesiological Clinic, St. Josef-Hospital Wiesbaden, Beethovenstraße 20, D-65189 Wiesbaden, Germany;
| |
Collapse
|
4
|
Park J, Shimbo H, Tamura S, Tomoda T, Hikida T, Okado H, Hirai S. Impact of feeding age on cognitive impairment in mice with Disrupted-In-Schizophrenia 1 (Disc1) mutation under a high sucrose diet. Behav Brain Res 2025; 476:115291. [PMID: 39401692 DOI: 10.1016/j.bbr.2024.115291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/17/2024]
Abstract
A combination of genetic predisposition and environmental factors contributes to the development of psychiatric disorders such as schizophrenia, bipolar disorder and major depressive disorder. Previous studies using mouse models suggested that prolonged high sucrose intake during puberty can serve as an environmental risk factor for the onset of psychiatric disorders. However, the impact of both the duration and timing of high sucrose consumption during different developmental stages on pathogenesis remains poorly defined. We therefore investigated the effects of a long-term high sucrose diet on cognitive deficit, a core symptom of psychiatric disorders, using Disrupted-in-Schizophrenia 1 locus-impairment heterozygous mutant (Disc1het) mice as a model for genetic predisposition. First, Disc1het mice and their littermate control (WT) were fed either a high sucrose diet or a control starch diet for nine weeks starting at weaning (postnatal day 24), and tested for cognitive performance in the object location test (OLT) and the novel object recognition test (NORT) (assessing spatial and recognition memory, respectively). Only Disc1het mice on a high sucrose diet displayed deficits in OLT (p < 0.0001), demonstrating impaired hippocampus-dependent spatial memory. This behavioral abnormality was accompanied by a decreased proportion of the high parvalbumin-expressing interneurons (High-PV neurons) in the ventral hippocampus, a cell type that regulates neural activity and a variety of learning and memory processes such as spatial and working memory. We further explored the critical developmental period for high sucrose intake to cause cognitive deficits in adulthood by comparing specific feeding periods during puberty (P24-P65) and post-puberty (P65-P90). Compared to those on a standard chow diet, high sucrose intake caused deficits in spatial memory in both WT and Disc1het mice, with more pronounced effects in Disc1het mice. In particular, Disc1het mice on a sucrose diet during adolescence showed more pronounced cognitive deficit than those fed after adolescence. Our results suggest that adolescence is particularly vulnerable to nutritional environmental risk factors, and that high sucrose consumption may cause hippocampus-dependent memory deficits via decreased High-PV interneuron function when combined with Disc1-related genetic predisposition.
Collapse
Affiliation(s)
- Jonghyuk Park
- Metabolic Regulation Group, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Japan
| | - Hiroko Shimbo
- Metabolic Regulation Group, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Japan; Clinical Research Institute, Kanagawa Children's Medical Center, Japan
| | - Shoko Tamura
- Metabolic Regulation Group, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Japan
| | - Toshifumi Tomoda
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, University of Toronto, Canada
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Japan
| | - Haruo Okado
- Metabolic Regulation Group, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Japan
| | - Shinobu Hirai
- Metabolic Regulation Group, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Japan.
| |
Collapse
|
5
|
Kumar U. Cannabinoids: Role in Neurological Diseases and Psychiatric Disorders. Int J Mol Sci 2024; 26:152. [PMID: 39796008 PMCID: PMC11720483 DOI: 10.3390/ijms26010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
An impact of legalization and decriminalization of marijuana is the gradual increase in the use of cannabis for recreational purposes, which poses a potential threat to society and healthcare systems worldwide. However, the discovery of receptor subtypes, endogenous endocannabinoids, and enzymes involved in synthesis and degradation, as well as pharmacological characterization of receptors, has led to exploration of the use of cannabis in multiple peripheral and central pathological conditions. The role of cannabis in the modulation of crucial events involving perturbed physiological functions and disease progression, including apoptosis, inflammation, oxidative stress, perturbed mitochondrial function, and the impaired immune system, indicates medicinal values. These events are involved in most neurological diseases and prompt the gradual progression of the disease. At present, several synthetic agonists and antagonists, in addition to more than 70 phytocannabinoids, are available with distinct efficacy as a therapeutic alternative in different pathological conditions. The present review aims to describe the use of cannabis in neurological diseases and psychiatric disorders.
Collapse
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
6
|
Rajebhosale P, Jone A, Johnson KR, Hofland R, Palarpalar C, Khan S, Role LW, Talmage DA. Neuregulin1 Nuclear Signaling Influences Adult Neurogenesis and Regulates a Schizophrenia Susceptibility Gene Network within the Mouse Dentate Gyrus. J Neurosci 2024; 44:e0063242024. [PMID: 39214704 PMCID: PMC11502234 DOI: 10.1523/jneurosci.0063-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Neuregulin1 (Nrg1) signaling is critical for neuronal development and function from fate specification to synaptic plasticity. Type III Nrg1 is a synaptic protein which engages in bidirectional signaling with its receptor ErbB4. Forward signaling engages ErbB4 phosphorylation, whereas back signaling engages two known mechanisms: (1) local axonal PI3K-AKT signaling and (2) cleavage by γ-secretase resulting in cytosolic release of the intracellular domain (ICD), which can traffic to the nucleus (Bao et al., 2003; Hancock et al., 2008). To dissect the contribution of these alternate signaling strategies to neuronal development, we generated a transgenic mouse with a missense mutation (V321L) in the Nrg1 transmembrane domain that disrupts nuclear back signaling with minimal effects on forward signaling or local back signaling and was previously found to be associated with psychosis (Walss-Bass et al., 2006). We combined RNA sequencing, retroviral fate mapping of neural stem cells, behavioral analyses, and various network analyses of transcriptomic data to investigate the effect of disrupting Nrg1 nuclear back signaling in the dentate gyrus (DG) of male and female mice. The V321L mutation impairs nuclear translocation of the Nrg1 ICD and alters gene expression in the DG. V321L mice show reduced stem cell proliferation, altered cell cycle dynamics, fate specification defects, and dendritic dysmorphogenesis. Orthologs of known schizophrenia (SCZ)-susceptibility genes were dysregulated in the V321L DG. These genes coordinated a larger network with other dysregulated genes. Weighted gene correlation network analysis and protein interaction network analyses revealed striking similarity between DG transcriptomes of V321L mouse and humans with SCZ.
Collapse
Affiliation(s)
- Prithviraj Rajebhosale
- Genetics of Neuronal Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Alice Jone
- Graduate Program in Neuroscience, State University of New York at Stony Brook, Stony Brook, New York 11794
| | - Kory R Johnson
- Bioinformatics Core, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 21042
| | - Rohan Hofland
- Undergraduate Biology, Stony Brook University, Stony Brook, New York 11794
| | - Camille Palarpalar
- Undergraduate Biology, Stony Brook University, Stony Brook, New York 11794
| | - Samara Khan
- Undergraduate Biology, Stony Brook University, Stony Brook, New York 11794
| | - Lorna W Role
- Circuits, Synapses, & Molecular Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - David A Talmage
- Genetics of Neuronal Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
7
|
Rodríguez-Prieto Á, Mateos-White I, Aníbal-Martínez M, Navarro-González C, Gil-Sanz C, Domínguez-Canterla Y, González-Manteiga A, Del Buey Furió V, López-Bendito G, Fazzari P. Nrg1 intracellular signaling regulates the development of interhemispheric callosal axons in mice. Life Sci Alliance 2024; 7:e202302250. [PMID: 38918041 PMCID: PMC11200272 DOI: 10.26508/lsa.202302250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Schizophrenia is associated with altered cortical circuitry. Although the schizophrenia risk gene NRG1 is known to affect the wiring of inhibitory interneurons, its role in excitatory neurons and axonal development is unclear. Here, we investigated the role of Nrg1 in the development of the corpus callosum, the major interhemispheric connection formed by cortical excitatory neurons. We found that deletion of Nrg1 impaired callosal axon development in vivo. Experiments in vitro and in vivo demonstrated that Nrg1 is cell-autonomously required for axonal outgrowth and that intracellular signaling of Nrg1 is sufficient to promote axonal development in cortical neurons and specifically in callosal axons. Furthermore, our data suggest that Nrg1 signaling regulates the expression of Growth Associated Protein 43, a key regulator of axonal growth. In conclusion, our study demonstrates that NRG1 is involved in the formation of interhemispheric callosal connections and provides a novel perspective on the relevance of NRG1 in excitatory neurons and in the etiology of schizophrenia.
Collapse
Affiliation(s)
- Ángela Rodríguez-Prieto
- Lab of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe, Valencia, Spain
| | - Isabel Mateos-White
- Lab of Neural Development, BIOTECMED Institute, Universidad de Valencia, Valencia, Spain
| | - Mar Aníbal-Martínez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Carmen Navarro-González
- Lab of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe, Valencia, Spain
- Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
| | - Cristina Gil-Sanz
- Lab of Neural Development, BIOTECMED Institute, Universidad de Valencia, Valencia, Spain
| | - Yaiza Domínguez-Canterla
- Lab of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe, Valencia, Spain
| | - Ana González-Manteiga
- Lab of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe, Valencia, Spain
| | - Verónica Del Buey Furió
- Lab of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe, Valencia, Spain
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Pietro Fazzari
- Lab of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe, Valencia, Spain
| |
Collapse
|
8
|
Buck T, Dong E, McCarthy M, Guidotti A, Sodhi M. Prenatal stress alters transcription of NMDA-type glutamate receptors in the hippocampus. Neurosci Lett 2024; 836:137886. [PMID: 38917870 DOI: 10.1016/j.neulet.2024.137886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
Prenatal stress increases the risk of neurodevelopmental disorders. NMDA-type glutamate receptor (NMDAR) activity plays an important pathophysiological role in the cortico-hippocampal circuit in these disorders. We tested the hypothesis that transcription of NMDAR subunits is modified in the frontal cortex (FCx) and hippocampus after exposure to prenatal restraint stress (PRS) in mice. At 10 weeks of age, male PRS offspring (n = 20) and non-stressed controls (NS, n = 20) were treated with haloperidol (1 mg/kg), clozapine (5 mg/kg) or saline twice daily for 5 days, before measuring social approach (SOC). Saline-treated and haloperidol-treated PRS mice had reduced SOC relative to NS (P < 0.01), but clozapine-treated PRS mice had similar SOC to NS mice. These effects of PRS were associated with increased transcription of NMDAR subunits encoded by GRIN2A and GRIN2B genes in the hippocampus but not FCx. GRIN transcription in FCx correlated positively with SOC, but hippocampal GRIN transcription had negative correlation with SOC. The ratio of GRIN2A/GRIN2B transcription is known to increase during development but was lower in PRS mice. These results suggest that GRIN2A and GRIN2B transcript levels are modified in the hippocampus by PRS, leading to life-long deficits in social behavior. These data have some overlap with the molecular pathophysiology of schizophrenia. Similar to PRS in mice, schizophrenia, has been associated with social withdrawal, with increased GRIN2 expression in the hippocampus, and reduced GRIN2A/GRIN2B expression ratios in the hippocampus. These findings suggest that PRS in mice may have construct validity as a preclinical model for antipsychotic drug development.
Collapse
Affiliation(s)
- Tristram Buck
- Department of Molecular Pharmacology and Neuroscience, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Erbo Dong
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH, USA
| | - Michael McCarthy
- Department of Molecular Pharmacology and Neuroscience, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Alessandro Guidotti
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Monsheel Sodhi
- Department of Molecular Pharmacology and Neuroscience, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.
| |
Collapse
|
9
|
Rawani NS, Chan AW, Dursun SM, Baker GB. The Underlying Neurobiological Mechanisms of Psychosis: Focus on Neurotransmission Dysregulation, Neuroinflammation, Oxidative Stress, and Mitochondrial Dysfunction. Antioxidants (Basel) 2024; 13:709. [PMID: 38929148 PMCID: PMC11200831 DOI: 10.3390/antiox13060709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Psychosis, defined as a set of symptoms that results in a distorted sense of reality, is observed in several psychiatric disorders in addition to schizophrenia. This paper reviews the literature relevant to the underlying neurobiology of psychosis. The dopamine hypothesis has been a major influence in the study of the neurochemistry of psychosis and in development of antipsychotic drugs. However, it became clear early on that other factors must be involved in the dysfunction involved in psychosis. In the current review, it is reported how several of these factors, namely dysregulation of neurotransmitters [dopamine, serotonin, glutamate, and γ-aminobutyric acid (GABA)], neuroinflammation, glia (microglia, astrocytes, and oligodendrocytes), the hypothalamic-pituitary-adrenal axis, the gut microbiome, oxidative stress, and mitochondrial dysfunction contribute to psychosis and interact with one another. Research on psychosis has increased knowledge of the complexity of psychotic disorders. Potential new pharmacotherapies, including combinations of drugs (with pre- and probiotics in some cases) affecting several of the factors mentioned above, have been suggested. Similarly, several putative biomarkers, particularly those related to the immune system, have been proposed. Future research on both pharmacotherapy and biomarkers will require better-designed studies conducted on an all stages of psychotic disorders and must consider confounders such as sex differences and comorbidity.
Collapse
Affiliation(s)
| | | | | | - Glen B. Baker
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2G3, Canada; (N.S.R.); (A.W.C.); (S.M.D.)
| |
Collapse
|
10
|
Dear R, Wagstyl K, Seidlitz J, Markello RD, Arnatkevičiūtė A, Anderson KM, Bethlehem RAI, Raznahan A, Bullmore ET, Vértes PE. Cortical gene expression architecture links healthy neurodevelopment to the imaging, transcriptomics and genetics of autism and schizophrenia. Nat Neurosci 2024; 27:1075-1086. [PMID: 38649755 PMCID: PMC11156586 DOI: 10.1038/s41593-024-01624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
Human brain organization involves the coordinated expression of thousands of genes. For example, the first principal component (C1) of cortical transcription identifies a hierarchy from sensorimotor to association regions. In this study, optimized processing of the Allen Human Brain Atlas revealed two new components of cortical gene expression architecture, C2 and C3, which are distinctively enriched for neuronal, metabolic and immune processes, specific cell types and cytoarchitectonics, and genetic variants associated with intelligence. Using additional datasets (PsychENCODE, Allen Cell Atlas and BrainSpan), we found that C1-C3 represent generalizable transcriptional programs that are coordinated within cells and differentially phased during fetal and postnatal development. Autism spectrum disorder and schizophrenia were specifically associated with C1/C2 and C3, respectively, across neuroimaging, differential expression and genome-wide association studies. Evidence converged especially in support of C3 as a normative transcriptional program for adolescent brain development, which can lead to atypical supragranular cortical connectivity in people at high genetic risk for schizophrenia.
Collapse
Affiliation(s)
- Richard Dear
- Department of Psychiatry, University of Cambridge, Cambridge, UK.
| | | | - Jakob Seidlitz
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Ross D Markello
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Aurina Arnatkevičiūtė
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | | | | | - Armin Raznahan
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, USA
| | | | - Petra E Vértes
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Sportelli L, Eisenberg DP, Passiatore R, D'Ambrosio E, Antonucci LA, Bettina JS, Chen Q, Goldman AL, Gregory MD, Griffiths K, Hyde TM, Kleinman JE, Pardiñas AF, Parihar M, Popolizio T, Rampino A, Shin JH, Veronese M, Ulrich WS, Zink CF, Bertolino A, Howes OD, Berman KF, Weinberger DR, Pergola G. Dopamine signaling enriched striatal gene set predicts striatal dopamine synthesis and physiological activity in vivo. Nat Commun 2024; 15:3342. [PMID: 38688917 PMCID: PMC11061310 DOI: 10.1038/s41467-024-47456-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/22/2024] [Indexed: 05/02/2024] Open
Abstract
The polygenic architecture of schizophrenia implicates several molecular pathways involved in synaptic function. However, it is unclear how polygenic risk funnels through these pathways to translate into syndromic illness. Using tensor decomposition, we analyze gene co-expression in the caudate nucleus, hippocampus, and dorsolateral prefrontal cortex of post-mortem brain samples from 358 individuals. We identify a set of genes predominantly expressed in the caudate nucleus and associated with both clinical state and genetic risk for schizophrenia that shows dopaminergic selectivity. A higher polygenic risk score for schizophrenia parsed by this set of genes predicts greater dopamine synthesis in the striatum and greater striatal activation during reward anticipation. These results translate dopamine-linked genetic risk variation into in vivo neurochemical and hemodynamic phenotypes in the striatum that have long been implicated in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Leonardo Sportelli
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Daniel P Eisenberg
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, NIH, DHHS, Bethesda, MD, USA
| | - Roberta Passiatore
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Enrico D'Ambrosio
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Linda A Antonucci
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Jasmine S Bettina
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, NIH, DHHS, Bethesda, MD, USA
| | - Qiang Chen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Aaron L Goldman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Michael D Gregory
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, NIH, DHHS, Bethesda, MD, USA
| | - Kira Griffiths
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
- Holmusk Technologies, New York, NY, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Madhur Parihar
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Teresa Popolizio
- Radiology Department, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Antonio Rampino
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
- Azienda Ospedaliero Universitaria Consorziale Policlinico, Bari, Italy
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Mattia Veronese
- Department of Information Engineering, University of Padua, Padua, Italy
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - William S Ulrich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Caroline F Zink
- Baltimore Research and Education Foundation, Baltimore, MD, USA
| | - Alessandro Bertolino
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
- Azienda Ospedaliero Universitaria Consorziale Policlinico, Bari, Italy
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Karen F Berman
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, NIH, DHHS, Bethesda, MD, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Giulio Pergola
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA.
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Casey C, Fullard JF, Sleator RD. Unravelling the genetic basis of Schizophrenia. Gene 2024; 902:148198. [PMID: 38266791 DOI: 10.1016/j.gene.2024.148198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Neuronal development is a highly regulated mechanism that is central to organismal function in animals. In humans, disruptions to this process can lead to a range of neurodevelopmental phenotypes, including Schizophrenia (SCZ). SCZ has a significant genetic component, whereby an individual with an SCZ affected family member is eight times more likely to develop the disease than someone with no family history of SCZ. By examining a combination of genomic, transcriptomic and epigenomic datasets, large-scale 'omics' studies aim to delineate the relationship between genetic variation and abnormal cellular activity in the SCZ brain. Herein, we provide a brief overview of some of the key omics methods currently being used in SCZ research, including RNA-seq, the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and high-throughput chromosome conformation capture (3C) approaches (e.g., Hi-C), as well as single-cell/nuclei iterations of these methods. We also discuss how these techniques are being employed to further our understanding of the genetic basis of SCZ, and to identify associated molecular pathways, biomarkers, and candidate drug targets.
Collapse
Affiliation(s)
- Clara Casey
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Roy D Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland.
| |
Collapse
|
13
|
Heindorf M, Keller GB. Antipsychotic drugs selectively decorrelate long-range interactions in deep cortical layers. eLife 2024; 12:RP86805. [PMID: 38578678 PMCID: PMC10997332 DOI: 10.7554/elife.86805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Psychosis is characterized by a diminished ability of the brain to distinguish externally driven activity patterns from self-generated activity patterns. Antipsychotic drugs are a class of small molecules with relatively broad binding affinity for a variety of neuromodulator receptors that, in humans, can prevent or ameliorate psychosis. How these drugs influence the function of cortical circuits, and in particular their ability to distinguish between externally and self-generated activity patterns, is still largely unclear. To have experimental control over self-generated sensory feedback, we used a virtual reality environment in which the coupling between movement and visual feedback can be altered. We then used widefield calcium imaging to determine the cell type-specific functional effects of antipsychotic drugs in mouse dorsal cortex under different conditions of visuomotor coupling. By comparing cell type-specific activation patterns between locomotion onsets that were experimentally coupled to self-generated visual feedback and locomotion onsets that were not coupled, we show that deep cortical layers were differentially activated in these two conditions. We then show that the antipsychotic drug clozapine disrupted visuomotor integration at locomotion onsets also primarily in deep cortical layers. Given that one of the key components of visuomotor integration in cortex is long-range cortico-cortical connections, we tested whether the effect of clozapine was detectable in the correlation structure of activity patterns across dorsal cortex. We found that clozapine as well as two other antipsychotic drugs, aripiprazole and haloperidol, resulted in a strong reduction in correlations of layer 5 activity between cortical areas and impaired the spread of visuomotor prediction errors generated in visual cortex. Our results are consistent with the interpretation that a major functional effect of antipsychotic drugs is a selective alteration of long-range layer 5-mediated communication.
Collapse
Affiliation(s)
- Matthias Heindorf
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Georg B Keller
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of Science, University of BaselBaselSwitzerland
| |
Collapse
|
14
|
He J, Li J, Wei Y, He Z, Liu J, Yuan N, Zhou R, He X, Ren H, Gu L, Liao Y, Chen X, Tang J. Multiple serum anti-glutamate receptor antibody levels in clozapine-treated/naïve patients with treatment-resistant schizophrenia. BMC Psychiatry 2024; 24:248. [PMID: 38566016 PMCID: PMC10985978 DOI: 10.1186/s12888-024-05689-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Glutamatergic function abnormalities have been implicated in the etiology of treatment-resistant schizophrenia (TRS), and the efficacy of clozapine may be attributed to its impact on the glutamate system. Recently, evidence has emerged suggesting the involvement of immune processes and increased prevalence of antineuronal antibodies in TRS. This current study aimed to investigate the levels of multiple anti-glutamate receptor antibodies in TRS and explore the effects of clozapine on these antibody levels. METHODS Enzyme linked immunosorbent assay (ELISA) was used to measure and compare the levels of anti-glutamate receptor antibodies (NMDAR, AMPAR, mGlur3, mGluR5) in clozapine-treated TRS patients (TRS-C, n = 37), clozapine-naïve TRS patients (TRS-NC, n = 39), and non-TRS patients (nTRS, n = 35). Clinical symptom severity was assessed using the Positive and Negative Symptom Scale (PANSS), while cognitive function was evaluated using the MATRICS Consensus Cognitive Battery (MCCB). RESULT The levels of all four glutamate receptor antibodies in TRS-NC were significantly higher than those in nTRS (p < 0.001) and in TRS-C (p < 0.001), and the antibody levels in TRS-C were comparable to those in nTRS. However, no significant associations were observed between antibody levels and symptom severity or cognitive function across all three groups after FDR correction. CONCLUSION Our findings suggest that TRS may related to increased anti-glutamate receptor antibody levels and provide further evidence that glutamatergic dysfunction and immune processes may contribute to the pathogenesis of TRS. The impact of clozapine on anti-glutamate receptor antibody levels may be a pharmacological mechanism underlying its therapeutic effects.
Collapse
Affiliation(s)
- Jingqi He
- Department of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinguang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yisen Wei
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Psychiatry, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Zhangyin He
- Department of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Junyu Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Xiangya Nursing School of Central South University, Changsha, China
| | - Ning Yuan
- Hunan Provincial Brain Hospital (The second people's Hospital of Hunan Province), Changsha, China
| | | | - Xingtao He
- The Ninth Hospital of Changsha, Changsha, China
| | - Honghong Ren
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Psychiatry, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Lin Gu
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Research Center for Advanced Science and Technology (RCAST), University of Tokyo, Tokyo, Japan
| | - Yanhui Liao
- Department of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaogang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Jinsong Tang
- Department of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Hunan Provincial Brain Hospital (The second people's Hospital of Hunan Province), Changsha, China.
- Zigong Mental Health Center, Zigong, China.
| |
Collapse
|
15
|
Lv Y, Wen L, Hu WJ, Deng C, Ren HW, Bao YN, Su BW, Gao P, Man ZY, Luo YY, Li CJ, Xiang ZX, Wang B, Luan ZL. Schizophrenia in the genetic era: a review from development history, clinical features and genomic research approaches to insights of susceptibility genes. Metab Brain Dis 2024; 39:147-171. [PMID: 37542622 DOI: 10.1007/s11011-023-01271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
Schizophrenia is a devastating neuropsychiatric disorder affecting 1% of the world population and ranks as one of the disorders providing the most severe burden for society. Schizophrenia etiology remains obscure involving multi-risk factors, such as genetic, environmental, nutritional, and developmental factors. Complex interactions of genetic and environmental factors have been implicated in the etiology of schizophrenia. This review provides an overview of the historical origins, pathophysiological mechanisms, diagnosis, clinical symptoms and corresponding treatment of schizophrenia. In addition, as schizophrenia is a polygenic, genetic disorder caused by the combined action of multiple micro-effective genes, we further detail several approaches, such as candidate gene association study (CGAS) and genome-wide association study (GWAS), which are commonly used in schizophrenia genomics studies. A number of GWASs about schizophrenia have been performed with the hope to identify novel, consistent and influential risk genetic factors. Finally, some schizophrenia susceptibility genes have been identified and reported in recent years and their biological functions are also listed. This review may serve as a summary of past research on schizophrenia genomics and susceptibility genes (NRG1, DISC1, RELN, BDNF, MSI2), which may point the way to future schizophrenia genetics research. In addition, depending on the above discovery of susceptibility genes and their exact function, the development and application of antipsychotic drugs will be promoted in the future.
Collapse
Affiliation(s)
- Ye Lv
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Lin Wen
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Wen-Juan Hu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Chong Deng
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Hui-Wen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ya-Nan Bao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Bo-Wei Su
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ping Gao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Zi-Yue Man
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yi-Yang Luo
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Cheng-Jie Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Zhi-Xin Xiang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Bing Wang
- Department of Endocrinology and Metabolism, The Central hospital of Dalian University of Technology, Dalian, 116000, China.
| | - Zhi-Lin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
16
|
Sahay S, Devine EA, McCullumsmith RE, O’Donovan SM. Adenosine Receptor mRNA Expression in Frontal Cortical Neurons in Schizophrenia. Cells 2023; 13:32. [PMID: 38201235 PMCID: PMC10778287 DOI: 10.3390/cells13010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Schizophrenia is a devastating neuropsychiatric disorder associated with the dysregulation of glutamate and dopamine neurotransmitter systems. The adenosine system is an important neuroregulatory system in the brain that modulates glutamate and dopamine signaling via the ubiquitously expressed adenosine receptors; however, adenosine A1 and A2A receptor (A1R and A2AR) mRNA expression is poorly understood in specific cell subtypes in the frontal cortical brain regions implicated in this disorder. In this study, we assayed A1R and A2AR mRNA expression via qPCR in enriched populations of pyramidal neurons, which were isolated from postmortem anterior cingulate cortex (ACC) tissue from schizophrenia (n = 20) and control (n = 20) subjects using laser microdissection (LMD). A1R expression was significantly increased in female schizophrenia subjects compared to female control subjects (t(13) = -4.008, p = 0.001). A1R expression was also significantly decreased in female control subjects compared to male control subjects, suggesting sex differences in basal A1R expression (t(17) = 2.137, p = 0.047). A significant, positive association was found between dementia severity (clinical dementia rating (CDR) scores) and A2AR mRNA expression (Spearman's r = 0.424, p = 0.009). A2AR mRNA expression was significantly increased in unmedicated schizophrenia subjects, suggesting that A2AR expression may be normalized by chronic antipsychotic treatment (F(1,14) = 9.259, p = 0.009). Together, these results provide novel insights into the neuronal expression of adenosine receptors in the ACC in schizophrenia and suggest that receptor expression changes may be sex-dependent and associated with cognitive decline in these subjects.
Collapse
Affiliation(s)
- Smita Sahay
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (R.E.M.)
| | - Emily A. Devine
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (R.E.M.)
- Neuroscience Institute Promedica, Toledo, OH 43606, USA
| | - Sinead M. O’Donovan
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (R.E.M.)
| |
Collapse
|
17
|
Sandeep P, Sharma P, Luhach K, Dhiman N, Kharkwal H, Sharma B. Neuron navigators: A novel frontier with physiological and pathological implications. Mol Cell Neurosci 2023; 127:103905. [PMID: 37972804 DOI: 10.1016/j.mcn.2023.103905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Neuron navigators are microtubule plus-end tracking proteins containing basic and serine rich regions which are encoded by neuron navigator genes (NAVs). Neuron navigator proteins are essential for neurite outgrowth, neuronal migration, and overall neurodevelopment along with some other functions as well. The navigator proteins are substantially expressed in the developing brain and have been reported to be differentially expressed in various tissues at different ages. Over the years, the research has found neuron navigators to be implicated in a spectrum of pathological conditions such as developmental anomalies, neurodegenerative disorders, neuropathic pain, anxiety, cancers, and certain inflammatory conditions. The existing knowledge about neuron navigators remains sparse owing to their differential functions, undiscovered modulators, and unknown molecular mechanisms. Investigating the possible role of neuron navigators in various physiological processes and pathological conditions pose as a novel field that requires extensive research and might provide novel mechanistic insights and understanding of these aspects.
Collapse
Affiliation(s)
- Parth Sandeep
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Kanishk Luhach
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Neerupma Dhiman
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Harsha Kharkwal
- Amity Natural and Herbal Product Research, Amity Institute of Phytochemistry and Phytomedicine, Amity University, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India.
| |
Collapse
|
18
|
Sportelli L, Eisenberg DP, Passiatore R, D'Ambrosio E, Antonucci LA, Chen Q, Czarapata J, Goldman AL, Gregory M, Griffiths K, Hyde TM, Kleinman JE, Pardiñas AF, Parihar M, Popolizio T, Rampino A, Shin JH, Veronese M, Ulrich WS, Zink CF, Bertolino A, Howes OD, Berman KF, Weinberger DR, Pergola G. Dopamine and schizophrenia from bench to bedside: Discovery of a striatal co-expression risk gene set that predicts in vivo measures of striatal function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558594. [PMID: 37786720 PMCID: PMC10541621 DOI: 10.1101/2023.09.20.558594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Schizophrenia (SCZ) is characterized by a polygenic risk architecture implicating diverse molecular pathways important for synaptic function. However, how polygenic risk funnels through these pathways to translate into syndromic illness is unanswered. To evaluate biologically meaningful pathways of risk, we used tensor decomposition to characterize gene co-expression in post-mortem brain (of neurotypicals: N=154; patients with SCZ: N=84; and GTEX samples N=120) from caudate nucleus (CN), hippocampus (HP), and dorsolateral prefrontal cortex (DLPFC). We identified a CN-predominant gene set showing dopaminergic selectivity that was enriched for genes associated with clinical state and for genes associated with SCZ risk. Parsing polygenic risk score for SCZ based on this specific gene set (parsed-PRS), we found that greater pathway-specific SCZ risk predicted greater in vivo striatal dopamine synthesis capacity measured by [ 18 F]-FDOPA PET in three independent cohorts of neurotypicals and patients (total N=235) and greater fMRI striatal activation during reward anticipation in two additional independent neurotypical cohorts (total N=141). These results reveal a 'bench to bedside' translation of dopamine-linked genetic risk variation in driving in vivo striatal neurochemical and hemodynamic phenotypes that have long been implicated in the pathophysiology of SCZ.
Collapse
|
19
|
Gaus R, Popal M, Heinsen H, Schmitt A, Falkai P, Hof PR, Schmitz C, Vollhardt A. Reduced cortical neuron number and neuron density in schizophrenia with focus on area 24: a post-mortem case-control study. Eur Arch Psychiatry Clin Neurosci 2023; 273:1209-1223. [PMID: 36350376 PMCID: PMC10449727 DOI: 10.1007/s00406-022-01513-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022]
Abstract
Structural and functional abnormalities of the anterior cingulate cortex (ACC) have frequently been identified in schizophrenia. Alterations of von Economo neurons (VENs), a class of specialized projection neurons, have been found in different neuropsychiatric disorders and are also suspected in schizophrenia. To date, however, no definitive conclusions can be drawn about quantitative histologic changes in the ACC in schizophrenia because of a lack of rigorous, design-based stereologic studies. In the present study, the volume, total neuron number and total number of VENs in layer V of area 24 were determined in both hemispheres of postmortem brains from 12 male patients with schizophrenia and 11 age-matched male controls. To distinguish global from local effects, volume and total neuron number were also determined in the whole area 24 and whole cortical gray matter (CGM). Measurements were adjusted for hemisphere, age, postmortem interval and fixation time using an ANCOVA model. Compared to controls, patients with schizophrenia showed alterations, with lower mean total neuron number in CGM (- 14.9%, P = 0.007) and in layer V of area 24 (- 21.1%, P = 0.002), and lower mean total number of VENs (- 28.3%, P = 0.027). These data provide evidence for ACC involvement in the pathophysiology of schizophrenia, and complement neuroimaging findings of impaired ACC connectivity in schizophrenia. Furthermore, these results support the hypothesis that the clinical presentation of schizophrenia, particularly deficits in social cognition, is associated with pathology of VENs.
Collapse
Affiliation(s)
- Richard Gaus
- Department of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| | - Melanie Popal
- Department of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| | - Helmut Heinsen
- Morphological Brain Research Unit, Department of Psychiatry, University of Würzburg, Würzburg, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Christoph Schmitz
- Department of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| | - Alisa Vollhardt
- Department of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| |
Collapse
|
20
|
Harrison PJ, Bannerman DM. GRIN2A (NR2A): a gene contributing to glutamatergic involvement in schizophrenia. Mol Psychiatry 2023; 28:3568-3572. [PMID: 37736757 PMCID: PMC10730418 DOI: 10.1038/s41380-023-02265-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023]
Abstract
Involvement of the glutamate system, particularly N-methyl-D-aspartate (NMDA) receptor hypofunction, has long been postulated to be part of the pathophysiology of schizophrenia. An important development is provided by recent data that strongly implicate GRIN2A, the gene encoding the NR2A (GluN2A) NMDA receptor subunit, in the aetiology of the disorder. Rare variants and common variants are both robustly associated with genetic risk for schizophrenia. Some of the rare variants are point mutations likely affecting channel function, but most are predicted to cause protein truncation and thence result, like the common variants, in reduced gene expression. We review the genomic evidence, and the findings from Grin2a mutant mice and other models which give clues as to the likely phenotypic impacts of GRIN2A genetic variation. We suggest that one consequence of NR2A dysfunction is impairment in a form of hippocampal synaptic plasticity, producing deficits in short-term habituation and thence elevated and dysregulated levels of attention, a phenotype of relevance to schizophrenia and its cognitive aspects.
Collapse
Affiliation(s)
- Paul J Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK.
- Oxford Health NHS Foundation Trust, Oxford, UK.
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| |
Collapse
|
21
|
Bednářová A, Habalová V, Tkáč I. BDNF rs962369 Is Associated with Major Depressive Disorder. Biomedicines 2023; 11:2243. [PMID: 37626739 PMCID: PMC10452342 DOI: 10.3390/biomedicines11082243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
This study enrolled 291 patients diagnosed with depression and schizophrenia (F32, F33, and F20 according to ICD-10) and 227 ethnicity-matched control subjects. We analyzed the distribution of BDNF rs6265 and BDNF rs962369 genotypes, finding no significant associations between these and schizophrenia. We revealed a significant increase in the risk of single-episode major depression disorder (MDD) for rs962369 minor allele homozygotes (CC vs. TT+TC), an association that persisted after adjusting for age and sex (OR 3.47; 95% CI 1.36-8.85; p = 0.009). Furthermore, rs962369 genotype was significantly associated with an increased risk of recurrent MDD in a log-additive model (OR per C-allele 1.65; 95% CI 1.11-2.45; p = 0.013). A comparative analysis between MDD subtypes and between MDD subtypes and schizophrenia showed no significant differences for BDNF rs6265. Notably, the frequency of minor allele C of BDNF rs962369 varied across subgroups, with the highest frequency in patients with recurrent MDD (0.32) and the lowest in schizophrenia patients (0.20). The presence of genotypes with at least one minor allele C was significantly higher in the recurrent MDD patient group compared to the schizophrenia group. In conclusion, the BDNF rs962369 variant was associated with MDD but not with schizophrenia.
Collapse
Affiliation(s)
- Aneta Bednářová
- 2nd Department of Psychiatry, Faculty of Medicine, Pavol Jozef Safarik University and Louis Pasteur University Hospital, 041 90 Kosice, Slovakia
| | - Viera Habalová
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Safarik University, 040 11 Kosice, Slovakia;
| | - Ivan Tkáč
- 4th Department of Internal Medicine, Faculty of Medicine, Pavol Jozef Safarik University and Louis Pasteur University Hospital, 041 90 Kosice, Slovakia;
| |
Collapse
|
22
|
Zak N, Moberget T, Bøen E, Boye B, Rygvold TW, Malt UF, Andreassen OA, Andersson S, Westlye LT, Elvsåshagen T. Baseline long-term potentiation-like cortical plasticity is associated with longitudinal cortical thinning in healthy adults and in adults with bipolar disorder type II. Eur J Neurosci 2023; 58:2824-2837. [PMID: 37163975 DOI: 10.1111/ejn.16038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/20/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
The precise neurobiological processes underlying cerebral cortical thinning in aging and psychiatric illnesses remain undetermined, yet aging- and synaptic dysfunction-related loss of synapses are potentially important mechanisms. We used long-term potentiation-like plasticity of the visual evoked potential as an index of synaptic function in the cortex and hypothesized that plasticity at baseline would be negatively associated with future cortical thinning in healthy adults and in adults with bipolar disorder type II. Thirty-two healthy adults and 15 adults with bipolar disorder type II underwent electroencephalography-based measurement of visual evoked potential plasticity and 3T magnetic resonance imaging of the brain at baseline and a follow-up brain scan on average 2.3 years later. The relationships between visual evoked potential plasticity at baseline and longitudinal cortical thickness changes were examined using Freesurfer and the Permutation Analysis of Linear Models tool. The analyses showed a negative association between the plasticity of the N1 visual evoked potential amplitude at baseline and thinning rate in the medial and lateral parietal and medial occipital cortices in healthy adults and in the right medial occipital cortex in the total sample of healthy adults and adults with bipolar disorder type II, indicating greater thinning over time in subjects with less N1 plasticity (pFWER < .05). Although preliminary, the results indicate an association between visual evoked potential plasticity and the future rate of cortical thinning in healthy adults and in bipolar disorder type II, supporting the hypothesis that cortical thinning might be related to synaptic dysfunction.
Collapse
Affiliation(s)
- Nathalia Zak
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torgeir Moberget
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway
| | - Erlend Bøen
- Unit for Psychosomatics and C-L psychiatry for adults, Oslo University Hospital, Oslo, Norway
| | - Birgitte Boye
- Unit for Psychosomatics and C-L psychiatry for adults, Oslo University Hospital, Oslo, Norway
- Department of Behavioral Medicine, University of Oslo, Oslo, Norway
| | | | - Ulrik F Malt
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Research and Education, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
23
|
Zhang Z, Lin H, Feng Z, Xie H, Liu P, Shu Y, Jia Z, Zhang S. Impaired calcium channel function and pronounced hippocampal atrophy in a schizophrenia patient with cognitive impairment carrying Presenilin-2 Ser130Leu mutation: A case report and literature review. Schizophr Res 2023; 258:78-80. [PMID: 37517367 DOI: 10.1016/j.schres.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/12/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Affiliation(s)
- Ziyi Zhang
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, Sichuan Province, PR China
| | - Hua Lin
- Department of Nuclear Medicine, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, Sichuan Province, PR China
| | - Zijuan Feng
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, Sichuan Province, PR China
| | - Hongsheng Xie
- Department of Nuclear Medicine, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, Sichuan Province, PR China
| | - Peng Liu
- Department of Emergency, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, Sichuan Province, PR China
| | - Yang Shu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, Sichuan Province, PR China.
| | - Shuting Zhang
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, Sichuan Province, PR China.
| |
Collapse
|
24
|
Miyahara K, Hino M, Yu Z, Ono C, Nagaoka A, Hatano M, Shishido R, Yabe H, Tomita H, Kunii Y. The influence of tissue pH and RNA integrity number on gene expression of human postmortem brain. Front Psychiatry 2023; 14:1156524. [PMID: 37520228 PMCID: PMC10379646 DOI: 10.3389/fpsyt.2023.1156524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Background Evaluating and controlling confounders are necessary when investigating molecular pathogenesis using human postmortem brain tissue. Particularly, tissue pH and RNA integrity number (RIN) are valuable indicators for controlling confounders. However, the influences of these indicators on the expression of each gene in postmortem brain have not been fully investigated. Therefore, we aimed to assess these effects on gene expressions of human brain samples. Methods We isolated total RNA from occipital lobes of 13 patients with schizophrenia and measured the RIN and tissue pH. Gene expression was analyzed and gene sets affected by tissue pH and RIN were identified. Moreover, we examined the functions of these genes by enrichment analysis and upstream regulator analysis. Results We identified 2,043 genes (24.7%) whose expressions were highly correlated with pH; 3,004 genes (36.3%) whose expressions were highly correlated with RIN; and 1,293 genes (15.6%) whose expressions were highly correlated with both pH and RIN. Genes commonly affected by tissue pH and RIN were highly associated with energy production and the immune system. In addition, genes uniquely affected by tissue pH were highly associated with the cell cycle, whereas those uniquely affected by RIN were highly associated with RNA processing. Conclusion The current study elucidated the influence of pH and RIN on gene expression profiling and identified gene sets whose expressions were affected by tissue pH or RIN. These findings would be helpful in the control of confounders for future postmortem brain studies.
Collapse
Affiliation(s)
- Kazusa Miyahara
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Mizuki Hino
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Zhiqian Yu
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Chiaki Ono
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Atsuko Nagaoka
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Masataka Hatano
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Risa Shishido
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Department of Psychiatry, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Yasuto Kunii
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
25
|
Jeste DV, Malaspina D, Bagot K, Barch DM, Cole S, Dickerson F, Dilmore A, Ford CL, Karcher NR, Luby J, Rajji T, Pinto-Tomas AA, Young LJ. Review of Major Social Determinants of Health in Schizophrenia-Spectrum Psychotic Disorders: III. Biology. Schizophr Bull 2023; 49:867-880. [PMID: 37023360 PMCID: PMC10318888 DOI: 10.1093/schbul/sbad031] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
BACKGROUND Social determinants of health (SDoHs) are nonmedical factors that significantly impact health and longevity. We found no published reviews on the biology of SDoHs in schizophrenia-spectrum psychotic disorders (SSPD). STUDY DESIGN We present an overview of pathophysiological mechanisms and neurobiological processes plausibly involved in the effects of major SDoHs on clinical outcomes in SSPD. STUDY RESULTS This review of the biology of SDoHs focuses on early-life adversities, poverty, social disconnection, discrimination including racism, migration, disadvantaged neighborhoods, and food insecurity. These factors interact with psychological and biological factors to increase the risk and worsen the course and prognosis of schizophrenia. Published studies on the topic are limited by cross-sectional design, variable clinical and biomarker assessments, heterogeneous methods, and a lack of control for confounding variables. Drawing on preclinical and clinical studies, we propose a biological framework to consider the likely pathogenesis. Putative systemic pathophysiological processes include epigenetics, allostatic load, accelerated aging with inflammation (inflammaging), and the microbiome. These processes affect neural structures, brain function, neurochemistry, and neuroplasticity, impacting the development of psychosis, quality of life, cognitive impairment, physical comorbidities, and premature mortality. Our model provides a framework for research that could lead to developing specific strategies for prevention and treatment of the risk factors and biological processes, thereby improving the quality of life and increasing the longevity of people with SSPD. CONCLUSIONS Biology of SDoHs in SSPD is an exciting area of research that points to innovative multidisciplinary team science for improving the course and prognosis of these serious psychiatric disorders.
Collapse
Affiliation(s)
- Dilip V Jeste
- Department of Psychiatry, University of California, San Diego (Retired), CA, USA
| | - Dolores Malaspina
- Departments of Psychiatry, Neuroscience and Genetics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kara Bagot
- Department of Psychiatry, Addiction Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deanna M Barch
- Departments of Psychological and Brain Sciences, Psychiatry, and Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Steve Cole
- Departments of Psychiatry and Biobehavioral Sciences, and Medicine, University of California, Los Angeles, CA, USA
| | - Faith Dickerson
- Department of Psychology, Sheppard Pratt, Baltimore, MD, USA
| | - Amanda Dilmore
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Charles L Ford
- Center for Translational Social Neuroscience, Department of Psychiatry, Emory University, Atlanta, GA, USA
| | - Nicole R Karcher
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Joan Luby
- Department of Psychiatry (Child), Washington University in St. Louis, St. Louis, MO, USA
| | - Tarek Rajji
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Adrián A Pinto-Tomas
- Biochemistry Department, School of Medicine, Universidad de Costa Rica, San José, Costa Rica
| | - Larry J Young
- Center for Translational Social Neuroscience, Department of Psychiatry, Emory University, Atlanta, GA, USA
| |
Collapse
|
26
|
O'Connell KS, Koch E, Lenk HÇ, Akkouh IA, Hindley G, Jaholkowski P, Smith RL, Holen B, Shadrin AA, Frei O, Smeland OB, Steen NE, Dale AM, Molden E, Djurovic S, Andreassen OA. Polygenic overlap with body-mass index improves prediction of treatment-resistant schizophrenia. Psychiatry Res 2023; 325:115217. [PMID: 37146461 PMCID: PMC10788293 DOI: 10.1016/j.psychres.2023.115217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/03/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
Treatment resistant schizophrenia (TRS) is characterized by repeated treatment failure with antipsychotics. A recent genome-wide association study (GWAS) of TRS showed a polygenic architecture, but no significant loci were identified. Clozapine is shown to be the superior drug in terms of clinical effect in TRS; at the same time it has a serious side effect profile, including weight gain. Here, we sought to increase power for genetic discovery and improve polygenic prediction of TRS, by leveraging genetic overlap with Body Mass Index (BMI). We analysed GWAS summary statistics for TRS and BMI applying the conditional false discovery rate (cFDR) framework. We observed cross-trait polygenic enrichment for TRS conditioned on associations with BMI. Leveraging this cross-trait enrichment, we identified 2 novel loci for TRS at cFDR <0.01, suggesting a role of MAP2K1 and ZDBF2. Further, polygenic prediction based on the cFDR analysis explained more variance in TRS when compared to the standard TRS GWAS. These findings highlight putative molecular pathways which may distinguish TRS patients from treatment responsive patients. Moreover, these findings confirm that shared genetic mechanisms influence both TRS and BMI and provide new insights into the biological underpinnings of metabolic dysfunction and antipsychotic treatment.
Collapse
Affiliation(s)
- Kevin S O'Connell
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Elise Koch
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hasan Çağın Lenk
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway; Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Ibrahim A Akkouh
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Guy Hindley
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Psychosis Studies, Institute of Psychiatry, Psychology and Neurosciences, King's College London, United Kingdom
| | - Piotr Jaholkowski
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Robert Løvsletten Smith
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Børge Holen
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alexey A Shadrin
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Oleksandr Frei
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Center for Bioinformatics, Department of Informatics, University of Oslo, 0316 Oslo, Norway
| | - Olav B Smeland
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders M Dale
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA; Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA 92093, USA; Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway; Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; NORMENT Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole A Andreassen
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
27
|
Yim YY, Nestler EJ. Cell-Type-Specific Neuroproteomics of Synapses. Biomolecules 2023; 13:998. [PMID: 37371578 PMCID: PMC10296650 DOI: 10.3390/biom13060998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In the last two decades, our knowledge of synaptic proteomes and their relationship to normal brain function and neuropsychiatric disorders has been expanding rapidly through the use of more powerful neuroproteomic approaches. However, mass spectrometry (MS)-based neuroproteomic studies of synapses still require cell-type, spatial, and temporal proteome information. With the advancement of sample preparation and MS techniques, we have just begun to identify and understand proteomes within a given cell type, subcellular compartment, and cell-type-specific synapse. Here, we review the progress and limitations of MS-based neuroproteomics of synapses in the mammalian CNS and highlight the recent applications of these approaches in studying neuropsychiatric disorders such as major depressive disorder and substance use disorders. Combining neuroproteomic findings with other omics studies can generate an in-depth, comprehensive map of synaptic proteomes and possibly identify new therapeutic targets and biomarkers for several central nervous system disorders.
Collapse
Affiliation(s)
- Yun Young Yim
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | | |
Collapse
|
28
|
Dong B, Yue Y, Dong H, Wang Y. N-methyl-D-aspartate receptor hypofunction as a potential contributor to the progression and manifestation of many neurological disorders. Front Mol Neurosci 2023; 16:1174738. [PMID: 37396784 PMCID: PMC10308130 DOI: 10.3389/fnmol.2023.1174738] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDA) are glutamate-gated ion channels critical for synaptic transmission and plasticity. A slight variation of NMDAR expression and function can result in devastating consequences, and both hyperactivation and hypoactivation of NMDARs are detrimental to neural function. Compared to NMDAR hyperfunction, NMDAR hypofunction is widely implicated in many neurological disorders, such as intellectual disability, autism, schizophrenia, and age-related cognitive decline. Additionally, NMDAR hypofunction is associated with the progression and manifestation of these diseases. Here, we review the underlying mechanisms of NMDAR hypofunction in the progression of these neurological disorders and highlight that targeting NMDAR hypofunction is a promising therapeutic intervention in some neurological disorders.
Collapse
Affiliation(s)
- Bin Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Yue
- School of Psychology, Northeast Normal University, Changchun, China
| | - Han Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Jiang L, Peng Y, He R, Yang Q, Yi C, Li Y, Zhu B, Si Y, Zhang T, Biswal BB, Yao D, Xiong L, Li F, Xu P. Transcriptomic and Macroscopic Architectures of Multimodal Covariance Network Reveal Molecular-Structural-Functional Co-alterations. RESEARCH (WASHINGTON, D.C.) 2023; 6:0171. [PMID: 37303601 PMCID: PMC10249784 DOI: 10.34133/research.0171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/25/2023] [Indexed: 06/13/2023]
Abstract
Human cognition is usually underpinned by intrinsic structure and functional neural co-activation in spatially distributed brain regions. Owing to lacking an effective approach to quantifying the covarying of structure and functional responses, how the structural-functional circuits interact and how genes encode the relationships, to deepen our knowledge of human cognition and disease, are still unclear. Here, we propose a multimodal covariance network (MCN) construction approach to capture interregional covarying of the structural skeleton and transient functional activities for a single individual. We further explored the potential association between brain-wide gene expression patterns and structural-functional covarying in individuals involved in a gambling task and individuals with major depression disorder (MDD), adopting multimodal data from a publicly available human brain transcriptomic atlas and 2 independent cohorts. MCN analysis showed a replicable cortical structural-functional fine map in healthy individuals, and the expression of cognition- and disease phenotype-related genes was found to be spatially correlated with the corresponding MCN differences. Further analysis of cell type-specific signature genes suggests that the excitatory and inhibitory neuron transcriptomic changes could account for most of the observed correlation with task-evoked MCN differences. In contrast, changes in MCN of MDD patients were enriched for biological processes related to synapse function and neuroinflammation in astrocytes, microglia, and neurons, suggesting its promising application in developing targeted therapies for MDD patients. Collectively, these findings confirmed the correlations of MCN-related differences with brain-wide gene expression patterns, which captured genetically validated structural-functional differences at the cellular level in specific cognitive processes and psychiatric patients.
Collapse
Affiliation(s)
- Lin Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation,
University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine,
University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yueheng Peng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation,
University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine,
University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Runyang He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation,
University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine,
University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qingqing Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation,
University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine,
University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chanlin Yi
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation,
University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine,
University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yuqin Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation,
University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine,
University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Bin Zhu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation,
University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine,
University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yajing Si
- School of Psychology,
Xinxiang Medical University, Xinxiang 453003, China
| | - Tao Zhang
- School of Science,
Xihua University, Chengdu 610039, China
| | - Bharat B. Biswal
- Department of Biomedical Engineering,
New Jersey Institute of Technology, Newark, NJ, USA
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation,
University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine,
University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Electrical Engineering,
Zhengzhou University, Zhengzhou 450001, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China
| | - Lan Xiong
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Fali Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation,
University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine,
University of Electronic Science and Technology of China, Chengdu 611731, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China
- Department of Electrical and Computer Engineering, Faculty of Science and Technology,
University of Macau, Macau, China
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation,
University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine,
University of Electronic Science and Technology of China, Chengdu 611731, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, 610041 Chengdu, China
- Rehabilitation Center,
Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
30
|
Sabit H, Kassab A, Alaa D, Mohamed S, Abdel-Ghany S, Mansy M, Said OA, Khalifa MA, Hafiz H, Abushady AM. The Effect of Probiotic Supplementation on the Gut-Brain Axis in Psychiatric Patients. Curr Issues Mol Biol 2023; 45:4080-4099. [PMID: 37232729 DOI: 10.3390/cimb45050260] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 05/27/2023] Open
Abstract
The pathophysiology of several psychiatric diseases may entail disturbances in the hypothalamic-pituitary-adrenal (HPA) axis and metabolic pathways. Variations in how these effects present themselves may be connected to individual variances in clinical symptoms and treatment responses, such as the observation that a significant fraction of participants do not respond to current antipsychotic drugs. A bidirectional signaling pathway between the central nervous system and the gastrointestinal tract is known as the microbiota-gut-brain axis. The large and small intestines contain more than 100 trillion microbial cells, contributing to the intestinal ecosystem's incredible complexity. Interactions between the microbiota and intestinal epithelium can alter brain physiology and affect mood and behavior. There has recently been a focus on how these relationships impact mental health. According to evidence, intestinal microbiota may play a role in neurological and mental illnesses. Intestinal metabolites of microbial origin, such as short-chain fatty acids, tryptophan metabolites, and bacterial components that might stimulate the host's immune system, are mentioned in this review. We aim to shed some on the growing role of gut microbiota in inducing/manipulating several psychiatric disorders, which may pave the way for novel microbiota-based therapies.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Areej Kassab
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Donia Alaa
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Shaza Mohamed
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Mohamed Mansy
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia
| | - Osama A Said
- Department of Agricultural Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Mona A Khalifa
- Faculty of Art and Science, Samtah, Jazan University, Jazan 45142, Saudi Arabia
| | - Halah Hafiz
- Clinical Nutrition Department, Factually of Applied Medical Science, Umm Alqura University, Mecca 24382, Saudi Arabia
| | - Asmaa M Abushady
- School of Biotechnology, Nile University, Giza 41516, Egypt
- Genetic Department, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
31
|
Howes OD, Onwordi EC. The synaptic hypothesis of schizophrenia version III: a master mechanism. Mol Psychiatry 2023; 28:1843-1856. [PMID: 37041418 PMCID: PMC10575788 DOI: 10.1038/s41380-023-02043-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
The synaptic hypothesis of schizophrenia has been highly influential. However, new approaches mean there has been a step-change in the evidence available, and some tenets of earlier versions are not supported by recent findings. Here, we review normal synaptic development and evidence from structural and functional imaging and post-mortem studies that this is abnormal in people at risk and with schizophrenia. We then consider the mechanism that could underlie synaptic changes and update the hypothesis. Genome-wide association studies have identified a number of schizophrenia risk variants converging on pathways regulating synaptic elimination, formation and plasticity, including complement factors and microglial-mediated synaptic pruning. Induced pluripotent stem cell studies have demonstrated that patient-derived neurons show pre- and post-synaptic deficits, synaptic signalling alterations, and elevated, complement-dependent elimination of synaptic structures compared to control-derived lines. Preclinical data show that environmental risk factors linked to schizophrenia, such as stress and immune activation, can lead to synapse loss. Longitudinal MRI studies in patients, including in the prodrome, show divergent trajectories in grey matter volume and cortical thickness compared to controls, and PET imaging shows in vivo evidence for lower synaptic density in patients with schizophrenia. Based on this evidence, we propose version III of the synaptic hypothesis. This is a multi-hit model, whereby genetic and/or environmental risk factors render synapses vulnerable to excessive glia-mediated elimination triggered by stress during later neurodevelopment. We propose the loss of synapses disrupts pyramidal neuron function in the cortex to contribute to negative and cognitive symptoms and disinhibits projections to mesostriatal regions to contribute to dopamine overactivity and psychosis. It accounts for the typical onset of schizophrenia in adolescence/early adulthood, its major risk factors, and symptoms, and identifies potential synaptic, microglial and immune targets for treatment.
Collapse
Affiliation(s)
- Oliver D Howes
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, W12 0NN, UK.
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| | - Ellis Chika Onwordi
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, W12 0NN, UK.
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
- Centre for Psychiatry and Mental Health, Wolfson Institute of Population Health, Queen Mary University of London, London, E1 2AB, UK.
| |
Collapse
|
32
|
Sano F, Kikushima K, Benner S, Xu L, Kahyo T, Yamasue H, Setou M. Associations between prefrontal PI (16:0/20:4) lipid, TNC mRNA, and APOA1 protein in schizophrenia: A trans-omics analysis in post-mortem brain. Front Psychiatry 2023; 14:1145437. [PMID: 37143779 PMCID: PMC10151580 DOI: 10.3389/fpsyt.2023.1145437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/24/2023] [Indexed: 05/06/2023] Open
Abstract
Background Though various mechanisms have been proposed for the pathophysiology of schizophrenia, the full extent of these mechanisms remains unclear, and little is known about the relationships among them. We carried out trans-omics analyses by comparing the results of the previously reported lipidomics, transcriptomics, and proteomics analyses; all of these studies used common post-mortem brain samples. Methods We collected the data from three aforementioned omics studies on 6 common post-mortem samples (3 schizophrenia patients and 3 controls), and analyzed them as a whole group sample. Three correlation analyses were performed for each of the two of three omics studies in these samples. In order to discuss the strength of the correlations in a limited sample size, the p-values of each correlation coefficient were confirmed using the Student's t-test. In addition, partial correlation analysis was also performed for some correlations, to verify the strength of the impact of each factor on the correlations. Results The following three factors were strongly correlated with each other: the lipid level of phosphatidylinositol (PI) (16:0/20:4), the amount of TNC mRNA, and the quantitative signal intensity of APOA1 protein. PI (16:0/20:4) and TNC showed a positive correlation, while PI (16:0/20:4) and APOA1, and TNC and APOA1 showed negative correlations. All of these correlations reached at p < 0.01. PI (16:0/20:4) and TNC were decreased in the prefrontal cortex of schizophrenia samples, while APOA1 was increased. Partial correlation analyses among them suggested that PI (16:0/20:4) and TNC have no direct correlation, but their relationships are mediated by APOA1. Conclusion The current results suggest that these three factors may provide new clues to elucidate the relationships among the candidate mechanisms of schizophrenia, and support the potential of trans-omics analyses as a new analytical method.
Collapse
Affiliation(s)
- Fumito Sano
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kenji Kikushima
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Seico Benner
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Lili Xu
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
33
|
Zakaria WNA, Sasongko TH, Al-Rahbi B, Al-Sowayan N, Ahmad AH, Zakaria R, Ahmi A, Othman Z. Gene and schizophrenia in the pregenome and postgenome-wide association studies era: a bibliometric analysis and network visualization. Psychiatr Genet 2023; 33:37-49. [PMID: 36825838 DOI: 10.1097/ypg.0000000000000336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
This study aimed to perform a bibliometric analysis on genetic studies in schizophrenia in the pregenome-wide association studies (GWAS) and post-GWAS era. We searched the literature on genes and schizophrenia using the Scopus database. The documents increased with time, especially after the human genome project and International HapMap Project, with the highest citation in 2008. The top occurrence author keywords were discovered to be different in the pre-GWAS and post-GWAS eras, reflecting the progress of genetic studies connected to schizophrenia. Emerging keywords highlighted a trend towards an application of precision medicine, showing an interplay of environmental exposures as well as genetic factors in schizophrenia pathogenesis, progression, and response to therapy. In conclusion, the gene and schizophrenia literature has grown rapidly after the human genome project, and the temporal variation in the author keywords pattern reflects the trend of genetic studies related to schizophrenia in the pre-GWAS and post-GWAS era.
Collapse
Affiliation(s)
- Wan Nur Amalina Zakaria
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kota Bharu, Kelantan, Malaysia
| | - Teguh Haryo Sasongko
- Department of Physiology, School of Medicine, and Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur, Malaysia
| | | | - Noorah Al-Sowayan
- Department of Biology, College of Science, Qassim University, Saudi Arabia
| | - Asma Hayati Ahmad
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Rahimah Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Aidi Ahmi
- Tunku Puteri Intan Safinaz School of Accountancy, Universiti Utara Malaysia 06010 UUM Sintok, Kedah
| | - Zahiruddin Othman
- Department of Psychiatry, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
34
|
Baygin M, Barua PD, Chakraborty S, Tuncer I, Dogan S, Palmer E, Tuncer T, Kamath AP, Ciaccio EJ, Acharya UR. CCPNet136: automated detection of schizophrenia using carbon chain pattern and iterative TQWT technique with EEG signals. Physiol Meas 2023; 44. [PMID: 36599170 DOI: 10.1088/1361-6579/acb03c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Objective.Schizophrenia (SZ) is a severe, chronic psychiatric-cognitive disorder. The primary objective of this work is to present a handcrafted model using state-of-the-art technique to detect SZ accurately with EEG signals.Approach.In our proposed work, the features are generated using a histogram-based generator and an iterative decomposition model. The graph-based molecular structure of the carbon chain is employed to generate low-level features. Hence, the developed feature generation model is called the carbon chain pattern (CCP). An iterative tunable q-factor wavelet transform (ITQWT) technique is implemented in the feature extraction phase to generate various sub-bands of the EEG signal. The CCP was applied to the generated sub-bands to obtain several feature vectors. The clinically significant features were selected using iterative neighborhood component analysis (INCA). The selected features were then classified using the k nearest neighbor (kNN) with a 10-fold cross-validation strategy. Finally, the iterative weighted majority method was used to obtain the results in multiple channels.Main results.The presented CCP-ITQWT and INCA-based automated model achieved an accuracy of 95.84% and 99.20% using a single channel and majority voting method, respectively with kNN classifier.Significance.Our results highlight the success of the proposed CCP-ITQWT and INCA-based model in the automated detection of SZ using EEG signals.
Collapse
Affiliation(s)
- Mehmet Baygin
- Department of Computer Engineering, College of Engineering, Ardahan University, Ardahan, Turkey
| | - Prabal Datta Barua
- School of Management & Enterprise, University of Southern Queensland, Australia.,Faculty of Engineering and Information Technology, University of Technology Sydney, Australia
| | - Subrata Chakraborty
- School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW, 2351, Australia.,Center for Advanced Modelling and Geospatial Information Systems, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Ilknur Tuncer
- Elazig Governorship, Interior Ministry, Elazig, Turkey
| | - Sengul Dogan
- Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, Turkey
| | - Elizabeth Palmer
- Centre of Clinical Genetics, Sydney Children's Hospitals Network, Randwick 2031, Australia.,School of Women's and Children's Health, University of New South Wales, Randwick 2031, Australia
| | - Turker Tuncer
- Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, Turkey
| | - Aditya P Kamath
- Biomedical Engineering, Brown University, Providence, RI, United States of America
| | - Edward J Ciaccio
- Department of Medicine, Columbia University Irving Medical Center, United States of America
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, S599489, Singapore.,Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore.,Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
35
|
Moradkhani A, Turki Jalil A, Mahmood Saleh M, Vanaki E, Daghagh H, Daghighazar B, Akbarpour Z, Ghahramani Almanghadim H. Correlation of rs35753505 polymorphism in Neuregulin 1 gene with psychopathology and intelligence of people with schizophrenia. Gene 2023; 867:147285. [PMID: 36905948 DOI: 10.1016/j.gene.2023.147285] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND AND AIM Schizophrenia is one of the most severe psychiatric disorders. About 0.5 to 1% of the world's population suffers from this non-Mendelian disorder. Environmental and genetic factors seem to be involved in this disorder. In this article, we investigate the alleles and genotypic correlation of mononucleotide rs35753505 polymorphism of Neuregulin 1 (NRG1), one of the selected genes of schizophrenia, with psychopathology and intelligence. MATERIALS AND METHODS 102 independent and 98 healthy patients participated in this study. DNA was extracted by the salting out method and the polymorphism (rs35753505) were amplified by polymerase chain reaction (PCR). Sanger sequencing was performed on PCR products. Allele frequency analysis was performed using COCAPHASE software, and genotype analysis was performed using Clump22 software. RESULTS According to our study's statistical findings, all case samples from the three categories of men, women, and overall participants significantly differed from the control group in terms of the prevalence of allele C and the CC risk genotype. The rs35753505 polymorphism significantly raised Positive and Negative Syndrome Scale (PANSS) test results, according to a correlation analysis between the two variables. However, this polymorphism led to a significant decrease in overall intelligence in case samples compared to control samples. CONCLUSION In this study, it seems that the rs35753505 polymorphism of NRG1 gene has a significant role in the sample of patients with schizophrenia in Iran and also in psychopathology and intelligence disorders.
Collapse
Affiliation(s)
- Atefeh Moradkhani
- Department of Biology, Faculty of Science, Zanjan Branch, Islamic Azad University, Zanjan, Islamic Republic of Iran
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University Of Anbar, Iraq; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Elmira Vanaki
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hossein Daghagh
- Biochemistry Department of Biological Science, Kharazmi University Tehran, Iran
| | - Behrouz Daghighazar
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Akbarpour
- Department of Basic Science, Biotechnology Research Center, Tabriz Branch, Azad Islamic University, Tabriz, Iran
| | | |
Collapse
|
36
|
Collins MA, Ji JL, Chung Y, Lympus CA, Afriyie-Agyemang Y, Addington JM, Goodyear BG, Bearden CE, Cadenhead KS, Mirzakhanian H, Tsuang MT, Cornblatt BA, Carrión RE, Keshavan M, Stone WS, Mathalon DH, Perkins DO, Walker EF, Woods SW, Powers AR, Anticevic A, Cannon TD. Accelerated cortical thinning precedes and predicts conversion to psychosis: The NAPLS3 longitudinal study of youth at clinical high-risk. Mol Psychiatry 2023; 28:1182-1189. [PMID: 36434057 PMCID: PMC10005940 DOI: 10.1038/s41380-022-01870-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022]
Abstract
Progressive grey matter loss has been demonstrated among clinical high-risk (CHR) individuals who convert to psychosis, but it is unknown whether these changes occur prior to psychosis onset. Identifying illness-related neurobiological mechanisms that occur prior to conversion is essential for targeted early intervention. Among participants in the third wave of the North American Prodrome Longitudinal Study (NAPLS3), this report investigated if steeper cortical thinning was observable prior to psychosis onset among CHR individuals who ultimately converted (CHR-C) and assessed the shortest possible time interval in which rates of cortical thinning differ between CHR-C, CHR non-converters (CHR-NC), and health controls (HC). 338 CHR-NC, 42 CHR-C, and 62 HC participants (age 19.3±4.2, 44.8% female, 52.5% racial/ethnic minority) completed up to 5 MRI scans across 8 months. Accelerated thinning among CHR-C compared to CHR-NC and HC was observed in multiple prefrontal, temporal, and parietal cortical regions. CHR-NC also exhibited accelerated cortical thinning compared to HC in several of these areas. Greater percent decrease in cortical thickness was observed among CHR-C compared to other groups across 2.9±1.8 months, on average, in several cortical areas. ROC analyses discriminating CHR-C from CHR-NC by percent thickness change in a left hemisphere region of interest, scanner, age, age2, and sex had an AUC of 0.74, with model predictive power driven primarily by percent thickness change. Findings indicate that accelerated cortical thinning precedes psychosis onset and differentiates CHR-C from CHR-NC and HC across short time intervals. Mechanisms underlying cortical thinning may provide novel treatment targets prior to psychosis onset.
Collapse
Affiliation(s)
| | - Jie Lisa Ji
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Yoonho Chung
- Department of Psychiatry, McLean Hospital and Harvard Medical School, Belmont, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
| | - Cole A Lympus
- Department of Psychology, Yale University, New Haven, CT, USA
| | | | - Jean M Addington
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Bradley G Goodyear
- Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carrie E Bearden
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
| | | | | | - Ming T Tsuang
- Department of Psychiatry, UCSD, San Diego, CA, USA
- Institute of Genomic Medicine, UCSD, La Jolla, CA, USA
| | | | - Ricardo E Carrión
- Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY, USA
- Institute of Behavioral Science, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston, MA, USA
| | - Wiliam S Stone
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston, MA, USA
| | - Daniel H Mathalon
- Department of Psychiatry, UCSF, and SFVA Medical Center, San Francisco, CA, USA
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Elaine F Walker
- Departments of Psychology and Psychiatry, Emory University, Atlanta, GA, USA
| | - Scott W Woods
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Albert R Powers
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Alan Anticevic
- Department of Psychology, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
37
|
Song X, Li R, Wang K, Bai Y, Xiao Y, Wang YP. Joint Sparse Collaborative Regression on Imaging Genetics Study of Schizophrenia. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1137-1146. [PMID: 35503837 PMCID: PMC10321021 DOI: 10.1109/tcbb.2022.3172289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The imaging genetics approach generates large amount of high dimensional and multi-modal data, providing complementary information for comprehensive study of Schizophrenia, a complex mental disease. However, at the same time, the variety of these data in structures, resolutions, and formats makes their integrative study a forbidding task. In this paper, we propose a novel model called Joint Sparse Collaborative Regression (JSCoReg), which can extract class-specific features from different health conditions/disease classes. We first evaluate the performance of feature selection in terms of Receiver operating characteristic curve and the area under the ROC curve in the simulation experiment. We demonstrate that the JSCoReg model can achieve higher accuracy compared with similar models including Joint Sparse Canonical Correlation Analysis and Sparse Collaborative Regression. We then applied the JSCoReg model to the analysis of schizophrenia dataset collected from the Mind Clinical Imaging Consortium. The JSCoReg enables us to better identify biomarkers associated with schizophrenia, which are verified to be both biologically and statistically significant.
Collapse
Affiliation(s)
- Xueli Song
- School of Sciences, Chang’an University, Xi’an, 710064, China
| | - Rongpeng Li
- School of Sciences, Chang’an University, Xi’an, 710064, China
| | - Kaiming Wang
- School of Sciences, Chang’an University, Xi’an, 710064, China
| | - Yuntong Bai
- Biomedical Engineering Department, Tulane University, New Orleans, LA 70118, USA
| | - Yuzhu Xiao
- School of Sciences, Chang’an University, Xi’an, 710064, China
| | - Yu-ping Wang
- Biomedical Engineering Department, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
38
|
Dysregulated Signaling at Postsynaptic Density: A Systematic Review and Translational Appraisal for the Pathophysiology, Clinics, and Antipsychotics' Treatment of Schizophrenia. Cells 2023; 12:cells12040574. [PMID: 36831241 PMCID: PMC9954794 DOI: 10.3390/cells12040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Emerging evidence from genomics, post-mortem, and preclinical studies point to a potential dysregulation of molecular signaling at postsynaptic density (PSD) in schizophrenia pathophysiology. The PSD that identifies the archetypal asymmetric synapse is a structure of approximately 300 nm in diameter, localized behind the neuronal membrane in the glutamatergic synapse, and constituted by more than 1000 proteins, including receptors, adaptors, kinases, and scaffold proteins. Furthermore, using FASS (fluorescence-activated synaptosome sorting) techniques, glutamatergic synaptosomes were isolated at around 70 nm, where the receptors anchored to the PSD proteins can diffuse laterally along the PSD and were stabilized by scaffold proteins in nanodomains of 50-80 nm at a distance of 20-40 nm creating "nanocolumns" within the synaptic button. In this context, PSD was envisioned as a multimodal hub integrating multiple signaling-related intracellular functions. Dysfunctions of glutamate signaling have been postulated in schizophrenia, starting from the glutamate receptor's interaction with scaffolding proteins involved in the N-methyl-D-aspartate receptor (NMDAR). Despite the emerging role of PSD proteins in behavioral disorders, there is currently no systematic review that integrates preclinical and clinical findings addressing dysregulated PSD signaling and translational implications for antipsychotic treatment in the aberrant postsynaptic function context. Here we reviewed a critical appraisal of the role of dysregulated PSD proteins signaling in the pathophysiology of schizophrenia, discussing how antipsychotics may affect PSD structures and synaptic plasticity in brain regions relevant to psychosis.
Collapse
|
39
|
Synaptic plasticity in Schizophrenia pathophysiology. IBRO Neurosci Rep 2023. [DOI: 10.1016/j.ibneur.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
40
|
de Arce KP, Ribic A, Chowdhury D, Watters K, Thompson GJ, Sanganahalli BG, Lippard ETC, Rohlmann A, Strittmatter SM, Missler M, Hyder F, Biederer T. Concerted roles of LRRTM1 and SynCAM 1 in organizing prefrontal cortex synapses and cognitive functions. Nat Commun 2023; 14:459. [PMID: 36709330 PMCID: PMC9884278 DOI: 10.1038/s41467-023-36042-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/13/2023] [Indexed: 01/29/2023] Open
Abstract
Multiple trans-synaptic complexes organize synapse development, yet their roles in the mature brain and cooperation remain unclear. We analyzed the postsynaptic adhesion protein LRRTM1 in the prefrontal cortex (PFC), a region relevant to cognition and disorders. LRRTM1 knockout (KO) mice had fewer synapses, and we asked whether other synapse organizers counteract further loss. This determined that the immunoglobulin family member SynCAM 1 controls synapse number in PFC and was upregulated upon LRRTM1 loss. Combined LRRTM1 and SynCAM 1 deletion substantially lowered dendritic spine number in PFC, but not hippocampus, more than the sum of single KO impairments. Their cooperation extended presynaptically, and puncta of Neurexins, LRRTM1 partners, were less abundant in double KO (DKO) PFC. Electrophysiology and fMRI demonstrated aberrant neuronal activity in DKO mice. Further, DKO mice were impaired in social interactions and cognitive tasks. Our results reveal concerted roles of LRRTM1 and SynCAM 1 across synaptic, network, and behavioral domains.
Collapse
Affiliation(s)
- Karen Perez de Arce
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
- Neuroscience Department, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Adema Ribic
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | | | - Katherine Watters
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Garth J Thompson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | | | - Elizabeth T C Lippard
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, University of Texas, Austin, TX, USA
| | - Astrid Rohlmann
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Stephen M Strittmatter
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Thomas Biederer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
41
|
Gene Expression and Epigenetic Regulation in the Prefrontal Cortex of Schizophrenia. Genes (Basel) 2023; 14:genes14020243. [PMID: 36833173 PMCID: PMC9957055 DOI: 10.3390/genes14020243] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Schizophrenia pathogenesis remains challenging to define; however, there is strong evidence that the interaction of genetic and environmental factors causes the disorder. This paper focuses on transcriptional abnormalities in the prefrontal cortex (PFC), a key anatomical structure that determines functional outcomes in schizophrenia. This review summarises genetic and epigenetic data from human studies to understand the etiological and clinical heterogeneity of schizophrenia. Gene expression studies using microarray and sequencing technologies reported the aberrant transcription of numerous genes in the PFC in patients with schizophrenia. Altered gene expression in schizophrenia is related to several biological pathways and networks (synaptic function, neurotransmission, signalling, myelination, immune/inflammatory mechanisms, energy production and response to oxidative stress). Studies investigating mechanisms driving these transcriptional abnormalities focused on alternations in transcription factors, gene promoter elements, DNA methylation, posttranslational histone modifications or posttranscriptional regulation of gene expression mediated by non-coding RNAs.
Collapse
|
42
|
Fišar Z. Biological hypotheses, risk factors, and biomarkers of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110626. [PMID: 36055561 DOI: 10.1016/j.pnpbp.2022.110626] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/19/2022]
Abstract
Both the discovery of biomarkers of schizophrenia and the verification of biological hypotheses of schizophrenia are an essential part of the process of understanding the etiology of this mental disorder. Schizophrenia has long been considered a neurodevelopmental disease whose symptoms are caused by impaired synaptic signal transduction and brain neuroplasticity. Both the onset and chronic course of schizophrenia are associated with risk factors-induced disruption of brain function and the establishment of a new homeostatic setpoint characterized by biomarkers. Different risk factors and biomarkers can converge to the same symptoms of schizophrenia, suggesting that the primary cause of the disease can be highly individual. Schizophrenia-related biomarkers include measurable biochemical changes induced by stress (elevated allostatic load), mitochondrial dysfunction, neuroinflammation, oxidative and nitrosative stress, and circadian rhythm disturbances. Here is a summary of selected valid biological hypotheses of schizophrenia formulated based on risk factors and biomarkers, neurodevelopment, neuroplasticity, brain chemistry, and antipsychotic medication. The integrative neurodevelopmental-vulnerability-neurochemical model is based on current knowledge of the neurobiology of the onset and progression of the disease and the effects of antipsychotics and psychotomimetics and reflects the complex and multifactorial nature of schizophrenia.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Charles University and General University Hospital in Prague, First Faculty of Medicine, Department of Psychiatry, Czech Republic.
| |
Collapse
|
43
|
Schizophrenia and psychedelic state: Dysconnection versus hyper-connection. A perspective on two different models of psychosis stemming from dysfunctional integration processes. Mol Psychiatry 2023; 28:59-67. [PMID: 35931756 DOI: 10.1038/s41380-022-01721-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 01/07/2023]
Abstract
Psychotic symptoms are a cross-sectional dimension affecting multiple diagnostic categories, despite schizophrenia represents the prototype of psychoses. Initially, dopamine was considered the most involved molecule in the neurobiology of schizophrenia. Over the next years, several biological factors were added to the discussion helping to constitute the concept of schizophrenia as a disease marked by a deficit of functional integration, contributing to the formulation of the Dysconnection Hypothesis in 1995. Nowadays the notion of dysconnection persists in the conceptualization of schizophrenia enriched by neuroimaging findings which corroborate the hypothesis. At the same time, in recent years, psychedelics received a lot of attention by the scientific community and astonishing findings emerged about the rearrangement of brain networks under the effect of these compounds. Specifically, a global decrease in functional connectivity was found, highlighting the disintegration of preserved and functional circuits and an increase of overall connectivity in the brain. The aim of this paper is to compare the biological bases of dysconnection in schizophrenia with the alterations of neuronal cyto-architecture induced by psychedelics and the consequent state of cerebral hyper-connection. These two models of psychosis, despite diametrically opposed, imply a substantial deficit of integration of neural signaling reached through two opposite paths.
Collapse
|
44
|
Glutamatergic dysfunction leads to a hyper-dopaminergic phenotype through deficits in short-term habituation: a mechanism for aberrant salience. Mol Psychiatry 2023; 28:579-587. [PMID: 36460723 PMCID: PMC9908551 DOI: 10.1038/s41380-022-01861-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 12/05/2022]
Abstract
Psychosis in disorders like schizophrenia is commonly associated with aberrant salience and elevated striatal dopamine. However, the underlying cause(s) of this hyper-dopaminergic state remain elusive. Various lines of evidence point to glutamatergic dysfunction and impairments in synaptic plasticity in the etiology of schizophrenia, including deficits associated with the GluA1 AMPAR subunit. GluA1 knockout (Gria1-/-) mice provide a model of impaired synaptic plasticity in schizophrenia and exhibit a selective deficit in a form of short-term memory which underlies short-term habituation. As such, these mice are unable to reduce attention to recently presented stimuli. In this study we used fast-scan cyclic voltammetry to measure phasic dopamine responses in the nucleus accumbens of Gria1-/- mice to determine whether this behavioral phenotype might be a key driver of a hyper-dopaminergic state. There was no effect of GluA1 deletion on electrically-evoked dopamine responses in anaesthetized mice, demonstrating normal endogenous release properties of dopamine neurons in Gria1-/- mice. Furthermore, dopamine signals were initially similar in Gria1-/- mice compared to controls in response to both sucrose rewards and neutral light stimuli. They were also equally sensitive to changes in the magnitude of delivered rewards. In contrast, however, these stimulus-evoked dopamine signals failed to habituate with repeated presentations in Gria1-/- mice, resulting in a task-relevant, hyper-dopaminergic phenotype. Thus, here we show that GluA1 dysfunction, resulting in impaired short-term habituation, is a key driver of enhanced striatal dopamine responses, which may be an important contributor to aberrant salience and psychosis in psychiatric disorders like schizophrenia.
Collapse
|
45
|
Shriebman Y, Yitzhaky A, Kosloff M, Hertzberg L. Gene expression meta-analysis in patients with schizophrenia reveals up-regulation of RGS2 and RGS16 in Brodmann Area 10. Eur J Neurosci 2023; 57:360-372. [PMID: 36443250 DOI: 10.1111/ejn.15876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/10/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022]
Abstract
Regulator of G-protein signalling (RGS) proteins inhibit signalling by G-protein-coupled receptors (GPCRs). GPCRs mediate the functions of several important neurotransmitters and serve as targets of many anti-psychotics. RGS2, RGS4, RGS5 and RGS16 are located on chromosome 1q23.3-31, a locus found to be associated with schizophrenia. Although previous gene expression analysis detected down-regulation of RGS4 expression in brain samples of patients with schizophrenia, the results were not consistent. In the present study, we performed a systematic meta-analysis of differential RGS2, RGS4, RGS5 and RGS16 expression in Brodmann Area 10 (BA10) samples of patients with schizophrenia and from healthy controls. Two microarray datasets met the inclusion criteria (overall, 41 schizophrenia samples and 38 controls were analysed). RGS2 and RGS16 were found to be up-regulated in BA10 samples of individuals with schizophrenia, whereas no differential expression of RGS4 and RGS5 was detected. Analysis of dorso-lateral prefrontal cortex samples of the CommonMind Consortium (258 schizophrenia samples vs. 279 controls) further validated the results. Given their central role in inactivating G-protein-coupled signalling pathways, our results suggest that differential gene expression might lead to enhanced inactivation of G-protein signalling in schizophrenia. This, in turn, suggests that additional studies are needed to further explore the consequences of the differential expression we detected, this time at the protein and functional levels.
Collapse
Affiliation(s)
- Yaen Shriebman
- Shalvata Mental Health Center, affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Assif Yitzhaky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Mickey Kosloff
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Libi Hertzberg
- Shalvata Mental Health Center, affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
46
|
Lim M, Carollo A, Neoh MJY, Esposito G. Mapping miRNA Research in Schizophrenia: A Scientometric Review. Int J Mol Sci 2022; 24:ijms24010436. [PMID: 36613876 PMCID: PMC9820708 DOI: 10.3390/ijms24010436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Micro RNA (miRNA) research has great implications in uncovering the aetiology of neuropsychiatric conditions due to the role of miRNA in brain development and function. Schizophrenia, a complex yet devastating neuropsychiatric disorder, is one such condition that had been extensively studied in the realm of miRNA. Although a relatively new field of research, this area of study has progressed sufficiently to warrant dozens of reviews summarising findings from past to present. However, as a majority of reviews cannot encapsulate the full body of research, there is still a need to synthesise the diversity of publications made in this area in a systematic but easy-to-understand manner. Therefore, this study adopted bibliometrics and scientometrics, specifically document co-citation analysis (DCA), to review the literature on miRNAs in the context of schizophrenia over the course of history. From a literature search on Scopus, 992 papers were found and analysed with CiteSpace. DCA analysis generated a network of 13 major clusters with different thematic focuses within the subject area. Finally, these clusters are qualitatively discussed. miRNA research has branched into schizophrenia, among other medical and psychiatric conditions, due to previous findings in other forms of non-coding RNA. With the rise of big data, bioinformatics analyses are increasingly common in this field of research. The future of research is projected to rely more heavily on interdisciplinary collaboration. Additionally, it can be expected that there will be more translational studies focusing on the application of these findings to the development of effective treatments.
Collapse
Affiliation(s)
- Mengyu Lim
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore 639818, Singapore
| | - Alessandro Carollo
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| | - Michelle Jin Yee Neoh
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore 639818, Singapore
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
- Correspondence:
| |
Collapse
|
47
|
Snelleksz M, Rossell SL, Gibbons A, Nithianantharajah J, Dean B. Evidence that the frontal pole has a significant role in the pathophysiology of schizophrenia. Psychiatry Res 2022; 317:114850. [PMID: 36174274 DOI: 10.1016/j.psychres.2022.114850] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 01/04/2023]
Abstract
Different regions of the cortex have been implicated in the pathophysiology of schizophrenia. Recently published data suggested there are many more changes in gene expression in the frontal pole (Brodmann's Area (BA) 10) compared to the dorsolateral prefrontal cortex (BA 9) and the anterior cingulate cortex (BA 33) from patients with schizophrenia. These data argued that the frontal pole is significantly affected by the pathophysiology of schizophrenia. The frontal pole is a region necessary for higher cognitive functions and is highly interconnected with many other brain regions. In this review we summarise the growing body of evidence to support the hypothesis that a dysfunctional frontal pole, due at least in part to its widespread effects on brain function, is making an important contribution to the pathophysiology of schizophrenia. We detail the many structural, cellular and molecular abnormalities in the frontal pole from people with schizophrenia and present findings that argue the symptoms of schizophrenia are closely linked to dysfunction in this critical brain region.
Collapse
Affiliation(s)
- Megan Snelleksz
- Synaptic Biology and Cognition Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Susan L Rossell
- Centre for Mental Health, School of Health Sciences, Swinburne University, Melbourne, Victoria, Australia; Department of Psychiatry, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Andrew Gibbons
- The Department of Psychiatry, Monash University, Clayton, Victoria, Australia
| | - Jess Nithianantharajah
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Brian Dean
- Synaptic Biology and Cognition Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
48
|
Clapcote SJ. How can we obtain truly translational mouse models to improve clinical outcomes in schizophrenia? Dis Model Mech 2022; 15:dmm049970. [PMID: 36441105 PMCID: PMC10655820 DOI: 10.1242/dmm.049970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Schizophrenia is a serious mental illness affecting 0.7% of the world's population. Despite over 50 years of schizophrenia drug identification and development, there have been no fundamental advances in the treatment of schizophrenia since the 1980s. Complex genetic aetiology and elusive pathomechanisms have made it difficult for researchers to develop models that sufficiently reflect pathophysiology to support effective drug discovery. However, recent large-scale, well-powered genomic studies have identified risk genes that represent tractable entry points to decipher disease mechanisms in heterogeneous patient populations and develop targeted treatments. Replicating schizophrenia-associated gene variants in mouse models is an important strategy to start understanding their pathogenicity and role in disease biology. Furthermore, longitudinal studies in a wide range of genetic mouse models from early postnatal life are required to assess the progression of this disease through developmental stages to improve early diagnostic strategies and enable preventative measures. By expanding and refining our approach to schizophrenia research, we can improve prevention strategies and treatment of this debilitating disease.
Collapse
|
49
|
Zeppillo T, Schulmann A, Macciardi F, Hjelm BE, Föcking M, Sequeira PA, Guella I, Cotter D, Bunney WE, Limon A, Vawter MP. Functional impairment of cortical AMPA receptors in schizophrenia. Schizophr Res 2022; 249:25-37. [PMID: 32513544 PMCID: PMC7718399 DOI: 10.1016/j.schres.2020.03.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022]
Abstract
Clinical and preclinical studies suggest that some of the behavioral alterations observed in schizophrenia (SZ) may be mechanistically linked to synaptic dysfunction of glutamatergic signaling. Recent genetic and proteomic studies suggest alterations of cortical glutamate receptors of the AMPA-type (AMPARs), which are the predominant ligand-gated ionic channels of fast transmission at excitatory synapses. The impact of gene and protein alterations on the electrophysiological activity of AMPARs is not known in SZ. In this proof of principle work, using human postmortem brain synaptic membranes isolated from the dorsolateral prefrontal cortex (DLPFC), we combined electrophysiological analysis from microtransplanted synaptic membranes (MSM) with transcriptomic (RNA-Seq) and label-free proteomics data in 10 control and 10 subjects diagnosed with SZ. We observed in SZ a reduction in the amplitude of AMPARs currents elicited by kainate, an agonist of AMPARs that blocks the desensitization of the receptor. This reduction was not associated with protein abundance but with a reduction in kainate's potency to activate AMPARs. Electrophysiologically-anchored dataset analysis (EDA) was used to identify synaptosomal proteins that linearly correlate with the amplitude of the AMPARs responses, gene ontology functional annotations were then used to determine protein-protein interactions. Protein modules associated with positive AMPARs current increases were downregulated in SZ, while protein modules that were upregulated in SZ were associated with decreased AMPARs currents. Our results indicate that transcriptomic and proteomic alterations, frequently observed in the DLPFC in SZ, converge at the synaptic level producing a functional electrophysiological impairment of AMPARs.
Collapse
Affiliation(s)
- Tommaso Zeppillo
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch at Galveston, USA; Department of Life Sciences, University of Trieste, B.R.A.I.N., Centre for Neuroscience, Trieste, Italy
| | - Anton Schulmann
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA; Current address: National Institute of Mental Health, Human Genetics Branch, Bethesda, MD, USA
| | - Fabio Macciardi
- Department of Psychiatry & Human Behavior, University of California Irvine, CA 92697, USA
| | - Brooke E Hjelm
- Department of Translational Genomics, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, USA
| | | | - P Adolfo Sequeira
- Department of Psychiatry & Human Behavior, University of California Irvine, CA 92697, USA
| | - Ilaria Guella
- Department of Psychiatry & Human Behavior, University of California Irvine, CA 92697, USA
| | - David Cotter
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - William E Bunney
- Department of Psychiatry & Human Behavior, University of California Irvine, CA 92697, USA
| | - Agenor Limon
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch at Galveston, USA.
| | - Marquis P Vawter
- Department of Psychiatry & Human Behavior, University of California Irvine, CA 92697, USA.
| |
Collapse
|
50
|
Zhang K, Liao P, Wen J, Hu Z. Synaptic plasticity in schizophrenia pathophysiology. IBRO Neurosci Rep 2022; 13:478-487. [PMID: 36590092 PMCID: PMC9795311 DOI: 10.1016/j.ibneur.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022] Open
Abstract
Schizophrenia is a severe neuropsychiatric syndrome with psychotic behavioral abnormalities and marked cognitive deficits. It is widely accepted that genetic and environmental factors contribute to the onset of schizophrenia. However, the etiology and pathology of the disease remain largely unexplored. Recently, the synaptopathology and the dysregulated synaptic plasticity and function have emerging as intriguing and prominent biological mechanisms of schizophrenia pathogenesis. Synaptic plasticity is the ability of neurons to change the strength of their connections in response to internal or external stimuli, which is essential for brain development and function, learning and memory, and vast majority of behavior responses relevant to psychiatric diseases including schizophrenia. Here, we reviewed molecular and cellular mechanisms of the multiple forms synaptic plasticity, and the functional regulations of schizophrenia-risk factors including disease susceptible genes and environmental alterations on synaptic plasticity and animal behavior. Recent genome-wide association studies have provided fruitful findings of hundreds of risk gene variances associated with schizophrenia, thus further clarifying the role of these disease-risk genes in synaptic transmission and plasticity will be beneficial to advance our understanding of schizophrenia pathology, as well as the molecular mechanism of synaptic plasticity.
Collapse
Affiliation(s)
- Kexuan Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, PR China
| | - Panlin Liao
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Jin Wen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Zhonghua Hu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, PR China,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha 410008, Hunan, PR China,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha 410008, Hunan, PR China,Correspondence to: Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, PR China.
| |
Collapse
|