1
|
Li MD, Liu Q, Shi X, Wang Y, Zhu Z, Guan Y, He J, Han H, Mao Y, Ma Y, Yuan W, Yao J, Yang Z. Integrative analysis of genetics, epigenetics and RNA expression data reveal three susceptibility loci for smoking behavior in Chinese Han population. Mol Psychiatry 2024; 29:3516-3526. [PMID: 38789676 DOI: 10.1038/s41380-024-02599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Despite numerous studies demonstrate that genetics and epigenetics factors play important roles on smoking behavior, our understanding of their functional relevance and coordinated regulation remains largely unknown. Here we present a multiomics study on smoking behavior for Chinese smoker population with the goal of not only identifying smoking-associated functional variants but also deciphering the pathogenesis and mechanism underlying smoking behavior in this under-studied ethnic population. After whole-genome sequencing analysis of 1329 Chinese Han male samples in discovery phase and OpenArray analysis of 3744 samples in replication phase, we discovered that three novel variants located near FOXP1 (rs7635815), and between DGCR6 and PRODH (rs796774020), and in ARVCF (rs148582811) were significantly associated with smoking behavior. Subsequently cis-mQTL and cis-eQTL analysis indicated that these variants correlated significantly with the differential methylation regions (DMRs) or differential expressed genes (DEGs) located in the regions where these variants present. Finally, our in silico multiomics analysis revealed several hub genes, like DRD2, PTPRD, FOXP1, COMT, CTNNAP2, to be synergistic regulated each other in the etiology of smoking.
Collapse
Affiliation(s)
- Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China.
| | - Qiang Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoqiang Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhouhai Zhu
- Joint Institute of Tobacco and Health, Kunming, Yunnan, China
| | - Ying Guan
- Joint Institute of Tobacco and Health, Kunming, Yunnan, China
| | - Jingmin He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- College of Biological Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Haijun Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Mao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlong Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenji Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Yao
- Joint Institute of Tobacco and Health, Kunming, Yunnan, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
López-Tobón A, Shyti R, Villa CE, Cheroni C, Fuentes-Bravo P, Trattaro S, Caporale N, Troglio F, Tenderini E, Mihailovich M, Skaros A, Gibson WT, Cuomo A, Bonaldi T, Mercurio C, Varasi M, Osborne L, Testa G. GTF2I dosage regulates neuronal differentiation and social behavior in 7q11.23 neurodevelopmental disorders. SCIENCE ADVANCES 2023; 9:eadh2726. [PMID: 38019906 PMCID: PMC10686562 DOI: 10.1126/sciadv.adh2726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Copy number variations at 7q11.23 cause neurodevelopmental disorders with shared and opposite manifestations. Deletion causes Williams-Beuren syndrome featuring hypersociability, while duplication causes 7q11.23 microduplication syndrome (7Dup), frequently exhibiting autism spectrum disorder (ASD). Converging evidence indicates GTF2I as key mediator of the cognitive-behavioral phenotypes, yet its role in cortical development and behavioral hallmarks remains largely unknown. We integrated proteomic and transcriptomic profiling of patient-derived cortical organoids, including longitudinally at single-cell resolution, to dissect 7q11.23 dosage-dependent and GTF2I-specific disease mechanisms. We observed dosage-dependent impaired dynamics of neural progenitor proliferation, transcriptional imbalances, and highly specific alterations in neuronal output, leading to precocious excitatory neuron production in 7Dup, which was rescued by restoring physiological GTF2I levels. Transgenic mice with Gtf2i duplication recapitulated progenitor proliferation and neuronal differentiation defects alongside ASD-like behaviors. Consistently, inhibition of lysine demethylase 1 (LSD1), a GTF2I effector, was sufficient to rescue ASD-like phenotypes in transgenic mice, establishing GTF2I-LSD1 axis as a molecular pathway amenable to therapeutic intervention in ASD.
Collapse
Affiliation(s)
- Alejandro López-Tobón
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Reinald Shyti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Carlo Emanuele Villa
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Cristina Cheroni
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Patricio Fuentes-Bravo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Sebastiano Trattaro
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Nicolò Caporale
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Flavia Troglio
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Erika Tenderini
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Marija Mihailovich
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Adrianos Skaros
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - William T. Gibson
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Alessandro Cuomo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Ciro Mercurio
- Experimental Therapeutics Program, FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy
| | - Mario Varasi
- Experimental Therapeutics Program, FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy
| | - Lucy Osborne
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Giuseppe Testa
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Ashraf G, Zhong ZT, Asif M, Aziz A, Iftikhar T, Chen W, Zhao YD. State-of-the-Art Fluorescent Probes: Duplex-Specific Nuclease-Based Strategies for Early Disease Diagnostics. BIOSENSORS 2022; 12:bios12121172. [PMID: 36551139 PMCID: PMC9775407 DOI: 10.3390/bios12121172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 05/27/2023]
Abstract
Precision healthcare aims to improve patient health by integrating prevention measures with early disease detection for prompt treatments. For the delivery of preventive healthcare, cutting-edge diagnostics that enable early disease detection must be clinically adopted. Duplex-specific nuclease (DSN) is a useful tool for bioanalysis since it can precisely digest DNA contained in duplexes. DSN is commonly used in biomedical and life science applications, including the construction of cDNA libraries, detection of microRNA, and single-nucleotide polymorphism (SNP) recognition. Herein, following the comprehensive introduction to the field, we highlight the clinical applicability, multi-analyte miRNA, and SNP clinical assays for disease diagnosis through large-cohort studies using DSN-based fluorescent methods. In fluorescent platforms, the signal is produced based on the probe (dyes, TaqMan, or molecular beacon) properties in proportion to the target concentration. We outline the reported fluorescent biosensors for SNP detection in the next section. This review aims to capture current knowledge of the overlapping miRNAs and SNPs' detection that have been widely associated with the pathophysiology of cancer, cardiovascular, neural, and viral diseases. We further highlight the proficiency of DSN-based approaches in complex biological matrices or those constructed on novel nano-architectures. The outlooks on the progress in this field are discussed.
Collapse
Affiliation(s)
- Ghazala Ashraf
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ayesha Aziz
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tayyaba Iftikhar
- Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
4
|
Large-scale neuroanatomical study uncovers 198 gene associations in mouse brain morphogenesis. Nat Commun 2019; 10:3465. [PMID: 31371714 PMCID: PMC6671969 DOI: 10.1038/s41467-019-11431-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/13/2019] [Indexed: 01/03/2023] Open
Abstract
Brain morphogenesis is an important process contributing to higher-order cognition, however our knowledge about its biological basis is largely incomplete. Here we analyze 118 neuroanatomical parameters in 1,566 mutant mouse lines and identify 198 genes whose disruptions yield NeuroAnatomical Phenotypes (NAPs), mostly affecting structures implicated in brain connectivity. Groups of functionally similar NAP genes participate in pathways involving the cytoskeleton, the cell cycle and the synapse, display distinct fetal and postnatal brain expression dynamics and importantly, their disruption can yield convergent phenotypic patterns. 17% of human unique orthologues of mouse NAP genes are known loci for cognitive dysfunction. The remaining 83% constitute a vast pool of genes newly implicated in brain architecture, providing the largest study of mouse NAP genes and pathways. This offers a complementary resource to human genetic studies and predict that many more genes could be involved in mammalian brain morphogenesis. Brain morphogenesis is an important process contributing to higher-order cognition, however our knowledge about its biological basis is largely incomplete. Here, authors analyzed 118 neuroanatomical parameters in 1,566 mutant mouse lines to identify 198 genes whose disruptions yield neuroanatomical phenotypes
Collapse
|
5
|
Motahari Z, Moody SA, Maynard TM, LaMantia AS. In the line-up: deleted genes associated with DiGeorge/22q11.2 deletion syndrome: are they all suspects? J Neurodev Disord 2019; 11:7. [PMID: 31174463 PMCID: PMC6554986 DOI: 10.1186/s11689-019-9267-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 04/21/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11DS), a copy number variation (CNV) disorder, occurs in approximately 1:4000 live births due to a heterozygous microdeletion at position 11.2 (proximal) on the q arm of human chromosome 22 (hChr22) (McDonald-McGinn and Sullivan, Medicine 90:1-18, 2011). This disorder was known as DiGeorge syndrome, Velo-cardio-facial syndrome (VCFS) or conotruncal anomaly face syndrome (CTAF) based upon diagnostic cardiovascular, pharyngeal, and craniofacial anomalies (McDonald-McGinn and Sullivan, Medicine 90:1-18, 2011; Burn et al., J Med Genet 30:822-4, 1993) before this phenotypic spectrum was associated with 22q11.2 CNVs. Subsequently, 22q11.2 deletion emerged as a major genomic lesion associated with vulnerability for several clinically defined behavioral deficits common to a number of neurodevelopmental disorders (Fernandez et al., Principles of Developmental Genetics, 2015; Robin and Shprintzen, J Pediatr 147:90-6, 2005; Schneider et al., Am J Psychiatry 171:627-39, 2014). RESULTS The mechanistic relationships between heterozygously deleted 22q11.2 genes and 22q11DS phenotypes are still unknown. We assembled a comprehensive "line-up" of the 36 protein coding loci in the 1.5 Mb minimal critical deleted region on hChr22q11.2, plus 20 protein coding loci in the distal 1.5 Mb that defines the 3 Mb typical 22q11DS deletion. We categorized candidates based upon apparent primary cell biological functions. We analyzed 41 of these genes that encode known proteins to determine whether haploinsufficiency of any single 22q11.2 gene-a one gene to one phenotype correspondence due to heterozygous deletion restricted to that locus-versus complex multigenic interactions can account for single or multiple 22q11DS phenotypes. CONCLUSIONS Our 22q11.2 functional genomic assessment does not support current theories of single gene haploinsufficiency for one or all 22q11DS phenotypes. Shared molecular functions, convergence on fundamental cell biological processes, and related consequences of individual 22q11.2 genes point to a matrix of multigenic interactions due to diminished 22q11.2 gene dosage. These interactions target fundamental cellular mechanisms essential for development, maturation, or homeostasis at subsets of 22q11DS phenotypic sites.
Collapse
Affiliation(s)
- Zahra Motahari
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Sally Ann Moody
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Thomas Michael Maynard
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Anthony-Samuel LaMantia
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| |
Collapse
|
6
|
Persson ME, Sundman AS, Halldén LL, Trottier AJ, Jensen P. Sociality genes are associated with human-directed social behaviour in golden and Labrador retriever dogs. PeerJ 2018; 6:e5889. [PMID: 30416887 PMCID: PMC6225837 DOI: 10.7717/peerj.5889] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022] Open
Abstract
Background Dogs have human-directed social skills that allow them to communicate and cooperate with humans. We have previously identified two loci on chromosome 26 associated with human contact-seeking behaviors during an unsolvable problem task in laboratory beagles (Persson et al., 2016). The aim of the present study was to verify the single nucleotide polymorphisms (SNPs) in additional dog breeds. We also studied how the allele frequencies have changed during domestication and recent selection. Methods Dogs of two breeds, 61 golden retrievers and 100 Labrador retrievers, were phenotyped and genotyped, and 19 wolves were genotyped. The Labrador retrievers were divided into common and field type by pedigree data to make it possible to study the effects of recent selection. All dogs were tested in an unsolvable problem task where human-directed social behaviors were scored. DNA from dogs (buccal swabs) and wolves (blood or brain tissue) was analyzed for genotype on two of the previously identified SNP markers, BICF2G630798942 (SNP1) and BICF2S23712114 (SNP2), by pyrosequencing. Results There was genetic variation for SNP1 in both dog breeds whereas the wolves were fixed for this polymorphism, and for SNP2 there was variation in both dogs and wolves. For both SNPs, Labrador retriever types differed significantly in allele frequencies. We found associations between SNPs and human-directed social behavior in both dog breeds. In golden retrievers, SNP1 was associated with physical contact variables, for example, with the duration of physical contact with the owner (F 2,56 = 4.389, p = 0.017). SNP2 was associated with several behavioral variables in both breeds, among others owner gazing frequency in both golden retrievers (F 2,55 = 6.330, p = 0.003) and Labradors (F 1,93 = 5.209, p = 0.025). Discussion Our results verify the association between the previously identified SNPs and human-directed social behavior scored in an unsolvable problem task. Differences in allele frequencies suggest that these loci have been affected by selection. The results indicate that these genomic regions are involved in human-directed social behavior in not only beagles but in other dog breeds as well. We hypothesize that they may have been important during dog domestication.
Collapse
Affiliation(s)
- Mia E Persson
- AVIAN Behaviour Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - Ann-Sofie Sundman
- AVIAN Behaviour Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - Lise-Lotte Halldén
- AVIAN Behaviour Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - Agaia J Trottier
- AVIAN Behaviour Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - Per Jensen
- AVIAN Behaviour Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
7
|
Yuan L, Arikkath J. Functional roles of p120ctn family of proteins in central neurons. Semin Cell Dev Biol 2017; 69:70-82. [PMID: 28603076 DOI: 10.1016/j.semcdb.2017.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/16/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023]
Abstract
The cadherin-catenin complex in central neurons is associated with a variety of cytosolic partners, collectively called catenins. The p120ctn members are a family of catenins that are distinct from the more ubiquitously expressed α- and β-catenins. It is becoming increasingly clear that the functional roles of the p120ctn family of catenins in central neurons extend well beyond their functional roles in non-neuronal cells in partnering with cadherin to regulate adhesion. In this review, we will provide an overview of the p120ctn family in neurons and their varied functional roles in central neurons. Finally, we will examine the emerging roles of this family of proteins in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Li Yuan
- Department of Pharmacology and Experimental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, United States; Developmental Neuroscience, Munroe-Meyer Institute, Durham Research Center II, Room 3031, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE 68198-5960, United States.
| | - Jyothi Arikkath
- Developmental Neuroscience, Munroe-Meyer Institute, Durham Research Center II, Room 3031, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE 68198-5960, United States.
| |
Collapse
|
8
|
Calabrò M, Porcelli S, Crisafulli C, Wang SM, Lee SJ, Han C, Patkar AA, Masand PS, Albani D, Raimondi I, Forloni G, Bin S, Mattiaccio A, Mantovani V, Jun TY, Pae CU, Serretti A. Genetic Variants Within Key Nodes of the Cascade of Antipsychotic Mechanisms: Effects on Antipsychotic Response and Schizophrenia Psychopathology in a Naturalistic Treatment Setting in Two Independent Korean and Italian Samples. Adv Ther 2017; 34:1482-1497. [PMID: 28508933 DOI: 10.1007/s12325-017-0555-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Schizophrenia (SCZ) is one of the most disabling psychiatric disorders. Genetic factors play an important role in both SCZ liability and its treatment outcome. In the present paper, we investigated the effects of several single nucleotide polymorphisms (SNPs) within ten strong candidate genes involved with antipsychotics (APs) mechanisms of action. METHODS Two independent samples were investigated in the present study. Totals of 176 SCZ subjects and 326 controls of Korean ancestry, and 83 SCZ subjects and 194 controls of Italian ancestry were recruited and genotyped. SCZ risk and other parameters were also investigated. RESULTS Concerning APs response, only a nominal association with HOMER1 rs3822568 in the Korean sample was found. In the haplotype analysis, rs9801117 C-rs12668837 C-rs4621754 A haplotype within ESYT2 and NCAPG2 genes was associated with APs response in the same sample. As for secondary outcomes, rs7439 within PKDCC and rs12668837 within NCAPG2 were associated with SCZ risk in the Italian sample. In the haplotype analysis, rs2788478 G-rs2657375 T-rs1039621 A within the region between WDR60 and ESYT genes and rs2013 C (ESYT2)-rs6459896 A (NCAPG2) haplotypes were associated with SCZ in the same sample. No association was found in the Korean sample. Finally, our exploratory data suggest a possible modulation of HOMER1, ARC, BDNF, TXNRD2, WDR60, and ESYT2 genes in the APs response to specific symptom clusters. CONCLUSION Our results did not support a primary role for the genes investigated in the APs response. On the other hand, our secondary results suggest a possible involvement of NACPG2 and PKDCC in SCZ liability. Finally, our exploratory findings may deserve further investigations in specific studies.
Collapse
|
9
|
No evidence for the presence of genetic variants predisposing to psychotic disorders on the non-deleted 22q11.2 allele of VCFS patients. Transl Psychiatry 2017; 7:e1039. [PMID: 28221368 PMCID: PMC5438018 DOI: 10.1038/tp.2016.258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/16/2016] [Indexed: 12/13/2022] Open
Abstract
The velo-cardio-facial syndrome (VCFS) is caused by hemizygous deletions on chromosome 22q11.2. The VCFS phenotype is complex and characterized by frequent occurrence of neuropsychiatric symptoms with up to 25-30% of cases suffering from psychotic disorders compared with only ~1% in the general population (odds ratio≈20-25). This makes the 22q11.2 deletion one of the most prominent risk factors for schizophrenia. However, its penetrance for neuropsychiatric phenotypes is incomplete suggesting that additional risk factors are required for disease development. These additional risk factors could lie anywhere on the genome, but by reducing the normal diploid to a haploid state, the 22q11.2 deletion could result in the unmasking of otherwise recessive alleles or functional variants on the non-deleted 22q11.2 allele. To test this hypothesis, we captured and sequenced the whole 22q11.2 non-deleted region in 88 VCFS patients with (n=40) and without (n=48) psychotic disorders to identify genetic variation that could increase the risk for schizophrenia. Single nucleotide variants (SNVs), small insertions/deletions (indels) and copy number variants were called and their distributions were compared between the two diagnostic groups using variant-, gene- and region-based association tests. None of these tests resulted in statistical evidence for the existence of a genetic variation in the non-deleted allele that would increase schizophrenia risk in VCFS patients. Power analysis showed that our study was able to achieve >80% statistical power to detect association of a risk variant with an odd ratio of ⩾22. However, it is certainly under-powered to detect risk variant of smaller effect sizes. Our study did not provide evidence that genetic variants of very large effect size located on the non-deleted 22q1.2 allele in VCFS patients increase the risk for developing psychotic disorders. Variants with smaller effects may be located in the remaining 22q11.2 allele and elsewhere in the genome. Therefore, whole exome or even genome sequencing for larger sample size would appear to be the next logical steps in the search for the genetic modifiers of the 22q11.2-deletion neuropsychiatric phenotype.
Collapse
|
10
|
Persson ME, Wright D, Roth LSV, Batakis P, Jensen P. Genomic Regions Associated With Interspecies Communication in Dogs Contain Genes Related to Human Social Disorders. Sci Rep 2016; 6:33439. [PMID: 27685260 PMCID: PMC5041581 DOI: 10.1038/srep33439] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/26/2016] [Indexed: 01/25/2023] Open
Abstract
Unlike their wolf ancestors, dogs have unique social skills for communicating and cooperating with humans. Previously, significant heritabilities for human-directed social behaviors have been found in laboratory beagles. Here, a Genome-Wide Association Study identified two genomic regions associated with dog’s human-directed social behaviors. We recorded the propensity of laboratory beagles, bred, kept and handled under standardized conditions, to initiate physical interactions with a human during an unsolvable problem-task, and 190 individuals were genotyped with an HD Canine SNP-chip. One genetic marker on chromosome 26 within the SEZ6L gene was significantly associated with time spent close to, and in physical contact with, the human. Two suggestive markers on chromosome 26, located within the ARVCF gene, were also associated with human contact seeking. Strikingly, four additional genes present in the same linkage blocks affect social abilities in humans, e.g., SEZ6L has been associated with autism and COMT affects aggression in adolescents with ADHD. This is, to our knowledge, the first genome-wide study presenting candidate genomic regions for dog sociability and inter-species communication. These results advance our understanding of dog domestication and raise the use of the dog as a novel model system for human social disorders.
Collapse
Affiliation(s)
- Mia E Persson
- AVIAN Behaviour Genomics and Physiology Group, IFM Biology, Linköping University 581 83, Linköping, Sweden
| | - Dominic Wright
- AVIAN Behaviour Genomics and Physiology Group, IFM Biology, Linköping University 581 83, Linköping, Sweden
| | - Lina S V Roth
- AVIAN Behaviour Genomics and Physiology Group, IFM Biology, Linköping University 581 83, Linköping, Sweden
| | - Petros Batakis
- AVIAN Behaviour Genomics and Physiology Group, IFM Biology, Linköping University 581 83, Linköping, Sweden
| | - Per Jensen
- AVIAN Behaviour Genomics and Physiology Group, IFM Biology, Linköping University 581 83, Linköping, Sweden
| |
Collapse
|
11
|
Wang Q, Amato SP, Rubitski DM, Hayward MM, Kormos BL, Verhoest PR, Xu L, Brandon NJ, Ehlers MD. Identification of Phosphorylation Consensus Sequences and Endogenous Neuronal Substrates of the Psychiatric Risk Kinase TNIK. J Pharmacol Exp Ther 2016; 356:410-23. [PMID: 26645429 DOI: 10.1124/jpet.115.229880] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/01/2015] [Indexed: 12/28/2022] Open
Abstract
Traf2- and Nck-interacting kinase (TNIK) is a serine/threonine kinase highly expressed in the brain and enriched in the postsynaptic density of glutamatergic synapses in the mammalian brain. Accumulating genetic evidence and functional data have implicated TNIK as a risk factor for psychiatric disorders. However, the endogenous substrates of TNIK in neurons are unknown. Here, we describe a novel selective small molecule inhibitor of the TNIK kinase family. Using this inhibitor, we report the identification of endogenous neuronal TNIK substrates by immunoprecipitation with a phosphomotif antibody followed by mass spectrometry. Phosphorylation consensus sequences were defined by phosphopeptide sequence analysis. Among the identified substrates were members of the delta-catenin family including p120-catenin, δ-catenin, and armadillo repeat gene deleted in velo-cardio-facial syndrome (ARVCF), each of which is linked to psychiatric or neurologic disorders. Using p120-catenin as a representative substrate, we show TNIK-induced p120-catenin phosphorylation in cells requires intact kinase activity and phosphorylation of TNIK at T181 and T187 in the activation loop. Addition of the small molecule TNIK inhibitor or knocking down TNIK by two shRNAs reduced endogenous p120-catenin phosphorylation in cells. Together, using a TNIK inhibitor and phosphomotif antibody, we identify endogenous substrates of TNIK in neurons, define consensus sequences for TNIK, and suggest signaling pathways by which TNIK influences synaptic development and function linked to psychiatric and neurologic disorders.
Collapse
Affiliation(s)
- Qi Wang
- Neuroscience & Pain Research Unit, BioTherapeutics Research and Development, Pfizer Inc. Cambridge, Massachusetts (Q.W., S.P.A., D.M.R., N.J.B., M.D.E.); Center of Chemistry Innovation and Excellence, Pfizer Inc., Groton, Connecticut (M.M.H.); Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts (B.L.K., P.R.V.);and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts (L.X.)
| | - Stephen P Amato
- Neuroscience & Pain Research Unit, BioTherapeutics Research and Development, Pfizer Inc. Cambridge, Massachusetts (Q.W., S.P.A., D.M.R., N.J.B., M.D.E.); Center of Chemistry Innovation and Excellence, Pfizer Inc., Groton, Connecticut (M.M.H.); Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts (B.L.K., P.R.V.);and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts (L.X.)
| | - David M Rubitski
- Neuroscience & Pain Research Unit, BioTherapeutics Research and Development, Pfizer Inc. Cambridge, Massachusetts (Q.W., S.P.A., D.M.R., N.J.B., M.D.E.); Center of Chemistry Innovation and Excellence, Pfizer Inc., Groton, Connecticut (M.M.H.); Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts (B.L.K., P.R.V.);and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts (L.X.)
| | - Matthew M Hayward
- Neuroscience & Pain Research Unit, BioTherapeutics Research and Development, Pfizer Inc. Cambridge, Massachusetts (Q.W., S.P.A., D.M.R., N.J.B., M.D.E.); Center of Chemistry Innovation and Excellence, Pfizer Inc., Groton, Connecticut (M.M.H.); Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts (B.L.K., P.R.V.);and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts (L.X.)
| | - Bethany L Kormos
- Neuroscience & Pain Research Unit, BioTherapeutics Research and Development, Pfizer Inc. Cambridge, Massachusetts (Q.W., S.P.A., D.M.R., N.J.B., M.D.E.); Center of Chemistry Innovation and Excellence, Pfizer Inc., Groton, Connecticut (M.M.H.); Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts (B.L.K., P.R.V.);and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts (L.X.)
| | - Patrick R Verhoest
- Neuroscience & Pain Research Unit, BioTherapeutics Research and Development, Pfizer Inc. Cambridge, Massachusetts (Q.W., S.P.A., D.M.R., N.J.B., M.D.E.); Center of Chemistry Innovation and Excellence, Pfizer Inc., Groton, Connecticut (M.M.H.); Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts (B.L.K., P.R.V.);and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts (L.X.)
| | - Lan Xu
- Neuroscience & Pain Research Unit, BioTherapeutics Research and Development, Pfizer Inc. Cambridge, Massachusetts (Q.W., S.P.A., D.M.R., N.J.B., M.D.E.); Center of Chemistry Innovation and Excellence, Pfizer Inc., Groton, Connecticut (M.M.H.); Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts (B.L.K., P.R.V.);and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts (L.X.)
| | - Nicholas J Brandon
- Neuroscience & Pain Research Unit, BioTherapeutics Research and Development, Pfizer Inc. Cambridge, Massachusetts (Q.W., S.P.A., D.M.R., N.J.B., M.D.E.); Center of Chemistry Innovation and Excellence, Pfizer Inc., Groton, Connecticut (M.M.H.); Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts (B.L.K., P.R.V.);and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts (L.X.)
| | - Michael D Ehlers
- Neuroscience & Pain Research Unit, BioTherapeutics Research and Development, Pfizer Inc. Cambridge, Massachusetts (Q.W., S.P.A., D.M.R., N.J.B., M.D.E.); Center of Chemistry Innovation and Excellence, Pfizer Inc., Groton, Connecticut (M.M.H.); Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts (B.L.K., P.R.V.);and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts (L.X.)
| |
Collapse
|
12
|
Meechan DW, Maynard TM, Tucker ES, Fernandez A, Karpinski BA, Rothblat LA, LaMantia AS. Modeling a model: Mouse genetics, 22q11.2 Deletion Syndrome, and disorders of cortical circuit development. Prog Neurobiol 2015; 130:1-28. [PMID: 25866365 DOI: 10.1016/j.pneurobio.2015.03.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/24/2015] [Accepted: 03/29/2015] [Indexed: 12/21/2022]
Abstract
Understanding the developmental etiology of autistic spectrum disorders, attention deficit/hyperactivity disorder and schizophrenia remains a major challenge for establishing new diagnostic and therapeutic approaches to these common, difficult-to-treat diseases that compromise neural circuits in the cerebral cortex. One aspect of this challenge is the breadth and overlap of ASD, ADHD, and SCZ deficits; another is the complexity of mutations associated with each, and a third is the difficulty of analyzing disrupted development in at-risk or affected human fetuses. The identification of distinct genetic syndromes that include behavioral deficits similar to those in ASD, ADHC and SCZ provides a critical starting point for meeting this challenge. We summarize clinical and behavioral impairments in children and adults with one such genetic syndrome, the 22q11.2 Deletion Syndrome, routinely called 22q11DS, caused by micro-deletions of between 1.5 and 3.0 MB on human chromosome 22. Among many syndromic features, including cardiovascular and craniofacial anomalies, 22q11DS patients have a high incidence of brain structural, functional, and behavioral deficits that reflect cerebral cortical dysfunction and fall within the spectrum that defines ASD, ADHD, and SCZ. We show that developmental pathogenesis underlying this apparent genetic "model" syndrome in patients can be defined and analyzed mechanistically using genomically accurate mouse models of the deletion that causes 22q11DS. We conclude that "modeling a model", in this case 22q11DS as a model for idiopathic ASD, ADHD and SCZ, as well as other behavioral disorders like anxiety frequently seen in 22q11DS patients, in genetically engineered mice provides a foundation for understanding the causes and improving diagnosis and therapy for these disorders of cortical circuit development.
Collapse
Affiliation(s)
- Daniel W Meechan
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States
| | - Thomas M Maynard
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States
| | - Eric S Tucker
- Department of Neurobiology and Anatomy, Neuroscience Graduate Program, and Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Alejandra Fernandez
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States
| | - Beverly A Karpinski
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States
| | - Lawrence A Rothblat
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States; Department of Psychology, The George Washington University, Washington, DC, United States
| | - Anthony-S LaMantia
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States.
| |
Collapse
|
13
|
Large-scale candidate gene study to identify genetic risk factors predictive of paliperidone treatment response in patients with schizophrenia. Pharmacogenet Genomics 2015; 25:173-85. [DOI: 10.1097/fpc.0000000000000122] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
COMT and MAO-A polymorphisms and obsessive-compulsive disorder: a family-based association study. PLoS One 2015; 10:e0119592. [PMID: 25793616 PMCID: PMC4368617 DOI: 10.1371/journal.pone.0119592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 01/28/2015] [Indexed: 12/25/2022] Open
Abstract
Objective Obsessive-compulsive disorder (OCD) is a common and debilitating psychiatric illness. Although a genetic component contributes to its etiology, no single gene or mechanism has been identified to the OCD susceptibility. The catechol-O-methyltransferase (COMT) and monoamine oxidase A (MAO-A) genes have been investigated in previous OCD studies, but the results are still unclear. More recently, Taylor (2013) in a comprehensive meta-analysis of genetic association studies has identified COMT and MAO-A polymorphisms involved with OCD. In an effort to clarify the role of these two genes in OCD vulnerability, a family-based association investigation was performed as an alternative strategy to the classical case-control design. Methods Transmission disequilibrium analyses were performed after genotyping 13 single-nucleotide polymorphisms (eight in COMT and five in MAO-A) in 783 OCD trios (probands and their parents). Four different OCD phenotypes (from narrow to broad OCD definitions) and a SNP x SNP epistasis were also analyzed. Results OCD, broad and narrow phenotypes,were not associated with any of the investigated COMT and MAO-A polymorphisms. In addition, the analyses of gene-gene interaction did not show significant epistatic influences on phenotype between COMT and MAO-A. Conclusions The findings do not support an association between DSM-IV OCD and the variants of COMT or MAO-A. However, results from this study cannot exclude the contribution of these genes in the manifestation of OCD. The evaluation of broader spectrum phenotypes could help to understand the role of these and other genes in the pathophysiology of OCD and its spectrum disorders.
Collapse
|
15
|
Luo X, Huang L, Han L, Luo Z, Hu F, Tieu R, Gan L. Systematic prioritization and integrative analysis of copy number variations in schizophrenia reveal key schizophrenia susceptibility genes. Schizophr Bull 2014; 40:1285-99. [PMID: 24664977 PMCID: PMC4193716 DOI: 10.1093/schbul/sbu045] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Schizophrenia is a common mental disorder with high heritability and strong genetic heterogeneity. Common disease-common variants hypothesis predicts that schizophrenia is attributable in part to common genetic variants. However, recent studies have clearly demonstrated that copy number variations (CNVs) also play pivotal roles in schizophrenia susceptibility and explain a proportion of missing heritability. Though numerous CNVs have been identified, many of the regions affected by CNVs show poor overlapping among different studies, and it is not known whether the genes disrupted by CNVs contribute to the risk of schizophrenia. By using cumulative scoring, we systematically prioritized the genes affected by CNVs in schizophrenia. We identified 8 top genes that are frequently disrupted by CNVs, including NRXN1, CHRNA7, BCL9, CYFIP1, GJA8, NDE1, SNAP29, and GJA5. Integration of genes affected by CNVs with known schizophrenia susceptibility genes (from previous genetic linkage and association studies) reveals that many genes disrupted by CNVs are also associated with schizophrenia. Further protein-protein interaction (PPI) analysis indicates that protein products of genes affected by CNVs frequently interact with known schizophrenia-associated proteins. Finally, systematic integration of CNVs prioritization data with genetic association and PPI data identifies key schizophrenia candidate genes. Our results provide a global overview of genes impacted by CNVs in schizophrenia and reveal a densely interconnected molecular network of de novo CNVs in schizophrenia. Though the prioritized top genes represent promising schizophrenia risk genes, further work with different prioritization methods and independent samples is needed to confirm these findings. Nevertheless, the identified key candidate genes may have important roles in the pathogenesis of schizophrenia, and further functional characterization of these genes may provide pivotal targets for future therapeutics and diagnostics.
Collapse
Affiliation(s)
- Xiongjian Luo
- Flaum Eye Institute and Department of Ophthalmology, University of Rochester, Rochester, NY; College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China;
| | - Liang Huang
- First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China;,Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China;,These authors contributed equally to the article
| | - Leng Han
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX;,These authors contributed equally to the article
| | - Zhenwu Luo
- Wuhan Institute of Virology, Chinese Academy of Sciences, WuChang, Wuhan, China
| | - Fang Hu
- First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China;,Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Roger Tieu
- Department of Biochemistry, Emory University, Atlanta, GA
| | - Lin Gan
- Flaum Eye Institute and Department of Ophthalmology, University of Rochester, Rochester, NY;,College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
The Val158Met polymorphism in the COMT gene is associated with increased cancer risks in Chinese population. Tumour Biol 2013; 35:3003-8. [PMID: 24307619 DOI: 10.1007/s13277-013-1387-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/05/2013] [Indexed: 12/31/2022] Open
Abstract
The Val158Met polymorphism in the COMT gene may affect the DNA repair pathways and be associated with the risk of cancer in Chinese population. However, the results of previous studies are inconsistent. The objective of this study was to investigate the association between the Val158Met polymorphism in the COMT gene and the risk of cancer for Chinese population by meta-analysis. We searched PubMed, Embase, CNKI, Weipu, and Wanfang databases, and the last search was updated on Sep. 26, 2013. Statistical analysis was performed using the Revman4.2 and Stata10.0 software. A total of 18 case-control studies concerning 5034 case and 6234 controls were included. In the total analysis, the results suggested a significant association between the Val158Met polymorphism in the COMT gene and the cancer risk in Chinese population: OR = 1.34, 95%CI = 1.04-1.73, and P = 0.03 for AA vs. AG + GG; OR = 1.39, 95%CI = 1.06-1.82, and P = 0.02; OR = 1.13, 95%CI = 1.01-1.27, and P = 0.04. In the subgroup analysis by cancer types, significant association was found in the breast cancer and esophageal squamous cell carcinoma. The current meta-analysis confirmed that the Val158Met polymorphism in the COMT gene may be a risk factor for cancer in Chinese population. In the future, more case-control studies are needed to validate our results.
Collapse
|
17
|
Loh HC, Tang PY, Tee SF, Chow TJ, Choong CY, Lim SY, Yong HS. Neuregulin-1 (NRG-1) and its susceptibility to schizophrenia: a case-control study and meta-analysis. Psychiatry Res 2013; 208:186-8. [PMID: 23489597 DOI: 10.1016/j.psychres.2013.01.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/04/2013] [Accepted: 01/16/2013] [Indexed: 01/12/2023]
Abstract
Neuregulin-1 is widely investigated due to its hypothesised association with schizophrenia. Single-nucleotide polymorphisms rs764059, rs2954041 and rs3924999 were investigated (417 patients with schizophrenia and 429 controls). We failed to demonstrate a significant association between rs2954041 and rs3924999 with schizophrenia in the three ethnic groups studied (Malay, Chinese, and Indian), while rs764059 was found to be monomorphic.
Collapse
Affiliation(s)
- Han Chern Loh
- Department of Chemical Engineering, Faculty of Engineering and Science (FES), Universiti Tunku Abdul Rahman (UTAR), Jalan Genting Kelang, Setapak, 53300 Kuala Lumpur, Malaysia.
| | | | | | | | | | | | | |
Collapse
|
18
|
Williams HJ, Monks S, Murphy KC, Kirov G, O'Donovan MC, Owen MJ. Schizophrenia two-hit hypothesis in velo-cardio facial syndrome. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:177-82. [PMID: 23335482 DOI: 10.1002/ajmg.b.32129] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/21/2012] [Indexed: 12/12/2022]
Abstract
Deletion of chr22q11 gives rise to velo-cardio facial syndrome (VCFS) and increases schizophrenia risk. The source of this elevated risk although unknown could result from stochastic, environmental, or genetic factors, the latter encompassing a range of complexity from polygenic mechanisms to "second-hit" mutations. For this study we tested the two-hit hypothesis where additional risk is conferred through a second CNV. We identified large (>100 kb) CNVs in 48 VCFS cases (23 with psychosis--25 without) and show in the psychotic VCFS group there is a significant (P = 0.02) increase in the average size of CNVs (354-227 kb). To identify second-hit loci we focused on individuals possessing gene-centric CNVs and through literature mining identified 4 (31%) psychotic VCFS individuals (n = 13) that overlapped loci previously implicated in neuropsychiatric disorders compared to 1 (10%) from the non-psychotic VCFS individuals (n = 10). For replication 17 VCFS patients with schizophrenia from the molecular genetics of schizophrenia dataset were used to identify further CNVs. Thirteen individuals possessing gene-centric CNVs were identified including 3 (23%) individuals possessing a potential second-hit, taking the overall total in the psychotic VCFS group (n = 26) to 7 (27%) potential second-hit loci. Notably a deletion in a psychotic VCFS patient at 2q23.1 hit the gene MBD5 which when deleted gives rise to intellectual disability, epilepsy, and autistic features. Through this study we potentially extend this phenotypic spectrum to include schizophrenia. Our results suggest the two-hit hypothesis may be relevant to a proportion of VCFS patients with psychosis but sample sizes are small and further studies warranted.
Collapse
Affiliation(s)
- Hywel J Williams
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | | | | | | | | | | |
Collapse
|
19
|
Mas S, Bernardo M, Gassó P, Álvarez S, Garcia-Rizo C, Bioque M, Kirkpatrick B, Lafuente A. A functional variant provided further evidence for the association of ARVCF with schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:1052-9. [PMID: 20333729 PMCID: PMC4390130 DOI: 10.1002/ajmg.b.31073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In a previous linkage disequilibrium mapping study, in the 3' end of ARVCF, we identified one intronic SNP rs165849 and one haplotype block associated with schizophrenia and related disorders. The aim of the present study was to explore whether functional genetic variants in the exonic regions of ARVCF included in this haplotype block are responsible for the association observed. To achieve this objective (1) the nine exons included in this haplotype block were resequenced in a group of 242 patients with schizophrenia and related disorders (Case 1). The SNPs identified were genotyped in a hospital-based control group of 373 subjects (Control 1) and an association study was performed. (2) The SNPs showing significant association in this analysis were genotyped in a new group of 102 patients with schizophrenia and related disorders (Case 2) and in a new group of 111 healthy subjects (Control 2). Three dbSNPs (rs35219372, rs5993890, and rs165815) were identified when the nine exons of ARVCF were resequenced. rs165815 was associated with schizophrenia and related disorders (homozygote CC OR = 3.39, permutated P value = 0.02). When the groups of cases (1 and 2) and controls (1 and 2) were merged, the analysis confirmed the association observed (homozygote CC OR = 3.25 permutated P value = 0.02). Given the role of ARVCF proposed in the neurodevelopmental hypothesis, our results further support the view that chromosome 22 contains a susceptibility gene, possibly ARVCF. The functional variant rs165815, which affects a critical region of ARVCF, is a considerable source of the genetic variability associated with the risk of developing schizophrenia.
Collapse
Affiliation(s)
- Sergi Mas
- Department Anatomic Pathology, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Miquel Bernardo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain,Psychiatry service, Hospital Clinic de Barcelona, Barcelona, Spain,Department Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain
| | - Patricia Gassó
- Department Anatomic Pathology, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Santi Álvarez
- Department Anatomic Pathology, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Clemente Garcia-Rizo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain,Psychiatry service, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Miquel Bioque
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain,Psychiatry service, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Brian Kirkpatrick
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta, Georgia
| | - Amalia Lafuente
- Department Anatomic Pathology, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain,Correspondence to: Prof. Amalia Lafuente, Department Anatomic Pathology, Pharmacology and Microbiology, University of Barcelona, Casanova 143, E-08036 Barcelona, Spain.
| |
Collapse
|
20
|
Duan J, Sanders AR, Gejman PV. Genome-wide approaches to schizophrenia. Brain Res Bull 2010; 83:93-102. [PMID: 20433910 DOI: 10.1016/j.brainresbull.2010.04.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 04/20/2010] [Accepted: 04/21/2010] [Indexed: 12/25/2022]
Abstract
Schizophrenia (SZ) is a common and severe psychiatric disorder with both environmental and genetic risk factors, and a high heritability. After over 20 years of molecular genetics research, new molecular strategies, primarily genome-wide association studies (GWAS), have generated major tangible progress. This new data provides evidence for: (1) a number of chromosomal regions with common polymorphisms showing genome-wide association with SZ (the major histocompatibility complex, MHC, region at 6p22-p21; 18q21.2; and 2q32.1). The associated alleles present small odds ratios (the odds of a risk variant being present in cases vs. controls) and suggest causative involvement of gene regulatory mechanisms in SZ. (2) Polygenic inheritance. (3) Involvement of rare (<1%) and large (>100kb) copy number variants (CNVs). (4) A genetic overlap of SZ with autism and with bipolar disorder (BP) challenging the classical clinical classifications. Most new SZ findings (chromosomal regions and genes) have generated new biological leads. These new findings, however, still need to be translated into a better understanding of the underlying biology and into causal mechanisms. Furthermore, a considerable amount of heritability still remains unexplained (missing heritability). Deep resequencing for rare variants and system biology approaches (e.g., integrating DNA sequence and functional data) are expected to further improve our understanding of the genetic architecture of SZ and its underlying biology.
Collapse
Affiliation(s)
- Jubao Duan
- Center for Psychiatric Genetics, Department of Psychiatry and Behavioral Sciences, Northshore University HealthSystem Research Institute, 1001 University Place, Evanston, IL 60201, USA.
| | | | | |
Collapse
|
21
|
Hoenicka J, Garrido E, Martínez I, Ponce G, Aragüés M, Rodríguez-Jiménez R, España-Serrano L, Alvira-Botero X, Santos JL, Rubio G, Jiménez-Arriero MA, Palomo T. Gender-specific COMT Val158Met polymorphism association in Spanish schizophrenic patients. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:79-85. [PMID: 19367610 DOI: 10.1002/ajmg.b.30957] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The functional Val158Met polymorphism (rs4680) located at the gene that codes for the catechol-O-methyltransferase (COMT) has been extensively investigated in schizophrenia although current data are still controversial. Since COMT activity is sexually dimorphic, we carried out two independent studies in homogeneous samples of male and female Spanish schizophrenic patients. In males, we found an association between the homozygous Val genotype and the disorder, which resembled a recessive model (P = 0.022; odds ratio [OR] = 1.67). This Val homozygotes overrepresentation is produced at the expense of the heterozygous individuals decrease, whilst the Met homozygotes showed no differences when compared controls and patients. As a consequence, the heterozygous genotype in this sample had a protective effect (P = 0.03; OR = 0.65) and a strong deviation from Hardy-Weinberg equilibrium in male cases was observed (P = 0.006). In addition, a 2-SNP haplotype analysis (rs4818-Val158Met) confirmed there is an overrepresentation of the different homozygous Val genotypes in the male schizophrenic sample. Regarding females, we did not find any statistically significant association between COMT SNP and schizophrenia. In the light of this we suggest that the Val158Met SNP is involved in risk and protective genotypes for the vulnerability to schizophrenia in Spanish male population.
Collapse
Affiliation(s)
- Janet Hoenicka
- Hospital Universitario 12 de Octubre, Servicio de Psiquiatría, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
The COMT Val108/158Met polymorphism and medial temporal lobe volumetry in patients with schizophrenia and healthy adults. Neuroimage 2009; 53:992-1000. [PMID: 20026221 DOI: 10.1016/j.neuroimage.2009.12.046] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/19/2009] [Accepted: 12/09/2009] [Indexed: 01/06/2023] Open
Abstract
Abnormalities of the medial temporal lobe have been consistently demonstrated in schizophrenia. A common functional polymorphism, Val108/158Met, in the putative schizophrenia susceptibility gene, catechol-O-methyltransferase (COMT), has been shown to influence medial temporal lobe function. However, the effects of this polymorphism on volumes of medial temporal lobe structures, particularly in patients with schizophrenia, are less clear. Here we measured the effects of COMT Val108/158Met genotype on the volume of two regions within the medial temporal lobe, the amygdala and hippocampus, in patients with schizophrenia and healthy control subjects. We obtained MRI and genotype data for 98 schizophrenic patients and 114 matched controls. An automated atlas-based segmentation algorithm was used to generate volumetric measures of the amygdala and hippocampus. Regression analyses included COMT met allele load as an additive effect, and also controlled for age, intracranial volume, gender and acquisition site. Across patients and controls, each copy of the COMT met allele was associated on average with a 2.6% increase in right amygdala volume, a 3.8% increase in left amygdala volume and a 2.2% increase in right hippocampus volume. There were no effects of COMT genotype on volumes of the whole brain and prefrontal regions. Thus, the COMT Val108/158Met polymorphism was shown to influence medial temporal lobe volumes in a linear-additive manner, mirroring its effect on dopamine catabolism. Taken together with previous work, our data support a model in which lower COMT activity, and a resulting elevation in extracellular dopamine levels, stimulates growth of medial temporal lobe structures.
Collapse
|
23
|
Mas S, Bernardo M, Parellada E, Garcia-Rizo C, Gassó P, Alvarez S, Lafuente A. ARVCF single marker and haplotypic association with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1064-9. [PMID: 19508883 DOI: 10.1016/j.pnpbp.2009.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 05/25/2009] [Accepted: 06/01/2009] [Indexed: 01/01/2023]
Abstract
We present a schizophrenia association study using an extensive linkage disequilibrium (LD) mapping approach in seven candidate genes with a well established link to dopamine, including receptors (DRD2, DRD3) and genes involved in its metabolism and transport (ACE, COMT, DAT, MAO-A, MAO-B). The sample included 242 subjects diagnosed with schizophrenia and related disorders and 373 hospital-based controls. 84 tag SNPs in candidate genes were genotyped. After extensive data cleaning 70 SNPs were analyzed for association of single markers and haplotypes. One block of four SNPs (rs165849, rs2518823, rs887199 and rs2239395) in the 3' downstream region of the COMT gene which included a non-dopaminergic candidate gene, the ARVCF (Armadillo like VeloCardio Facial) gene, was associated with the risk of schizophrenia. The genetic region including the ARVCF gene in the 22q11.21 chromosome is associated with schizophrenia in a Spanish series. Our results will assist in the interpretation of the controversy generated by genetic associations of COMT and schizophrenia, which could be the result of different LD patterns between COMT markers and the 3' region of the ARVCF gene.
Collapse
Affiliation(s)
- Sergi Mas
- Department of Anatomic Pathology, Pharmacology and Microbiology, University of Barcelona, Casanova 143, E-08036 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
24
|
Suzuki G, Harper KM, Hiramoto T, Funke B, Lee M, Kang G, Buell M, Geyer MA, Kucherlapati R, Morrow B, Männistö PT, Agatsuma S, Hiroi N. Over-expression of a human chromosome 22q11.2 segment including TXNRD2, COMT and ARVCF developmentally affects incentive learning and working memory in mice. Hum Mol Genet 2009; 18:3914-25. [PMID: 19617637 DOI: 10.1093/hmg/ddp334] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Duplication of human chromosome 22q11.2 is associated with elevated rates of mental retardation, autism and many other behavioral phenotypes. However, because duplications cover 1.5-6 Mb, the precise manner in which segments of 22q11.2 causally affect behavior is not known in humans. We have now determined the developmental impact of over-expression of an approximately 190 kb segment of human 22q11.2, which includes the genes TXNRD2, COMT and ARVCF, on behaviors in bacterial artificial chromosome (BAC) transgenic (TG) mice. BAC TG mice and wild-type (WT) mice were tested for their cognitive capacities, affect- and stress-related behaviors and motor activity at 1 and 2 months of age. An enzymatic assay determined the impact of BAC over-expression on the activity level of COMT. BAC TG mice approached a rewarded goal faster (i.e. incentive learning), but were impaired in delayed rewarded alternation during development. In contrast, BAC TG and WT mice were indistinguishable in rewarded alternation without delays, spontaneous alternation, prepulse inhibition, social interaction, anxiety-, stress- and fear-related behaviors and motor activity. Compared with WT mice, BAC TG mice had an approximately 2-fold higher level of COMT activity in the prefrontal cortex, striatum and hippocampus. These data suggest that over-expression of this 22q11.2 segment enhances incentive learning and impairs the prolonged maintenance of working memory, but has no apparent effect on working memory per se, affect- and stress-related behaviors or motor capacity. High copy numbers of this 22q11.2 segment might contribute to a highly selective set of phenotypes in learning and cognition during development.
Collapse
Affiliation(s)
- Go Suzuki
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang Z, Xiao Z, Inslicht SS, Tong H, Jiang W, Wang X, Metzler T, Marmar CR, Jiang S. Low expression of catecholamine-O-methyl-transferase gene in obsessive-compulsive disorder. J Anxiety Disord 2009; 23:660-4. [PMID: 19269131 DOI: 10.1016/j.janxdis.2009.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 01/27/2009] [Accepted: 02/04/2009] [Indexed: 01/03/2023]
Abstract
This study examined peripheral catecholamine-O-methyl-transferase (COMT) gene expression in obsessive-compulsive disorder (OCD) patients and healthy controls. Participants included 35 first episode OCD patients and 31 age- and sex-matched healthy controls. Relative COMT gene expression levels were examined by real-time quantitative reverse transcription polymerase chain reaction (RT-PCR) in peripheral blood of all the subjects. COMT gene expression levels, normalized by glyceraldehyde-3-phosphate dehydrogenase (GAPDH), were significantly decreased in the OCD group compared with healthy controls (F=6.244, p=0.015). OCD patients showed a 32% down-regulation. We also found lower COMT gene expression levels in female in comparison to male participants (F=5.366, p=0.024) in the sample as a whole. COMT gene expression down-regulation of male OCD patients relative to male controls is 38%, and that of female OCD patients relative to female controls is 27%. These results suggest that COMT gene expression down-regulation might play an important role in the development of OCD and that there may be gender differences in this alteration.
Collapse
Affiliation(s)
- Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Okochi T, Ikeda M, Kishi T, Kawashima K, Kinoshita Y, Kitajima T, Yamanouchi Y, Tomita M, Inada T, Ozaki N, Iwata N. Meta-analysis of association between genetic variants in COMT and schizophrenia: an update. Schizophr Res 2009; 110:140-8. [PMID: 19329282 DOI: 10.1016/j.schres.2009.02.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 02/14/2009] [Accepted: 02/22/2009] [Indexed: 01/05/2023]
Abstract
A common functional polymorphism, Val108/158Met (rs4680), and haplotypes rs737865-rs4680-rs165599 in the Catechol-O-methyltransferase gene (COMT) have been extensively examined for association to schizophrenia; however, results of replication studies have been inconsistent. The aim of this study was to comprehensively evaluate the genetic risk of COMT for schizophrenia. First, we performed a mutation scan to detect the existence of potent functional variants in the 5'-flanking and exon regions. Second, we conducted a gene-based case-control study between tagging single nucleotide polymorphisms (SNPs) in COMT [19 SNPs including six possible functional SNPs (rs2075507, rs737865, rs4680, rs165599, rs165849)] and schizophrenia in large Japanese samples (schizophrenics 1118, controls 1100). Lastly, we carried out a meta-analysis of 5 functional SNPs and haplotypes (rs737865-rs4680-rs165599). No novel functional variant was detected in the mutation scan. There is no association between these tagging SNPs in COMT and Japanese schizophrenia. In this updated meta-analysis, no evidence was found for an association between Val108/158Met polymorphisms, rs6267, rs165599, and haplotypes (rs7378655-rs4680-rs165599) and schizophrenia, although rs2075507 and rs737865 showed trends for significance in allele-wise analyses (P=0.039 in a multiplicative model, P=0.025 in a recessive model for rs2075507, P=0.018 in a dominant model for rs737865, uncorrected). This significance did not remain, however, after correcting the P-values using a false discovery rate controlling procedure. Our results suggest that the COMT is unlikely to contribute to susceptibility to schizophrenia.
Collapse
Affiliation(s)
- Tomo Okochi
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Stephens SH, Logel J, Barton A, Franks A, Schultz J, Short M, Dickenson J, James B, Fingerlin TE, Wagner B, Hodgkinson C, Graw S, Ross RG, Freedman R, Leonard S. Association of the 5'-upstream regulatory region of the alpha7 nicotinic acetylcholine receptor subunit gene (CHRNA7) with schizophrenia. Schizophr Res 2009; 109:102-12. [PMID: 19181484 PMCID: PMC2748327 DOI: 10.1016/j.schres.2008.12.017] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 12/08/2008] [Accepted: 12/12/2008] [Indexed: 12/30/2022]
Abstract
BACKGROUND The alpha7 neuronal nicotinic acetylcholine receptor subunit gene (CHRNA7) is localized in a chromosomal region (15q14) linked to schizophrenia in multiple independent studies. CHRNA7 was selected as the best candidate gene in the region for a well-documented endophenotype of schizophrenia, the P50 sensory processing deficit, by genetic linkage and biochemical studies. METHODS Subjects included Caucasian-Non Hispanic and African-American case-control subjects collected in Denver, and schizophrenic subjects from families in the NIMH Genetics Initiative on Schizophrenia. Thirty-five single nucleotide polymorphisms (SNPs) in the 5'-upstream regulatory region of CHRNA7 were genotyped for association with schizophrenia, and for smoking in schizophrenia. RESULTS The rs3087454 SNP, located at position -1831 bp in the upstream regulatory region of CHRNA7, was significantly associated with schizophrenia in the case-control samples after multiple-testing correction (P=0.0009, African American; P=0.013, Caucasian-Non Hispanic); the association was supported in family members. There was nominal association of this SNP with smoking in schizophrenia. CONCLUSIONS The data support association of regulatory region polymorphisms in the CHRNA7 gene with schizophrenia.
Collapse
Affiliation(s)
- Sarah H. Stephens
- Department of Psychiatry, University of Colorado at Denver, United States
| | - Judith Logel
- Department of Psychiatry, University of Colorado at Denver, United States
| | - Amanda Barton
- Department of Psychiatry, University of Colorado at Denver, United States
| | - Alexis Franks
- Department of Psychiatry, University of Colorado at Denver, United States
| | - Jessica Schultz
- Department of Psychiatry, University of Colorado at Denver, United States
| | - Margaret Short
- Department of Psychiatry, University of Colorado at Denver, United States
| | - Jane Dickenson
- Department of Psychiatry, University of Colorado at Denver, United States
| | - Benjamin James
- Department of Psychiatry, University of Colorado at Denver, United States
| | - Tasha E. Fingerlin
- Department of Preventive Medicine and Biometrics, University of Colorado at Denver, United States
| | - Brandie Wagner
- Department of Preventive Medicine and Biometrics, University of Colorado at Denver, United States
| | | | - Sharon Graw
- Department of Psychiatry, University of Colorado at Denver, United States
| | - Randal G. Ross
- Department of Psychiatry, University of Colorado at Denver, United States
| | - Robert Freedman
- Department of Psychiatry, University of Colorado at Denver, United States, The Veterans Affairs Medical Research Center, Denver, Colorado 80045, United States
| | - Sherry Leonard
- Department of Psychiatry, University of Colorado at Denver, United States, The Veterans Affairs Medical Research Center, Denver, Colorado 80045, United States,Corresponding author. Department of Psychiatry University of Colorado at Denver, Mailstop 8344, P.O. Box 6511, Aurora, CO 80045, United States. Tel.: +1 303 724 4426; fax: +1 303 724 4425. (S. Leonard)
| |
Collapse
|
28
|
Sharma S, Murphy AJ, Soto-Quiros ME, Avila L, Klanderman BJ, Sylvia JS, Celedón JC, Raby BA, Weiss ST. Association of VEGF polymorphisms with childhood asthma, lung function and airway responsiveness. Eur Respir J 2009; 33:1287-94. [PMID: 19196819 DOI: 10.1183/09031936.00113008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Vascular endothelial growth factor (VEGF) is an angiogenic factor implicated in asthma severity. The objective of the present study was to determine whether VEGF single nucleotide polymorphisms (SNPs) are associated with asthma, lung function and airway responsiveness. The present authors analysed 10 SNPs in 458 white families in the Childhood Asthma Management Program (CAMP). Tests of association with asthma, lung function and airway responsiveness were performed using PBAT software (Golden Helix, Inc. Bozeman, MT, USA; available at www.goldenhelix.com). Family and population-based, revpeated measures analysis of airflow obstruction were conducted. Replication studies were performed in 412 asthmatic children and their parents from Costa Rica. Associations with asthma, lung function and airway responsiveness were observed in both cohorts. SNP rs833058 was associated with asthma in both cohorts. This SNP was also associated with increased airway responsiveness in both populations. An association of rs4711750 and its haplotype with forced expiratory volume in 1 s (FEV(1))/forced vital capacity (FVC) ratio in both cohorts was observed. Longitudinal analysis in CAMP confirmed an association of rs4711750 with FEV(1)/FVC decline over approximately 4.5 yrs of observation. VEGF polymorphisms are associated with childhood asthma, lung function and airway responsiveness in two populations, suggesting that VEGF polymorphisms influence asthma susceptibility, airflow obstruction and airways responsiveness.
Collapse
Affiliation(s)
- S Sharma
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Channing Laboratory, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Honea R, Verchinski BA, Pezawas L, Kolachana BS, Callicott JH, Mattay VS, Weinberger DR, Meyer-Lindenberg A. Impact of interacting functional variants in COMT on regional gray matter volume in human brain. Neuroimage 2008; 45:44-51. [PMID: 19071221 DOI: 10.1016/j.neuroimage.2008.10.064] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 10/21/2008] [Accepted: 10/31/2008] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Functional variants in the catechol-O-methyltransferase (COMT) gene have been shown to impact cognitive function, cortical physiology and risk for schizophrenia. A recent study showed that previously reported effects of the functional val158met SNP (rs4680) on brain function are modified by other functional SNPs and haplotypes in the gene, though it was unknown if these effects are also seen in brain structure. METHODS We used voxel-based morphometry to investigate the impact of multiple functional variants in COMT on gray matter volume in a large group of 151 healthy volunteers from the CBDB/NIMH Genetic Study of Schizophrenia. RESULTS We found that the previously described rs4680 val risk variant affects hippocampal and dorsolateral prefrontal (DLPFC) gray matter volume. In addition, we found that this SNP interacts with a variant in the P2 promoter region (rs2097603) in predicting changes in hippocampal gray matter volume consistent with a nonlinear effect of extracellular dopamine. CONCLUSIONS We report evidence that interacting functional variants in COMT affect gray matter regional volume in hippocampus and DLPFC, providing further in vivo validation of the biological impact of complex genetic variation in COMT on neural systems relevant for the pathophysiology of schizophrenia and extending observations of nonlinear dependence of prefrontal neurons on extracellular dopamine to the domain of human brain structure.
Collapse
Affiliation(s)
- Robyn Honea
- Genes, Cognition and Psychosis Program, National Institute of Mental Health, Division of Intramural Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Pedrosa E, Stefanescu R, Margolis B, Petruolo O, Lo Y, Nolan K, Novak T, Stopkova P, Lachman HM. Analysis of protocadherin alpha gene enhancer polymorphism in bipolar disorder and schizophrenia. Schizophr Res 2008; 102:210-9. [PMID: 18508241 PMCID: PMC2862380 DOI: 10.1016/j.schres.2008.04.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 04/07/2008] [Accepted: 04/10/2008] [Indexed: 02/06/2023]
Abstract
Cadherins and protocadherins are cell adhesion proteins that play an important role in neuronal migration, differentiation and synaptogenesis, properties that make them targets to consider in schizophrenia (SZ) and bipolar disorder (BD) pathogenesis. Consequently, allelic variation occurring in protocadherin and cadherin encoding genes that map to regions of the genome targeted in SZ and BD linkage studies are particularly strong candidates to consider. One such set of candidate genes is the 5q31-linked PCDH family, which consists of more than 50 exons encoding three related, though distinct family members--alpha, beta, and gamma--which can generate thousands of different protocadherin proteins through alternative promoter usage and cis-alternative splicing. In this study, we focused on a SNP, rs31745, which is located in a putative PCDHalpha enhancer mapped by ChIP-chip using antibodies to covalently modified histone H3. A striking increase in homozygotes for the minor allele at this locus was detected in patients with BD. Molecular analysis revealed that the SNP causes allele-specific changes in binding to a brain protein. The findings suggest that the 5q31-linked PCDH locus should be more thoroughly considered as a disease-susceptibility locus in psychiatric disorders.
Collapse
Affiliation(s)
- Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Division of Basic Research, Albert Einstein College of Medicine, Bronx, New York
| | - Radu Stefanescu
- Department of Psychiatry and Behavioral Sciences, Division of Basic Research, Albert Einstein College of Medicine, Bronx, New York
| | - Benjamin Margolis
- Department of Psychiatry and Behavioral Sciences, Division of Basic Research, Albert Einstein College of Medicine, Bronx, New York
| | - Oriana Petruolo
- Department of Psychiatry and Behavioral Sciences, Division of Basic Research, Albert Einstein College of Medicine, Bronx, New York
| | - Yungtai Lo
- Department of Epidemiology and Population Health Montefiore Medical Center, Albert Einstein College of Medicine
| | - Karen Nolan
- Department of Psychiatry, Nathan Kline Institute, Orangeburg, New York
| | - Tomas Novak
- Prague Psychiatric Center, Prague, Czech Republic
| | | | - Herbert M. Lachman
- Department of Psychiatry and Behavioral Sciences, Division of Basic Research, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
31
|
Analysis of protocadherin alpha gene deletion variant in bipolar disorder and schizophrenia. Psychiatr Genet 2008; 18:110-5. [DOI: 10.1097/ypg.0b013e3282fa1838] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Association between a common haplotype in the COMT gene region and psychiatric disorders in individuals with 22q11.2DS. Int J Neuropsychopharmacol 2008; 11:351-63. [PMID: 17949513 DOI: 10.1017/s1461145707008085] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The 22q11.2 deletion syndrome (22q11.2DS) is the most common hemizygous deletion syndrome in humans. In addition to a wide range of physical abnormalities 22q11.2DS subjects show high prevalence of several psychiatric disorders. In our previous study we showed that the low-activity allele (158Met) of the COMT gene is a risk factor for attention deficit hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD) in 22q11.2DS individuals. In the present study we have genotyped fifty-five 22q11.2DS individuals and 95 of their parents for eight SNPs in and around the COMT gene. A haplotype composed of three SNPs [rs2097603; rs4680 (158Val/Met); rs165599] representing the major linkage disequilibrium blocks in COMT and previously implicated in functional variation, was found to be associated with ADHD and OCD in 22q11.2DS individuals. A common risk haplotype (G-A-A) was significantly associated with both ADHD (OR 3.13, chi2=4.38, p=0.036) and OCD (OR 4.00, chi2=6.41, p=0.011) in 22q11.2DS individuals. Interestingly, the same haplotype was recently found to be associated with efficient prefrontal performance in the general population. The risk haplotype was not found to be associated with IQ scores in our 22q11.2DS sample. Parental origin of the deletion did not affect the susceptibility to ADHD and OCD in the 22q11.2DS subjects. This study demonstrated the association of a particular COMT haplotype with susceptibility to both ADHD and OCD in 22q11.2DS and supports the hypothesis that COMT gene variations contribute to genetic predisposition to psychiatric disorders in the general population.
Collapse
|
33
|
van Winkel R, Isusi P, Galdos P, Echevarria E, Bilbao JR, Martin-Pagola A, Castaño L, Papiol S, Mengelers R, Krabbendam L, van Os J, Myin-Germeys I. Evidence that the COMTVal158Met Polymorphism Moderates Subclinical Psychotic and Affective Symptoms in Unaffected First-Degree Relatives of Patients With Schizophrenia. Eur Psychiatry 2008; 23:219-22. [DOI: 10.1016/j.eurpsy.2007.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 12/18/2007] [Accepted: 12/19/2007] [Indexed: 01/28/2023] Open
Abstract
AbstractObjectives.Psychotic patients with COMTVal158Met Met alleles were recently found to display more intense psychotic and affective responses to daily life stressors. We aimed to test the hypothesis that the Met allele is implicated in the development of affective and psychotic symptomatology in subjects genetically at risk for schizophrenia, by testing if unaffected first-degree relatives of patients with schizophrenia who share a Met allele have greater concordance of symptomatology than relatives not sharing a Met allele.Methods.Unaffected relatives (n = 38) were arranged in as many genetically related pairs as possible (n = 26), and Met-sharing between Index Unaffected Subject (IUS) and Related Unaffected Subject (RUS) was assessed. Symptomatology was assessed with the Brief Psychiatric Rating Scale (BPRS) total score.Results.Multilevel regression revealed an interaction between RUS BPRS score and Met-sharing in the model of IUS BPRS score (interaction χ2 = 3.78, p = 0.05). Stratified analyses revealed that IUS–RUS total BPRS scores were significantly associated in the case of Met-sharing (B = 0.57, 95% CI: 0.22–0.93, p = 0.002), but were not when there was no Met-sharing.Conclusion.These findings support the hypothesis that the Met allele may be involved in the causation of psychopathology, at least in populations with a genetic predisposition to psychosis.
Collapse
|
34
|
Martorell L, Costas J, Valero J, Gutierrez-Zotes A, Phillips C, Torres M, Brunet A, Garrido G, Carracedo A, Guillamat R, Vallès V, Guitart M, Labad A, Vilella E. Analyses of variants located in estrogen metabolism genes (ESR1, ESR2, COMT and APOE) and schizophrenia. Schizophr Res 2008; 100:308-15. [PMID: 18164902 DOI: 10.1016/j.schres.2007.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 10/26/2007] [Accepted: 11/02/2007] [Indexed: 12/30/2022]
Abstract
Relationships between gender, age-of-onset of schizophrenia and reproductive age strongly suggest a key role for gonadal hormones, and more specifically for estrogens, in the etiology of the illness. Also, estrogens act as neural growth and trophic factors influencing neuron and glial cells in many areas of the central nervous system. Therefore, we investigated the association between schizophrenia and 4 genes related to estrogen metabolism. These genes are ESR1 (estrogen receptor 1), ESR2 (estrogen receptor 2), APOE (apolipoprotein E) and COMT (catechol-O-methyltransferase). The expression of APOE and COMT, which contain estrogen response elements, have been demonstrated to be regulated by the estrogen receptors. In this current association study, we examined 59 single nucleotide polymorphisms (SNPs) located in the ESR1 (26), ESR2 (14), APOE (7) and COMT (12) loci. Allele frequencies were evaluated in the schizophrenia (n=585)-control (n=615) sample and no association was found with any of the four genes. In conclusion, our data suggest that the four analyzed genes do not play an important role in susceptibility to schizophrenia.
Collapse
Affiliation(s)
- Lourdes Martorell
- Hospital Psiquiàtric Universitari Institut Pere Mata, Ctra. De l'Institut Pere Mata s/n, 43206 Reus, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
van Winkel R, Henquet C, Rosa A, Papiol S, Fananás L, De Hert M, Peuskens J, van Os J, Myin-Germeys I. Evidence that the COMT(Val158Met) polymorphism moderates sensitivity to stress in psychosis: an experience-sampling study. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:10-7. [PMID: 17525974 DOI: 10.1002/ajmg.b.30559] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gene-environment interactions involving the catechol-O-methyltransferase Val(158)Met polymorphism (COMT(Val158Met)) have been implicated in the causation of psychosis. Evidence from general population studies suggests that Met/Met subjects are sensitive to stress, a trait associated with psychosis. We hypothesized that the Met allele would moderate the effects of stress on negative affect (NA) in controls, and on NA and psychosis in patients with a psychotic disorder. Thirty-one patients with a psychotic disorder and comorbid cannabis misuse and 25 healthy cannabis users were studied with the experience sampling method (ESM), a structured diary technique assessing current context and emotional and psychotic experiences in daily life. A significant interaction between COMT(Val158Met) genotype and ESM stress in the model of NA was found for patients (interaction chi(2) = 7.4, P = 0.02), but not for controls (interaction chi(2) = 3.8, P = 0.15). In the model of ESM psychosis, a significant interaction between COMT(Val158Met) genotype and ESM stress was also apparent (interaction chi(2) = 11.6, P < 0.01), with Met/Met patients showing the largest increase in psychotic experiences as well as NA in reaction to ESM stress. The findings suggest that the COMT(Val158Met) polymorphism moderates affective and psychotic responses to stress in patients with psychosis, providing evidence for gene-environment interaction mechanisms in the formation of psychotic symptoms.
Collapse
Affiliation(s)
- Ruud van Winkel
- University Psychiatric Center Katholieke Universiteit Leuven, Leuvensesteenweg, Kortenberg, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lang UE, Puls I, Muller DJ, Strutz-Seebohm N, Gallinat J. Molecular mechanisms of schizophrenia. Cell Physiol Biochem 2007; 20:687-702. [PMID: 17982252 DOI: 10.1159/000110430] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2007] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is a complex disorder, where family, twin and adoption studies have been demonstrating a high heritability of the disease and that this disease is not simply defined by several major genes but rather evolves from addition or potentiation of a specific cluster of genes, which subsequently determines the genetic vulnerability of an individual. Linkage and association studies suggest that a genetic vulnerablility, is not forcefully leading to the disease since triggering factors and environmental influences, i.e. birth complications, drug abuse, urban background or time of birth have been identified. This has lead to the assumption that schizophrenia is not only a genetically defined static disorder but a dynamic process leading to dysregulation of multiple pathways. There are several different hypothesis based on several facets of the disease, some of them due to the relatively well-known mechanisms of therapeutic agents. The most widely considered neurodevelopmental hypothesis of schizophrenia integrates environmental influences and causative genes. The dopamine hypothesis of schizophrenia is based on the fact that all common treatments involve antidopaminergic mechanisms and genes such as DRD2, DRD3, DARPP-32, BDNF or COMT are closely related to dopaminergic system functioning. The glutamatergic hypothesis of schizophrenia lead recently to a first successful mGlu2/3 receptor agonistic drug and is underpinned by significant findings in genes regulating the glutamatergic system (SLC1A6, SLC1A2 GRIN1, GRIN2A, GRIA1, NRG1, ErbB4, DTNBP1, DAAO, G72/30, GRM3). Correspondingly, GABA has been proposed to modulate the pathophysiology of the disease which is represented by the involvement of genes like GABRA1, GABRP, GABRA6 and Reelin. Moreover, several genes implicating immune, signaling and networking deficits have been reported to be involved in the disease, i.e. DISC1, RGS4, PRODH, DGCR6, ZDHHC8, DGCR2, Akt, CREB, IL-1B, IL-1RN, IL-10, IL-1B. However, molecular findings suggest that a complex interplay between receptors, kinases, proteins and hormones is involved in schizophrenia. In a unifying hypothesis, different cascades merge into another that ultimately lead to the development of symptoms adherent to schizophrenic disorders.
Collapse
Affiliation(s)
- Undine E Lang
- Department of Psychiatry, Charité University Medicine Berlin, Campus Mitte, Berlin (Germany).
| | | | | | | | | |
Collapse
|
37
|
Condra JA, Neibergs H, Wei W, Brennan MD. Evidence for two schizophrenia susceptibility genes on chromosome 22q13. Psychiatr Genet 2007; 17:292-8. [PMID: 17728668 DOI: 10.1097/ypg.0b013e3281ac2345] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Previous linkage scans and meta-analyses for schizophrenia susceptibility loci failed to include the most distal portion of chromosome 22q. Accordingly, 27 families having individuals affected with schizophrenia and schizophrenia-spectrum disorders were analyzed using a set of highly informative markers covering all of chromosome 22q. METHODS Microsatellite and single nucleotide polymorphism markers were evaluated by nonparametric linkage, parametric linkage, and transmission disequilibrium testing of 22q. RESULTS The maximum nonparametric logarithm of odd scores were 2.9 (P=0.0016) for schizophrenia and 2.7 (P=0.003) for a broader disease definition that included schizotypal personality disorder-both at 44.5 cM within the Sult4A1 locus. Parametric models assuming dominant modes of inheritance and genetic heterogeneity gave maximum multipoint logarithm of odd scores for the broader disease definition at the Sult4A1 locus of 3.3 (P=0.0006) and single point logarithm of odd scores of 3.1-4.8 for Sult4A1 markers (P=0.000015-0.0005). A distal locus, centered at 61 cM, shows a maximum nonparametric logarithm of odd scores of 1.5 (P=0.072) for the broader disease definition. Transmission disequilibrium testing for three adjacent microsatellite markers located near the distal linkage peak revealed significant values for marker D22s526 for schizophrenia (P=0.0016-0.14) and for broader disease definitions including schizotypal personality disorder (P=0.0002-0.0003), and both schizotypal personality disorder plus schizoaffective disorder (P=0.00001-0.000077). CONCLUSION At least two separable, but closely linked, loci within 22q13 influencing susceptibility to schizophrenia-spectrum disorders, might be possible.
Collapse
Affiliation(s)
- Jodi A Condra
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | | | | | |
Collapse
|
38
|
Funke BH, Lencz T, Finn CT, DeRosse P, Poznik GD, Plocik AM, Kane J, Rogus J, Malhotra AK, Kucherlapati R. Analysis of TBX1 variation in patients with psychotic and affective disorders. Mol Med 2007. [PMID: 17622328 DOI: 10.2119/2006-00119.funke] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A significant portion of patients with 22q11 deletion syndrome (22q11DS) develop psychiatric disorders, including schizophrenia and other psychotic and affective symptoms, and the responsible gene/s are assumed to also play a significant role in the etiology of nonsyndromic psychiatric disease. The most common psychiatric diagnosis among patients with 22q11DS is schizophrenia, thought to result from neurotransmitter imbalances and also from disturbed brain development. Several genes in the 22q11 region with known or suspected roles in neurotransmitter metabolism have been analyzed in patients with isolated schizophrenia; however, their contribution to the disease remains controversial. Haploinsufficiency of the TBX1 gene has been shown to be sufficient to cause the core physical malformations associated with 22q11DS in mice and humans and via abnormal brain development could contribute to 22q11DS-related and isolated psychiatric disease. 22q11DS populations also have increased rates of psychiatric conditions other than schizophrenia, including mood disorders. We therefore analyzed variations at the TBX1 locus in a cohort of 446 white patients with psychiatric disorders relevant to 22q11DS and 436 ethnically matched controls. The main diagnoses included schizophrenia (n = 226), schizoaffective disorder (n = 67), bipolar disorder (n = 82), and major depressive disorder (n = 29). We genotyped nine tag SNPs in this sample but did not observe significant differences in allele or haplotype frequencies in any of the analyzed groups (all affected, schizophrenia and schizoaffective disorder, schizophrenia alone, and bipolar disorder and major depressive disorder) compared with the control group. Based on these results we conclude that TBX1 variation does not make a strong contribution to the genetic etiology of nonsyndromic forms of psychiatric disorders commonly seen in patients with 22q11DS.
Collapse
Affiliation(s)
- Birgit H Funke
- Harvard Partners Center for Genetics and Genomics, Boston, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lewandowski KE. Relationship of catechol-O-methyltransferase to schizophrenia and its correlates: evidence for associations and complex interactions. Harv Rev Psychiatry 2007; 15:233-44. [PMID: 17924258 DOI: 10.1080/10673220701650409] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Converging lines of evidence suggest that the gene that codes for catechol-O-methyltransferase (COMT) may play a role in the etiology, neurodevelopment, and expression of schizophrenia. Dopamine dysregulation has long been implicated in schizophrenia pathogenesis, and COMT appears to play a role in dopamine functioning, especially in prefrontal cortex. Additionally, the COMT gene maps to the commonly deleted region on chromosome 22q11 in 22q11 deletion syndrome (22q11DS), a disorder associated with a highly elevated risk for the development of psychosis. An amino acid polymorphism (Val158Met) in the COMT gene affects the activity level of COMT, which affects the levels of available catecholamines in the brain. Val158Met has been found to predict performance on dopamine-mediated prefrontal tasks in healthy adults and patients with schizophrenia. While association and linkage studies have failed to provide conclusive evidence of a strong link between COMT genotype and schizophrenia, evidence linking neural functioning and behavioral output has been somewhat more promising. The present work examines evidence for the role of COMT in schizophrenia pathogenesis, and associations between COMT and cognitive and behavioral correlates of schizophrenia and related disorders. Additionally, evidence for complex interactions involving COMT is examined, including the utility of haplotype analysis and evidence for gene-by-gene and gene-by-environment interactions.
Collapse
Affiliation(s)
- Kathryn E Lewandowski
- Harvard Medical School and Department of Psychology, McLean Hospital, Belmont, MA 02478, USA.
| |
Collapse
|
40
|
Funke BH, Lencz T, Finn CT, DeRosse P, Poznik GD, Plocik AM, Kane J, Rogus J, Malhotra AK, Kucherlapati R. Analysis of TBX1 variation in patients with psychotic and affective disorders. MOLECULAR MEDICINE (CAMBRIDGE, MASS.) 2007; 13:407-14. [PMID: 17622328 PMCID: PMC1952674 DOI: 10.2119/2006–00119.funke] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/31/2006] [Accepted: 06/05/2007] [Indexed: 11/06/2022]
Abstract
A significant portion of patients with 22q11 deletion syndrome (22q11DS) develop psychiatric disorders, including schizophrenia and other psychotic and affective symptoms, and the responsible gene/s are assumed to also play a significant role in the etiology of nonsyndromic psychiatric disease. The most common psychiatric diagnosis among patients with 22q11DS is schizophrenia, thought to result from neurotransmitter imbalances and also from disturbed brain development. Several genes in the 22q11 region with known or suspected roles in neurotransmitter metabolism have been analyzed in patients with isolated schizophrenia; however, their contribution to the disease remains controversial. Haploinsufficiency of the TBX1 gene has been shown to be sufficient to cause the core physical malformations associated with 22q11DS in mice and humans and via abnormal brain development could contribute to 22q11DS-related and isolated psychiatric disease. 22q11DS populations also have increased rates of psychiatric conditions other than schizophrenia, including mood disorders. We therefore analyzed variations at the TBX1 locus in a cohort of 446 white patients with psychiatric disorders relevant to 22q11DS and 436 ethnically matched controls. The main diagnoses included schizophrenia (n = 226), schizoaffective disorder (n = 67), bipolar disorder (n = 82), and major depressive disorder (n = 29). We genotyped nine tag SNPs in this sample but did not observe significant differences in allele or haplotype frequencies in any of the analyzed groups (all affected, schizophrenia and schizoaffective disorder, schizophrenia alone, and bipolar disorder and major depressive disorder) compared with the control group. Based on these results we conclude that TBX1 variation does not make a strong contribution to the genetic etiology of nonsyndromic forms of psychiatric disorders commonly seen in patients with 22q11DS.
Collapse
Affiliation(s)
- Birgit H Funke
- Harvard Partners Center for Genetics and Genomics, Boston, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Savitz J, van der Merwe L, Solms M, Ramesar R. A linkage and family-based association analysis of a potential neurocognitive endophenotype of bipolar disorder. Neuromolecular Med 2007; 9:101-16. [PMID: 17627031 DOI: 10.1007/bf02685885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 07/07/2006] [Accepted: 07/26/2006] [Indexed: 12/15/2022]
Abstract
The identification of the genetic variants underpinning bipolar disorder (BPD) has been impeded by a complex pattern of inheritance characterized by genetic and phenotypic heterogeneity, genetic epistasis, and gene-environment interactions. In this paper two strategies were used to ameliorate these confounding factors. A unique South African sample including 190 individuals of the relatively, reproductively isolated Afrikaner population was assessed with a battery of neuropsychological tests in an attempt to identify a BPD-associated quantitative trait or endophenotype. BPD individuals performed significantly worse than their unaffected relatives on visual and verbal memory tasks, a finding congruent with the literature. Afocused linkage and family-based association study was carried out using this memory-related endophenotype. In the largest 77-strong Afrikaner pedigree significant evidence for linkage was detected on chromosome 22q11, a region previously implicated in BPD. The quantitative transmission disequilibrium tests-based association analysis suggested that functional variants of the DRD4 and MAO-A genes modulate memory-related cognition. We speculate that polymorphisms at these loci may predispose to a subtype of BPD characterized by memory-related deficits.
Collapse
Affiliation(s)
- Jonathan Savitz
- Division of Human Genetics, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, South Africa.
| | | | | | | |
Collapse
|
42
|
Abstract
Catechol-O-methyl transferase (COMT) is a catabolic enzyme involved in the degradation of a number of bioactive molecules; of principal interest to psychiatry, these include dopamine. The enzyme is encoded by the COMT gene. COMT is located (along with 47 other genes) in a fragment of chromosome 22q11 which when deleted results in a complex syndrome, the psychiatric manifestations of which include schizophrenia and other psychoses. These 2 observations have placed COMT near the top of a rather long list of plausible candidate genes for schizophrenia. The ability to test the hypothesis that COMT might be a susceptibility gene for schizophrenia has been simplified in principle by the existence of a valine-to-methionine (Val/Met) polymorphism which results respectively in high and low activity forms of the enzyme. Given the unequivocal effect of this polymorphism on the function of COMT, and the evidence for a critical role for dopamine in the pathophysiology and treatment of psychosis, there are strong prior expectations that Val/Met influences susceptibility to schizophrenia as well as other psychiatric phenotypes. Indeed the Val/Met polymorphism has become the most widely studied polymorphism in psychiatry. In this review, we consider the evidence for and against the involvement of COMT in schizophrenia. The current data allow us to virtually exclude a simple relationship between schizophrenia and the Val/Met variant previously thought to dominate COMT function. However, recent data suggest a more complex pattern of genetic regulation of COMT function beyond that attributable to the Val/Met locus. Moreover, it is also clear that there is a complex nonlinear relationship between dopamine availability and brain function. These 2 factors, allied to phenotypic complexity within schizophrenia, make it difficult to draw strong conclusions regarding COMT in schizophrenia. Nevertheless, emerging research that takes greater account of all these levels of complexity is beginning to provide tantalizing, but far from definitive, support for the view that COMT influences susceptibility to at least some forms of psychosis.
Collapse
Affiliation(s)
- Hywel J. Williams
- Department of Psychological Medicine, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Michael J. Owen
- Department of Psychological Medicine, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Michael C. O'Donovan
- Department of Psychological Medicine, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
43
|
Nunokawa A, Watanabe Y, Muratake T, Kaneko N, Koizumi M, Someya T. No associations exist between five functional polymorphisms in the catechol-O-methyltransferase gene and schizophrenia in a Japanese population. Neurosci Res 2007; 58:291-6. [PMID: 17482701 DOI: 10.1016/j.neures.2007.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 03/20/2007] [Accepted: 03/29/2007] [Indexed: 02/03/2023]
Abstract
Catechol-O-methyltransferase (COMT) is one of the enzymes that degrade catecholamine neurotransmitters including dopamine. The COMT gene is located on 22q11.2, a common susceptibility locus for schizophrenia. Therefore, COMT is a strong functional and positional candidate gene for schizophrenia. A common functional polymorphism (rs4680, Val158Met) has been extensively tested for an association with schizophrenia, but with conflicting results. Recent studies indicate that if COMT is implicated in susceptibility to schizophrenia, this cannot be wholly accounted for by the Val158Met polymorphism. To assess this view, the authors conducted a case-control association study (399 patients with schizophrenia and 440 control subjects) for five functional polymorphisms (rs2075507, rs737865, rs6267, rs4680 and rs165599) in Japanese subjects. There were no significant associations found between the polymorphisms or haplotypes of COMT and schizophrenia. The present study shows that these five functional COMT polymorphisms do not play a major role in conferring susceptibility to schizophrenia in Japanese.
Collapse
Affiliation(s)
- Ayako Nunokawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Niigata 951-8510, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Lin PI, Vance JM, Pericak-Vance MA, Martin ER. No gene is an island: the flip-flop phenomenon. Am J Hum Genet 2007; 80:531-8. [PMID: 17273975 PMCID: PMC1821115 DOI: 10.1086/512133] [Citation(s) in RCA: 382] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 12/29/2006] [Indexed: 12/18/2022] Open
Abstract
An increasing number of publications are replicating a previously reported disease-marker association but with the risk allele reversed from the previous report. Do such "flip-flop" associations confirm or refute the previous association findings? We hypothesized that these associations may indeed be confirmations but that multilocus effects and variation in interlocus correlations contribute to this flip-flop phenomenon. We used theoretical modeling to demonstrate that flip-flop associations can occur when the investigated variant is correlated, through interactive effects or linkage disequilibrium, with a causal variant at another locus, and we show how these findings could explain previous reports of flip-flop associations.
Collapse
Affiliation(s)
- Ping-I Lin
- Center for Human Genetics, Duke University Medical Center, Durham, NC, USA
| | | | | | | |
Collapse
|
45
|
Ehlis AC, Reif A, Herrmann MJ, Lesch KP, Fallgatter AJ. Impact of catechol-O-methyltransferase on prefrontal brain functioning in schizophrenia spectrum disorders. Neuropsychopharmacology 2007; 32:162-70. [PMID: 16823382 DOI: 10.1038/sj.npp.1301151] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The enzyme catechol-O-methyltransferase (COMT) has attracted increasing interest regarding a genetic disposition towards schizophrenias and as a modulator of prefrontal brain function. A common SNP in the COMT gene causes a Val to Met transition at AA158/AA108 (Val158Met), resulting in reduced COMT activity in Met allele carriers. An impact of COMT genotype on cognition has been well established; however, the exact nature of this influence has yet to be elucidated. The aim of this study was to determine whether COMT genotype affects an electrophysiological marker of prefrontal activation and neuropsychological frontal lobe measures in schizophrenia. To this end, 56 acutely psychotic in-patients with schizophrenia spectrum disorders were investigated. Patients with the COMT 1947AA (Met/Met) genotype (n=13) were compared to a carefully matched sample of patients with a G1947A (Val/Met) genotype (n=15); matching criteria included patients' age, handedness, gender distribution, diagnosis, and medication status. A small group of six homozygous Val allele carriers was additionally included to allow an assessment of possible gene-dosage effects. P300 amplitudes and latencies, as well as an electrophysiological marker of prefrontal brain function (NoGo-Anteriorization/NGA) and neuropsychological measures (Stroop Test, Verbal Fluency, Trail Making Test) were regarded. Homozygous Met allele carriers had significantly increased NGA values and fronto-central Nogo amplitudes compared to patients with at least one Val allele. They also tended to perform better in the Stroop task, as compared to the matched group of Val/Met patients. These results indicate that COMT genotype exerts a strong impact on prefrontal functioning and executive control in schizophrenia spectrum disorders.
Collapse
Affiliation(s)
- Ann-Christine Ehlis
- Department of Psychiatry and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany.
| | | | | | | | | |
Collapse
|
46
|
Wang H, Duan S, Du J, Li X, Xu Y, Zhang Z, Wang Y, Huang G, Feng G, He L. Transmission disequilibrium test provides evidence of association between promoter polymorphisms in 22q11 gene DGCR14 and schizophrenia. J Neural Transm (Vienna) 2006; 113:1551-1561. [PMID: 16432632 DOI: 10.1007/s00702-005-0420-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 11/01/2005] [Indexed: 01/23/2023]
Abstract
Recent research has suggested that the DiGeorge syndrome critical region gene 14 (DGCR14) exhibits activity differences of more than 1.5 fold between the haplotypes of the variants in the promoter region. DGCR14 is located at 22q11.21, an acknowledged region for susceptibility to schizophrenia. To test the hypothesis that DGCR14 may be involved in the etiology of the disease, we carried out a family-based association study between the reported functional markers and schizophrenia in 235 Chinese Han trios. We found significant evidence of preferential transmission of the promoter variants of DGCR14 across all the trios (Best p-value = 0.00038, Global p-value = 0.0008). The positive results have suggested that DGCR14 is likely to play an important role in the etiology of schizophrenia in the Chinese Han population.
Collapse
Affiliation(s)
- H Wang
- Bio-X Center, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Williams NM, O'Donovan MC, Owen MJ. Chromosome 22 deletion syndrome and schizophrenia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 73:1-27. [PMID: 16737900 DOI: 10.1016/s0074-7742(06)73001-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Nigel M Williams
- Department of Psychological Medicine, Henry Wellcome Building for Biomedical Research, College of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | |
Collapse
|
48
|
Craddock N, Owen MJ, O'Donovan MC. The catechol-O-methyl transferase (COMT) gene as a candidate for psychiatric phenotypes: evidence and lessons. Mol Psychiatry 2006; 11:446-58. [PMID: 16505837 DOI: 10.1038/sj.mp.4001808] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The enzyme catechol-O-methyl transferase (COMT), identified in the 1950s, is involved in catabolism of monoamines that are influenced by psychotropic medications, including neuroleptics and antidepressants. The COMT gene lies in a chromosomal region of interest for psychosis and bipolar spectrum disorder and a common polymorphism within the gene alters the activity of the enzyme. As a consequence, COMT has been one of the most studied genes for psychosis. On the basis of prior probabilities it would seem surprising if functional variation at COMT did not have some influence either on susceptibility to psychiatric phenotypes, modification of the course of illness or moderation of response to treatment. There is now robust evidence that variation at COMT influences frontal lobe function. However, despite considerable research effort, it has not proved straightforward to demonstrate and characterise a clear relationship between genetic variation at COMT and psychiatric phenotypes. It is of course, possible that COMT will turn out to be an unusually intractable case but it seems more likely that the experiences with this gene will provide a foretaste of the complexity of genotype-phenotype relationships that will be found for psychiatric traits. In this review, we consider the current state of evidence and the implications both for further studies of COMT and more generally for studies of other genes.
Collapse
Affiliation(s)
- N Craddock
- Department of Psychological Medicine, The Henry Wellcome Building for Biomedical Research in Wales, Cardiff University, School of Medicine, Heath Park, Cardiff, UK.
| | | | | |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW This paper reviews recent molecular genetic studies of schizophrenia and evaluates claims implicating specific genes as susceptibility loci. RECENT FINDINGS Molecular genetic studies have identified several potential regions of linkage and two associated chromosomal abnormalities, and the evidence is accumulating in favour of several positional candidate genes. Currently, the strongest evidence for putative schizophrenia susceptibility loci relates to the genes encoding dysbindin (DTNBP1) and neuregulin (NRG1). For other genes, disrupted in schizophrenia (DISC1), D-amino acid oxidase activator (DAOA), regulator of G-protein signalling 4 (RGS4) and V-AKT murine thymoma viral oncogene homolog 1 (AKT1) the data are promising but not yet compelling. In the most convincing cases, the risk haplotypes appear to be associated with small effect sizes and do not fully explain the linkage findings that prompted each study. SUMMARY The ability of positional genetics to implicate novel genes and pathways will open up new vistas for neurobiological research. Despite the accumulation of significant genetic data, however, the susceptibility variants have yet to be identified and detailed follow-up studies are now required.
Collapse
Affiliation(s)
- Nadine Norton
- Department of Psychological Medicine, Wales School of Medicine, Cardiff University, Heath Park, Cardiff, UK.
| | | | | |
Collapse
|
50
|
Dempster EL, Mill J, Craig IW, Collier DA. The quantification of COMT mRNA in post mortem cerebellum tissue: diagnosis, genotype, methylation and expression. BMC MEDICAL GENETICS 2006; 7:10. [PMID: 16483362 PMCID: PMC1456954 DOI: 10.1186/1471-2350-7-10] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 02/16/2006] [Indexed: 12/23/2022]
Abstract
BACKGROUND The COMT gene is located on chromosome 22q11, a region strongly implicated in the aetiology of several psychiatric disorders, in particular schizophrenia. Previous research has suggested that activity and expression of COMT is altered in schizophrenia, and is mediated by one or more polymorphisms within the gene, including the functional Val158Met polymorphism. METHOD In this study we examined the expression levels of COMT mRNA using quantitative RT-PCR in 60 post mortem cerebellum samples derived from individuals with schizophrenia, bipolar disorder, depression, and no history of psychopathology. Furthermore, we have examined the methylation status of two CpG sites in the promoter region of the gene. RESULTS We found no evidence of altered COMT expression or methylation in any of the psychiatric diagnoses examined. We did, however, find evidence to suggest that genotype is related to COMT gene expression, replicating the findings of two previous studies. Specifically, val158met (rs165688; Val allele) rs737865 (G allele) and rs165599 (G allele) all showed reduced expression (P < 0.05). Finally, we observe a strong sexual dimorphism in COMT expression, with females exhibiting significantly greater levels of COMT mRNA. CONCLUSION The expression of COMT does not appear to be altered in the cerebellum of individuals suffering from schizophrenia, bipolar disorder or depression, but does appear to be influenced by single nucleotide polymorphisms within the gene.
Collapse
Affiliation(s)
- Emma L Dempster
- Molecular Genetics, Psychological Medicine, Institute of Psychiatry, London, UK
- SGDP Research Centre, Institute of Psychiatry, London, UK
| | - Jonathan Mill
- SGDP Research Centre, Institute of Psychiatry, London, UK
| | - Ian W Craig
- SGDP Research Centre, Institute of Psychiatry, London, UK
| | - David A Collier
- Molecular Genetics, Psychological Medicine, Institute of Psychiatry, London, UK
- SGDP Research Centre, Institute of Psychiatry, London, UK
| |
Collapse
|