1
|
Nautiyal H, Jaiswar A, Jha PK, Dwivedi S. Exploring key genes and pathways associated with sex differences in autism spectrum disorder: integrated bioinformatic analysis. Mamm Genome 2024; 35:280-295. [PMID: 38594551 DOI: 10.1007/s00335-024-10036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/20/2024] [Indexed: 04/11/2024]
Abstract
Autism spectrum disorder (ASD) is a heterogenous neurodevelopmental disorder marked by functional abnormalities in brain that causes social and linguistic difficulties. The incidence of ASD is more prevalent in males compared to females, but the underlying mechanism, as well as molecular indications for identifying sex-specific differences in ASD symptoms remain unknown. Thus, impacting the development of personalized strategy towards pharmacotherapy of ASD. The current study employs an integrated bioinformatic approach to investigate the genes and pathways uniquely associated with sex specific differences in autistic individuals. Based on microarray dataset (GSE6575) extracted from the gene expression omnibus, the dysregulated genes between the autistic and the neurotypical individuals for both sexes were identified. Gene set enrichment analysis was performed to ascertain biological activities linked to the dysregulated genes. Protein-protein interaction network analysis was carried out to identify hub genes. The identified hub genes were examined to determine their functions and involvement in the associated pathways using Enrichr. Additionally, hub genes were validated from autism-associated databases and the potential small molecules targeting the hub genes were identified. The present study utilized whole blood transcriptomic gene expression analysis data and identified 2211 and 958 differentially expressed unique genes in males and females respectively. The functional enrichment analysis revealed that male hub genes were functionally associated with RNA polymerase II mediated transcriptional regulation whereas female hub genes were involved in intracellular signal transduction and cell migration. The top male hub genes exhibited functional enrichment in tyrosine kinase signalling pathway. The pathway enrichment analysis of male hub genes indicates the enrichment of papillomavirus infection. Female hub genes were enriched in androgen receptor signalling pathway and functionally enriched in focal adhesion specific excision repair. Identified drug like candidates targeting these genes may serve as a potential sex specific therapeutics. Wortmannin for males, 5-Fluorouracil for females had the highest scores. Targeted and sex-specific pharmacotherapies may be created for the management of ASD. The current investigation identifies sex-specific molecular signatures derived from whole blood which may serve as a potential peripheral sex-specific biomarkers for ASD. The study also uncovers the possible pharmacological interventions against the selected genes/pathway, providing support in development of therapeutic strategies to mitigate ASD. However, experimental proofs on biological systems are warranted.
Collapse
Affiliation(s)
- Himani Nautiyal
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248001, India
| | - Akanksha Jaiswar
- Laboratory of Human Disease Multiomics, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| | - Prabhash Kumar Jha
- Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shubham Dwivedi
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248001, India.
| |
Collapse
|
2
|
Al-Sarraj Y, Al-Dous E, Taha RZ, Ahram D, Alshaban F, Tolfat M, El-Shanti H, Albagha OM. Family-Based Genome-Wide Association Study of Autism Spectrum Disorder in Middle Eastern Families. Genes (Basel) 2021; 12:761. [PMID: 34069769 PMCID: PMC8157263 DOI: 10.3390/genes12050761] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease characterized by abnormalities in language and social communication with substantial clinical heterogeneity. Genetic factors play an important role in ASD with heritability estimated between 70% to 80%. Genome-wide association studies (GWAS) have identified multiple loci associated with ASD. However, most studies were performed on European populations and little is known about the genetic architecture of ASD in Middle Eastern populations. Here, we report the first GWAS of ASD in the Middle eastern population of Qatar. We analyzed 171 families with ASD, using linear mixed models adjusting for relatedness and other confounders. Results showed that common single nucleotide polymorphisms (SNP) in seven loci are associated with ASD (p < 1 × 10-5). Although the identified loci did not reach genome-wide significance, many of the top associated SNPs are located within or near genes that have been implicated in ASD or related neurodevelopmental disorders. These include GORASP2, GABBR2, ANKS6, THSD4, ERCC6L, ARHGEF6, and HDAC8. Additionally, three of the top associated SNPs were significantly associated with gene expression. We also found evidence of association signals in two previously reported ASD-susceptibility loci (rs10099100 and rs4299400). Our results warrant further functional studies and replication to provide further insights into the genetic architecture of ASD.
Collapse
Affiliation(s)
- Yasser Al-Sarraj
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha 34110, Qatar; (Y.A.-S.); (E.A.-D.)
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha 34110, Qatar; (R.Z.T.); (D.A.); (F.A.); (H.E.-S.)
| | - Eman Al-Dous
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha 34110, Qatar; (Y.A.-S.); (E.A.-D.)
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha 34110, Qatar; (R.Z.T.); (D.A.); (F.A.); (H.E.-S.)
| | - Rowaida Z. Taha
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha 34110, Qatar; (R.Z.T.); (D.A.); (F.A.); (H.E.-S.)
| | - Dina Ahram
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha 34110, Qatar; (R.Z.T.); (D.A.); (F.A.); (H.E.-S.)
- Division of Nephrology, Columbia University Medical Center, New York, NY 10032, USA
| | - Fouad Alshaban
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha 34110, Qatar; (R.Z.T.); (D.A.); (F.A.); (H.E.-S.)
| | - Mohammed Tolfat
- The Shafallah Center for Children with Special Needs, Doha 33123, Qatar;
| | - Hatem El-Shanti
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha 34110, Qatar; (R.Z.T.); (D.A.); (F.A.); (H.E.-S.)
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Omar M.E. Albagha
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha 34110, Qatar; (Y.A.-S.); (E.A.-D.)
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha 34110, Qatar; (R.Z.T.); (D.A.); (F.A.); (H.E.-S.)
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
3
|
Both rare and common genetic variants contribute to autism in the Faroe Islands. NPJ Genom Med 2019; 4:1. [PMID: 30675382 PMCID: PMC6341098 DOI: 10.1038/s41525-018-0075-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/13/2018] [Indexed: 11/09/2022] Open
Abstract
The number of genes associated with autism is increasing, but few studies have been performed on epidemiological cohorts and in isolated populations. Here, we investigated 357 individuals from the Faroe Islands including 36 individuals with autism, 136 of their relatives and 185 non-autism controls. Data from SNP array and whole exome sequencing revealed that individuals with autism had a higher burden of rare exonic copy-number variants altering autism associated genes (deletions (p = 0.0352) or duplications (p = 0.0352)), higher inbreeding status (p = 0.023) and a higher load of rare homozygous deleterious variants (p = 0.011) compared to controls. Our analysis supports the role of several genes/loci associated with autism (e.g., NRXN1, ADNP, 22q11 deletion) and identified new truncating (e.g., GRIK2, ROBO1, NINL, and IMMP2L) or recessive deleterious variants (e.g., KIRREL3 and CNTNAP2) affecting autism-associated genes. It also revealed three genes involved in synaptic plasticity, RIMS4, KALRN, and PLA2G4A, carrying de novo deleterious variants in individuals with autism without intellectual disability. In summary, our analysis provides a better understanding of the genetic architecture of autism in isolated populations by highlighting the role of both common and rare gene variants and pointing at new autism-risk genes. It also indicates that more knowledge about how multiple genetic hits affect neuronal function will be necessary to fully understand the genetic architecture of autism.
Collapse
|
4
|
Stafford N, Wilson C, Oceandy D, Neyses L, Cartwright EJ. The Plasma Membrane Calcium ATPases and Their Role as Major New Players in Human Disease. Physiol Rev 2017; 97:1089-1125. [PMID: 28566538 DOI: 10.1152/physrev.00028.2016] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
The Ca2+ extrusion function of the four mammalian isoforms of the plasma membrane calcium ATPases (PMCAs) is well established. There is also ever-increasing detail known of their roles in global and local Ca2+ homeostasis and intracellular Ca2+ signaling in a wide variety of cell types and tissues. It is becoming clear that the spatiotemporal patterns of expression of the PMCAs and the fact that their abundances and relative expression levels vary from cell type to cell type both reflect and impact on their specific functions in these cells. Over recent years it has become increasingly apparent that these genes have potentially significant roles in human health and disease, with PMCAs1-4 being associated with cardiovascular diseases, deafness, autism, ataxia, adenoma, and malarial resistance. This review will bring together evidence of the variety of tissue-specific functions of PMCAs and will highlight the roles these genes play in regulating normal physiological functions and the considerable impact the genes have on human disease.
Collapse
Affiliation(s)
- Nicholas Stafford
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Claire Wilson
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Ludwig Neyses
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
Yang S, Dong X, Guo X, Han Y, Song H, Gao L, Dai W, Su Y, Zhang X. Serum Oxytocin Levels and an Oxytocin Receptor Gene Polymorphism (rs2254298) Indicate Social Deficits in Children and Adolescents with Autism Spectrum Disorders. Front Neurosci 2017; 11:221. [PMID: 28484366 PMCID: PMC5399030 DOI: 10.3389/fnins.2017.00221] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 04/04/2017] [Indexed: 12/27/2022] Open
Abstract
The neuropeptide oxytocin (OT) and its receptor (OXTR) have been predicted to be involved in the regulation of social functioning in autism spectrum disorders (ASD). Objective of the study was to investigate serum OT levels and the OXTR rs2254298 polymorphism in Chinese Han children and adolescents with ASD as well as to identify their social deficits relevant to the oxytocinergic system. We tested serum OT levels using ELISA in 55 ASD subjects and 110 typically developing (TD) controls as well as genotyped the OXTR rs2254298 polymorphism using PCR-RFLP in 100 ASD subjects and 232 TD controls. Autistic symptoms were assessed by the Autism Behavior Checklist (ABC) and the Childhood Autism Rating Scale (CARS). There were no significant associations between OXTR rs2254298 polymorphism and ASD, serum OT levels and age, as well as serum OT levels and intelligent quotient (IQ) in both ASD and TD groups. However, ASD subjects exhibited elevated serum OT levels compared to TD controls and positive correlations between serum OT levels and “adaptation to change score” in the CARS and CARS total scores. Moreover, in the ASD group, significant relationships were revealed between the single-nucleotide polymorphism (SNP) rs2254298 and serum OT levels, the category “stereotypes and object use” in the ABC and the category “adaptation to change” in the CARS. These findings indicated that individuals with ASD may exhibit a dysregulation in OT on the basis of changes in OXTR gene expression as well as environmentally induced alterations of the oxytocinergic system to determine their social deficits.
Collapse
Affiliation(s)
- Shuhan Yang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| | - Xiaopeng Dong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| | - Xuan Guo
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| | - Yu Han
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| | - Hanbing Song
- Department of Applied Science, The College of William and MaryWilliamsburg, VA, USA
| | - Lei Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| | - Wei Dai
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| | - Yuanyuan Su
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| | - Xin Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| |
Collapse
|
6
|
Misiewicz Z, Hiekkalinna T, Paunio T, Varilo T, Terwilliger JD, Partonen T, Hovatta I. A genome-wide screen for acrophobia susceptibility loci in a Finnish isolate. Sci Rep 2016; 6:39345. [PMID: 27996024 PMCID: PMC5171840 DOI: 10.1038/srep39345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 11/16/2016] [Indexed: 12/02/2022] Open
Abstract
Acrophobia, an abnormal fear of heights, is a specific phobia characterized as apprehension cued by the occurrence or anticipation of elevated spaces. It is considered a complex trait with onset influenced by both genetic and environmental factors. Identification of genetic risk variants would provide novel insight into the genetic basis of the fear of heights phenotype and contribute to the molecular-level understanding of its aetiology. Genetic isolates may facilitate identification of susceptibility alleles due to reduced genetic heterogeneity. We took advantage of an internal genetic isolate in Finland in which a distinct acrophobia phenotype appears to be segregating in pedigrees originally ascertained for schizophrenia. We conducted parametric, nonparametric, joint linkage and linkage disequilibrium analyses using a microsatellite marker panel, genotyped in families to search for chromosomal regions correlated with acrophobia. Our results implicated a few regions with suggestive evidence for linkage on chromosomes 4q28 (LOD = 2.17), 8q24 (LOD = 2.09) and 13q21-q22 (LOD = 2.22). We observed no risk haplotypes shared between different families. These results suggest that genetic predisposition to acrophobia in this genetic isolate is unlikely to be mediated by a small number of shared high-risk alleles, but rather has a complex genetic architecture.
Collapse
Affiliation(s)
- Zuzanna Misiewicz
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Tero Hiekkalinna
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland.,Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Tiina Paunio
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland.,Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Development of Work and Work Organizations, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Teppo Varilo
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Joseph D Terwilliger
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland.,Department of Psychiatry, Department of Genetics and Development, and Gertrude H. Sergievsky Center, Columbia University, New York NY, USA.,Division of Medical Genetics, New York State Psychiatric Institute, New York NY, USA
| | - Timo Partonen
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Iiris Hovatta
- Department of Biosciences, University of Helsinki, Helsinki, Finland.,Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
7
|
Li J, Li HX, Shou XJ, Xu XJ, Song TJ, Han SP, Zhang R, Han JS. Effects of chronic restraint stress on social behaviors and the number of hypothalamic oxytocin neurons in male rats. Neuropeptides 2016; 60:21-28. [PMID: 27743608 DOI: 10.1016/j.npep.2016.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/22/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022]
Abstract
Oxytocin (OXT) and vasopressin (AVP) are considered to be related to mammalian social behavior and the regulation of stress responses. The present study investigated the effects of chronic homotypic restraint stress (CHRS) on social behaviors and anxiety, as well as its repercussions on OXT- and AVP-positive neurons in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) nuclei in rat. Male Sprague-Dawley rats receiving CHRS were exposed to repeated restraint stress of 30min per day for 10days. Changes in social approach behaviors were evaluated with the three-chambered social approach task. Changes in anxiety-like behaviors were evaluated in the light-dark box test. The number of neurons expressing oxytocin and/or vasopressin in PVN and SON were examined by immunohistochemistry techniques. The results demonstrated that social approach was increased and anxiety was decreased following 10-day exposure to CHRS. Furthermore, the number of OXT-immunoreactive cells in PVN was increased significantly, whereas no change in SON was seen. The number of AVP immunoreactive cells either in PVN or SON was unaffected. The results of this study suggest that certain types of stress could be effective in the treatment of social dysfunction in persons with mental disorders such as autism, social anxiety disorder. The therapeutic effects may be mediated by changes in the function of OXT neurons in PVN.
Collapse
Affiliation(s)
- Jin Li
- Neuroscience Research Institute, Peking University, 38 Xueyuan Road, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; Key Lab for Neuroscience, The Ministry of Education/The Ministry of Health, 38 Xueyuan Road, Beijing 100191, China
| | - Han-Xia Li
- Neuroscience Research Institute, Peking University, 38 Xueyuan Road, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; Key Lab for Neuroscience, The Ministry of Education/The Ministry of Health, 38 Xueyuan Road, Beijing 100191, China
| | - Xiao-Jing Shou
- Neuroscience Research Institute, Peking University, 38 Xueyuan Road, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; Key Lab for Neuroscience, The Ministry of Education/The Ministry of Health, 38 Xueyuan Road, Beijing 100191, China
| | - Xin-Jie Xu
- Neuroscience Research Institute, Peking University, 38 Xueyuan Road, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; Key Lab for Neuroscience, The Ministry of Education/The Ministry of Health, 38 Xueyuan Road, Beijing 100191, China
| | - Tian-Jia Song
- Neuroscience Research Institute, Peking University, 38 Xueyuan Road, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; Key Lab for Neuroscience, The Ministry of Education/The Ministry of Health, 38 Xueyuan Road, Beijing 100191, China
| | - Song-Ping Han
- Neuroscience Research Institute, Peking University, 38 Xueyuan Road, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; Key Lab for Neuroscience, The Ministry of Education/The Ministry of Health, 38 Xueyuan Road, Beijing 100191, China
| | - Rong Zhang
- Neuroscience Research Institute, Peking University, 38 Xueyuan Road, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; Key Lab for Neuroscience, The Ministry of Education/The Ministry of Health, 38 Xueyuan Road, Beijing 100191, China.
| | - Ji-Sheng Han
- Neuroscience Research Institute, Peking University, 38 Xueyuan Road, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; Key Lab for Neuroscience, The Ministry of Education/The Ministry of Health, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
8
|
Morphological and behavioral characterization of adult mice deficient for SrGAP3. Cell Tissue Res 2016; 366:1-11. [PMID: 27184948 DOI: 10.1007/s00441-016-2413-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/14/2016] [Indexed: 01/05/2023]
Abstract
SrGAP3 belongs to the family of Rho GTPase proteins. These proteins are thought to play essential roles in development and in the plasticity of the nervous system. SrGAP3-deficient mice have recently been created and approximately 10 % of these mice developed a hydrocephalus and died shortly after birth. The others survived into adulthood, but displayed neuroanatomical alteration, including increased ventricular size. We now show that SrGAP3-deficient mice display increased brain weight together with increased hippocampal volume. This increase was accompanied by an increase of the thickness of the stratum oriens of area CA1 as well as of the thickness of the molecular layer of the dentate gyrus (DG). Concerning hippocampal adult neurogenesis, we observed no significant change in the number of proliferating cells. The density of doublecortin-positive cells also did not vary between SrGAP3-deficient mice and controls. By analyzing Golgi-impregnated material, we found that, in SrGAP3-deficient mice, the morphology and number of dendritic spines was not altered in the DG. Likewise, a Sholl-analysis revealed no significant changes concerning dendritic complexity as compared to controls. Despite the distinct morphological alterations in the hippocampus, SrGAP3-deficient mice were relatively inconspicuous in their behavior, not only in the open-field, nest building but also in the Morris water-maze. However, the SrGAP3-deficient mice showed little to no interest in burying marbles; a behavior that is seen in some animal models related to autism, supporting the view that SrGAP3 plays a role in neurodevelopmental disorders.
Collapse
|
9
|
Ayaz AB, Karkucak M, Ayaz M, Gokce S, Kayan E, Güler EE, Güngen BD, Kuşcu TD, Ocakoğlu G, Yakut T. Oxytocin system social function impacts in children with attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2015; 168:609-16. [PMID: 26174935 DOI: 10.1002/ajmg.b.32343] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/26/2015] [Indexed: 12/24/2022]
Abstract
To investigate relationships between the polymorphisms and social functioning of children with Attention Deficit/Hyperactivity Disorder (ADHD), according to the polymorphism of three oxytocin receptor (OXTR) genes (rs53576, rs13316193, and and rs2268493). A total of 198 children-studying in the same primary and secondary school and matched in terms of age and gender (99 ADHD, 99 control)-were included in this study. The Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version was administered to establish the clinical diagnosis. The Social Reciprocity Scale (SRS) was applied to evaluate social functioning. The total genomic DNA was isolated from buccal mucosa samples. No significant differences were determined between the ADHD and control groups in terms of rs2268493, rs13316193, and rs53576 genotype distribution (P = 0.078, P = 0.330, and P = 0.149, respectively). However, the control group T allele frequency in the OXTR Single Nucleotide Polymorphism (SNP) rs2268493 was significantly higher than the ADHD group (P = 0.024). Compared to the control group, the ADHD group had a higher score on the SRS scale (SRS total; Z = -21,135, P < 0.001). No significant difference existed in the SRS scale scores between the children with the T/T genotype and the C allele in the ADHD group (SRS total; Z = -0.543, P = 0.587). The allele distribution of the OXTR gene SNP rs2268493 was significantly different in the ADHD group, compared to the control group. This observation is important in understanding the underlying biological infrastructure in ADHD and developing treatment modalities.
Collapse
Affiliation(s)
- Ayşe Burcu Ayaz
- Department of Child, and Adolescent Psychiatry, Marmara University Pendik Research and Training Hospital, Istanbul, Turkey
| | - Mutlu Karkucak
- Department of Medical Genetics, Sakarya University Research and Training Hospital Hospital, Sakarya, Turkey
| | - Muhammed Ayaz
- Department of Child Development, School of Health Sciences, Istanbul Arel University, Istanbul, Turkey
| | - Sebla Gokce
- Department of Child and Adolescent Psychiatry, Erenkoy Psychiatry and Neurology Research and Training Hospital, Istanbul, Turkey
| | - Esengul Kayan
- Department of Child and Adolescent Psychiatry, Canakkale State Hospital, Canakkale, Turkey
| | - Elif Erol Güler
- Clinic of Psychology, Sakarya University Research and Training Hospital Hospital, Sakarya, Turkey
| | - Belma Doğan Güngen
- Department of Neurology, Sakarya University Research and Training Hospital Hospital, Sakarya, Turkey
| | - Tugba Didem Kuşcu
- Department of Child, and Adolescent Psychiatry, Marmara University Pendik Research and Training Hospital, Istanbul, Turkey
| | - Gökhan Ocakoğlu
- Department of Biostatistics, Faculty of Medicine, Uludağ University, Bursa, Turkey
| | - Tahsin Yakut
- Department of Medical Genetics, Faculty of Medicine, Uludağ University, Bursa, Turkey
| |
Collapse
|
10
|
Ngounou Wetie AG, Wormwood KL, Charette L, Ryan JP, Woods AG, Darie CC. Comparative two-dimensional polyacrylamide gel electrophoresis of the salivary proteome of children with autism spectrum disorder. J Cell Mol Med 2015; 19:2664-78. [PMID: 26290361 PMCID: PMC4627571 DOI: 10.1111/jcmm.12658] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/23/2015] [Indexed: 01/03/2023] Open
Abstract
In the last decades, prevalence of autism spectrum disorder (ASD) has been on the rise. However, clear aetiology is still elusive and improvements in early diagnosis are needed. To uncover possible biomarkers present in ASD, we used two-dimensional polyacrylamide gel electrophoresis and nanoliquid chromatography-tandem mass spectrometry (nanoLC-MS/MS), to compare salivary proteome profiling of children with ASD and controls. A total of 889 spots were compared and only those spots with a fold change ≥1.7 and a P-value <0.05 or a fold change of ≥3.0 between ASD cases and controls were analysed by nanoLC-MS/MS. Alpha-amylase, CREB-binding protein, p532, Transferrin, Zn alpha2 glycoprotein, Zymogen granule protein 16, cystatin D and plasminogen were down-regulated in ASD. Increased expression of proto-oncogene Frequently rearranged in advanced T-cell lymphomas 1 (FRAT1), Kinesin family member 14, Integrin alpha6 subunit, growth hormone regulated TBC protein 1, parotid secretory protein, Prolactin-inducible protein precursor, Mucin-16, Ca binding protein migration inhibitory factor-related protein 14 (MRP14) was observed in individuals with ASD. Many of the identified proteins have previously been linked to ASD or were proposed as risk factors of ASD at the genetic level. Some others are involved in pathological pathways implicated in ASD causality such as oxidative stress, lipid and cholesterol metabolism, immune system disturbances and inflammation. These data could contribute to protein signatures for ASD presence, risk and subtypes, and advance understanding of ASD cause as well as provide novel treatment targets for ASD.
Collapse
Affiliation(s)
- Armand G Ngounou Wetie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Kelly L Wormwood
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Laci Charette
- SUNY Plattsburgh Neuropsychology Clinic and Psychoeducation Services, Plattsburgh, NY, USA.,Department of Psychology, SUNY Plattsburgh, Plattsburgh, NY, USA
| | - Jeanne P Ryan
- Department of Psychology, SUNY Plattsburgh, Plattsburgh, NY, USA
| | - Alisa G Woods
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA.,SUNY Plattsburgh Neuropsychology Clinic and Psychoeducation Services, Plattsburgh, NY, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| |
Collapse
|
11
|
Variants of the CNTNAP2 5' promoter as risk factors for autism spectrum disorders: a genetic and functional approach. Mol Psychiatry 2015; 20:839-49. [PMID: 25224256 DOI: 10.1038/mp.2014.103] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 06/04/2014] [Accepted: 07/14/2014] [Indexed: 12/11/2022]
Abstract
Contactin-associated protein-like 2 gene (CNTNAP2), a member of the Neurexin gene superfamily, is one of the best-replicated risk genes for autism spectrum disorders (ASD). ASD are predominately genetically determined neurodevelopmental disorders characterized by impairments of language development, social interaction and communication, as well as stereotyped behavior and interests. Although CNTNAP2 expression levels were proposed to alter ASD risk, no study to date has focused on its 5' promoter. Here, we directly sequenced the CNTNAP2 5' promoter region of 236 German families with one child with ASD and detected four novel variants. Furthermore, we genotyped the three most frequent variants (rs150447075, rs34712024, rs71781329) in an additional sample of 356 families and found nominal association of rs34712024G with ASD and rs71781329GCG[7] with language development. The four novel and the three known minor alleles of the identified variants were predicted to alter transcription factor binding sites (TFBS). At the functional level, the respective sequences spanning these seven variants were bound by nuclear factors. In a luciferase promoter assay, the respective minor alleles showed cell line-specific and differentiation stage-dependent effects at the level of promoter activation. The novel potential rare risk-variant M2, a G>A mutation -215 base pairs 5' of the transcriptional start site, significantly reduced promoter efficiency in HEK293T and in undifferentiated and differentiated neuroblastoid SH-SY5Y cells. This variant was transmitted to a patient with autistic disorder. The under-transmitted, protective minor G allele of the common variant rs34712024, in contrast, increased transcriptional activity. These results lead to the conclusion that the pathomechanism of CNTNAP2 promoter variants on ASD risk is mediated by their effect on TFBSs, and thus confirm the hypothesis that a reduced CNTNAP2 level during neuronal development increases liability for ASD.
Collapse
|
12
|
The oxytocin receptor gene (OXTR) is associated with autism spectrum disorder: a meta-analysis. Mol Psychiatry 2015; 20:640-6. [PMID: 25092245 DOI: 10.1038/mp.2014.77] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 05/08/2014] [Accepted: 06/17/2014] [Indexed: 12/27/2022]
Abstract
The oxytocin receptor gene (OXTR) has been studied as a risk factor for autism spectrum disorder (ASD) owing to converging evidence from multiple levels of analysis that oxytocin (OXT) has an important role in the regulation of affiliative behavior and social bonding in both nonhuman mammals and humans. Inconsistency in the effect sizes of the OXTR variants included in association studies render it unclear whether OXTR is truly associated with ASD, and, if so, which OXTR single-nucleotide polymorphisms (SNPs) are associated. Thus, a meta-analytic review of extant studies is needed to determine whether OXTR shows association with ASD, and to elucidate which specific SNPs have a significant effect on ASD. The current meta-analysis of 16 OXTR SNPs included 3941 individuals with ASD from 11 independent samples, although analyses of each individual SNP included a subset of this total. We found significant associations between ASD and the SNPs rs7632287, rs237887, rs2268491 and rs2254298. OXTR was also significantly associated with ASD in a gene-based test. The current meta-analysis is the largest and most comprehensive investigation of the association of OXTR with ASD and the findings suggest directions for future studies of the etiology of ASD.
Collapse
|
13
|
Butler MG, Rafi SK, Manzardo AM. High-resolution chromosome ideogram representation of currently recognized genes for autism spectrum disorders. Int J Mol Sci 2015; 16:6464-95. [PMID: 25803107 PMCID: PMC4394543 DOI: 10.3390/ijms16036464] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/11/2015] [Accepted: 03/16/2015] [Indexed: 11/16/2022] Open
Abstract
Recently, autism-related research has focused on the identification of various genes and disturbed pathways causing the genetically heterogeneous group of autism spectrum disorders (ASD). The list of autism-related genes has significantly increased due to better awareness with advances in genetic technology and expanding searchable genomic databases. We compiled a master list of known and clinically relevant autism spectrum disorder genes identified with supporting evidence from peer-reviewed medical literature sources by searching key words related to autism and genetics and from authoritative autism-related public access websites, such as the Simons Foundation Autism Research Institute autism genomic database dedicated to gene discovery and characterization. Our list consists of 792 genes arranged in alphabetical order in tabular form with gene symbols placed on high-resolution human chromosome ideograms, thereby enabling clinical and laboratory geneticists and genetic counsellors to access convenient visual images of the location and distribution of ASD genes. Meaningful correlations of the observed phenotype in patients with suspected/confirmed ASD gene(s) at the chromosome region or breakpoint band site can be made to inform diagnosis and gene-based personalized care and provide genetic counselling for families.
Collapse
Affiliation(s)
- Merlin G Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Syed K Rafi
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Ann M Manzardo
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
14
|
Young RL, Rodi ML. Redefining autism spectrum disorder using DSM-5: the implications of the proposed DSM-5 criteria for autism spectrum disorders. J Autism Dev Disord 2014; 44:758-65. [PMID: 24057130 DOI: 10.1007/s10803-013-1927-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A number of changes were made to pervasive developmental disorders (PDDs) in the recently released diagnostic and statistical manual of mental disorders (APA, Diagnostic and statistical manual of mental disorders, American Psychiatric Publishing, Arlington, VA, 2013). Of the 210 participants in the present study who met DSM-IV-TR criteria for a PDD [i.e., autistic disorder, Asperger's disorder and pervasive developmental disorder-not otherwise specified (PDD-NOS)], only 57.1% met DSM-5 criteria (specificity = 1.0) for autism spectrum disorder when criteria were applied concurrently during diagnostic assessment. High-functioning individuals (i.e., Asperger's disorder and PDD-NOS) were less likely to meet DSM-5 criteria than those with autistic disorder. A failure to satisfy all three criteria in the social-communication domain was the most common reason for exclusion (39%). The implications of these results are discussed.
Collapse
Affiliation(s)
- Robyn L Young
- Flinders University of South Australia, GPO BOX 2100, Adelaide, SA, 5001, Australia,
| | | |
Collapse
|
15
|
Plasma oxytocin concentrations and OXTR polymorphisms predict social impairments in children with and without autism spectrum disorder. Proc Natl Acad Sci U S A 2014; 111:12258-63. [PMID: 25092315 DOI: 10.1073/pnas.1402236111] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The neuropeptide oxytocin (OXT) and its receptor (OXTR) regulate social functioning in animals and humans. Initial clinical research suggests that dysregulated plasma OXT concentrations and/or OXTR SNPs may be biomarkers of social impairments in autism spectrum disorder (ASD). We do not know, however, whether OXT dysregulation is unique to ASD or whether OXT biology influences social functioning more generally, thus contributing to, but not causing, ASD phenotypes. To distinguish between these possibilities, we tested in a child ASD cohort, which included unaffected siblings and unrelated neurotypical controls (ages 3-12 y; n = 193), whether plasma OXT concentrations and OXTR SNPs (i) interact to produce ASD phenotypes, (ii) exert differential phenotypic effects in ASD vs. non-ASD children, or (iii) have similar phenotypic effects independent of disease status. In the largest cohort tested to date, we found no evidence to support the OXT deficit hypothesis of ASD. Rather, OXT concentrations strongly and positively predicted theory of mind and social communication performance in all groups. Furthermore, OXT concentrations showed significant heritability between ASD-discordant siblings (h(2) = 85.5%); a heritability estimate on par with that of height in humans. Finally, carriers of the "G" allele of rs53576 showed impaired affect recognition performance and carriers of the "A" allele of rs2254298 exhibited greater global social impairments in all groups. These findings indicate that OXT biology is not uniquely associated with ASD, but instead exerts independent, additive, and highly heritable influences on individual differences in human social functioning, including the severe social impairments which characterize ASD.
Collapse
|
16
|
Berko ER, Suzuki M, Beren F, Lemetre C, Alaimo CM, Calder RB, Ballaban-Gil K, Gounder B, Kampf K, Kirschen J, Maqbool SB, Momin Z, Reynolds DM, Russo N, Shulman L, Stasiek E, Tozour J, Valicenti-McDermott M, Wang S, Abrahams BS, Hargitai J, Inbar D, Zhang Z, Buxbaum JD, Molholm S, Foxe JJ, Marion RW, Auton A, Greally JM. Mosaic epigenetic dysregulation of ectodermal cells in autism spectrum disorder. PLoS Genet 2014; 10:e1004402. [PMID: 24875834 PMCID: PMC4038484 DOI: 10.1371/journal.pgen.1004402] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 04/09/2014] [Indexed: 12/22/2022] Open
Abstract
DNA mutational events are increasingly being identified in autism spectrum disorder (ASD), but the potential additional role of dysregulation of the epigenome in the pathogenesis of the condition remains unclear. The epigenome is of interest as a possible mediator of environmental effects during development, encoding a cellular memory reflected by altered function of progeny cells. Advanced maternal age (AMA) is associated with an increased risk of having a child with ASD for reasons that are not understood. To explore whether AMA involves covert aneuploidy or epigenetic dysregulation leading to ASD in the offspring, we tested a homogeneous ectodermal cell type from 47 individuals with ASD compared with 48 typically developing (TD) controls born to mothers of ≥35 years, using a quantitative genome-wide DNA methylation assay. We show that DNA methylation patterns are dysregulated in ectodermal cells in these individuals, having accounted for confounding effects due to subject age, sex and ancestral haplotype. We did not find mosaic aneuploidy or copy number variability to occur at differentially-methylated regions in these subjects. Of note, the loci with distinctive DNA methylation were found at genes expressed in the brain and encoding protein products significantly enriched for interactions with those produced by known ASD-causing genes, representing a perturbation by epigenomic dysregulation of the same networks compromised by DNA mutational mechanisms. The results indicate the presence of a mosaic subpopulation of epigenetically-dysregulated, ectodermally-derived cells in subjects with ASD. The epigenetic dysregulation observed in these ASD subjects born to older mothers may be associated with aging parental gametes, environmental influences during embryogenesis or could be the consequence of mutations of the chromatin regulatory genes increasingly implicated in ASD. The results indicate that epigenetic dysregulatory mechanisms may complement and interact with DNA mutations in the pathogenesis of the disorder.
Collapse
Affiliation(s)
- Esther R. Berko
- Center for Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Masako Suzuki
- Center for Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Faygel Beren
- Stern College for Women, Yeshiva University, New York, New York, United States of America
| | - Christophe Lemetre
- Center for Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Christine M. Alaimo
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, and Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - R. Brent Calder
- Center for Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Karen Ballaban-Gil
- Department of Neurology, Children's Hospital at Montefiore, Bronx, New York, United States of America
| | - Batya Gounder
- Stern College for Women, Yeshiva University, New York, New York, United States of America
| | - Kaylee Kampf
- Stern College for Women, Yeshiva University, New York, New York, United States of America
| | - Jill Kirschen
- Center for Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Shahina B. Maqbool
- Center for Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Zeineen Momin
- Center for Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - David M. Reynolds
- Center for Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Natalie Russo
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, and Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Psychology, The College of Arts and Sciences, Syracuse University, Syracuse, New York, United States of America
| | - Lisa Shulman
- Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Edyta Stasiek
- Center for Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jessica Tozour
- Center for Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Maria Valicenti-McDermott
- Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Shenglong Wang
- Information Technology Services, New York University, New York, New York, United States of America
| | - Brett S. Abrahams
- Center for Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Joseph Hargitai
- Center for Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Dov Inbar
- Child Development and Rehabilitation Institute, Schneider Children's Medical Center, Petach Tikvah, Israel
| | - Zhengdong Zhang
- Center for Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Joseph D. Buxbaum
- Seaver Autism Center for Research and Treatment, Departments of Psychiatry, Neuroscience, and Genetics and Genomic Sciences, and the Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Sophie Molholm
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, and Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - John J. Foxe
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, and Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Robert W. Marion
- Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Adam Auton
- Center for Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - John M. Greally
- Center for Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
17
|
Glutamatergic candidate genes in autism spectrum disorder: an overview. J Neural Transm (Vienna) 2014; 121:1081-106. [PMID: 24493018 DOI: 10.1007/s00702-014-1161-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/13/2014] [Indexed: 12/22/2022]
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders with early onset in childhood. Most of the risk for ASD can be explained by genetic variants that act in interaction with biological environmental risk factors. However, the architecture of the genetic components is still unclear. Genetic studies and subsequent systems biological approaches described converging functional effects of identified genes towards pathways relevant for neuronal signalling. Mouse models suggest an aberrant synaptic plasticity at the neuropathological level, which is believed to be conferred by dysregulation of long-term potentiation or depression of neuronal connections. A central pathway regulating these mechanisms is glutamatergic signalling. Here, we hypothesized that susceptibility genes for ASD are enriched for components of this pathway. To further understand the impact of ASD risk genes on the glutamatergic pathway, we performed a systematic review using the literature database "pubmed" and the "AutismKB" knowledgebase. We provide an overview of the glutamatergic system in typical brain function and development, and summarize findings from linkage, association, copy number variants, and sequencing studies in ASD to provide a comprehensive picture of the glutamatergic landscape of ASD genetics. Genetic variants associated with ASD were enriched in glutamatergic pathways, affecting receptor signalling, metabolism and transport. Furthermore, in genetically modified mouse models for ASD, pharmacological compounds acting on ionotropic or metabotropic receptor activity are able to rescue ASD reminscent phenotypes. We conclude that glutamatergic genetic risk factors for ASD show a complex pattern and further studies are needed to fully understand its mechanisms, before translation of findings into clinical applications and individualized treatment approaches will be possible.
Collapse
|
18
|
Affiliation(s)
- W Scott Young
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892.
| |
Collapse
|
19
|
Sarachana T, Hu VW. Genome-wide identification of transcriptional targets of RORA reveals direct regulation of multiple genes associated with autism spectrum disorder. Mol Autism 2013; 4:14. [PMID: 23697635 PMCID: PMC3665583 DOI: 10.1186/2040-2392-4-14] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/24/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND We have recently identified the nuclear hormone receptor RORA (retinoic acid-related orphan receptor-alpha) as a novel candidate gene for autism spectrum disorder (ASD). Our independent cohort studies have consistently demonstrated the reduction of RORA transcript and/or protein levels in blood-derived lymphoblasts as well as in the postmortem prefrontal cortex and cerebellum of individuals with ASD. Moreover, we have also shown that RORA has the potential to be under negative and positive regulation by androgen and estrogen, respectively, suggesting the possibility that RORA may contribute to the male bias of ASD. However, little is known about transcriptional targets of this nuclear receptor, particularly in humans. METHODS Here we identify transcriptional targets of RORA in human neuronal cells on a genome-wide level using chromatin immunoprecipitation (ChIP) with an anti-RORA antibody followed by whole-genome promoter array (chip) analysis. Selected potential targets of RORA were then validated by an independent ChIP followed by quantitative PCR analysis. To further demonstrate that reduced RORA expression results in reduced transcription of RORA targets, we determined the expression levels of the selected transcriptional targets in RORA-deficient human neuronal cells, as well as in postmortem brain tissues from individuals with ASD who exhibit reduced RORA expression. RESULTS The ChIP-on-chip analysis reveals that RORA1, a major isoform of RORA protein in human brain, can be recruited to as many as 2,764 genomic locations corresponding to promoter regions of 2,544 genes across the human genome. Gene ontology analysis of this dataset of genes that are potentially directly regulated by RORA1 reveals statistically significant enrichment in biological functions negatively impacted in individuals with ASD, including neuronal differentiation, adhesion and survival, synaptogenesis, synaptic transmission and plasticity, and axonogenesis, as well as higher level functions such as development of the cortex and cerebellum, cognition, memory, and spatial learning. Independent ChIP-quantitative PCR analyses confirm binding of RORA1 to promoter regions of selected ASD-associated genes, including A2BP1, CYP19A1, ITPR1, NLGN1, and NTRK2, whose expression levels (in addition to HSD17B10) are also decreased in RORA1-repressed human neuronal cells and in prefrontal cortex tissues from individuals with ASD. CONCLUSIONS Findings from this study indicate that RORA transcriptionally regulates A2BP1, CYP19A1, HSD17B10, ITPR1, NLGN1, and NTRK2, and strongly suggest that reduction of this sex hormone-sensitive nuclear receptor in the brain causes dysregulated expression of these ASD-relevant genes as well as their associated pathways and functions which, in turn, may contribute to the underlying pathobiology of ASD.
Collapse
Affiliation(s)
- Tewarit Sarachana
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Washington, DC, 20037, USA.
| | | |
Collapse
|
20
|
Yang W, Liu J, Zheng F, Jia M, Zhao L, Lu T, Ruan Y, Zhang J, Yue W, Zhang D, Wang L. The evidence for association of ATP2B2 polymorphisms with autism in Chinese Han population. PLoS One 2013; 8:e61021. [PMID: 23620727 PMCID: PMC3631200 DOI: 10.1371/journal.pone.0061021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/05/2013] [Indexed: 12/27/2022] Open
Abstract
Background Autism is a neurodevelopmental disorder with a high estimated heritability. ATP2B2, located on human chromosome 3p25.3, encodes the plasma membrane calcium-transporting ATPase 2 which extrudes Ca2+ from cytosol into extracellular space. Recent studies reported association between ATP2B2 and autism in samples from Autism Genetic Resource Exchange (AGRE) and Italy. In this study, we investigated whether ATP2B2 polymorphisms were associated with autism in Chinese Han population. Methods We performed a family based association study between five SNPs (rs35678 in exon, rs241509, rs3774180, rs3774179, and rs2278556 in introns) in ATP2B2 and autism in 427 autism trios of Han Chinese descent. All SNPs were genotyped using the Sequenom genotyping platform. The family-based association test (FBAT) program was used to perform association test for SNPs and haplotype analyses. Results This study demonstrated a preferential transmission of T allele of rs3774179 to affected offsprings under an additive model (T>C, Z = 2.482, p = 0.013). While C allele of rs3774179 showed an undertransmission from parents to affected children under an additive and a dominant model, respectively (Z = −2.482, p = 0.013; Z = −2.591, p = 0.0096). Haplotype analyses revealed that three haplotypes were significantly associated with autism. The haplotype C-C (rs3774180–rs3774179) showed a significant undertransmission from parents to affected offsprings both in specific and global haplotype FBAT (Z = −2.037, p = 0.042; Global p = 0.03). As for the haplotype constructed by rs3774179 and rs2278556, C-A might be a protective haplotype (Z = −2.206, p = 0.027; Global p = 0.04), while T-A demonstrated an excess transmission from parents to affected offsprings (Z = 2.143, p = 0.032). These results were still significant after using the permutation method to obtain empirical p values. Conclusions Our research suggested that ATP2B2 might play a role in the etiology of autism in Chinese Han population.
Collapse
Affiliation(s)
- Wen Yang
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People’s Republic of China
- Institute of Mental Health, Peking University, Beijing, People’s Republic of China
| | - Jing Liu
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People’s Republic of China
- Institute of Mental Health, Peking University, Beijing, People’s Republic of China
| | - Fanfan Zheng
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People’s Republic of China
- Institute of Mental Health, Peking University, Beijing, People’s Republic of China
| | - Meixiang Jia
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People’s Republic of China
- Institute of Mental Health, Peking University, Beijing, People’s Republic of China
| | - Linnan Zhao
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People’s Republic of China
- Institute of Mental Health, Peking University, Beijing, People’s Republic of China
| | - Tianlan Lu
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People’s Republic of China
- Institute of Mental Health, Peking University, Beijing, People’s Republic of China
| | - Yanyan Ruan
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People’s Republic of China
- Institute of Mental Health, Peking University, Beijing, People’s Republic of China
| | - Jishui Zhang
- Beijing Children’s Hospital Affiliated to Capital University of Medical Sciences, Beijing, People’s Republic of China
| | - Weihua Yue
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People’s Republic of China
- Institute of Mental Health, Peking University, Beijing, People’s Republic of China
| | - Dai Zhang
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People’s Republic of China
- Institute of Mental Health, Peking University, Beijing, People’s Republic of China
- Peking-Tsinghua Center for Life Sciences, Beijing, People’s Republic of China
- * E-mail: (DZ); (LFW)
| | - Lifang Wang
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People’s Republic of China
- Institute of Mental Health, Peking University, Beijing, People’s Republic of China
- * E-mail: (DZ); (LFW)
| |
Collapse
|
21
|
Field LL, Shumansky K, Ryan J, Truong D, Swiergala E, Kaplan BJ. Dense-map genome scan for dyslexia supports loci at 4q13, 16p12, 17q22; suggests novel locus at 7q36. GENES, BRAIN, AND BEHAVIOR 2013; 12:56-69. [PMID: 23190410 DOI: 10.1111/gbb.12003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 11/05/2012] [Accepted: 11/15/2012] [Indexed: 11/30/2022]
Abstract
Analysis of genetic linkage to dyslexia was performed using 133,165 array-based SNPs genotyped in 718 persons from 101 dyslexia-affected families. Results showed five linkage peaks with lod scores >2.3 (4q13.1, 7q36.1-q36.2, 7q36.3, 16p12.1, and 17q22). Of these five regions, three have been previously implicated in dyslexia (4q13.1, 16p12.1, and 17q22), three have been implicated in attention-deficit hyperactivity disorder (ADHD, which highly co-occurs with dyslexia; 4q13.1, 7q36.3, 16p12.1) and four have been implicated in autism (a condition characterized by language deficits; 7q36.1-q36.2, 7q36.3, 16p12.1, and 17q22). These results highlight the reproducibility of dyslexia linkage signals, even without formally significant lod scores, and suggest dyslexia predisposing genes with relatively major effects and locus heterogeneity. The largest lod score (2.80) occurred at 17q22 within the MSI2 gene, involved in neuronal stem cell lineage proliferation. Interestingly, the 4q13.1 linkage peak (lod 2.34) occurred immediately upstream of the LPHN3 gene, recently reported both linked and associated with ADHD. Separate analyses of larger pedigrees revealed lods >2.3 at 1-3 regions per family; one family showed strong linkage (lod 2.9) to a known dyslexia locus (18p11) not detected in our overall data, demonstrating the value of analyzing single large pedigrees. Association analysis identified no SNPs with genome-wide significance, although a borderline significant SNP (P = 6 × 10(-7)) occurred at 5q35.1 near FGF18, involved in laminar positioning of cortical neurons during development. We conclude that dyslexia genes with relatively major effects exist, are detectable by linkage analysis despite genetic heterogeneity, and show substantial overlapping predisposition with ADHD and autism.
Collapse
MESH Headings
- Adolescent
- Attention Deficit Disorder with Hyperactivity/genetics
- Autistic Disorder/genetics
- Case-Control Studies
- Child
- Chromosomes, Human, Pair 16
- Chromosomes, Human, Pair 17
- Chromosomes, Human, Pair 4
- Chromosomes, Human, Pair 7
- Dyslexia/genetics
- Female
- Fibroblast Growth Factors/genetics
- Genetic Association Studies
- Genetic Loci
- Genetic Predisposition to Disease
- Genome, Human
- Humans
- Male
- Pedigree
- Physical Chromosome Mapping
- Polymorphism, Single Nucleotide
- RNA-Binding Proteins/genetics
- Receptors, G-Protein-Coupled/genetics
- Receptors, Peptide/genetics
- Transcriptome
Collapse
Affiliation(s)
- L L Field
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Martin LA, Horriat NL. The effects of birth order and birth interval on the phenotypic expression of autism spectrum disorder. PLoS One 2012; 7:e51049. [PMID: 23226454 PMCID: PMC3511407 DOI: 10.1371/journal.pone.0051049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/29/2012] [Indexed: 11/19/2022] Open
Abstract
A rise in the prevalence of diagnosed cases of autism spectrum disorder (ASD) has been reported in several studies in recent years. While this rise in ASD prevalence is at least partially related to increased awareness and broadened diagnostic criteria, the role of environmental factors cannot be ruled out, especially considering that the cause of most cases of ASD remains unknown. The study of families with multiple affected children can provide clues about ASD etiology. While the majority of research on ASD multiplex families has focused on identifying genetic anomalies that may underlie the disorder, the study of symptom severity across ASD birth order may provide evidence for environmental factors in ASD. We compared social and cognitive measures of behavior between over 300 first and second affected siblings within multiplex autism families obtained from the Autism Genetic Resource Exchange dataset. Measures included nonverbal IQ assessed with the Ravens Colored Progressive Matrices, verbal IQ assessed with the Peabody Picture Vocabulary Test, and autism severity assessed with the Social Responsiveness Scale (SRS), an instrument established as a quantitative measure of autism. The results indicated that females were more severely impacted by ASD than males, especially first affected siblings. When first and second affected siblings were compared, significant declines in nonverbal and verbal IQ scores were observed. In addition, SRS results demonstrated a significant increase in autism severity between first and second affected siblings consistent with an overall decline in function as indicated by the IQ data. These results remained significant after controlling for the age and sex of the siblings. Surprisingly, the SRS scores were found to only be significant when the age difference between siblings was less than 2 years. These results suggest that some cases of ASD are influenced by a dosage effect involving unknown epigenetic, environmental, and/or immunological factors.
Collapse
Affiliation(s)
- Loren A Martin
- Department of Graduate Psychology, Azusa Pacific University, Azusa, CA, USA.
| | | |
Collapse
|
23
|
Anitha A, Nakamura K, Thanseem I, Yamada K, Iwayama Y, Toyota T, Matsuzaki H, Miyachi T, Yamada S, Tsujii M, Tsuchiya KJ, Matsumoto K, Iwata Y, Suzuki K, Ichikawa H, Sugiyama T, Yoshikawa T, Mori N. Brain region-specific altered expression and association of mitochondria-related genes in autism. Mol Autism 2012; 3:12. [PMID: 23116158 PMCID: PMC3528421 DOI: 10.1186/2040-2392-3-12] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 10/04/2012] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED BACKGROUND Mitochondrial dysfunction (MtD) has been observed in approximately five percent of children with autism spectrum disorders (ASD). MtD could impair highly energy-dependent processes such as neurodevelopment, thereby contributing to autism. Most of the previous studies of MtD in autism have been restricted to the biomarkers of energy metabolism, while most of the genetic studies have been based on mutations in the mitochondrial DNA (mtDNA). Despite the mtDNA, most of the proteins essential for mitochondrial replication and function are encoded by the genomic DNA; so far, there have been very few studies of those genes. Therefore, we carried out a detailed study involving gene expression and genetic association studies of genes related to diverse mitochondrial functions. METHODS For gene expression analysis, postmortem brain tissues (anterior cingulate gyrus (ACG), motor cortex (MC) and thalamus (THL)) from autism patients (n=8) and controls (n=10) were obtained from the Autism Tissue Program (Princeton, NJ, USA). Quantitative real-time PCR arrays were used to quantify the expression of 84 genes related to diverse functions of mitochondria, including biogenesis, transport, translocation and apoptosis. We used the delta delta Ct (∆∆Ct) method for quantification of gene expression. DNA samples from 841 Caucasian and 188 Japanese families were used in the association study of genes selected from the gene expression analysis. FBAT was used to examine genetic association with autism. RESULTS Several genes showed brain region-specific expression alterations in autism patients compared to controls. Metaxin 2 (MTX2), neurofilament, light polypeptide (NEFL) and solute carrier family 25, member 27 (SLC25A27) showed consistently reduced expression in the ACG, MC and THL of autism patients. NEFL (P = 0.038; Z-score 2.066) and SLC25A27 (P = 0.046; Z-score 1.990) showed genetic association with autism in Caucasian and Japanese samples, respectively. The expression of DNAJC19, DNM1L, LRPPRC, SLC25A12, SLC25A14, SLC25A24 and TOMM20 were reduced in at least two of the brain regions of autism patients. CONCLUSIONS Our study, though preliminary, brings to light some new genes associated with MtD in autism. If MtD is detected in early stages, treatment strategies aimed at reducing its impact may be adopted.
Collapse
Affiliation(s)
- Ayyappan Anitha
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| | - Kazuhiko Nakamura
- Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| | - Ismail Thanseem
- Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| | - Kazuo Yamada
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, 351 0198, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, 351 0198, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, 351 0198, Japan
| | - Hideo Matsuzaki
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| | - Taishi Miyachi
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| | - Satoru Yamada
- Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, 183 8561, Japan
| | - Masatsugu Tsujii
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan.,Faculty of Sociology, Chukyo University, 101 Tokodachi, Toyota, 470 0393, Japan
| | - Kenji J Tsuchiya
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| | - Kaori Matsumoto
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| | - Yasuhide Iwata
- Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| | - Katsuaki Suzuki
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| | - Hironobu Ichikawa
- Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, 183 8561, Japan
| | - Toshiro Sugiyama
- Department of Child and Adolescent Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, 351 0198, Japan
| | - Norio Mori
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan.,Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| |
Collapse
|
24
|
Casey JP, Magalhaes T, Conroy JM, Regan R, Shah N, Anney R, Shields DC, Abrahams BS, Almeida J, Bacchelli E, Bailey AJ, Baird G, Battaglia A, Berney T, Bolshakova N, Bolton PF, Bourgeron T, Brennan S, Cali P, Correia C, Corsello C, Coutanche M, Dawson G, de Jonge M, Delorme R, Duketis E, Duque F, Estes A, Farrar P, Fernandez BA, Folstein SE, Foley S, Fombonne E, Freitag CM, Gilbert J, Gillberg C, Glessner JT, Green J, Guter SJ, Hakonarson H, Holt R, Hughes G, Hus V, Igliozzi R, Kim C, Klauck SM, Kolevzon A, Lamb JA, Leboyer M, Le Couteur A, Leventhal BL, Lord C, Lund SC, Maestrini E, Mantoulan C, Marshall CR, McConachie H, McDougle CJ, McGrath J, McMahon WM, Merikangas A, Miller J, Minopoli F, Mirza GK, Munson J, Nelson SF, Nygren G, Oliveira G, Pagnamenta AT, Papanikolaou K, Parr JR, Parrini B, Pickles A, Pinto D, Piven J, Posey DJ, Poustka A, Poustka F, Ragoussis J, Roge B, Rutter ML, Sequeira AF, Soorya L, Sousa I, Sykes N, Stoppioni V, Tancredi R, Tauber M, Thompson AP, Thomson S, Tsiantis J, Van Engeland H, Vincent JB, Volkmar F, Vorstman JAS, Wallace S, Wang K, Wassink TH, White K, Wing K, et alCasey JP, Magalhaes T, Conroy JM, Regan R, Shah N, Anney R, Shields DC, Abrahams BS, Almeida J, Bacchelli E, Bailey AJ, Baird G, Battaglia A, Berney T, Bolshakova N, Bolton PF, Bourgeron T, Brennan S, Cali P, Correia C, Corsello C, Coutanche M, Dawson G, de Jonge M, Delorme R, Duketis E, Duque F, Estes A, Farrar P, Fernandez BA, Folstein SE, Foley S, Fombonne E, Freitag CM, Gilbert J, Gillberg C, Glessner JT, Green J, Guter SJ, Hakonarson H, Holt R, Hughes G, Hus V, Igliozzi R, Kim C, Klauck SM, Kolevzon A, Lamb JA, Leboyer M, Le Couteur A, Leventhal BL, Lord C, Lund SC, Maestrini E, Mantoulan C, Marshall CR, McConachie H, McDougle CJ, McGrath J, McMahon WM, Merikangas A, Miller J, Minopoli F, Mirza GK, Munson J, Nelson SF, Nygren G, Oliveira G, Pagnamenta AT, Papanikolaou K, Parr JR, Parrini B, Pickles A, Pinto D, Piven J, Posey DJ, Poustka A, Poustka F, Ragoussis J, Roge B, Rutter ML, Sequeira AF, Soorya L, Sousa I, Sykes N, Stoppioni V, Tancredi R, Tauber M, Thompson AP, Thomson S, Tsiantis J, Van Engeland H, Vincent JB, Volkmar F, Vorstman JAS, Wallace S, Wang K, Wassink TH, White K, Wing K, Wittemeyer K, Yaspan BL, Zwaigenbaum L, Betancur C, Buxbaum JD, Cantor RM, Cook EH, Coon H, Cuccaro ML, Geschwind DH, Haines JL, Hallmayer J, Monaco AP, Nurnberger JI, Pericak-Vance MA, Schellenberg GD, Scherer SW, Sutcliffe JS, Szatmari P, Vieland VJ, Wijsman EM, Green A, Gill M, Gallagher L, Vicente A, Ennis S. A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder. Hum Genet 2012; 131:565-79. [PMID: 21996756 PMCID: PMC3303079 DOI: 10.1007/s00439-011-1094-6] [Show More Authors] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 09/15/2011] [Indexed: 01/18/2023]
Abstract
Autism spectrum disorder (ASD) is a highly heritable disorder of complex and heterogeneous aetiology. It is primarily characterized by altered cognitive ability including impaired language and communication skills and fundamental deficits in social reciprocity. Despite some notable successes in neuropsychiatric genetics, overall, the high heritability of ASD (~90%) remains poorly explained by common genetic risk variants. However, recent studies suggest that rare genomic variation, in particular copy number variation, may account for a significant proportion of the genetic basis of ASD. We present a large scale analysis to identify candidate genes which may contain low-frequency recessive variation contributing to ASD while taking into account the potential contribution of population differences to the genetic heterogeneity of ASD. Our strategy, homozygous haplotype (HH) mapping, aims to detect homozygous segments of identical haplotype structure that are shared at a higher frequency amongst ASD patients compared to parental controls. The analysis was performed on 1,402 Autism Genome Project trios genotyped for 1 million single nucleotide polymorphisms (SNPs). We identified 25 known and 1,218 novel ASD candidate genes in the discovery analysis including CADM2, ABHD14A, CHRFAM7A, GRIK2, GRM3, EPHA3, FGF10, KCND2, PDZK1, IMMP2L and FOXP2. Furthermore, 10 of the previously reported ASD genes and 300 of the novel candidates identified in the discovery analysis were replicated in an independent sample of 1,182 trios. Our results demonstrate that regions of HH are significantly enriched for previously reported ASD candidate genes and the observed association is independent of gene size (odds ratio 2.10). Our findings highlight the applicability of HH mapping in complex disorders such as ASD and offer an alternative approach to the analysis of genome-wide association data.
Collapse
Affiliation(s)
- Jillian P. Casey
- School of Medicine and Medical Science University College, Dublin 4, Ireland
| | - Tiago Magalhaes
- Instituto Nacional de Saude Dr Ricardo Jorge, Av Padre Cruz 1649-016, Lisbon, Portugal
- BioFIG, Center for Biodiversity, Functional and Integrative Genomics, Campus da FCUL, C2.2.12, Campo Grande, 1749-016 Lisbon, Portugal
- Instituto Gulbenkian de Cîencia, Rua Quinta Grande, 2780-156 Oeiras, Portugal
| | - Judith M. Conroy
- School of Medicine and Medical Science University College, Dublin 4, Ireland
| | - Regina Regan
- School of Medicine and Medical Science University College, Dublin 4, Ireland
| | - Naisha Shah
- School of Medicine and Medical Science University College, Dublin 4, Ireland
| | - Richard Anney
- Autism Genetics Group, Department of Psychiatry, School of Medicine, Trinity College, Dublin 8, Ireland
| | - Denis C. Shields
- School of Medicine and Medical Science University College, Dublin 4, Ireland
| | - Brett S. Abrahams
- Department of Neurology, Center for Autism Research and Treatment, Program in Neurogenetics, Semel Institute, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Joana Almeida
- Hospital Pediátrico de Coimbra, 3000–076 Coimbra, Portugal
| | - Elena Bacchelli
- Department of Biology, University of Bologna, 40126 Bologna, Italy
| | - Anthony J. Bailey
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1 Canada
| | | | - Agatino Battaglia
- Stella Maris Institute for Child and Adolescent Neuropsychiatry, 56128 Calambrone, Pisa, Italy
| | - Tom Berney
- Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, NE1 7RU UK
- Institute of Health and Society, Newcastle University, Newcastle Upon Tyne, NE1 7RU UK
| | - Nadia Bolshakova
- Autism Genetics Group, Department of Psychiatry, School of Medicine, Trinity College, Dublin 8, Ireland
| | - Patrick F. Bolton
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, London, SE5 8AF UK
| | - Thomas Bourgeron
- Department of Human Genetics and Cognitive Functions, Institut Pasteur, University Paris Diderot-Paris 7, CNRS URA 2182, Fondation FondaMental, 75015 Paris, France
| | - Sean Brennan
- Autism Genetics Group, Department of Psychiatry, School of Medicine, Trinity College, Dublin 8, Ireland
| | - Phil Cali
- Department of Psychiatry, Institute for Juvenile Research, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Catarina Correia
- Instituto Nacional de Saude Dr Ricardo Jorge, Av Padre Cruz 1649-016, Lisbon, Portugal
- BioFIG, Center for Biodiversity, Functional and Integrative Genomics, Campus da FCUL, C2.2.12, Campo Grande, 1749-016 Lisbon, Portugal
- Instituto Gulbenkian de Cîencia, Rua Quinta Grande, 2780-156 Oeiras, Portugal
| | - Christina Corsello
- Autism and Communicative Disorders Centre, University of Michigan, Ann Arbor, MI 48109-2054 USA
| | - Marc Coutanche
- Department of Psychiatry, University of Oxford, Warneford Hospital, Headington, Oxford, OX3 7JX UK
| | - Geraldine Dawson
- Autism Speaks, New York, 10016 USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599-3366 USA
| | - Maretha de Jonge
- Department of Child and Adolescent Psychiatry, University Medical Center, 3508 Utrecht, GA The Netherlands
| | - Richard Delorme
- INSERM U 955, Fondation FondaMental, APHP, Hôpital Robert Debré, Child and Adolescent Psychiatry, 75019 Paris, France
| | - Eftichia Duketis
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, J.W. Goethe University Frankfurt, 60528 Frankfurt, Germany
| | | | - Annette Estes
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98195 USA
| | - Penny Farrar
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
| | - Bridget A. Fernandez
- Disciplines of Genetics and Medicine, Memorial University of Newfoundland, St John’s Newfoundland, A1B 3V6 Canada
| | - Susan E. Folstein
- Department of Psychiatry, University of Miami School of Medicine, Miami, FL 33136 USA
| | - Suzanne Foley
- Department of Psychiatry, University of Oxford, Warneford Hospital, Headington, Oxford, OX3 7JX UK
| | - Eric Fombonne
- Division of Psychiatry, McGill University, Montreal, QC H3A 1A1 Canada
| | - Christine M. Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, J.W. Goethe University Frankfurt, 60528 Frankfurt, Germany
| | - John Gilbert
- The John P. Hussman Institute for Human Genomics, University of Miami School of Medicine, Miami, FL 33136 USA
| | - Christopher Gillberg
- Gillberg Neuropsychiatry Centre, Sahlgrenska Academy, University of Gothenburg, S41345 Gothenburg, Sweden
| | - Joseph T. Glessner
- The Center for Applied Genomics, Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Jonathan Green
- Academic Department of Child Psychiatry, Booth Hall of Children’s Hospital, Blackley, Manchester, M9 7AA UK
| | - Stephen J. Guter
- Department of Psychiatry, Institute for Juvenile Research, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
| | - Richard Holt
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
| | - Gillian Hughes
- Autism Genetics Group, Department of Psychiatry, School of Medicine, Trinity College, Dublin 8, Ireland
| | - Vanessa Hus
- Autism and Communicative Disorders Centre, University of Michigan, Ann Arbor, MI 48109-2054 USA
| | - Roberta Igliozzi
- Stella Maris Institute for Child and Adolescent Neuropsychiatry, 56128 Calambrone, Pisa, Italy
| | - Cecilia Kim
- The Center for Applied Genomics, Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Sabine M. Klauck
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Alexander Kolevzon
- Department of Psychiatry, The Seaver Autism Center for Research and Treatment, Mount Sinai School of Medicine, New York, 10029 USA
| | - Janine A. Lamb
- Centre for Integrated Genomic Medical Research, University of Manchester, Manchester, M13 9PT UK
| | - Marion Leboyer
- INSERM U995, Department of Psychiatry, Groupe Hospitalier Henri Mondor-Albert Chenevier, AP-HP, University Paris 12, Fondation FondaMental, 94000 Créteil, France
| | - Ann Le Couteur
- Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, NE1 7RU UK
- Institute of Health and Society, Newcastle University, Newcastle Upon Tyne, NE1 7RU UK
| | - Bennett L. Leventhal
- Nathan Kline Institute for Psychiatric Research (NKI), 140 Old Orangeburg Road, Orangeburg, NY 10962 USA
- Department of Child and Adolescent Psychiatry, New York University, NYU Child Study Center, 550 First Avenue, New York, NY 10016 USA
| | - Catherine Lord
- Autism and Communicative Disorders Centre, University of Michigan, Ann Arbor, MI 48109-2054 USA
| | - Sabata C. Lund
- Department of Molecular Physiology and Biophysics, Vanderbilt Kennedy Center, Centers for Human Genetics Research and Molecular Neuroscience, Vanderbilt University, Nashville, TN 37232 USA
| | - Elena Maestrini
- Department of Biology, University of Bologna, 40126 Bologna, Italy
| | - Carine Mantoulan
- Octogone/CERPP (Centre d’Eudes et de Recherches en Psychopathologie), University de Toulouse Le Mirail, 31058 Toulouse Cedex, France
| | - Christian R. Marshall
- The Centre for Applied Genomics and Program in Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, ON M5G 1L7 Canada
| | - Helen McConachie
- Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, NE1 7RU UK
- Institute of Health and Society, Newcastle University, Newcastle Upon Tyne, NE1 7RU UK
| | | | - Jane McGrath
- Autism Genetics Group, Department of Psychiatry, School of Medicine, Trinity College, Dublin 8, Ireland
| | - William M. McMahon
- Psychiatry Department, University of Utah Medical School, Salt Lake City, UT 84108 USA
| | - Alison Merikangas
- Autism Genetics Group, Department of Psychiatry, School of Medicine, Trinity College, Dublin 8, Ireland
| | - Judith Miller
- Psychiatry Department, University of Utah Medical School, Salt Lake City, UT 84108 USA
| | | | - Ghazala K. Mirza
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
| | - Jeff Munson
- Department of Psychiatry and Behavioural Sciences, University of Washington, Seattle, WA 98195 USA
| | - Stanley F. Nelson
- Department of Human Genetics, University of California, Los Angeles School of Medicine, Los Angeles, CA 90095 USA
| | - Gudrun Nygren
- Gillberg Neuropsychiatry Centre, Sahlgrenska Academy, University of Gothenburg, S41345 Gothenburg, Sweden
| | | | | | - Katerina Papanikolaou
- University Department of Child Psychiatry, Athens University, Medical School, Agia Sophia Children’s Hospital, 115 27 Athens, Greece
| | - Jeremy R. Parr
- Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, NE1 7RU UK
- Institute of Health and Society, Newcastle University, Newcastle Upon Tyne, NE1 7RU UK
| | - Barbara Parrini
- Stella Maris Institute for Child and Adolescent Neuropsychiatry, 56128 Calambrone, Pisa, Italy
| | - Andrew Pickles
- Department of Medicine, School of Epidemiology and Health Science, University of Manchester, Manchester, M13 9PT UK
| | - Dalila Pinto
- The Centre for Applied Genomics and Program in Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, ON M5G 1L7 Canada
| | - Joseph Piven
- Carolina Institute for Developmental Disabilities, CB3366, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3366 USA
| | - David J. Posey
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Annemarie Poustka
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Fritz Poustka
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, J.W. Goethe University Frankfurt, 60528 Frankfurt, Germany
| | - Jiannis Ragoussis
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
| | - Bernadette Roge
- Octogone/CERPP (Centre d’Eudes et de Recherches en Psychopathologie), University de Toulouse Le Mirail, 31058 Toulouse Cedex, France
| | - Michael L. Rutter
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, SE5 8AF UK
| | - Ana F. Sequeira
- Instituto Nacional de Saude Dr Ricardo Jorge, Av Padre Cruz 1649-016, Lisbon, Portugal
- BioFIG, Center for Biodiversity, Functional and Integrative Genomics, Campus da FCUL, C2.2.12, Campo Grande, 1749-016 Lisbon, Portugal
- Instituto Gulbenkian de Cîencia, Rua Quinta Grande, 2780-156 Oeiras, Portugal
| | - Latha Soorya
- Department of Psychiatry, The Seaver Autism Center for Research and Treatment, Mount Sinai School of Medicine, New York, 10029 USA
| | - Inês Sousa
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
| | - Nuala Sykes
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
| | - Vera Stoppioni
- Neuropsichiatria Infantile, Ospedale Santa Croce, 61032 Fano, Italy
| | - Raffaella Tancredi
- Stella Maris Institute for Child and Adolescent Neuropsychiatry, 56128 Calambrone, Pisa, Italy
| | - Maïté Tauber
- Octogone/CERPP (Centre d’Eudes et de Recherches en Psychopathologie), University de Toulouse Le Mirail, 31058 Toulouse Cedex, France
| | - Ann P. Thompson
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON L8N 3Z5 Canada
| | - Susanne Thomson
- Department of Molecular Physiology and Biophysics, Vanderbilt Kennedy Center, Centers for Human Genetics Research and Molecular Neuroscience, Vanderbilt University, Nashville, TN 37232 USA
| | - John Tsiantis
- University Department of Child Psychiatry, Athens University, Medical School, Agia Sophia Children’s Hospital, 115 27 Athens, Greece
| | - Herman Van Engeland
- Department of Child and Adolescent Psychiatry, University Medical Center, 3508 Utrecht, GA The Netherlands
| | - John B. Vincent
- Department of Psychiatry, Centre for Addiction and Mental Health, Clarke Institute, University of Toronto, Toronto, ON M5G 1X8 Canada
| | - Fred Volkmar
- Child Study Centre, Yale University, New Haven, CT 06520 USA
| | - Jacob A. S. Vorstman
- Department of Child and Adolescent Psychiatry, University Medical Center, 3508 Utrecht, GA The Netherlands
| | - Simon Wallace
- Department of Psychiatry, University of Oxford, Warneford Hospital, Headington, Oxford, OX3 7JX UK
| | - Kai Wang
- The Center for Applied Genomics, Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Thomas H. Wassink
- Department of Psychiatry, Carver College of Medicine, Iowa City, IA 52242 USA
| | - Kathy White
- Department of Psychiatry, University of Oxford, Warneford Hospital, Headington, Oxford, OX3 7JX UK
| | - Kirsty Wing
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
| | - Kerstin Wittemeyer
- Autism Centre for Education and Research, School of Education, University of Birmingham, Birmingham, B15 2TT UK
| | - Brian L. Yaspan
- Department of Molecular Physiology and Biophysics, Vanderbilt Kennedy Center, Centers for Human Genetics Research and Molecular Neuroscience, Vanderbilt University, Nashville, TN 37232 USA
| | - Lonnie Zwaigenbaum
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2J3 Canada
| | - Catalina Betancur
- INSERM U952 and CNRS UMR 7224, UPMC Univ Paris 06, Paris, 75005 France
| | - Joseph D. Buxbaum
- Department of Psychiatry, The Seaver Autism Center for Research and Treatment, Mount Sinai School of Medicine, New York, 10029 USA
- Departments of Genetics and Genomic Sciences and Neuroscience, Mount Sinai School of Medicine, New York, 10029 USA
- Department of Neuroscience, Mount Sinai School of Medicine, New York, 10029 USA
| | - Rita M. Cantor
- Department of Human Genetics, University of California, Los Angeles School of Medicine, Los Angeles, CA 90095 USA
| | - Edwin H. Cook
- Department of Psychiatry, Institute for Juvenile Research, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Hilary Coon
- Psychiatry Department, University of Utah Medical School, Salt Lake City, UT 84108 USA
| | - Michael L. Cuccaro
- The John P. Hussman Institute for Human Genomics, University of Miami School of Medicine, Miami, FL 33136 USA
| | - Daniel H. Geschwind
- Department of Neurology, Center for Autism Research and Treatment, Program in Neurogenetics, Semel Institute, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Jonathan L. Haines
- Department of Molecular Physiology and Biophysics, Vanderbilt Kennedy Center, Centers for Human Genetics Research and Molecular Neuroscience, Vanderbilt University, Nashville, TN 37232 USA
| | - Joachim Hallmayer
- Department of Psychiatry, Division of Child and Adolescent Psychiatry and Child Development, Stanford University School of Medicine, Stanford, CA 94304 USA
| | - Anthony P. Monaco
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
| | - John I. Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Margaret A. Pericak-Vance
- The John P. Hussman Institute for Human Genomics, University of Miami School of Medicine, Miami, FL 33136 USA
| | - Gerard D. Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Pennsylvania, 19104 USA
| | - Stephen W. Scherer
- The Centre for Applied Genomics and Program in Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, ON M5G 1L7 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1 Canada
| | - James S. Sutcliffe
- Department of Molecular Physiology and Biophysics, Vanderbilt Kennedy Center, Centers for Human Genetics Research and Molecular Neuroscience, Vanderbilt University, Nashville, TN 37232 USA
| | - Peter Szatmari
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON L8N 3Z5 Canada
| | - Veronica J. Vieland
- Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children’s Hospital and The Ohio State University, Columbus, OH 43205 USA
| | - Ellen M. Wijsman
- Department of Biostatistics, University of Washington, Seattle, WA 98195 USA
- Department of Medicine, University of Washington, Seattle, WA 98195 USA
| | - Andrew Green
- School of Medicine and Medical Science University College, Dublin 4, Ireland
| | - Michael Gill
- Autism Genetics Group, Department of Psychiatry, School of Medicine, Trinity College, Dublin 8, Ireland
| | - Louise Gallagher
- Autism Genetics Group, Department of Psychiatry, School of Medicine, Trinity College, Dublin 8, Ireland
| | - Astrid Vicente
- Instituto Nacional de Saude Dr Ricardo Jorge, Av Padre Cruz 1649-016, Lisbon, Portugal
- BioFIG, Center for Biodiversity, Functional and Integrative Genomics, Campus da FCUL, C2.2.12, Campo Grande, 1749-016 Lisbon, Portugal
- Instituto Gulbenkian de Cîencia, Rua Quinta Grande, 2780-156 Oeiras, Portugal
| | - Sean Ennis
- School of Medicine and Medical Science University College, Dublin 4, Ireland
- Health Sciences Centre, University College Dublin, Dublin, Ireland
| |
Collapse
|
25
|
Modi ME, Young LJ. The oxytocin system in drug discovery for autism: animal models and novel therapeutic strategies. Horm Behav 2012; 61:340-50. [PMID: 22206823 PMCID: PMC3483080 DOI: 10.1016/j.yhbeh.2011.12.010] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 01/13/2023]
Abstract
Animal models and behavioral paradigms are critical for elucidating the neural mechanism involved in complex behaviors, including social cognition. Both genotype and phenotype based models have implicated the neuropeptide oxytocin (OT) in the regulation of social behavior. Based on the findings in animal models, alteration of the OT system has been hypothesized to play a role in the social deficits associated with autism and other neuropsychiatric disorders. While the evidence linking the peptide to the etiology of the disorder is not yet conclusive, evidence from multiple animal models suggest modulation of the OT system may be a viable strategy for the pharmacological treatment of social deficits. In this review, we will discuss how animal models have been utilized to understand the role of OT in social cognition and how those findings can be applied to the conceptualization and treatment of the social impairments in ASD. Animal models with genetic alterations of the OT system, like the OT, OT receptor and CD38 knock-out mice, and those with phenotypic variation in social behavior, like BTBR inbred mice and prairie voles, coupled with behavioral paradigms with face and construct validity may prove to have predictive validity for identifying the most efficacious methods of stimulating the OT system to enhance social cognition in humans. The widespread use of strong animal models of social cognition has the potential yield pharmacological, interventions for the treatment social impairments psychiatric disorders. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.
Collapse
Affiliation(s)
| | - Larry J. Young
- Corresponding author. 954 Gatewood Road, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA. (L.J. Young)
| |
Collapse
|
26
|
Ameis SH, Szatmari P. Imaging-genetics in autism spectrum disorder: advances, translational impact, and future directions. Front Psychiatry 2012; 3:46. [PMID: 22615702 PMCID: PMC3351673 DOI: 10.3389/fpsyt.2012.00046] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/23/2012] [Indexed: 12/29/2022] Open
Abstract
Autism Spectrum Disorder (ASD) refers to a group of heterogeneous neurodevelopmental disorders that are unified by impairments in reciprocal social communication and a pattern of inflexible behaviors. Recent genetic advances have resolved some of the complexity of the genetic architecture underlying ASD by identifying several genetic variants that contribute to the disorder. Different etiological pathways associated with ASD may converge through effects on common molecular mechanisms, such as synaptogenesis, neuronal motility, and axonal guidance. Recently, with more sophisticated techniques, neuroimaging, and neuropathological studies have provided some consistency of evidence that altered structure, activity, and connectivity within complex neural networks is present in ASD, compared to typically developing children. The imaging-genetics approach promises to help bridge the gap between genetic variation, resultant biological effects on the brain, and production of complex neuropsychiatric symptoms. Here, we review recent findings from the developing field of imaging-genetics applied to ASD. Studies to date have indicated that relevant risk genes are associated with alterations in circuits that mediate socio-emotional, visuo-spatial, and language processing. Longitudinal studies ideally focused on early development, in conjunction with investigation for gene-gene, and gene-environment interactions may move the promise of imaging-genetics in ASD closer to the clinical domain.
Collapse
Affiliation(s)
- Stephanie H Ameis
- Department of Psychiatry, The Hospital for Sick Children, University of Toronto Toronto, ON, Canada
| | | |
Collapse
|
27
|
Liu X, Malenfant P, Reesor C, Lee A, Hudson ML, Harvard C, Qiao Y, Persico AM, Cohen IL, Chudley AE, Forster-Gibson C, Rajcan-Separovic E, Lewis MES, Holden JJA. 2p15-p16.1 microdeletion syndrome: molecular characterization and association of the OTX1 and XPO1 genes with autism spectrum disorders. Eur J Hum Genet 2011; 19:1264-70. [PMID: 21750575 PMCID: PMC3230356 DOI: 10.1038/ejhg.2011.112] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/27/2011] [Accepted: 04/29/2011] [Indexed: 12/23/2022] Open
Abstract
Reports of unrelated individuals with autism spectrum disorder (ASD) and similar clinical features having overlapping de novo interstitial deletions at 2p15-p16.1 suggest that this region harbors a gene(s) important to the development of autism. We molecularly characterized two such deletions, selecting two genes in this region, exportin 1 (XPO1) and orthodenticle homolog 1 (OTX1) for association studies in three North American cohorts (Autism Spectrum Disorder - Canadian American Research Consortium (ASD-CARC), New York, and Autism Genetic Resource Exchange (AGRE)) and one Italian cohort (Società Italiana per la Ricerca e la Formazione sull'Autismo (SIRFA)) of families with ASD. In XPO1, rs6735330 was associated with autism in all four cohorts (P<0.05), being significant in ASD-CARC cohorts (P-value following false discovery rate correction for multiple testing (P(FDR))=1.29 × 10(-5)), the AGRE cohort (P(FDR)=0.0011) and the combined families (P(FDR)=2.34 × 10(-9)). Similarly, in OTX1, rs2018650 and rs13000344 were associated with autism in ASD-CARC cohorts (P(FDR)=8.65 × 10(-7) and 6.07 × 10(5), respectively), AGRE cohort (P(FDR)=0.0034 and 0.015, respectively) and the combined families (P(FDR)=2.34 × 10(-9) and 0.00017, respectively); associations were marginal or insignificant in the New York and SIRFA cohorts. A significant association (P(FDR)=2.63 × 10(-11)) was found for the rs2018650G-rs13000344C haplotype. The above three SNPs were associated with severity of social interaction and verbal communication deficits and repetitive behaviors (P-values <0.01). No additional deletions were identified following screening of 798 ASD individuals. Our results indicate that deletion 2p15-p16.1 is not commonly associated with idiopathic ASD, but represents a novel contiguous gene syndrome associated with a constellation of phenotypic features (autism, intellectual disability, craniofacial/CNS dysmorphology), and that XPO1 and OXT1 may contribute to ASD in 2p15-p16.1 deletion cases and non-deletion cases of ASD mapping to this chromosome region.
Collapse
Affiliation(s)
- Xudong Liu
- Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
- Autism Research Program and Genetics and Genomics Research Laboratory, Ongwanada Resource Centre, Kingston, Ontario, Canada
- Autism Spectrum Disorders – Canadian-American Research Consortium
| | - Patrick Malenfant
- Autism Research Program and Genetics and Genomics Research Laboratory, Ongwanada Resource Centre, Kingston, Ontario, Canada
- Autism Spectrum Disorders – Canadian-American Research Consortium
- Department of Physiology, Queen's University, Kingston, Ontario, Canada
| | - Chelsea Reesor
- Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
- Autism Research Program and Genetics and Genomics Research Laboratory, Ongwanada Resource Centre, Kingston, Ontario, Canada
- Autism Spectrum Disorders – Canadian-American Research Consortium
| | - Alana Lee
- Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
- Autism Research Program and Genetics and Genomics Research Laboratory, Ongwanada Resource Centre, Kingston, Ontario, Canada
- Autism Spectrum Disorders – Canadian-American Research Consortium
| | - Melissa L Hudson
- Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
- Autism Research Program and Genetics and Genomics Research Laboratory, Ongwanada Resource Centre, Kingston, Ontario, Canada
- Autism Spectrum Disorders – Canadian-American Research Consortium
| | - Chansonette Harvard
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ying Qiao
- Autism Spectrum Disorders – Canadian-American Research Consortium
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia and BC Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Antonio M Persico
- Department of Child and Adolescent Psychiatry, Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Rome, Italy
- Department of Experimental Neurosciences, IRCCS ‘Fondazione Santa Lucia', Rome, Italy
| | - Ira L Cohen
- Autism Spectrum Disorders – Canadian-American Research Consortium
- Department of Psychology and George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Albert E Chudley
- Autism Spectrum Disorders – Canadian-American Research Consortium
- WRHA Program in Genetics & Metabolism, Departments of Pediatrics and Child Health, Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Cynthia Forster-Gibson
- Autism Spectrum Disorders – Canadian-American Research Consortium
- Department of Family Medicine, Queen's University, Kingston, Ontario, Canada
| | - Evica Rajcan-Separovic
- Autism Spectrum Disorders – Canadian-American Research Consortium
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - ME Suzanne Lewis
- Autism Spectrum Disorders – Canadian-American Research Consortium
- Department of Medical Genetics, University of British Columbia and BC Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Jeanette JA Holden
- Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
- Autism Research Program and Genetics and Genomics Research Laboratory, Ongwanada Resource Centre, Kingston, Ontario, Canada
- Autism Spectrum Disorders – Canadian-American Research Consortium
- Department of Physiology, Queen's University, Kingston, Ontario, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
28
|
Abstract
Autism spectrum disorders (ASD) are important neuropsychiatric disorders, currently estimated to affect approximately 1% of children, with considerable emotional and financial costs. Significant collaborative effort has been made over the last 15 years in an attempt to unravel the genetic mechanisms underlying these conditions. This has led to important discoveries, both of the roles of specific genes, as well as larger scale chromosomal copy number changes. Here, we summarize some of the latest genetic findings in the field of ASD and attempt to link them with the results of pathophysiological studies to provide an overall picture of at least one of the mechanisms by which ASD may develop.
Collapse
Affiliation(s)
- Richard Holt
- The Wellcome Trust Centre for Human Genetics, University of Oxford, UK
| | | |
Collapse
|
29
|
Carayol J, Sacco R, Tores F, Rousseau F, Lewin P, Hager J, Persico AM. Converging evidence for an association of ATP2B2 allelic variants with autism in male subjects. Biol Psychiatry 2011; 70:880-7. [PMID: 21757185 DOI: 10.1016/j.biopsych.2011.05.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/16/2011] [Accepted: 05/08/2011] [Indexed: 01/16/2023]
Abstract
BACKGROUND Autism is a severe developmental disorder, with strong genetic underpinnings. Previous genome-wide scans unveiled a linkage region spanning 3.5 Mb, located on human chromosome 3p25. This region encompasses the ATP2B2 gene, encoding the plasma membrane calcium-transporting ATPase 2 (PMCA2), which extrudes calcium (Ca2+) from the cytosol into the extracellular space. Multiple lines of evidence support excessive intracellular Ca2+ signaling in autism spectrum disorder (ASD), making ATP2B2 an attractive candidate gene. METHODS We performed a family-based association study in an exploratory sample of 277 autism genetic resource exchange families and in a replication sample including 406 families primarily recruited in Italy. RESULTS Several markers were significantly associated with ASD in the exploratory sample, and the same risk alleles at single nucleotide polymorphisms rs3774180, rs2278556, and rs241509 were found associated with ASD in the replication sample after correction for multiple testing. In both samples, the association was present in male subjects only. Markers associated with autism are all comprised within a single block of strong linkage disequilibrium spanning several exons, and the "risk" allele seems to follow a recessive mode of transmission. CONCLUSIONS These results provide converging evidence for an association between ATP2B2 gene variants and autism in male subjects, spurring interest into the identification of functional variants, most likely involved in the homeostasis of Ca2+ signaling. Additional support comes from a recent genome-wide association study by the Autism Genome Project, which highlights the same linkage disequilibrium region of the gene.
Collapse
|
30
|
Wolstenholme JT, Taylor JA, Shetty SRJ, Edwards M, Connelly JJ, Rissman EF. Gestational exposure to low dose bisphenol A alters social behavior in juvenile mice. PLoS One 2011; 6:e25448. [PMID: 21980460 PMCID: PMC3182223 DOI: 10.1371/journal.pone.0025448] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/05/2011] [Indexed: 12/02/2022] Open
Abstract
Bisphenol A (BPA) is a man-made compound used to make polycarbonate plastics and epoxy resins; public health concerns have been fueled by findings that BPA exposure can reduce sex differences in brain and some behaviors. We asked if a low BPA dose, within the range measured in humans, ingested during pregnancy, would affect social behaviors in prepubertal mice. We noted sex differences in social interactions whereby females spent more time sitting side-by-side, while males engaged in more exploring and sitting alone. In addition BPA increased display of nose-to-nose contacts, play solicitations and approaches in both sexes. Interactions between sex and diet were found for self grooming, social interactions while sitting side-by-side and following the other mouse. In all these cases interactions were produced by differences between control and BPA females. We examined brains from embryos during late gestation to determine if gene expression differences might be correlated with some of the sexually dimorphic or BPA affected behaviors we observed. Because BPA treatments ended at birth we took the brains during embryogenesis to increase the probability of discovering BPA mediated effects. We also selected this embryonic age (E18.5) because it coincides with the onset of sexual differentiation of the brain. Interestingly, mRNA for the glutamate transporter, Slc1a1, was enhanced by exposure to BPA in female brains. Also we noted that BPA changed the expression of two of the three DNA methyltransferase genes, Dnmt1 and Dnmt3a. We propose that BPA affects DNA methylation of Sc1a1 during neural development. Sex differences in juvenile social interactions are affected by BPA and in particular this compound modifies behavior in females.
Collapse
Affiliation(s)
- Jennifer T. Wolstenholme
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Julia A. Taylor
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Savera R. J. Shetty
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Michelle Edwards
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Jessica J. Connelly
- Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Emilie F. Rissman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
31
|
A genome-wide study of panic disorder suggests the amiloride-sensitive cation channel 1 as a candidate gene. Eur J Hum Genet 2011; 20:84-90. [PMID: 21811305 DOI: 10.1038/ejhg.2011.148] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Panic disorder (PD) is a mental disorder with recurrent panic attacks that occur spontaneously and are not associated to any particular object or situation. There is no consensus on what causes PD. However, it is recognized that PD is influenced by environmental factors, as well as genetic factors. Despite a significant hereditary component, genetic studies have only been modestly successful in identifying genes of importance for the development of PD. In this study, we conducted a genome-wide scan using microsatellite markers and PD patients and control individuals from the isolated population of the Faroe Islands. Subsequently, we conducted a fine mapping, which revealed the amiloride-sensitive cation channel 1 (ACCN1) located on chromosome 17q11.2-q12 as a potential candidate gene for PD. The further analyses of the ACCN1 gene using single-nucleotide polymorphisms (SNPs) revealed significant association with PD in an extended Faroese case-control sample. However, analyses of a larger independent Danish case-control sample yielded no substantial significant association. This suggests that the possible risk alleles associated in the isolated population are not those involved in the development of PD in a larger outbred population.
Collapse
|
32
|
van Loo KMJ, Martens GJM. Genetic and environmental factors in complex neurodevelopmental disorders. Curr Genomics 2011; 8:429-44. [PMID: 19412416 PMCID: PMC2647153 DOI: 10.2174/138920207783591717] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 11/07/2007] [Accepted: 11/09/2007] [Indexed: 12/14/2022] Open
Abstract
Complex neurodevelopmental disorders, such as schizophrenia, autism, attention deficit (hyperactivity) disorder, (manic) depressive illness and addiction, are thought to result from an interaction between genetic and environmental factors. Association studies on candidate genes and genome-wide linkage analyses have identified many susceptibility chromosomal regions and genes, but considerable efforts to replicate association have been surprisingly often disappointing. Here, we summarize the current knowledge of the genetic contribution to complex neurodevelopmental disorders, focusing on the findings from association and linkage studies. Furthermore, the contribution of the interaction of the genetic with environmental and epigenetic factors to the aetiology of complex neurodevelopmental disorders as well as suggestions for future research are discussed.
Collapse
Affiliation(s)
- K M J van Loo
- Department of Molecular Animal Physiology, Donders Institute for Neuroscience, Nijmegen Center for Molecular Life Sciences (NCMLS), Faculty of Science, Radboud University Nijmegen, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | | |
Collapse
|
33
|
Are retinoids potential therapeutic agents in disorders of social cognition including autism? FEBS Lett 2011; 585:1529-36. [PMID: 21557943 DOI: 10.1016/j.febslet.2011.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 05/03/2011] [Accepted: 05/03/2011] [Indexed: 11/20/2022]
Abstract
Increasing evidence suggests that the nonapeptide, oxytocin (OT), helps shape social and affiliative behaviors not only in lower mammals but also in humans. Recently, an essential mediator of brain OT release has been discovered, ADP-ribosyl cyclase and/or CD38. We have subsequently shown that polymorphisms across the CD38 gene are associated with autism spectrum disorders (ASD). Notably, CD38 expression in lymphoblastoid cells (LBC) is reduced in cell lines derived from ASD subjects compared to parental cell lines. Intriguingly, a correlation was observed between CD38 expression and measures of social function in ASD. Finally, we have shown that all-trans retinoic acid (ATRA), a known inducer of CD38 transcription, can rescue low CD38 expressing LBC lines derived from ASD subjects and restore normal levels of transcription of this ectoenzyme providing 'proof of principle' in a peripheral model that retinoids are potential therapeutic agents in ASD.
Collapse
|
34
|
Lerer E, Levi S, Israel S, Yaari M, Nemanov L, Mankuta D, Nurit Y, Ebstein RP. Low CD38 expression in lymphoblastoid cells and haplotypes are both associated with autism in a family-based study. Autism Res 2011; 3:293-302. [PMID: 21182206 DOI: 10.1002/aur.156] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Impairments in social processes characterize one of the core deficits in autism spectrum disorders (ASD) and accumulating evidence suggests that oxytocin neurotransmission is implicated in mediating social adaptation in ASD. Using a mouse model, CD38, a transmembrane protein expressed in immune cells but also in brain, was found to be critical for social behavior via regulation of oxytocin secretion. This prompted us to both examine CD38 expression in human lymphoblastoid cell lines (LBC) as well as to test association between SNPs across the CD38 gene and ASD. METHODS LBC’s were derived from 44 ASD lines and 40 "unaffected" parents. Family-based association (UNPHASED) was examined by genotyping 11 tagging SNPs spanning the CD38 gene identified using HapMap data in 170 trios. An additional SNP (rs3796863) associated in a study by Munesue et al. with ASD was also genotyped. RESULTS A highly significant reduction in CD38 expression was observed in immortalized lymphocytes derived from ASD subjects compared to their "unaffected" parents (F517.2, P50.00024, df51). Haplotype analysis showed significant association (permutation corrected) between three and seven locus haplotypes and DSM IV ASD in low functioning (IQ < 70) subjects. CONCLUSIONS The current report supports a role for CD38 in conferring risk for ASD. Notably, our study shows that this gene is not only associated with low functioning ASD but that CD38 expression is markedly reduced in LBC derived from ASD subjects compared to "unaffected" parents, strengthening the connection between oxytocin and ASD.
Collapse
Affiliation(s)
- Elad Lerer
- Human Genetics, Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Inoue H, Yamasue H, Tochigi M, Abe O, Liu X, Kawamura Y, Takei K, Suga M, Yamada H, Rogers MA, Aoki S, Sasaki T, Kasai K. Association between the oxytocin receptor gene and amygdalar volume in healthy adults. Biol Psychiatry 2010; 68:1066-72. [PMID: 20832055 DOI: 10.1016/j.biopsych.2010.07.019] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 07/10/2010] [Accepted: 07/12/2010] [Indexed: 12/18/2022]
Abstract
BACKGROUND Recent studies have suggested that oxytocin affects social cognition and behavior mediated by the oxytocin receptor (OXTR) in amygdala in humans as well as in experimental animals. Genetic studies have revealed a link between the OXTR gene and the susceptibility to autism spectrum disorders (ASD), especially in the social dysfunctional feature of ASD. METHODS We examined the relationship between amygdala volume measured with manual tracing methodology and seven single nucleotide polymorphisms and one haplotype-block in OXTR, which were previously reported to be associated with ASD, in 208 socially intact Japanese adults with no neuropsychiatric history or current diagnosis. RESULTS The rs2254298A allele of OXTR was significantly associated with larger bilateral amygdala volume. The rs2254298A allele effect on amygdala volume varied in proportion to the dose of this allele. The larger the number of rs2254298A alleles an individual had, the larger their amygdala volume. Such an association was not observed with hippocampal volume or with global brain volumes, including whole gray, white matter, and cerebrospinal-fluid space. Furthermore, two three-single nucleotide polymorphism haplotypes, including rs2254298G allele, showed significant associations with the smaller bilateral amygdala volume. CONCLUSIONS The present results suggest that OXTR might be associated with the susceptibility to ASD, especially in its aspects of social interaction and communication mediated by a modulation of amygdala development, one of the most distributed brain regions with high density of OXTR. Furthermore, amygdala volume measured with magnetic resonance imaging could be a useful intermediate phenotype to uncover the complex link between OXTR and social dysfunction in ASD.
Collapse
Affiliation(s)
- Hideyuki Inoue
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Identifying Loci for the Overlap Between Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder Using a Genome-wide QTL Linkage Approach. J Am Acad Child Adolesc Psychiatry 2010. [PMID: 20610137 DOI: 10.1097/00004583-201007000-00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Nijmeijer JS, Arias-Vásquez A, Rommelse NNJ, Altink ME, Anney RJL, Asherson P, Banaschewski T, Buschgens CJM, Fliers EA, Gill M, Minderaa RB, Poustka L, Sergeant JA, Buitelaar JK, Franke B, Ebstein RP, Miranda A, Mulas F, Oades RD, Roeyers H, Rothenberger A, Sonuga-Barke EJS, Steinhausen HC, Faraone SV, Hartman CA, Hoekstra PJ. Identifying loci for the overlap between attention-deficit/hyperactivity disorder and autism spectrum disorder using a genome-wide QTL linkage approach. J Am Acad Child Adolesc Psychiatry 2010; 49:675-85. [PMID: 20610137 PMCID: PMC2929476 DOI: 10.1016/j.jaac.2010.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 03/05/2010] [Accepted: 03/25/2010] [Indexed: 12/01/2022]
Abstract
OBJECTIVE The genetic basis for autism spectrum disorder (ASD) symptoms in children with attention-deficit/hyperactivity disorder (ADHD) was addressed using a genome-wide linkage approach. METHOD Participants of the International Multi-Center ADHD Genetics study comprising 1,143 probands with ADHD and 1,453 siblings were analyzed. The total and subscale scores of the Social Communication Questionnaire (SCQ) were used as quantitative traits for multipoint regression-based linkage analyses on 5,407 autosomal single-nucleotide polymorphisms applying MERLIN-regress software, both without and with inclusion of ADHD symptom scores as covariates. RESULTS The analyses without ADHD symptom scores as covariates resulted in three suggestive linkage signals, i.e., on chromosomes 15q24, 16p13, and 18p11. Inclusion of ADHD symptom scores as covariates resulted in additional suggestive loci on chromosomes 7q36 and 12q24, whereas the LOD score of the locus on chromosome 15q decreased below the threshold for suggestive linkage. The loci on 7q, 16p, and 18p were found for the SCQ restricted and repetitive subscale, that on 15q was found for the SCQ communication subscale, and that on 12q for the SCQ total score. CONCLUSIONS Our findings suggest that QTLs identified in this study are ASD specific, although the 15q QTL potentially has pleiotropic effects for ADHD and ASD. This study confirms that genetic factors influence ASD traits along a continuum of severity, as loci potentially underlying ASD symptoms in children with ADHD were identified even though subjects with autism had been excluded from the IMAGE sample, and supports the hypothesis that differential genetic factors underlie the three ASD dimensions.
Collapse
MESH Headings
- Adolescent
- Attention Deficit Disorder with Hyperactivity/diagnosis
- Attention Deficit Disorder with Hyperactivity/genetics
- Attention Deficit Disorder with Hyperactivity/psychology
- Child
- Child Development Disorders, Pervasive/diagnosis
- Child Development Disorders, Pervasive/genetics
- Child Development Disorders, Pervasive/psychology
- Chromosome Aberrations
- Chromosome Mapping
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 16/genetics
- Chromosomes, Human, Pair 18/genetics
- Communication
- Comorbidity
- Female
- Genetic Predisposition to Disease/genetics
- Genetic Testing
- Genome-Wide Association Study
- Humans
- Lod Score
- Male
- Personality Assessment/statistics & numerical data
- Polymorphism, Single Nucleotide/genetics
- Psychometrics/statistics & numerical data
- Quantitative Trait Loci/genetics
- Social Behavior
Collapse
|
38
|
Apicella CL, Cesarini D, Johannesson M, Dawes CT, Lichtenstein P, Wallace B, Beauchamp J, Westberg L. No association between oxytocin receptor (OXTR) gene polymorphisms and experimentally elicited social preferences. PLoS One 2010; 5:e11153. [PMID: 20585395 PMCID: PMC2886839 DOI: 10.1371/journal.pone.0011153] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 05/27/2010] [Indexed: 02/04/2023] Open
Abstract
Background Oxytocin (OXT) has been implicated in a suite of complex social behaviors including observed choices in economic laboratory experiments. However, actual studies of associations between oxytocin receptor (OXTR) gene variants and experimentally elicited social preferences are rare. Methodology/Principal Findings We test hypotheses of associations between social preferences, as measured by behavior in two economic games, and 9 single nucleotide polymorphisms (SNPs) of the OXTR gene in a sample of Swedish twins (n = 684). Two standard economic games, the dictator game and the trust game, both involving real monetary consequences, were used to elicit such preferences. After correction for multiple hypothesis testing, we found no significant associations between any of the 9 single nucleotide polymorphisms (SNPs) and behavior in either of the games. Conclusion We were unable to replicate the most significant association reported in previous research between the amount donated in a dictator game and an OXTR genetic variant.
Collapse
Affiliation(s)
- Coren L Apicella
- Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Park J, Willmott M, Vetuz G, Toye C, Kirley A, Hawi Z, Brookes KJ, Gill M, Kent L. Evidence that genetic variation in the oxytocin receptor (OXTR) gene influences social cognition in ADHD. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:697-702. [PMID: 20347913 DOI: 10.1016/j.pnpbp.2010.03.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/09/2010] [Accepted: 03/20/2010] [Indexed: 01/29/2023]
Abstract
Some children with ADHD also have social and communication difficulties similar to those seen in children with autistic spectrum disorders and this may be due to shared genetic liability. As the oxytocin receptor (OXTR) gene has been implicated in social cognition and autistic spectrum disorders, this study investigated whether OXTR polymorphisms previously implicated in autism were associated with ADHD and whether they influenced OXTR mRNA expression in 27 normal human amygdala brain samples. The family-based association sample consisted of 450 DSM-IV diagnosed ADHD probands and their parents. Although there was no association with the ADHD phenotype, an association with social cognitive impairments in a subset of the ADHD probands (N=112) was found for SNP rs53576 (F=5.24, p=0.007) with post-hoc tests demonstrating that the AA genotype was associated with better social ability compared to the AG genotype. Additionally, significant association was also found for rs13316193 (F=3.09, p=0.05) with post-hoc tests demonstrating that the CC genotype was significantly associated with poorer social ability than the TT genotype. No significant association between genotype and OXTR mRNA expression was found. This study supports previous evidence that the OXTR gene is implicated in social cognition.
Collapse
Affiliation(s)
- J Park
- Bute Medical School, University of St Andrews, St Andrews, Scotland, KY16 9TS, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tansey KE, Brookes KJ, Hill MJ, Cochrane LE, Gill M, Skuse D, Correia C, Vicente A, Kent L, Gallagher L, Anney RJL. Oxytocin receptor (OXTR) does not play a major role in the aetiology of autism: genetic and molecular studies. Neurosci Lett 2010; 474:163-167. [PMID: 20303388 DOI: 10.1016/j.neulet.2010.03.035] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 03/10/2010] [Accepted: 03/12/2010] [Indexed: 11/22/2022]
Abstract
Oxytocin (OXT) has been hypothesized to play a role in aetiology of autism based on a demonstrated involvement in the regulation of social behaviours. It is postulated that OXT reduces activation of the amygdala, inhibiting social anxiety, indicating a neural mechanism for the effects of OXT in social cognition. Genetic variation at the oxytocin receptor gene (OXTR) has been reported to be associated with autism. We examined 18 SNPs at the OXTR gene for association in three independent autism samples from Ireland, Portugal and the United Kingdom. We investigated cis-acting genetic effects on OXTR expression in lymphocytes and amygdala region of the brain using an allelic expression imbalance (AEI) assay and by investigating the correlation between RNA levels and genotype in the amygdala region. No marker survived multiple correction for association with autism in any sample or in a combined sample (n=436). Results from the AEI assay performed in the lymphoblast cell lines highlighted two SNPs associated with relative allelic abundance in OXTR (rs237897 and rs237895). Two SNPs were found to be effecting cis-acting variation through AEI in the amygdala. One was weakly correlated with total gene expression (rs13316193) and the other was highlighted in the lymphoblast cell lines (rs237895). Data presented here does not support the role of common genetic variation in OXTR in the aetiology of autism spectrum disorders in Caucasian samples.
Collapse
Affiliation(s)
- Katherine E Tansey
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin 8, Ireland.
| | | | - Matthew J Hill
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin 8, Ireland
| | - Lynne E Cochrane
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin 8, Ireland
| | - Michael Gill
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin 8, Ireland
| | - David Skuse
- Behavioural and Brain Unit, Institute of Child Health, University College London, United Kingdom
| | - Catarina Correia
- Instituto Gulbenkian de Ciência, Oeiras, Portugal; Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal; Center for Biodiversity, Functional & Integrative Genomics (BIOFIG), Lisbon, Portugal
| | - Astrid Vicente
- Instituto Gulbenkian de Ciência, Oeiras, Portugal; Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal; Center for Biodiversity, Functional & Integrative Genomics (BIOFIG), Lisbon, Portugal
| | - Lindsey Kent
- Bute Medical School, University of St Andrews, United Kingdom
| | - Louise Gallagher
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin 8, Ireland
| | - Richard J L Anney
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin 8, Ireland
| |
Collapse
|
41
|
Combi R, Redaelli S, Beghi M, Clerici M, Cornaggia CM, Dalprà L. Clinical and genetic evaluation of a family showing both autism and epilepsy. Brain Res Bull 2010; 82:25-28. [PMID: 20152887 DOI: 10.1016/j.brainresbull.2010.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 02/01/2010] [Accepted: 02/03/2010] [Indexed: 11/16/2022]
Abstract
Autism is a strong genetic disorder, with an estimated heritability greater than 90%. Nonetheless, its specific genetic aetiology remains largely unknown. Autism is associated with epilepsy in early childhood and epilepsy occurs in 10-30% of individuals with autism. Here we report the case of a woman affected by a severe epileptic disorder with an onset at 14 years old. She is affected by a cryptogenetic focal epilepsy with complex partial (psychomotor) and secondarily generalized tonic-clonic seizures, which are drug resistant. The woman is married to a healthy man and has six children: two girls are healthy, a girl and two boys are affected by autism while one boy shows partial seizures. The three children with autism show moderate mental retardation and an EEG with no epileptiform alterations. The child with epileptic seizures shows an asymmetric EEG that is not necessarily pathological. In this family, no chromosomal rearrangements were detected by means of classical cytogenetic analyses. The presence of FRAXA alterations and of microdeletions of the 15q11-q13 chromosome region were also excluded. A genome-wide linkage analysis using microsatellite markers revealed several chromosome regions as possible susceptibility loci.
Collapse
Affiliation(s)
- R Combi
- Dept of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Insel TR. The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. Neuron 2010; 65:768-79. [PMID: 20346754 PMCID: PMC2847497 DOI: 10.1016/j.neuron.2010.03.005] [Citation(s) in RCA: 715] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2010] [Indexed: 11/25/2022]
Abstract
Social neuroscience is rapidly exploring the complex territory between perception and action where recognition, value, and meaning are instantiated. This review follows the trail of research on oxytocin and vasopressin as an exemplar of one path for exploring the "dark matter" of social neuroscience. Studies across vertebrate species suggest that these neuropeptides are important for social cognition, with gender- and steroid-dependent effects. Comparative research in voles yields a model based on interspecies and intraspecies variation of the geography of oxytocin receptors and vasopressin V1a receptors in the forebrain. Highly affiliative species have receptors in brain circuits related to reward or reinforcement. The neuroanatomical distribution of these receptors may be guided by variations in the regulatory regions of their respective genes. This review describes the promises and problems of extrapolating these findings to human social cognition, with specific reference to the social deficits of autism.
Collapse
Affiliation(s)
- Thomas R Insel
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
43
|
Wermter AK, Kamp-Becker I, Hesse P, Schulte-Körne G, Strauch K, Remschmidt H. Evidence for the involvement of genetic variation in the oxytocin receptor gene (OXTR) in the etiology of autistic disorders on high-functioning level. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:629-639. [PMID: 19777562 DOI: 10.1002/ajmg.b.31032] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An increasing number of animal studies advert to a substantial role of the neuropeptide oxytocin in the regulation of social attachment and affiliation. Furthermore, animal studies showed anxiety and stress-reduced effects of oxytocin. First human studies confirm these findings in animal studies and implicate a crucial role of oxytocin in human social attachment behavior and in social interactions. Thus, the oxytocin system might be involved in the impairment of social interaction and attachment in autism spectrum disorders (ASD). The human oxytocin receptor gene (OXTR) represents a plausible candidate gene for the etiology of ASD. To analyze whether genetic variants in the OXTR gene are associated with ASD we performed family-based single-marker and haplotype association analyses with 22 single nucleotide polymorphisms (SNPs) in the OXTR and its 5' region in 100 families with autistic disorders on high-functioning level (Asperger syndrome (AS), high-functioning autism (HFA), and atypical autism (AA)). Single-marker and haplotype association analyses revealed nominally significant associations of one single SNP and one haplotype with autism, respectively. Furthermore, employing a "reverse phenotyping" approach, patients carrying the haplotype associated with autism showed nominally significant impairments in comparison to noncarriers of the haplotype in items of the Autism Diagnostic Interview-Revised algorithm describing aspects of social interaction and communication. In conclusion, our results implicate that genetic variation in the OXTR gene might be relevant in the etiology of autism on high-functioning level.
Collapse
Affiliation(s)
- Anne-Kathrin Wermter
- Clinical Research Group, Department of Child and Adolescent Psychiatry and Psychotherapy, Philipps-University of Marburg, Marburg, Germany
| | - Inge Kamp-Becker
- Department of Child and Adolescent Psychiatry and Psychotherapy, Philipps-University of Marburg, Marburg, Germany
| | - Philipp Hesse
- Institute of Medical Biometry and Epidemiology, Philipps University of Marburg, Marburg, Germany
| | - Gerd Schulte-Körne
- Department of Child and Adolescent Psychiatry and Psychotherapy, Philipps-University of Marburg, Marburg, Germany
| | - Konstantin Strauch
- Institute of Medical Biometry and Epidemiology, Philipps University of Marburg, Marburg, Germany
| | - Helmut Remschmidt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Philipps-University of Marburg, Marburg, Germany
| |
Collapse
|
44
|
Carayol J, Schellenberg GD, Tores F, Hager J, Ziegler A, Dawson G. Assessing the impact of a combined analysis of four common low-risk genetic variants on autism risk. Mol Autism 2010; 1:4. [PMID: 20678243 PMCID: PMC2907567 DOI: 10.1186/2040-2392-1-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 02/22/2010] [Indexed: 02/02/2023] Open
Abstract
Background Autism is a complex disorder characterized by deficits involving communication, social interaction, and repetitive and restrictive patterns of behavior. Twin studies have shown that autism is strongly heritable, suggesting a strong genetic component. In other disease states with a complex etiology, such as type 2 diabetes, cancer and cardiovascular disease, combined analysis of multiple genetic variants in a genetic score has helped to identify individuals at high risk of disease. Genetic scores are designed to test for association of genetic markers with disease. Method The accumulation of multiple risk alleles markedly increases the risk of being affected, and compared with studying polymorphisms individually, it improves the identification of subgroups of individuals at greater risk. In the present study, we show that this approach can be applied to autism by specifically looking at a high-risk population of children who have siblings with autism. A two-sample study design and the generation of a genetic score using multiple independent genes were used to assess the risk of autism in a high-risk population. Results In both samples, odds ratios (ORs) increased significantly as a function of the number of risk alleles, with a genetic score of 8 being associated with an OR of 5.54 (95% confidence interval [CI] 2.45 to 12.49). The sensitivities and specificities for each genetic score were similar in both analyses, and the resultant area under the receiver operating characteristic curves were identical (0.59). Conclusions These results suggest that the accumulation of multiple risk alleles in a genetic score is a useful strategy for assessing the risk of autism in siblings of affected individuals, and may be better than studying single polymorphisms for identifying subgroups of individuals with significantly greater risk.
Collapse
|
45
|
Liu X, Kawamura Y, Shimada T, Otowa T, Koishi S, Sugiyama T, Nishida H, Hashimoto O, Nakagami R, Tochigi M, Umekage T, Kano Y, Miyagawa T, Kato N, Tokunaga K, Sasaki T. Association of the oxytocin receptor (OXTR) gene polymorphisms with autism spectrum disorder (ASD) in the Japanese population. J Hum Genet 2010; 55:137-41. [PMID: 20094064 DOI: 10.1038/jhg.2009.140] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The oxytocin receptor (OXTR) gene, which is located on chromosome 3p25.3, has been implicated as a candidate gene for susceptibility of autism spectrum disorder (ASD). Positive associations between OXTR and ASD have been reported in earlier studies. However, the results were inconsistent and demand further studies. In this study, we investigated the associations between OXTR and ASD in a Japanese population by analyzing 11 single-nucleotide polymorphisms (SNPs) using both family-based association test (FBAT) and population-based case-control test. No significant signal was detected in the FBAT test. However, significant differences were observed in allelic frequencies of four SNPs, including rs2254298 between patients and controls. The risk allele of rs2254298 was 'A', which was consistent with the previous study in Chinese, and not with the observations in Caucasian. The difference in the risk allele of this SNP in previous studies might be attributable to an ethnic difference in the linkage disequilibrium structure between the Asians and Caucasians. In addition, haplotype analysis exhibits a significant association between a five-SNP haplotype and ASD, including rs22542898. In conclusion, our study might support that OXTR has a significant role in conferring the risk of ASD in the Japanese population.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Department of Human Genetics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Harony H, Wagner S. The Contribution of Oxytocin and Vasopressin to Mammalian Social Behavior: Potential Role in Autism Spectrum Disorder. Neurosignals 2010; 18:82-97. [DOI: 10.1159/000321035] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 07/15/2010] [Indexed: 01/09/2023] Open
|
47
|
Correia C, Coutinho AM, Almeida J, Lontro R, Lobo C, Miguel TS, Martins M, Gallagher L, Conroy J, Gill M, Oliveira G, Vicente AM. Association of the alpha4 integrin subunit gene (ITGA4) with autism. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:1147-51. [PMID: 19259978 DOI: 10.1002/ajmg.b.30940] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the present work, we provide further evidence for the involvement of the integrin alpha-4 precursor gene (ITGA4) in the etiology of autism, by replicating previous findings of a genetic association with autism in various independent populations. The ITGA4 gene maps to the autism linkage region on 2q31-33 and is therefore a plausible positional candidate. We tested eight single nucleotide polymorphisms (SNPs) in the ITGA4 gene region for association with autism in a sample of 164 nuclear families. Evidence for association was found for the rs155100 marker (P = 0.019) and for a number of specific marker haplotypes containing this SNP (0.00053 < P < 0.022). alpha4 integrins are known to play a key role in neuroinflammatory processes, which are hypothesized to contribute to autism. In this study, an association was found between the ITGA4 rs1449263 marker and levels of a serum autoantibody directed to brain tissue, which was previously shown to be significantly more frequent in autistic patients than in age-matched controls in our population. This result suggests that the ITGA4 gene could be involved in a neuroimmune process thought to occur in autistic patients and, together with previous findings, offers a new perspective on the role of integrins in the etiology of autism to which little attention has been paid so far.
Collapse
|
48
|
Heinrichs M, von Dawans B, Domes G. Oxytocin, vasopressin, and human social behavior. Front Neuroendocrinol 2009; 30:548-557. [PMID: 19505497 DOI: 10.1016/j.yfrne.2009.05.005] [Citation(s) in RCA: 549] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 05/07/2009] [Accepted: 05/22/2009] [Indexed: 10/20/2022]
Abstract
There is substantial evidence from animal research indicating a key role of the neuropeptides oxytocin (OT) and arginine vasopressin (AVP) in the regulation of complex social cognition and behavior. As social interaction permeates the whole of human society, and the fundamental ability to form attachment is indispensable for social relationships, studies are beginning to dissect the roles of OT and AVP in human social behavior. New experimental paradigms and technologies in human research allow a more nuanced investigation of the molecular basis of social behavior. In addition, a better understanding of the neurobiology and neurogenetics of human social cognition and behavior has important implications for the current development of novel clinical approaches for mental disorders that are associated with social deficits (e.g., autism spectrum disorder, social anxiety disorder, and borderline personality disorder). This review focuses on our recent knowledge of the behavioral, endocrine, genetic, and neural effects of OT and AVP in humans and provides a synthesis of recent advances made in the effort to implicate the oxytocinergic system in the treatment of psychopathological states.
Collapse
Affiliation(s)
- Markus Heinrichs
- Department of Psychology, University of Freiburg, Freiburg i. Br., Germany.
| | | | - Gregor Domes
- Department of Psychology, University of Freiburg, Freiburg i. Br., Germany
| |
Collapse
|
49
|
Associations between the oxytocin receptor gene (OXTR) and affect, loneliness and intelligence in normal subjects. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:860-6. [PMID: 19376182 DOI: 10.1016/j.pnpbp.2009.04.004] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2008] [Revised: 02/28/2009] [Accepted: 04/09/2009] [Indexed: 11/20/2022]
Abstract
Associations of oxytocin receptor gene (OXTR) variants and autism spectrum disorders (ASD) have been reported in earlier studies; in one of the studies associations with IQ and daily living skills were found additionally. Variations of the oxytocin receptor gene might also regulate affect, attachment and separation beyond the diagnostic borders of autism. We tested hypotheses of associations between positive and negative affects and social and emotional loneliness (285 adults), IQ (117 adolescents) and polymorphisms of the oxytocin receptor gene (OXTR rs53576, rs2254298 and rs2228485) in normal subjects. Individuals with the oxytocin OXTR rs53576 A/A genotype showed lower positive affect scores (F=5.532, df=1; p=0.019). This effect was restricted to males (F=13.098, df=1; p=0.00047). Haplotypes constructed with the three markers were associated with positive affect (p=0.0012), negative affect (p<0.0001) and emotional loneliness (p<0.0001). Non-verbal intelligence was significantly reduced in rs53576 A/A adolescents (T=2.247, p=0.027). Our findings support a role for the oxytocin receptor haplotypes in the generation of affectivity, emotional loneliness and IQ.
Collapse
|
50
|
Ebstein RP, Israel S, Lerer E, Uzefovsky F, Shalev I, Gritsenko I, Riebold M, Salomon S, Yirmiya N. Arginine vasopressin and oxytocin modulate human social behavior. Ann N Y Acad Sci 2009; 1167:87-102. [PMID: 19580556 DOI: 10.1111/j.1749-6632.2009.04541.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Increasing evidence suggests that two nonapeptides, arginine vasopressin and oxytocin, shape human social behavior in both nonclinical and clinical subjects. Evidence is discussed that in autism spectrum disorders genetic polymorphisms in the vasopressin-oxytocin pathway, notably the arginine vasopressin receptor 1a (AVPR1a), the oxytocin receptor (OXTR), neurophysin I and II, and CD38 (recently shown to be critical for social behavior by mediating oxytocin secretion) contribute to deficits in socialization skills in this group of patients. We also present first evidence that CD38 expression in lymphoblastoid cells derived from subjects diagnosed with autism is correlated with social skill phenotype inventoried by the Vineland Adaptive Behavioral Scales. Additionally, we discuss molecular genetic evidence that in nonclinical subjects both AVPR1a and OXTR genes contribute to prosocial or altruistic behavior inventoried by two experimental paradigms, the dictator game and social values orientation. The role of the AVPR1a is also analyzed in prepulse inhibition. Prepulse inhibition of the startle response to auditory stimuli is a largely autonomic response that resonates with social cognition in both animal models and humans. First results are presented showing that intranasal administration of arginine vasopressin increases salivary cortisol levels in the Trier Social Stress test. To summarize, accumulating studies employing a broad array of cutting-edge tools in psychology, neuroeconomics, molecular genetics, pharmacology, electrophysiology, and brain imaging are beginning to elaborate the intriguing role of oxytocin and arginine vasopressin in human social behavior. We expect that future studies will continue this advance and deepen our understanding of these complex events.
Collapse
Affiliation(s)
- Richard P Ebstein
- Department of Psychology, The Hebrew University of Jerusalem, Herzog Memorial Hospital, Givat Shaul, Jerusalem, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|