1
|
Cukkemane A, Dingley AJ, Mohrlüder J, Santiago-Schübel B, Weiergräber OH, Willbold D. A peptide mimetic therapeutic strategy targeting dysfunction of the scaffold protein DISC-1 in psychiatric disorders. Eur J Pharm Sci 2025; 211:107148. [PMID: 40449672 DOI: 10.1016/j.ejps.2025.107148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2025] [Revised: 05/16/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025]
Abstract
Disrupted in schizophrenia 1 (DISC1) is a scaffold protein that regulates several physiological processes ranging from cellular division to neurodevelopment, and its dysfunction contributes to various neurological disorders including schizophrenia, bipolar and mood disorders, and autism. Thus, deciphering its native functions and pathophysiological roles is crucial. In this report, three disease-associated mutants of the C-region of DISC1, i.e., S713E, S704C, and L807-frameshift, were examined to further elucidate the role of DISC1 in cell division. We demonstrate that the mutations do not render the variants functionally inactive; instead, the interaction sites are presumably lost during the aggregation of the DISC1 C-region into amyloid-type fibrils. The minimal fibrillizing element in the C-region is the intrinsically disordered β-core (716‒761) that houses a segment absent in the splice variant DISC1Δ22aa, which cannot bind proteins of the mitotic spindle complex and thus hampers cellular proliferation. Based on these structure-function relationships, we present a rational drug development strategy using phage display technology and highlight the role of peptide mimetics in curtailing the agglomeration of fibrils.
Collapse
Affiliation(s)
- Abhishek Cukkemane
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany.; Heinrich Heine University Düsseldorf, Institut für Physikalische Biologie, Düsseldorf, Germany..
| | - Andrew J Dingley
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany
| | - Jeannine Mohrlüder
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany
| | - Beatrix Santiago-Schübel
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany
| | - Oliver H Weiergräber
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany..
| | - Dieter Willbold
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany.; Heinrich Heine University Düsseldorf, Institut für Physikalische Biologie, Düsseldorf, Germany..
| |
Collapse
|
2
|
Mahoney HL, Bloom CA, Justin HS, Capraro BM, Morris C, Gonzalez D, Sandefur E, Faulkner J, Reiss S, Valladares A, Ocampo A, Carter B, Lussier AL, Dinh LP, Weeber E, Gamsby J, Gulick D. DISC1 and reelin interact to alter cognition, inhibition, and neurogenesis in a novel mouse model of schizophrenia. Front Cell Neurosci 2024; 17:1321632. [PMID: 38283751 PMCID: PMC10813205 DOI: 10.3389/fncel.2023.1321632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024] Open
Abstract
The etiology of schizophrenia (SCZ) is multifactorial, and depending on a host of genetic and environmental factors. Two putative SCZ susceptibility genes, Disrupted-in-Schizophrenia-1 (DISC1) and reelin (RELN), interact at a molecular level, suggesting that combined disruption of both may lead to an intensified SCZ phenotype. To examine this gene-gene interaction, we produced a double mutant mouse line. Mice with heterozygous RELN haploinsufficiency were crossed with mice expressing dominant-negative c-terminal truncated human DISC1 to produce offspring with both mutations (HRM/DISC1 mice). We used an array of behavioral tests to generate a behavioral phenotype for these mice, then examined the prefrontal cortex and hippocampus using western blotting and immunohistochemistry to probe for SCZ-relevant molecular and cellular alterations. Compared to wild-type controls, HRM/DISC1 mice demonstrated impaired pre-pulse inhibition, altered cognition, and decreased activity. Diazepam failed to rescue anxiety-like behaviors, paradoxically increasing activity in HRM/DISC1 mice. At a cellular level, we found increased α1-subunit containing GABA receptors in the prefrontal cortex, and a reduction in fast-spiking parvalbumin positive neurons. Maturation of adult-born neurons in the hippocampus was also altered in HRM/DISC1 mice. While there was no difference in the total number proliferating cells, more of these cells were in immature stages of development. Homozygous DISC1 mutation combined with RELN haploinsufficiency produces a complex phenotype with neuropsychiatric characteristics relevant to SCZ and related disorders, expanding our understanding of how multiple genetic susceptibility factors might interact to influence the variable presentation of these disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Danielle Gulick
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
3
|
Wu D, Zhu J, You L, Wang J, Zhang S, Liu Z, Xu Q, Yuan X, Yang L, Wang W, Tong M, Hong Q, Chi X. NRXN1 depletion in the medial prefrontal cortex induces anxiety-like behaviors and abnormal social phenotypes along with impaired neurite outgrowth in rat. J Neurodev Disord 2023; 15:6. [PMID: 36737720 PMCID: PMC9896742 DOI: 10.1186/s11689-022-09471-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/07/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) are a group of disorders induced by abnormal brain developmental processes. The prefrontal cortex (PFC) plays an essential role in executive function, and its role in NDDs has been reported. NDDs are associated with high-risk gene mutations and share partially overlapping genetic abnormalities. METHODS Neurexins (NRXNs) are related to autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). NRXN1, an essential susceptibility gene for NDDs, has been reported to be associated with NDDs. However, little is known about its key role in NDDs. RESULTS NRXN1 downregulation in the medial PFC induced anxiety-like behaviors and abnormal social phenotypes with impaired neurite outgrowth in Sh-NRXN1 in prefrontal neurons. Moreover, tandem mass tag (TMT)-based proteomic analysis of rat brain samples showed that NRXN1 downregulation led to significant proteome alterations, including pathways related to the extracellular matrix, cell membrane, and morphologic change. Furthermore, full-automatic immunoblotting analysis verified the differently expressed proteins related to cell morphology and membrane structure. CONCLUSIONS Our results confirmed the association of NRXN1 with abnormal behaviors in NDDs and provided richer insights into specific prefrontal knockdown in adolescence, potentially expanding the NRXN1 interactome and contributing to human health.
Collapse
Affiliation(s)
- Di Wu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.,The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiansheng Zhu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Lianghui You
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jingyu Wang
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Sufen Zhang
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Zhonghui Liu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qu Xu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiaojie Yuan
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Lei Yang
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Wei Wang
- The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meiling Tong
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qin Hong
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| | - Xia Chi
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| |
Collapse
|
4
|
Teal LB, Ingram SM, Bubser M, McClure E, Jones CK. The Evolving Role of Animal Models in the Discovery and Development of Novel Treatments for Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2023; 30:37-99. [PMID: 36928846 DOI: 10.1007/978-3-031-21054-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Historically, animal models have been routinely used in the characterization of novel chemical entities (NCEs) for various psychiatric disorders. Animal models have been essential in the in vivo validation of novel drug targets, establishment of lead compound pharmacokinetic to pharmacodynamic relationships, optimization of lead compounds through preclinical candidate selection, and development of translational measures of target occupancy and functional target engagement. Yet, with decades of multiple NCE failures in Phase II and III efficacy trials for different psychiatric disorders, the utility and value of animal models in the drug discovery process have come under intense scrutiny along with the widespread withdrawal of the pharmaceutical industry from psychiatric drug discovery. More recently, the development and utilization of animal models for the discovery of psychiatric NCEs has undergone a dynamic evolution with the application of the Research Domain Criteria (RDoC) framework for better design of preclinical to clinical translational studies combined with innovative genetic, neural circuitry-based, and automated testing technologies. In this chapter, the authors will discuss this evolving role of animal models for improving the different stages of the discovery and development in the identification of next generation treatments for psychiatric disorders.
Collapse
Affiliation(s)
- Laura B Teal
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Shalonda M Ingram
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Michael Bubser
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Elliott McClure
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
5
|
Dubonyte U, Asenjo-Martinez A, Werge T, Lage K, Kirkeby A. Current advancements of modelling schizophrenia using patient-derived induced pluripotent stem cells. Acta Neuropathol Commun 2022; 10:183. [PMID: 36527106 PMCID: PMC9756764 DOI: 10.1186/s40478-022-01460-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/12/2022] [Indexed: 12/23/2022] Open
Abstract
Schizophrenia (SZ) is a severe psychiatric disorder, with a prevalence of 1-2% world-wide and substantial health- and social care costs. The pathology is influenced by both genetic and environmental factors, however the underlying cause still remains elusive. SZ has symptoms including delusions, hallucinations, confused thoughts, diminished emotional responses, social withdrawal and anhedonia. The onset of psychosis is usually in late adolescence or early adulthood. Multiple genome-wide association and whole exome sequencing studies have provided extraordinary insights into the genetic variants underlying familial as well as polygenic forms of the disease. Nonetheless, a major limitation in schizophrenia research remains the lack of clinically relevant animal models, which in turn hampers the development of novel effective therapies for the patients. The emergence of human induced pluripotent stem cell (hiPSC) technology has allowed researchers to work with SZ patient-derived neuronal and glial cell types in vitro and to investigate the molecular basis of the disorder in a human neuronal context. In this review, we summarise findings from available studies using hiPSC-based neural models and discuss how these have provided new insights into molecular and cellular pathways of SZ. Further, we highlight different examples of how these models have shown alterations in neurogenesis, neuronal maturation, neuronal connectivity and synaptic impairment as well as mitochondrial dysfunction and dysregulation of miRNAs in SZ patient-derived cultures compared to controls. We discuss the pros and cons of these models and describe the potential of using such models for deciphering the contribution of specific human neural cell types to the development of the disease.
Collapse
Affiliation(s)
- Ugne Dubonyte
- Department of Neuroscience and Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Andrea Asenjo-Martinez
- Department of Neuroscience and Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine and Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Lage
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
- Stanley Center for Psychiatric Research and The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Agnete Kirkeby
- Department of Neuroscience and Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark.
- Department of Experimental Medical Science and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
6
|
Vadisiute A, Meijer E, Szabó F, Hoerder-Suabedissen A, Kawashita E, Hayashi S, Molnár Z. The role of snare proteins in cortical development. Dev Neurobiol 2022; 82:457-475. [PMID: 35724379 PMCID: PMC9539872 DOI: 10.1002/dneu.22892] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 12/01/2022]
Abstract
Neural communication in the adult nervous system is mediated primarily through chemical synapses, where action potentials elicit Ca2+ signals, which trigger vesicular fusion and neurotransmitter release in the presynaptic compartment. At early stages of development, the brain is shaped by communication via trophic factors and other extracellular signaling, and by contact-mediated cell-cell interactions including chemical synapses. The patterns of early neuronal impulses and spontaneous and regulated neurotransmitter release guide the precise topography of axonal projections and contribute to determining cell survival. The study of the role of specific proteins of the synaptic vesicle release machinery in the establishment, plasticity, and maintenance of neuronal connections during development has only recently become possible, with the advent of mouse models where various members of the N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex have been genetically manipulated. We provide an overview of these models, focusing on the role of regulated vesicular release and/or cellular excitability in synaptic assembly, development and maintenance of cortical circuits, cell survival, circuit level excitation-inhibition balance, myelination, refinement, and plasticity of key axonal projections from the cerebral cortex. These models are important for understanding various developmental and psychiatric conditions, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Auguste Vadisiute
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Elise Meijer
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Florina Szabó
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Anna Hoerder-Suabedissen
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Eri Kawashita
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan
| | - Shuichi Hayashi
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Murlanova K, Jouroukhin Y, Huseynov S, Pletnikova O, Morales MJ, Guan Y, Baraban JM, Bergles DE, Pletnikov MV. Deficient mitochondrial respiration in astrocytes impairs trace fear conditioning and increases naloxone-precipitated aversion in morphine-dependent mice. Glia 2022; 70:1289-1300. [PMID: 35275429 PMCID: PMC9773362 DOI: 10.1002/glia.24169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022]
Abstract
Mitochondria are abundant in the fine processes of astrocytes, however, potential roles for astrocyte mitochondria remain poorly understood. In the present study, we performed a systematic examination of the effects of abnormal oxidative phosphorylation in astrocytes on several mouse behaviors. Impaired astrocyte oxidative phosphorylation was produced by astrocyte-specific deletion of the nuclear mitochondrial gene, Cox10, that encodes an accessory protein of complex IV, the protoheme:heme-O-farnesyl transferase. As expected, conditional deletion of the Cox10 gene in mice (cKO mice) significantly reduced expression of COX10 and Cytochrome c oxidase subunit I (MTCO1) of Complex IV, resulting in decreased oxidative phosphorylation without significantly affecting glycolysis. No effects of the deletion were observed on locomotor activity, anxiety-like behavior, nociception, or spontaneous alternation. Cox10 cKO female mice exhibited mildly impaired novel object recognition, while Cox10 cKO male mice were moderately deficient in trace fear conditioning. No group-related changes were observed in conditional place preference (CPP) that assessed effects of morphine on reward. In contrast to CPP, Cox10 cKO mice demonstrated significantly increased aversive behaviors produced by naloxone-precipitated withdrawal following chronic exposure to morphine, that is, jumping and avoidance behavior as assessed by conditional place aversion (CPA). Our study suggests that astrocyte oxidative phosphorylation may contribute to behaviors associated with greater cognitive load and/or aversive and stressful conditions.
Collapse
Affiliation(s)
- Kateryna Murlanova
- Department of Physiology and Biophysics, Jacobs School of Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| | - Yan Jouroukhin
- Department of Physiology and Biophysics, Jacobs School of Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| | - Shovgi Huseynov
- Department of Physiology and Biophysics, Jacobs School of Medicine, State University of New York at Buffalo, Buffalo, New York, USA,Molecular Basis of Integrative Activity, Academician Abdulla Garayev Institute of Physiology, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan
| | - Olga Pletnikova
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine; State University of New York at Buffalo, Buffalo, New York, USA,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael J. Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Department of Neurological Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jay M. Baraban
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dwight E. Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mikhail V. Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine, State University of New York at Buffalo, Buffalo, New York, USA,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Wilke SA, Lavi K, Byeon S, Donohue KC, Sohal VS. Convergence of Clinically Relevant Manipulations on Dopamine-Regulated Prefrontal Activity Underlying Stress Coping Responses. Biol Psychiatry 2022; 91:810-820. [PMID: 35090617 PMCID: PMC11182612 DOI: 10.1016/j.biopsych.2021.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Depression is pleiotropic and influenced by diverse genetic, environmental, and pharmacological factors. Identifying patterns of circuit activity on which many of these factors converge would be important, because studying these patterns could reveal underlying pathophysiological processes and/or novel therapies. Depression is commonly assumed to involve changes within prefrontal circuits, and dopamine D2 receptor (D2R) agonists are increasingly used as adjunctive antidepressants. Nevertheless, how D2Rs influence disease-relevant patterns of prefrontal circuit activity remains unknown. METHODS We used brain slice calcium imaging to measure how patterns of prefrontal activity are modulated by D2Rs, antidepressants, and manipulations that increase depression susceptibility. To validate the idea that prefrontal D2Rs might contribute to antidepressant responses, we used optogenetic and genetic manipulations to test how dopamine, D2Rs, and D2R+ neurons contribute to stress-coping behavior. RESULTS Patterns of positively correlated activity in prefrontal microcircuits are specifically enhanced by D2R stimulation as well as by two mechanistically distinct antidepressants, ketamine and fluoxetine. Conversely, this D2R-driven effect was disrupted in two etiologically distinct depression models, a genetic susceptibility model and mice that are susceptible to chronic social defeat. Phasic stimulation of dopaminergic afferents to the prefrontal cortex and closed-loop stimulation of D2R+ neurons increased effortful responses to tail suspension stress, whereas prefrontal D2R deletion reduced the duration of individual struggling episodes. CONCLUSIONS Correlated prefrontal microcircuit activity represents a point of convergence for multiple depression-related manipulations. Prefrontal D2Rs enhance this activity. Through this mechanism, prefrontal D2Rs may promote network states associated with antidepressant actions and effortful responses to stress.
Collapse
Affiliation(s)
- Scott A Wilke
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Psychiatry and Behavior Sciences, University of California, San Francisco, San Francisco, California; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, California
| | - Karen Lavi
- Department of Psychiatry and Behavior Sciences, University of California, San Francisco, San Francisco, California; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, California
| | - Sujin Byeon
- Department of Psychiatry and Behavior Sciences, University of California, San Francisco, San Francisco, California; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, California
| | - Kevin C Donohue
- Department of Psychiatry and Behavior Sciences, University of California, San Francisco, San Francisco, California; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, California
| | - Vikaas S Sohal
- Department of Psychiatry and Behavior Sciences, University of California, San Francisco, San Francisco, California; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
9
|
Gyllenhammer LE, Rasmussen JM, Bertele N, Halbing A, Entringer S, Wadhwa PD, Buss C. Maternal Inflammation During Pregnancy and Offspring Brain Development: The Role of Mitochondria. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:498-509. [PMID: 34800727 PMCID: PMC9086015 DOI: 10.1016/j.bpsc.2021.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/20/2021] [Accepted: 11/04/2021] [Indexed: 01/06/2023]
Abstract
The association between maternal immune activation (MIA) during pregnancy and risk for offspring neuropsychiatric disorders has been increasingly recognized over the past several years. Among the mechanistic pathways that have been described through which maternal inflammation during pregnancy may affect fetal brain development, the role of mitochondria has received little attention. In this review, the role of mitochondria as a potential mediator of the association between MIA during pregnancy and offspring brain development and risk for psychiatric disorders will be proposed. As a basis for this postulation, convergent evidence is presented supporting the obligatory role of mitochondria in brain development, the role of mitochondria as mediators and initiators of inflammatory processes, and evidence of mitochondrial dysfunction in preclinical MIA exposure models and human neurodevelopmental disorders. Elucidating the role of mitochondria as a potential mediator of MIA-induced alterations in brain development and neurodevelopmental disease risk may not only provide new insight into the pathophysiology of mental health disorders that have their origins in exposure to infection/immune activation during pregnancy but also offer new therapeutic targets.
Collapse
Affiliation(s)
- Lauren E Gyllenhammer
- Development, Health and Disease Research Program, University of California, Irvine, School of Medicine, Irvine, California; Department of Pediatrics, University of California, Irvine, School of Medicine, Irvine, California
| | - Jerod M Rasmussen
- Development, Health and Disease Research Program, University of California, Irvine, School of Medicine, Irvine, California; Department of Pediatrics, University of California, Irvine, School of Medicine, Irvine, California
| | - Nina Bertele
- Department of Medical Psychology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Amy Halbing
- Department of Medical Psychology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Department of Medical Psychology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sonja Entringer
- Development, Health and Disease Research Program, University of California, Irvine, School of Medicine, Irvine, California; Department of Pediatrics, University of California, Irvine, School of Medicine, Irvine, California; Department of Medical Psychology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pathik D Wadhwa
- Development, Health and Disease Research Program, University of California, Irvine, School of Medicine, Irvine, California; Department of Pediatrics, University of California, Irvine, School of Medicine, Irvine, California; Department of Psychiatry and Human Behavior, University of California, Irvine, School of Medicine, Irvine, California; Department of Obstetrics and Gynecology, University of California, Irvine, School of Medicine, Irvine, California; Department of Epidemiology, University of California, Irvine, School of Medicine, Irvine, California
| | - Claudia Buss
- Development, Health and Disease Research Program, University of California, Irvine, School of Medicine, Irvine, California; Department of Pediatrics, University of California, Irvine, School of Medicine, Irvine, California; Department of Medical Psychology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
10
|
Hui KK, Endo R, Sawa A, Tanaka M. A Perspective on the Potential Involvement of Impaired Proteostasis in Neuropsychiatric Disorders. Biol Psychiatry 2022; 91:335-345. [PMID: 34836635 PMCID: PMC8792182 DOI: 10.1016/j.biopsych.2021.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 08/05/2021] [Accepted: 09/01/2021] [Indexed: 11/19/2022]
Abstract
Recent genetic approaches have demonstrated that genetic factors contribute to the pathologic origins of neuropsychiatric disorders. Nevertheless, the exact pathophysiological mechanism for most cases remains unclear. Recent studies have demonstrated alterations in pathways of protein homeostasis (proteostasis) and identified several proteins that are misfolded and/or aggregated in the brains of patients with neuropsychiatric disorders, thus providing early evidence that disrupted proteostasis may be a contributing factor to their pathophysiology. Unlike neurodegenerative disorders in which massive neuronal and synaptic losses are observed, proteostasis impairments in neuropsychiatric disorders do not lead to robust neuronal death, but rather likely act via loss- and gain-of-function effects to disrupt neuronal and synaptic functions. Furthermore, abnormal activation of or overwhelmed endoplasmic reticulum and mitochondrial quality control pathways may exacerbate the pathophysiological changes initiated by impaired proteostasis, as these organelles are critical for proper neuronal functions and involved in the maintenance of proteostasis. This perspective article reviews recent findings implicating proteostasis impairments in the pathophysiology of neuropsychiatric disorders and explores how neuronal and synaptic functions may be impacted by disruptions in protein homeostasis. A greater understanding of the contributions by proteostasis impairment in neuropsychiatric disorders will help guide future studies to identify additional candidate proteins and new targets for therapeutic development.
Collapse
Affiliation(s)
- Kelvin K Hui
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ryo Endo
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Akira Sawa
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, Maryland; Department of Neuroscience, John Hopkins University School of Medicine, Baltimore, Maryland; Department of Biomedical Engineering, John Hopkins University School of Medicine, Baltimore, Maryland; Department of Genetic Medicine, John Hopkins University School of Medicine, Baltimore, Maryland; Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Motomasa Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama, Japan.
| |
Collapse
|
11
|
Mutations in DISC1 alter IP 3R and voltage-gated Ca 2+ channel functioning, implications for major mental illness. Neuronal Signal 2021; 5:NS20180122. [PMID: 34956649 PMCID: PMC8663806 DOI: 10.1042/ns20180122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Disrupted in Schizophrenia 1 (DISC1) participates in a wide variety of
developmental processes of central neurons. It also serves critical roles that
underlie cognitive functioning in adult central neurons. Here we summarize
DISC1’s general properties and discuss its use as a model system for
understanding major mental illnesses (MMIs). We then discuss the cellular
actions of DISC1 that involve or regulate Ca2+ signaling in adult
central neurons. In particular, we focus on the tethering role DISC1 plays in
transporting RNA particles containing Ca2+ channel subunit RNAs,
including IP3R1, CACNA1C and CACNA2D1, and in transporting mitochondria into
dendritic and axonal processes. We also review DISC1’s role in modulating
IP3R1 activity within mitochondria-associated ER membrane (MAM).
Finally, we discuss DISC1-glycogen synthase kinase 3β (GSK3β)
signaling that regulates functional expression of voltage-gated Ca2+
channels (VGCCs) at central synapses. In each case, DISC1 regulates the movement
of molecules that impact Ca2+ signaling in neurons.
Collapse
|
12
|
Maly IV, Morales MJ, Pletnikov MV. Astrocyte Bioenergetics and Major Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:173-227. [PMID: 34888836 DOI: 10.1007/978-3-030-77375-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ongoing research continues to add new elements to the emerging picture of involvement of astrocyte energy metabolism in the pathophysiology of major psychiatric disorders, including schizophrenia, mood disorders, and addictions. This review outlines what is known about the energy metabolism in astrocytes, the most numerous cell type in the brain, and summarizes the recent work on how specific perturbations of astrocyte bioenergetics may contribute to the neuropsychiatric conditions. The role of astrocyte energy metabolism in mental health and disease is reviewed on the organism, organ, and cell level. Data arising from genomic, metabolomic, in vitro, and neurobehavioral studies is critically analyzed to suggest future directions in research and possible metabolism-focused therapeutic interventions.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael J Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
13
|
Sarver DC, Xu C, Cheng Y, Terrillion CE, Wong GW. CTRP4 ablation impairs associative learning and memory. FASEB J 2021; 35:e21910. [PMID: 34610176 DOI: 10.1096/fj.202100733rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/12/2021] [Accepted: 08/24/2021] [Indexed: 11/11/2022]
Abstract
C1q/TNF-related protein (CTRP) family comprises fifteen highly conserved secretory proteins with diverse central and peripheral functions. In zebrafish, mouse, and human, CTRP4 is most highly expressed in the brain. We previously showed that CTRP4 is a metabolically responsive regulator of food intake and energy balance, and mice lacking CTRP4 exhibit sexually dimorphic changes in ingestive behaviors and systemic metabolism. Recent single-cell RNA sequencing also revealed Ctrp4/C1qtnf4 expression in diverse neuronal cell types across distinct anatomical brain regions, hinting at additional roles in the central nervous system not previously characterized. To uncover additional central functions of CTRP4, we subjected Ctrp4 knockout (KO) mice to a battery of behavioral tests. Relative to wild-type (WT) littermates, loss of CTRP4 does not alter exploratory, anxiety-, or depressive-like behaviors, motor function and balance, sensorimotor gating, novel object recognition, and spatial memory. While pain-sensing mechanisms in response to thermal stress and mild shock are intact, both male and female Ctrp4 KO mice have increased sensitivity to pain induced by higher-level shock, suggesting altered nociceptive function. Importantly, CTRP4 deficiency impairs hippocampal-dependent associative learning and memory as assessed by trace fear conditioning paradigm. This deficit is sex-dependent, affects only female mice, and is associated with altered expression of learning and memory genes (Arc, c-fos, and Pde4d) in the hippocampus and cortex. Altogether, our behavioral and gene expression analyses have uncovered novel aspects of the CTRP4 function and provided a physiological context to further investigate its mechanism of action in the central and peripheral nervous system.
Collapse
Affiliation(s)
- Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cheng Xu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yi Cheng
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chantelle E Terrillion
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Plataki ME, Diskos K, Sougklakos C, Velissariou M, Georgilis A, Stavroulaki V, Sidiropoulou K. Effect of Neonatal Treatment With the NMDA Receptor Antagonist, MK-801, During Different Temporal Windows of Postnatal Period in Adult Prefrontal Cortical and Hippocampal Function. Front Behav Neurosci 2021; 15:689193. [PMID: 34177484 PMCID: PMC8230549 DOI: 10.3389/fnbeh.2021.689193] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
The neonatal MK-801 model of schizophrenia has been developed based on the neurodevelopmental and NMDA receptor hypofunction hypotheses of schizophrenia. This animal model is generated with the use of the NMDA receptor antagonist, MK-801, during different temporal windows of postnatal life of rodents leading to behavioral defects in adulthood. However, no studies have examined the role of specific postnatal time periods in the neonatal MK-801 (nMK-801) rodent model and the resulting behavioral and neurobiological effects. Thus, the goal of this study is to systematically investigate the role of NMDA hypofunction, during specific temporal windows in postnatal life on different cognitive and social behavioral paradigms, as well as various neurobiological effects during adulthood. Both female and male mice were injected intraperitoneally (i.p.) with MK-801 during postnatal days 7-14 (p7-14) or 11-15 (p11-15). Control mice were injected with saline during the respective time period. In adulthood, mice were tested in various cognitive and social behavioral tasks. Mice nMK-801-treated on p7-14 show impaired performance in the novel object, object-to-place, and temporal order object recognition (TOR) tasks, the sociability test, and contextual fear extinction. Mice nMK-801-treated on p11-15 only affects performance in the TOR task, the social memory test, and contextual fear extinction. No differences were identified in the expression of NMDA receptor subunits, the synapsin or PSD-95 proteins, either in the prefrontal cortex (PFC) or the hippocampus (HPC), brain regions significantly affected in schizophrenia. The number of parvalbumin (PV)-expressing cells is significantly reduced in the PFC, but not in the HPC, of nMK-801-treated mice on p7-14 compared to their controls. No differences in PV-expressing cells (PFC or HPC) were identified in nMK-801-treated mice on p11-15. We further examined PFC function by recording spontaneous activity in a solution that allows up state generation. We find that the frequency of up states is significantly reduced in both nMK-801-treated mice on p7-14 and p11-15 compared to saline-treated mice. Furthermore, we find adaptations in the gamma and high gamma activity in nMK-801-treated mice. In conclusion, our results show that MK-801 treatment during specific postnatal temporal windows has differential effects on cognitive and social behaviors, as well as on underlying neurobiological substrates.
Collapse
Affiliation(s)
- Maria E Plataki
- Department of Biology, University of Crete, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Konstantinos Diskos
- Department of Biology, University of Crete, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Greece
| | | | | | | | | | - Kyriaki Sidiropoulou
- Department of Biology, University of Crete, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Greece
| |
Collapse
|
15
|
Wang P, Li M, Zhao A, Ma J. Application of animal experimental models in the research of schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2021; 186:209-227. [PMID: 34155806 DOI: 10.1002/ajmg.b.32863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/04/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022]
Abstract
Schizophrenia is a relatively common but serious mental illness that results in a heavy burden to patients, their families, and society. The disease can be triggered by multiple factors, while the specific pathogenesis remains unclear. The development of effective therapeutic drugs for schizophrenia relies on a comprehensive understanding of the basic biology and pathophysiology of the disease. Therefore, effective animal experimental models play a vital role in the study of schizophrenia. Based on different molecular mechanisms and modeling methods, the currently used experimental animal experimental models of schizophrenia can be divided into four categories that can better simulate the clinical symptoms and the interplay between susceptible genes and the environment: neurodevelopmental, drug-induced, genetic-engineering, and genetic-environmental interaction of animal experimental models. Each of these categories contains multiple subtypes, which has its own advantages and disadvantages and therefore requires careful selection in a research application. The emergence and utilization of these models are promising in the prediction of the risk of schizophrenia at the molecular level, which will shed light on effective and targeted treatment at the genetic level.
Collapse
Affiliation(s)
- Pengjie Wang
- Medical Research Center, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China.,Department of Electron Microscope, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Manling Li
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Gui Yang, Guizhou, China
| | - Aizhen Zhao
- Medical Research Center, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Jie Ma
- Medical Research Center, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China.,Department of Electron Microscope, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
16
|
Vaccari Cardoso B, Shevelkin AV, Terrillion C, Mychko O, Mosienko V, Kasparov S, Pletnikov MV, Teschemacher AG. Reducing l-lactate release from hippocampal astrocytes by intracellular oxidation increases novelty induced activity in mice. Glia 2021; 69:1241-1250. [PMID: 33400321 PMCID: PMC8576740 DOI: 10.1002/glia.23960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022]
Abstract
Astrocytes are in control of metabolic homeostasis in the brain and support and modulate neuronal function in various ways. Astrocyte-derived l-lactate (lactate) is thought to play a dual role as a metabolic and a signaling molecule in inter-cellular communication. The biological significance of lactate release from astrocytes is poorly understood, largely because the tools to manipulate lactate levels in vivo are limited. We therefore developed new viral vectors for astrocyte-specific expression of a mammalianized version of lactate oxidase (LOx) from Aerococcus viridans. LOx expression in astrocytes in vitro reduced their intracellular lactate levels as well as the release of lactate to the extracellular space. Selective expression of LOx in astrocytes of the dorsal hippocampus in mice resulted in increased locomotor activity in response to novel stimuli. Our findings suggest that a localized decreased intracellular lactate pool in hippocampal astrocytes could contribute to greater responsiveness to environmental novelty. We expect that use of this molecular tool to chronically limit astrocytic lactate release will significantly facilitate future studies into the roles and mechanisms of intercellular lactate communication in the brain.
Collapse
Affiliation(s)
| | - Alexey V. Shevelkin
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Chantelle Terrillion
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Olga Mychko
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Valentina Mosienko
- Institute of Biomedical and Clinical SciencesCollege of Medicine and Health, University of ExeterExeterUK
| | - Sergey Kasparov
- School of PhysiologyPharmacology and Neuroscience, University of BristolBristolUK
| | - Mikhail V. Pletnikov
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Physiology and BiophysicsUniversity at BuffaloNew YorkNew YorkUSA
| | - Anja G. Teschemacher
- School of PhysiologyPharmacology and Neuroscience, University of BristolBristolUK
| |
Collapse
|
17
|
Kim NS, Wen Z, Liu J, Zhou Y, Guo Z, Xu C, Lin YT, Yoon KJ, Park J, Cho M, Kim M, Wang X, Yu H, Sakamuru S, Christian KM, Hsu KS, Xia M, Li W, Ross CA, Margolis RL, Lu XY, Song H, Ming GL. Pharmacological rescue in patient iPSC and mouse models with a rare DISC1 mutation. Nat Commun 2021; 12:1398. [PMID: 33658519 PMCID: PMC7930023 DOI: 10.1038/s41467-021-21713-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/10/2021] [Indexed: 01/31/2023] Open
Abstract
We previously identified a causal link between a rare patient mutation in DISC1 (disrupted-in-schizophrenia 1) and synaptic deficits in cortical neurons differentiated from isogenic patient-derived induced pluripotent stem cells (iPSCs). Here we find that transcripts related to phosphodiesterase 4 (PDE4) signaling are significantly elevated in human cortical neurons differentiated from iPSCs with the DISC1 mutation and that inhibition of PDE4 or activation of the cAMP signaling pathway functionally rescues synaptic deficits. We further generated a knock-in mouse line harboring the same patient mutation in the Disc1 gene. Heterozygous Disc1 mutant mice exhibit elevated levels of PDE4s and synaptic abnormalities in the brain, and social and cognitive behavioral deficits. Pharmacological inhibition of the PDE4 signaling pathway rescues these synaptic, social and cognitive behavioral abnormalities. Our study shows that patient-derived isogenic iPSC and humanized mouse disease models are integral and complementary for translational studies with a better understanding of underlying molecular mechanisms.
Collapse
Affiliation(s)
- Nam-Shik Kim
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jing Liu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ying Zhou
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Ziyuan Guo
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chongchong Xu
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yu-Ting Lin
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ki-Jun Yoon
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Junhyun Park
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michelle Cho
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Minji Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xinyuan Wang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Huimei Yu
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Srilatha Sakamuru
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, USA
| | - Kimberly M Christian
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kuei-Sen Hsu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, USA
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Russell L Margolis
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xin-Yun Lu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, USA.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Banono NS, Gawel K, De Witte L, Esguerra CV. Zebrafish Larvae Carrying a Splice Variant Mutation in cacna1d: A New Model for Schizophrenia-Like Behaviours? Mol Neurobiol 2021; 58:877-894. [PMID: 33057948 PMCID: PMC7843589 DOI: 10.1007/s12035-020-02160-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022]
Abstract
Persons with certain single nucleotide polymorphisms (SNPs) in the CACNA1D gene (encoding voltage-gated calcium channel subunit alpha 1-D) have increased risk of developing neuropsychiatric disorders such as bipolar, schizophrenia and autism. The molecular consequences of SNPs on gene expression and protein function are not well understood. Thus, the use of animal models to determine genotype-phenotype correlations is critical to understanding disease pathogenesis. Here, we describe the behavioural changes in larval zebrafish carrying an essential splice site mutation (sa17298) in cacna1da. Heterozygous mutation resulted in 50% reduction of splice variants 201 and 202 (haploinsufficiency), while homozygosity increased transcript levels of variant 201 above wild type (WT; gain-of-function, GOF). Due to low homozygote viability, we focused primarily on performing the phenotypic analysis on heterozygotes. Indeed, cacna1dasa17298/WT larvae displayed hyperlocomotion-a behaviour characterised in zebrafish as a surrogate phenotype for epilepsy, anxiety or psychosis-like behaviour. Follow-up tests ruled out anxiety or seizures, however, as neither thigmotaxis defects nor epileptiform-like discharges in larval brains were observed. We therefore focused on testing for potential "psychosis-like" behaviour by assaying cacna1dasa17298/WT larval locomotor activity under constant light, during light-dark transition and in startle response to dark flashes. Furthermore, exposure of larvae to the antipsychotics, risperidone and haloperidol reversed cacna1da-induced hyperactivity to WT levels while valproate decreased but did not reverse hyperactivity. Together, these findings demonstrate that cacna1da haploinsufficiency induces behaviours in larval zebrafish analogous to those observed in rodent models of psychosis. Future studies on homozygous mutants will determine how cacna1d GOF alters behaviour in this context.
Collapse
Affiliation(s)
- Nancy Saana Banono
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), Faculty of Medicine, University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway
| | - Kinga Gawel
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), Faculty of Medicine, University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego Str. 8b, 20-090, Lublin, Poland
| | - Linus De Witte
- Pharmaceutical and Biological Sciences, AP Hogeschool Antwerpen, Antwerp, Belgium
| | - Camila V Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), Faculty of Medicine, University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway.
- School of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Sælandsvei 24, 0371, Oslo, Norway.
| |
Collapse
|
19
|
Pekala M, Doliwa M, Kalita K. Impact of maternal immune activation on dendritic spine development. Dev Neurobiol 2021; 81:524-545. [PMID: 33382515 DOI: 10.1002/dneu.22804] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/26/2020] [Accepted: 12/28/2020] [Indexed: 01/08/2023]
Abstract
Dendritic spines are small dendritic protrusions that harbor most excitatory synapses in the brain. The proper generation and maturation of dendritic spines are crucial for the regulation of synaptic transmission and formation of neuronal circuits. Abnormalities in dendritic spine density and morphology are common pathologies in autism and schizophrenia. According to epidemiological studies, one risk factor for these neurodevelopmental disorders is maternal infection during pregnancy. This review discusses spine alterations in animal models of maternal immune activation in the context of neurodevelopmental disorders. We describe potential mechanisms that might be responsible for prenatal infection-induced changes in the dendritic spine phenotype and behavior in offspring.
Collapse
Affiliation(s)
- Martyna Pekala
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Doliwa
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Kalita
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
20
|
Philips T, Mironova YA, Jouroukhin Y, Chew J, Vidensky S, Farah MH, Pletnikov MV, Bergles DE, Morrison BM, Rothstein JD. MCT1 Deletion in Oligodendrocyte Lineage Cells Causes Late-Onset Hypomyelination and Axonal Degeneration. Cell Rep 2021; 34:108610. [PMID: 33440165 PMCID: PMC8020895 DOI: 10.1016/j.celrep.2020.108610] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/08/2020] [Accepted: 12/16/2020] [Indexed: 11/22/2022] Open
Abstract
Oligodendrocytes (OLs) are important for myelination and shuttling energy metabolites lactate and pyruvate toward axons through their expression of monocarboxylate transporter 1 (MCT1). Recent studies suggest that loss of OL MCT1 causes axonal degeneration. However, it is unknown how widespread and chronic loss of MCT1 in OLs specifically affects neuronal energy homeostasis with aging. To answer this, MCT1 conditional null mice were generated that allow for OL-specific MCT1 ablation. We observe that MCT1 loss from OL lineage cells is dispensable for normal myelination and axonal energy homeostasis early in life. By contrast, loss of OL lineage MCT1 expression with aging leads to significant axonal degeneration with concomitant hypomyelination. These data support the hypothesis that MCT1 is important for neuronal energy homeostasis in the aging central nervous system (CNS). The reduction in OL MCT1 that occurs with aging may enhance the risk for axonal degeneration and atrophy in neurodegenerative diseases. Using conditional cell-specific deletion of MCT1, Philips et al. learn that oligodendrocyte lineage cells are actually dispensable for normal myelination and axonal energy homeostasis during early life but that the oligodendroglial lactate/MCT1-based support is critical for the aging of the nervous system.
Collapse
Affiliation(s)
- Thomas Philips
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yevgeniya A Mironova
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yan Jouroukhin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeannie Chew
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Svetlana Vidensky
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mohamed H Farah
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences SUNY, University at Buffalo, Buffalo, NY 14203, USA
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Brett M Morrison
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Jeffrey D Rothstein
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
21
|
Rattner A, Terrillion CE, Jou C, Kleven T, Hu SF, Williams J, Hou Z, Aggarwal M, Mori S, Shin G, Goff LA, Witter MP, Pletnikov M, Fenton AA, Nathans J. Developmental, cellular, and behavioral phenotypes in a mouse model of congenital hypoplasia of the dentate gyrus. eLife 2020; 9:e62766. [PMID: 33084572 PMCID: PMC7577738 DOI: 10.7554/elife.62766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/29/2020] [Indexed: 01/03/2023] Open
Abstract
In the hippocampus, a widely accepted model posits that the dentate gyrus improves learning and memory by enhancing discrimination between inputs. To test this model, we studied conditional knockout mice in which the vast majority of dentate granule cells (DGCs) fail to develop - including nearly all DGCs in the dorsal hippocampus - secondary to eliminating Wntless (Wls) in a subset of cortical progenitors with Gfap-Cre. Other cells in the Wlsfl/-;Gfap-Cre hippocampus were minimally affected, as determined by single nucleus RNA sequencing. CA3 pyramidal cells, the targets of DGC-derived mossy fibers, exhibited normal morphologies with a small reduction in the numbers of synaptic spines. Wlsfl/-;Gfap-Cre mice have a modest performance decrement in several complex spatial tasks, including active place avoidance. They were also modestly impaired in one simpler spatial task, finding a visible platform in the Morris water maze. These experiments support a role for DGCs in enhancing spatial learning and memory.
Collapse
Affiliation(s)
- Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Chantelle E Terrillion
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Claudia Jou
- Department of Physiology and Pharmacology, Robert F. Furchgott Center for Behavioral Neuroscience, State University of New York, Downstate Medical CenterBrooklynUnited States
| | - Tina Kleven
- Kavli Institute for Systems Neuroscience and Center for Neural Computation, Norwegian University of Science and TechnologyTrondheimNorway
| | - Shun Felix Hu
- Department of Physiology and Pharmacology, Robert F. Furchgott Center for Behavioral Neuroscience, State University of New York, Downstate Medical CenterBrooklynUnited States
| | - John Williams
- Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Zhipeng Hou
- Department of Radiology and Radiological Science, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Manisha Aggarwal
- Department of Radiology and Radiological Science, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Susumu Mori
- Department of Radiology and Radiological Science, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Gloria Shin
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Loyal A Goff
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience and Center for Neural Computation, Norwegian University of Science and TechnologyTrondheimNorway
| | - Mikhail Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - André A Fenton
- Department of Physiology and Pharmacology, Robert F. Furchgott Center for Behavioral Neuroscience, State University of New York, Downstate Medical CenterBrooklynUnited States
- Center for Neural Science, New York UniversityNew YorkUnited States
- Neuroscience Institute at the New York University Langone Medical Center, New York UniversityNew YorkUnited States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Ophthalmology, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
22
|
Shevelkin AV, Terrillion CE, Hasegawa Y, Mychko OA, Jouroukhin Y, Sawa A, Kamiya A, Pletnikov MV. Astrocyte DISC1 contributes to cognitive function in a brain region-dependent manner. Hum Mol Genet 2020; 29:2936-2950. [PMID: 32803234 PMCID: PMC8248941 DOI: 10.1093/hmg/ddaa180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/11/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Our understanding of the contribution of genetic risk factors to neuropsychiatric diseases is limited to abnormal neurodevelopment and neuronal dysfunction. Much less is known about the mechanisms whereby risk variants could affect the physiology of glial cells. Our prior studies have shown that a mutant (dominant-negative) form of a rare but highly penetrant psychiatric risk factor, Disrupted-In-Schizophrenia-1 (DISC1), impairs metabolic functions of astrocytes and leads to cognitive dysfunction. In order to overcome the limitations of the mutant DISC1 model and understand the putative regional properties of astrocyte DISC1, we assessed whether knockdown of Disc1 (Disc1-KD) in mature mouse astrocytes of the prefrontal cortex (PFC) or the hippocampus would produce behavioral abnormalities that could be attributed to astrocyte bioenergetics. We found that Disc1-KD in the hippocampus but not PFC impaired trace fear conditioning in adult mice. Using the innovative deep learning approach and convolutional deep neural networks (cDNNs), ResNet50 or ResNet18, and single cell-based analysis, we found that Disc1-KD decreased the spatial density of astrocytes associated with abnormal levels and distribution of the mitochondrial markers and the glutamate transporter, GLAST. Disc1-KD in astrocytes also led to decreased expression of the glutamatergic and increased expression of the GABA-ergic synaptic markers, possibly via non-apoptotic activation of caspase 3 in neurons located within the individual territories of Disc1-KD astrocytes. Our results indicate that altered expression of DISC1 in astrocytes could impair astrocyte bioenergetics, leading to abnormalities in synaptic neurotransmission and cognitive function in a region-dependent fashion.
Collapse
Affiliation(s)
| | | | | | | | | | - Akira Sawa
- Departments of Psychiatry and Behavioral Sciences
- Solomon H. Snyder Department of Neuroscience
- Department of Biomedical Engineering
- Department of Genetic Medicine, Johns Hopkins University School of Medicine
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Atsushi Kamiya
- Departments of Psychiatry and Behavioral Sciences
- Solomon H. Snyder Department of Neuroscience
| | - Mikhail V Pletnikov
- Departments of Psychiatry and Behavioral Sciences
- Solomon H. Snyder Department of Neuroscience
| |
Collapse
|
23
|
Gong NJ, Dibb R, Pletnikov M, Benner E, Liu C. Imaging microstructure with diffusion and susceptibility MR: neuronal density correlation in Disrupted-in-Schizophrenia-1 mutant mice. NMR IN BIOMEDICINE 2020; 33:e4365. [PMID: 32627266 DOI: 10.1002/nbm.4365] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 05/23/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
PURPOSE To probe cerebral microstructural abnormalities and assess changes of neuronal density in Disrupted-in-Schizophrenia-1 (DISC1) mice using non-Gaussian diffusion and quantitative susceptibility mapping (QSM). MATERIALS AND METHODS Brain specimens of transgenic DISC1 mice (n = 8) and control mice (n = 7) were scanned. Metrics of neurite orientation dispersion and density imaging (NODDI) and diffusion kurtosis imaging (DKI), as well as QSM, were acquired. Cell counting was performed on Nissl-stained sections. Group differences of imaging metrics and cell density were assessed. Pearson correlations between imaging metrics and cell densities were also examined. RESULTS Significant increases of neuronal density were observed in the hippocampus of DISC1 mice. DKI metrics such as mean kurtosis exhibited significant group differences in the caudate putamen (P = 0.015), cerebral cortex (P = 0.021), and hippocampus (P = 0.011). However, DKI metrics did not correlate with cell density. In contrast, significant positive correlation between density of neurons and the neurite density index of NODDI in the hippocampus was observed (r = 0.783, P = 0.007). Significant correlation between density of neurons and susceptibility (r = 0.657, P = 0.039), as well as between density of neuroglia and susceptibility (r = 0.750, P = 0.013), was also observed in the hippocampus. CONCLUSION The imaging metrics derived from DKI were not sensitive specifically to cell density, while NODDI could provide diffusion metrics sensitive to density of neurons. The magnetic susceptibility values derived from the QSM method can serve as a sensitive biomarker for quantifying neuronal density.
Collapse
Affiliation(s)
- Nan-Jie Gong
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | - Russell Dibb
- Center for in vivo Microscopy, Duke University School of Medicine, Durham, North Carolina, USA
| | - Mikhail Pletnikov
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric Benner
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Chunlei Liu
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, North Carolina, USA
- Radiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
24
|
Zhou C, Kong D, Xue R, Chen M, Li G, Xu Y, Liu S, Tian H, Zhuo C. Metformin Enhances Antidepressant/Antipsychotic Combination Therapy of Schizophrenia With Comorbid Depression in a Murine Model. Front Neurosci 2020; 14:517. [PMID: 32581680 PMCID: PMC7283619 DOI: 10.3389/fnins.2020.00517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 04/27/2020] [Indexed: 01/01/2023] Open
Abstract
Comorbid depressive disorders confound the diagnosis and therapy of schizophrenia. Using a murine model incorporating both MK801 and chronic unpredictable mild stress exposures, we successfully replicated both psychosis and depression. Ex vivo patch clamp recordings and in vivo calcium imaging demonstrated impaired neural activity in the prefrontal cortex (PFC). We then administered triple-drug combinations consisting of two antidepressants (mirtazapine and venlafaxine) plus an antipsychotic (either clozapine or olanzapine), and found improved PFC neuronal activity and performance in behavioral assays. Moreover, the addition of metformin to both psychotropic drug combinations brought further improvements in depressive and schizophrenic-like behaviors and physiological parameters. In summary, our data modeled the neuropathophysiology of schizophrenia with comorbid depression, and may inform drug intervention strategies.
Collapse
Affiliation(s)
- Chunhua Zhou
- Department of Pharmacology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dezhi Kong
- Two-Photon In Vivo Imaging Centre, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Rong Xue
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Min Chen
- Department of Psychiatry, School of Mental Health, Jining Medical University, Jining, China
| | - Gongying Li
- Department of Psychiatry, School of Mental Health, Jining Medical University, Jining, China
| | - Yong Xu
- MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Hongjun Tian
- Psychiatric-Neurological-Imaging-Laboratory, Tianjin Medical University Fourth Central Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Chuanjun Zhuo
- Psychiatric-Neurological-Imaging-Laboratory, Tianjin Medical University Fourth Central Hospital, Tianjin Fourth Center Hospital, Tianjin, China.,Department of Psychiatry, School of Mental Health, Jining Medical University, Jining, China.,MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
25
|
Li YC, Panikker P, Xing B, Yang SS, Alexandropoulos C, McEachern EP, Akumuo R, Zhao E, Gulchina Y, Pletnikov MV, Urs NM, Caron MG, Elefant F, Gao WJ. Deletion of Glycogen Synthase Kinase-3β in D 2 Receptor-Positive Neurons Ameliorates Cognitive Impairment via NMDA Receptor-Dependent Synaptic Plasticity. Biol Psychiatry 2020; 87:745-755. [PMID: 31892408 PMCID: PMC7103512 DOI: 10.1016/j.biopsych.2019.10.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cortical dopaminergic systems are critically involved in prefrontal cortex (PFC) functions, especially in working memory and neurodevelopmental disorders such as schizophrenia. GSK-3β (glycogen synthase kinase-3β) is highly associated with cAMP (cyclic adenosine monophosphate)-independent dopamine D2 receptor (D2R)-mediated signaling to affect dopamine-dependent behaviors. However, the mechanisms underlying the GSK-3β modulation of cognitive function via D2Rs remains unclear. METHODS This study explored how conditional cell-type-specific ablation of GSK-3β in D2R+ neurons (D2R-GSK-3β-/-) in the brain affects synaptic function in the medial PFC (mPFC). Both male and female (postnatal days 60-90) mice, including 140 D2R, 24 D1R, and 38 DISC1 mice, were used. RESULTS This study found that NMDA receptor (NMDAR) function was significantly increased in layer V pyramidal neurons in mPFC of D2R-GSK-3β-/- mice, along with increased dopamine modulation of NMDAR-mediated current. Consistently, NR2A and NR2B protein levels were elevated in mPFC of D2R-GSK-3β-/- mice. This change was accompanied by a significant increase in enrichment of activator histone mark H3K27ac at the promoters of both Grin2a and Grin2b genes. In addition, altered short- and long-term synaptic plasticity, along with an increased spine density in layer V pyramidal neurons, were detected in D2R-GSK-3β-/- mice. Indeed, D2R-GSK-3β-/- mice also exhibited a resistance of working memory impairment induced by injection of NMDAR antagonist MK-801. Notably, either inhibiting GSK-3β or disrupting the D2R-DISC1 complex was able to reverse the mutant DISC1-induced decrease of NMDAR-mediated currents in the mPFC. CONCLUSIONS This study demonstrates that GSK-3β modulates cognition via D2R-DISC1 interaction and epigenetic regulation of NMDAR expression and function.
Collapse
Affiliation(s)
- Yan-Chun Li
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| | - Priyalakshmi Panikker
- Department of Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Bo Xing
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Sha-Sha Yang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Cassandra Alexandropoulos
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Erin P McEachern
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Rita Akumuo
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Elise Zhao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Yelena Gulchina
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Mikhail V Pletnikov
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nikhil M Urs
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida
| | - Marc G Caron
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina; Department of Neurobiology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Felice Elefant
- Department of Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
26
|
Schmidt J, Mayer AK, Bakula D, Freude J, Weber JJ, Weiss A, Riess O, Schmidt T. Vulnerability of frontal brain neurons for the toxicity of expanded ataxin-3. Hum Mol Genet 2020; 28:1463-1473. [PMID: 30576445 DOI: 10.1093/hmg/ddy437] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/16/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is caused by the expansion of CAG repeats in the ATXN3 gene leading to an elongated polyglutamine tract in the ataxin-3 protein. Previously, we demonstrated that symptoms of SCA3 are reversible in the first conditional mouse model for SCA3 directing ataxin-3 predominantly to the hindbrain. Here, we report on the effects of transgenic ataxin-3 expression in forebrain regions. Employing the Tet-off CamKII-promoter mouse line and our previously published SCA3 responder line, we generated double transgenic mice (CamKII/MJD77), which develop a neurological phenotype characterized by impairment in rotarod performance, and deficits in learning new motor tasks as well as hyperactivity. Ataxin-3 and ubiquitin-positive inclusions are detected in brains of double transgenic CamKII/MJD77 mice. After turning off the expression of pathologically expanded ataxin-3, these inclusions disappear. However, the observed phenotype could not be reversed, very likely due to pronounced apoptotic cell death in the frontal brain. Our data demonstrate that cerebellar expression is not required to induce a neurological phenotype using expanded ATXN3 as well as the pronounced sensibility of forebrain neurons for toxic ataxin-3.
Collapse
Affiliation(s)
- Jana Schmidt
- SCA3 research group, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases, University of Tuebingen, Tuebingen, Germany.,NGS Competence Center, University of Tuebingen, Tuebingen, Germany
| | - Anja K Mayer
- SCA3 research group, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases, University of Tuebingen, Tuebingen, Germany.,NGS Competence Center, University of Tuebingen, Tuebingen, Germany
| | - Daniela Bakula
- SCA3 research group, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases, University of Tuebingen, Tuebingen, Germany.,NGS Competence Center, University of Tuebingen, Tuebingen, Germany
| | - Jasmin Freude
- SCA3 research group, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases, University of Tuebingen, Tuebingen, Germany.,NGS Competence Center, University of Tuebingen, Tuebingen, Germany
| | - Jonasz J Weber
- SCA3 research group, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases, University of Tuebingen, Tuebingen, Germany.,NGS Competence Center, University of Tuebingen, Tuebingen, Germany
| | | | - Olaf Riess
- SCA3 research group, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases, University of Tuebingen, Tuebingen, Germany.,NGS Competence Center, University of Tuebingen, Tuebingen, Germany
| | - Thorsten Schmidt
- SCA3 research group, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases, University of Tuebingen, Tuebingen, Germany.,NGS Competence Center, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
27
|
Koszła O, Targowska-Duda KM, Kędzierska E, Kaczor AA. In Vitro and In Vivo Models for the Investigation of Potential Drugs Against Schizophrenia. Biomolecules 2020; 10:biom10010160. [PMID: 31963851 PMCID: PMC7022578 DOI: 10.3390/biom10010160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia (SZ) is a complex psychiatric disorder characterized by positive, negative, and cognitive symptoms, and is not satisfactorily treated by current antipsychotics. Progress in understanding the basic pathomechanism of the disease has been hampered by the lack of appropriate models. In order to develop modern drugs against SZ, efficient methods to study them in in vitro and in vivo models of this disease are required. In this review a short presentation of current hypotheses and concepts of SZ is followed by a description of current progress in the field of SZ experimental models. A critical discussion of advantages and limitations of in vitro models and pharmacological, genetic, and neurodevelopmental in vivo models for positive, negative, and cognitive symptoms of the disease is provided. In particular, this review concerns the important issue of how cellular and animal systems can help to meet the challenges of modeling the disease, which fully manifests only in humans, as experimental studies of SZ in humans are limited. Next, it is emphasized that novel clinical candidates should be evaluated in animal models for treatment-resistant SZ. In conclusion, the plurality of available in vitro and in vivo models is a consequence of the complex nature of SZ, and there are extensive possibilities for their integration. Future development of more efficient antipsychotics reflecting the pleiotropy of symptoms in SZ requires the incorporation of various models into one uniting model of the multifactorial disorder and use of this model for the evaluation of new drugs.
Collapse
Affiliation(s)
- Oliwia Koszła
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland;
| | - Katarzyna M. Targowska-Duda
- Department of Biopharmacy, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
| | - Ewa Kędzierska
- Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland;
| | - Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland;
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Correspondence:
| |
Collapse
|
28
|
Gigg J, McEwan F, Smausz R, Neill J, Harte MK. Synaptic biomarker reduction and impaired cognition in the sub-chronic PCP mouse model for schizophrenia. J Psychopharmacol 2020; 34:115-124. [PMID: 31580184 DOI: 10.1177/0269881119874446] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Sub-chronic phencyclidine treatment (scPCP) provides a translational rat model for cognitive impairments associated with schizophrenia (CIAS). CIAS genetic risk factors may be more easily studied in mice; however, CIAS associated biomarker changes are relatively unstudied in the scPCP mouse. AIM To characterize deficits in object recognition memory and synaptic markers in frontal cortex and hippocampus of the scPCP mouse. METHODS Female c57/bl6 mice received 10 daily injections of PCP (scPCP; 10 mg/kg, s.c.) or vehicle (n = 8/group). Mice were tested for novel object recognition memory after either remaining in the arena ('no distraction') or being removed to a holding cage ('distraction') during the inter-trial interval. Expression changes for parvalbumin (PV), glutamic acid decarboxylase (GAD67), synaptosomal-associated protein 25 (SNAP-25) and postsynaptic density 95 (PDS95) were measured in frontal cortex, dorsal and ventral hippocampus. RESULTS scPCP mice showed object memory deficits when distracted by removal from the arena, where they treated previously experienced objects as novel at test. scPCP significantly reduced PV expression in all regions and lower PSD95 levels in frontal cortex and ventral hippocampus. Levels of GAD67 and SNAP-25 were unchanged. CONCLUSIONS We show for the first time that scPCP mice: (a) can encode and retain object information, but that this memory is susceptible to distraction; (b) display amnesia after distraction; and (c) express reduced PV and PSD95 in frontal cortex and hippocampus. These data further support reductions in PV-dependent synaptic inhibition and NMDAR-dependent glutamatergic plasticity in CIAS and highlight the translational significance of the scPCP mouse.
Collapse
Affiliation(s)
- John Gigg
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Francesca McEwan
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Rebecca Smausz
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Joanna Neill
- Division of Pharmacy and Optometry, University of Manchester, Manchester, UK
| | - Michael K Harte
- Division of Pharmacy and Optometry, University of Manchester, Manchester, UK
| |
Collapse
|
29
|
Baskaran R, Lai C, Li W, Tuan L, Wang C, Lee LJ, Liu C, Hwu H, Lee L. Characterization of striatal phenotypes in heterozygous
Disc1
mutant mice, a model of haploinsufficiency. J Comp Neurol 2019; 528:1157-1172. [DOI: 10.1002/cne.24813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/26/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Rathinasamy Baskaran
- Graduate Institute of Anatomy and Cell BiologyNational Taiwan University Taipei Taiwan ROC
| | - Chuan‐Ching Lai
- Graduate Institute of Anatomy and Cell BiologyNational Taiwan University Taipei Taiwan ROC
| | - Wai‐Yu Li
- Graduate Institute of Anatomy and Cell BiologyNational Taiwan University Taipei Taiwan ROC
| | - Li‐Heng Tuan
- Graduate Institute of Anatomy and Cell BiologyNational Taiwan University Taipei Taiwan ROC
| | - Chia‐Chuan Wang
- School of MedicineFu Jen Catholic University New Taipei Taiwan ROC
| | - Lukas J.‐H. Lee
- Division of Environmental Health and Occupational MedicineNational Health Research Institutes Miaoli Taiwan ROC
| | - Chih‐Min Liu
- Department of PsychiatryNational Taiwan University Hospital and National Taiwan University College of Medicine Taipei Taiwan ROC
- Neurobiology and Cognitive Science CenterNational Taiwan University Taipei Taiwan ROC
| | - Hai‐Gwo Hwu
- Department of PsychiatryNational Taiwan University Hospital and National Taiwan University College of Medicine Taipei Taiwan ROC
- Neurobiology and Cognitive Science CenterNational Taiwan University Taipei Taiwan ROC
- Institute of Brain and Mind SciencesNational Taiwan University Taipei Taiwan ROC
| | - Li‐Jen Lee
- Graduate Institute of Anatomy and Cell BiologyNational Taiwan University Taipei Taiwan ROC
- Department of PsychiatryNational Taiwan University Hospital and National Taiwan University College of Medicine Taipei Taiwan ROC
- Neurobiology and Cognitive Science CenterNational Taiwan University Taipei Taiwan ROC
- Institute of Brain and Mind SciencesNational Taiwan University Taipei Taiwan ROC
| |
Collapse
|
30
|
Lei X, Liu L, Terrillion CE, Karuppagounder SS, Cisternas P, Lay M, Martinelli DC, Aja S, Dong X, Pletnikov MV, Wong GW. FAM19A1, a brain-enriched and metabolically responsive neurokine, regulates food intake patterns and mouse behaviors. FASEB J 2019; 33:14734-14747. [PMID: 31689372 DOI: 10.1096/fj.201901232rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytokines and chemokines play diverse roles in different organ systems. Family with sequence similarity 19, member A1-5 (FAM19A1-A5; also known as TAFA1-5) is a group of conserved chemokine-like proteins enriched in the CNS of mice and humans. Their functions are only beginning to emerge. Here, we show that the expression of Fam19a1-a5 in different mouse brain regions are induced or suppressed by unfed and refed states. The striking nutritional regulation of Fam19a family members in the brain suggests a potential central role in regulating metabolism. Using a knockout (KO) mouse model, we show that loss of FAM19A1 results in sexually dimorphic phenotypes. In male mice, FAM19A1 deficiency alters food intake patterns during the light and dark cycle. Fam19a1 KO mice are hyperactive, and locomotor hyperactivity is more pronounced in female KO mice. Behavior tests indicate that Fam19a1 KO female mice have reduced anxiety and sensitivity to pain. Spatial learning and exploration, however, is preserved in Fam19a1 KO mice. Altered behaviors are associated with elevated norepinephrine and dopamine turnover in the striatum. Our results establish an in vivo function of FAM19A1 and highlight central roles for this family of neurokines in modulating animal physiology and behavior.-Lei, X., Liu, L., Terrillion, C. E., Karuppagounder, S. S., Cisternas, P., Lay, M., Martinelli, D. C., Aja, S., Dong, X., Pletnikov, M. V., Wong, G. W. FAM19A1, a brain-enriched and metabolically responsive neurokine, regulates food intake patterns and mouse behaviors.
Collapse
Affiliation(s)
- Xia Lei
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lili Liu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,College of Life Science, Hunan University of Science and Technology, Hunan, China
| | - Chantelle E Terrillion
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Senthilkumar S Karuppagounder
- Department of Neurology and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pedro Cisternas
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mark Lay
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David C Martinelli
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mikhail V Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Niño DF, Zhou Q, Yamaguchi Y, Martin LY, Wang S, Fulton WB, Jia H, Lu P, Prindle T, Zhang F, Crawford J, Hou Z, Mori S, Chen LL, Guajardo A, Fatemi A, Pletnikov M, Kannan RM, Kannan S, Sodhi CP, Hackam DJ. Cognitive impairments induced by necrotizing enterocolitis can be prevented by inhibiting microglial activation in mouse brain. Sci Transl Med 2019; 10:10/471/eaan0237. [PMID: 30541786 DOI: 10.1126/scitranslmed.aan0237] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/21/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022]
Abstract
Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease of the premature infant. One of the most important long-term complications observed in children who survive NEC early in life is the development of profound neurological impairments. However, the pathways leading to NEC-associated neurological impairments remain unknown, thus limiting the development of prevention strategies. We have recently shown that NEC development is dependent on the expression of the lipopolysaccharide receptor Toll-like receptor 4 (TLR4) on the intestinal epithelium, whose activation by bacteria in the newborn gut leads to mucosal inflammation. Here, we hypothesized that damage-induced production of TLR4 endogenous ligands in the intestine might lead to activation of microglial cells in the brain and promote cognitive impairments. We identified a gut-brain signaling axis in an NEC mouse model in which activation of intestinal TLR4 signaling led to release of high-mobility group box 1 in the intestine that, in turn, promoted microglial activation in the brain and neurological dysfunction. We further demonstrated that an orally administered dendrimer-based nanotherapeutic approach to targeting activated microglia could prevent NEC-associated neurological dysfunction in neonatal mice. These findings shed light on the molecular pathways leading to the development of NEC-associated brain injury, provide a rationale for early removal of diseased intestine in NEC, and indicate the potential of targeted therapies that protect the developing brain in the treatment of NEC in early childhood.
Collapse
Affiliation(s)
- Diego F Niño
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA.,Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Qinjie Zhou
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA.,Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Yukihiro Yamaguchi
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA.,Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Laura Y Martin
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA.,Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Sanxia Wang
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA.,Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - William B Fulton
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA.,Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Hongpeng Jia
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA.,Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Peng Lu
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA.,Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Thomas Prindle
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA.,Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Fan Zhang
- Program of Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Joshua Crawford
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Zhipeng Hou
- Department of Biomedical Engineering and The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Susumu Mori
- Department of Biomedical Engineering and The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Liam L Chen
- Division of Neuropathology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Andrew Guajardo
- Division of Neuropathology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ali Fatemi
- Departments of Neurology and Pediatrics, Kennedy Krieger Institute and Johns Hopkins University School of Medicine, MD 21205, USA
| | - Mikhail Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.,Department of Molecular and Comparative Pathobiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University and Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD 21205, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chhinder P Sodhi
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA. .,Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - David J Hackam
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA. .,Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| |
Collapse
|
32
|
Mejias R, Chiu SL, Han M, Rose R, Gil-Infante A, Zhao Y, Huganir RL, Wang T. Purkinje cell-specific Grip1/2 knockout mice show increased repetitive self-grooming and enhanced mGluR5 signaling in cerebellum. Neurobiol Dis 2019; 132:104602. [PMID: 31476380 DOI: 10.1016/j.nbd.2019.104602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/30/2019] [Accepted: 08/30/2019] [Indexed: 01/16/2023] Open
Abstract
Cerebellar Purkinje cell (PC) loss is a consistent pathological finding in autism. However, neural mechanisms of PC-dysfunction in autism remain poorly characterized. Glutamate receptor interacting proteins 1/2 (Grip1/2) regulate AMPA receptor (AMPAR) trafficking and synaptic strength. To evaluate role of PC-AMPAR signaling in autism, we produced PC-specific Grip1/2 knockout mice by crossing Grip2 conventional and Grip1 conditional KO with L7-Cre driver mice. PCs in the mutant mice showed normal morphology and number, and a lack of Grip1/2 expression. Rodent behavioral testing identified normal ambulation, anxiety, social interaction, and an increase in repetitive self-grooming. Electrophysiology studies revealed normal mEPSCs but an impaired mGluR-LTD at the Parallel Fiber-PC synapses. Immunoblots showed increased expression of mGluR5 and Arc, and enhanced phosphorylation of P38 and AKT in cerebellum of PC-specific Grip1/2 knockout mice. Results indicate that loss of Grip1/2 in PCs contributes to increased repetitive self-grooming, a core autism behavior in mice. Results support a role of AMPAR trafficking defects in PCs and disturbances of mGluR5 signaling in cerebellum in the pathogenesis of repetitive behaviors.
Collapse
Affiliation(s)
- Rebeca Mejias
- McKusick-Nathans Department of Genetic Medicine and Department of Pediatrics, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Physiology, University of Seville, 41012 Seville, Spain.
| | - Shu-Ling Chiu
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mei Han
- McKusick-Nathans Department of Genetic Medicine and Department of Pediatrics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Rebecca Rose
- McKusick-Nathans Department of Genetic Medicine and Department of Pediatrics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ana Gil-Infante
- Department of Physiology, University of Seville, 41012 Seville, Spain
| | - Yifan Zhao
- McKusick-Nathans Department of Genetic Medicine and Department of Pediatrics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Tao Wang
- McKusick-Nathans Department of Genetic Medicine and Department of Pediatrics, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
33
|
Spatial learning and flexibility in 129S2/SvHsd and C57BL/6J mouse strains using different variants of the Barnes maze. Behav Pharmacol 2019; 29:688-700. [PMID: 30212384 DOI: 10.1097/fbp.0000000000000433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Behavioural flexibility is the ability to switch between tasks and strategies following a change in rules, and involves intact functioning of the medial prefrontal cortex. Impairments of behavioural flexibility have frequently been reported in patients with schizophrenia and rodents with disruption/dysfunction of the prefrontal cortex. The discovery of a mutation in the disrupted in schizophrenia 1 (DISC1) gene in the 129 mouse strain suggests that these mice may be exploited as a 'naturally occurring' model of schizophrenia. The aim of this present study was to assess cognition and behavioural flexibility of 129S2/SvHsd mice in comparison with C57BL/6J mice in the Barnes maze, using three different maze variations that consisted of either 8, 16 or 32 holes. Whereas C57BL/6J mice were able to perform both acquisition and reversal learning in all three mazes, 129S2/SvHsd mice displayed impairments dependent on the complexity of the test. Intact acquisition and reversal occurred in the 8-hole maze; intact acquisition, but impaired reversal, was evident in the 16-hole maze and impaired acquisition was evident in the most difficult 32-hole test. Furthermore, analysis of search strategies confirmed strain differences in the adoption of spatial searches across both acquisition and reversal trials. 129S2/SvHsd mice displayed fewer spatial-type trials than C57BL/6J mice and instead employed more random or serial/chaining search behaviours. The deficits observed in both cognition and behavioural flexibility support the notion of the 129 mouse strain as a potential model of schizophrenia.
Collapse
|
34
|
Macpherson T, Hikida T. Role of basal ganglia neurocircuitry in the pathology of psychiatric disorders. Psychiatry Clin Neurosci 2019; 73:289-301. [PMID: 30734985 DOI: 10.1111/pcn.12830] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/22/2019] [Accepted: 02/05/2019] [Indexed: 12/21/2022]
Abstract
Over the last few decades, advances in human and animal-based techniques have greatly enhanced our understanding of the neural mechanisms underlying psychiatric disorders. Many of these studies have indicated connectivity between and alterations within basal ganglia structures to be particularly pertinent to the development of symptoms associated with several of these disorders. Here we summarize the connectivity, molecular composition, and function of sites within basal ganglia neurocircuits. Then we review the current literature from both human and animal studies concerning altered basal ganglia function in five common psychiatric disorders: obsessive-compulsive disorder, substance-related and addiction disorders, major depressive disorder, generalized anxiety disorder, and schizophrenia. Finally, we present a model based upon the findings of these studies that highlights the striatum as a particularly attractive target for restoring normal function to basal ganglia neurocircuits altered within psychiatric disorder patients.
Collapse
Affiliation(s)
- Tom Macpherson
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|
35
|
Jouroukhin Y, Zhu X, Shevelkin AV, Hasegawa Y, Abazyan B, Saito A, Pevsner J, Kamiya A, Pletnikov MV. Adolescent Δ 9-Tetrahydrocannabinol Exposure and Astrocyte-Specific Genetic Vulnerability Converge on Nuclear Factor-κB-Cyclooxygenase-2 Signaling to Impair Memory in Adulthood. Biol Psychiatry 2019; 85:891-903. [PMID: 30219209 PMCID: PMC6525084 DOI: 10.1016/j.biopsych.2018.07.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/19/2018] [Accepted: 07/30/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Although several studies have linked adolescent cannabis use to long-term cognitive dysfunction, there are negative reports as well. The fact that not all users develop cognitive impairment suggests a genetic vulnerability to adverse effects of cannabis, which are attributed to action of Δ9-tetrahydrocannabinol (Δ9-THC), a cannabis constituent and partial agonist of brain cannabinoid receptor 1. As both neurons and glial cells express cannabinoid receptor 1, genetic vulnerability could influence Δ9-THC-induced signaling in a cell type-specific manner. METHODS Here we use an animal model of inducible expression of dominant-negative disrupted in schizophrenia 1 (DN-DISC1) selectively in astrocytes to evaluate the molecular mechanisms, whereby an astrocyte genetic vulnerability could interact with adolescent Δ9-THC exposure to impair recognition memory in adulthood. RESULTS Selective expression of DN-DISC1 in astrocytes and adolescent treatment with Δ9-THC synergistically affected recognition memory in adult mice. Similar deficits in recognition memory were observed following knockdown of endogenous Disc1 in hippocampal astrocytes in mice treated with Δ9-THC during adolescence. At the molecular level, DN-DISC1 and Δ9-THC synergistically activated the nuclear factor-κB-cyclooxygenase-2 pathway in astrocytes and decreased immunoreactivity of parvalbumin-positive presynaptic inhibitory boutons around pyramidal neurons of the hippocampal CA3 area. The cognitive abnormalities were prevented in DN-DISC1 mice exposed to Δ9-THC by simultaneous adolescent treatment with the cyclooxygenase-2 inhibitor, NS398. CONCLUSIONS Our data demonstrate that individual vulnerability to cannabis can be exclusively mediated by astrocytes. Results of this work suggest that genetic predisposition within astrocytes can exaggerate Δ9-THC-produced cognitive impairments via convergent inflammatory signaling, suggesting possible targets for preventing adverse effects of cannabis within susceptible individuals.
Collapse
Affiliation(s)
- Yan Jouroukhin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xiaolei Zhu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexey V Shevelkin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yuto Hasegawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bagrat Abazyan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Atsushi Saito
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jonathan Pevsner
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland; Kennedy Krieger Institute, Baltimore, Maryland
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Mikhail V Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
36
|
Singh K, Jayaram M, Kaare M, Leidmaa E, Jagomäe T, Heinla I, Hickey MA, Kaasik A, Schäfer MK, Innos J, Lilleväli K, Philips MA, Vasar E. Neural cell adhesion molecule Negr1 deficiency in mouse results in structural brain endophenotypes and behavioral deviations related to psychiatric disorders. Sci Rep 2019; 9:5457. [PMID: 30932003 PMCID: PMC6443666 DOI: 10.1038/s41598-019-41991-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/21/2019] [Indexed: 12/24/2022] Open
Abstract
Neuronal growth regulator 1 (NEGR1) belongs to the immunoglobulin (IgLON) superfamily of cell adhesion molecules involved in cortical layering. Recent functional and genomic studies implicate the role of NEGR1 in a wide spectrum of psychiatric disorders, such as major depression, schizophrenia and autism. Here, we investigated the impact of Negr1 deficiency on brain morphology, neuronal properties and social behavior of mice. In situ hybridization shows Negr1 expression in the brain nuclei which are central modulators of cortical-subcortical connectivity such as the island of Calleja and the reticular nucleus of thalamus. Brain morphological analysis revealed neuroanatomical abnormalities in Negr1−/− mice, including enlargement of ventricles and decrease in the volume of the whole brain, corpus callosum, globus pallidus and hippocampus. Furthermore, decreased number of parvalbumin-positive inhibitory interneurons was evident in Negr1−/− hippocampi. Behaviorally, Negr1−/− mice displayed hyperactivity in social interactions and impairments in social hierarchy. Finally, Negr1 deficiency resulted in disrupted neurite sprouting during neuritogenesis. Our results provide evidence that NEGR1 is required for balancing the ratio of excitatory/inhibitory neurons and proper formation of brain structures, which is prerequisite for adaptive behavioral profiles. Therefore, Negr1−/− mice have a high potential to provide new insights into the neural mechanisms of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Katyayani Singh
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia. .,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.
| | - Mohan Jayaram
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Maria Kaare
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Este Leidmaa
- Institute of Molecular Psychiatry, University of Bonn, Sigmund-Freud-Str.25, 53127, Bonn, Germany
| | - Toomas Jagomäe
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Indrek Heinla
- Department of Psychology, UiT The Arctic University of Norway, Postboks 6050 Langnes, 9037, Tromso, Norway
| | - Miriam A Hickey
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Allen Kaasik
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Michael K Schäfer
- Department for Anesthesiology, University Medical Center and Focus Program Translational Neuroscience (FTN), Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| |
Collapse
|
37
|
Sullivan CR, Mielnik CA, Funk A, O'Donovan SM, Bentea E, Pletnikov M, Ramsey AJ, Wen Z, Rowland LM, McCullumsmith RE. Measurement of lactate levels in postmortem brain, iPSCs, and animal models of schizophrenia. Sci Rep 2019; 9:5087. [PMID: 30911039 PMCID: PMC6433855 DOI: 10.1038/s41598-019-41572-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 03/06/2019] [Indexed: 12/30/2022] Open
Abstract
Converging evidence suggests bioenergetic defects contribute to the pathophysiology of schizophrenia and may underlie cognitive dysfunction. The transport and metabolism of lactate energetically couples astrocytes and neurons and supports brain bioenergetics. We examined the concentration of lactate in postmortem brain (dorsolateral prefrontal cortex) in subjects with schizophrenia, in two animal models of schizophrenia, the GluN1 knockdown mouse model and mutant disrupted in schizophrenia 1 (DISC1) mouse model, as well as inducible pluripotent stem cells (iPSCs) from a schizophrenia subject with the DISC1 mutation. We found increased lactate in the dorsolateral prefrontal cortex (p = 0.043, n = 16/group) in schizophrenia, as well as in frontal cortical neurons differentiated from a subject with schizophrenia with the DISC1 mutation (p = 0.032). We also found a decrease in lactate in mice with induced expression of mutant human DISC1 specifically in astrocytes (p = 0.049). These results build upon the body of evidence supporting bioenergetic dysfunction in schizophrenia, and suggests changes in lactate are a key feature of this often devastating severe mental illness.
Collapse
Affiliation(s)
| | - Catharine A Mielnik
- Department of Pharmacology and Toxicology, University of Toronto, Toronto Ontario M5S, 1A8, Toronto, Canada
| | - Adam Funk
- Department of Neurosciences, University of Toledo, Toledo, OH, 43614, USA
| | - Sinead M O'Donovan
- Department of Neurosciences, University of Toledo, Toledo, OH, 43614, USA
| | - Eduard Bentea
- Center for Neurosciences (C4N), Department of Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mikhail Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medicine, Baltimore, Maryland, 21287, USA
| | - Amy J Ramsey
- Department of Pharmacology and Toxicology, University of Toronto, Toronto Ontario M5S, 1A8, Toronto, Canada
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia, 30322, USA
| | - Laura M Rowland
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | | |
Collapse
|
38
|
Hikida T, Morita M, Kuroiwa M, Macpherson T, Shuto T, Sotogaku N, Niwa M, Sawa A, Nishi A. Adolescent psychosocial stress enhances sensitization to cocaine exposure in genetically vulnerable mice. Neurosci Res 2019; 151:38-45. [PMID: 30831136 DOI: 10.1016/j.neures.2019.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 11/29/2022]
Abstract
Development of drug addictive behaviors is modulated by both genetic and environmental risk factors. However, the molecular mechanisms remain unknown. To address the role of adolescent stress in the development of drug addiction, we combined a transgenic mouse model in which a putative dominant-negative form of DISC1 under expressional control of the prion protein promoter is used as a genetic risk factor and adolescent social isolation stress as a gene-environmental interaction (GXE). Repeated cocaine exposure induced greater locomotion in the GXE group than in the other groups. In a conditioned place preference (CPP) test, GXE mice exhibited a significant place preference to the cocaine-conditioned area compared with the other groups. In the nucleus accumbens (NAc) of GXE mice, we found increased enzyme activity of phosphodiesterase-4 (PDE4), predominantly located in NAc D2-receptor-expressing neurons, and enhanced effects of the PDE4 inhibitor rolipram, but not the D1 agonist SKF81297, on the phosphorylation of DARPP-32 and GluA1 at PKA sites. Rolipram injection before cocaine exposure completely inhibited cocaine-induced hyperlocomotion and CPP in the GXE group. These results indicate that GXE enhances sensitivity to repeated cocaine exposure via an increase in PDE4 activity in NAc D2-recptor-expressing neurons, leading to the development of cocaine addictive behaviors.
Collapse
Affiliation(s)
- Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Japan; Medical Innovation Center, Kyoto University Graduate School of Medicine, Japan.
| | - Makiko Morita
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Japan; Medical Innovation Center, Kyoto University Graduate School of Medicine, Japan
| | - Mahomi Kuroiwa
- Department of Pharmacology, Kurume University School of Medicine, Japan
| | - Tom Macpherson
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Japan; Medical Innovation Center, Kyoto University Graduate School of Medicine, Japan
| | - Takahide Shuto
- Department of Pharmacology, Kurume University School of Medicine, Japan
| | - Naoki Sotogaku
- Department of Pharmacology, Kurume University School of Medicine, Japan
| | - Minae Niwa
- Department of Psychiatry, Johns Hopkins University School of Medicine, USA
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, USA
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Japan
| |
Collapse
|
39
|
Segal-Gavish H, Barzilay R, Rimoni O, Offen D. Voluntary exercise improves cognitive deficits in female dominant-negative DISC1 transgenic mouse model of neuropsychiatric disorders. World J Biol Psychiatry 2019; 20:243-252. [PMID: 28593819 DOI: 10.1080/15622975.2017.1323118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Physical exercise has gained increasing interest as a treatment modality that improves prognosis in psychiatric patients. The disrupted in schizophrenia 1 (DISC1) gene is a candidate gene for major mental illness. In this study, we aimed to determine whether voluntary wheel running can improve cognitive deficits of dominant-negative DISC1 transgenic mice (DN-DISC1). METHODS DN-DISC1 and control mice (10-week-old male and female) were placed for 14 days in a cage with or without access to a running wheel. Two weeks later, mice underwent behavioural tests evaluating cognition and social approach and recognition. RESULTS Voluntary exercise improved performance in the novel object recognition test, restored the impairment in spatial memory in the Y maze, and reversed the deficit in social recognition memory in DN-DISC1 females. DN-DISC1 males did not exhibit behavioural deficits at baseline. Tissue analysis revealed that exercise induced a significant increase in hippocampal expression of doublecortin (DCX), brain-derived neurotrophic factor (BDNF) and cannabinoid receptor type 1 (CB1R) only in DN-DISC1 females. CONCLUSIONS Voluntary exercise is beneficial in attenuating cognitive deficits observed in a rodent model relevant for neuropsychiatric disorders. The data add a preclinical aspect to the accumulating clinical data supporting the incorporation of physical exercise to patients' care.
Collapse
Affiliation(s)
- Hadar Segal-Gavish
- a Laboratory of Neuroscience , Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Ran Barzilay
- a Laboratory of Neuroscience , Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel.,b Research Unit , Geha Mental Health Center , Petach Tikva , Israel
| | - Ofri Rimoni
- a Laboratory of Neuroscience , Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Daniel Offen
- a Laboratory of Neuroscience , Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
40
|
Wang AL, Chao OY, Yang YM, Trossbach SV, Müller CP, Korth C, Huston JP, de Souza Silva MA. Anxiogenic-like behavior and deficient attention/working memory in rats expressing the human DISC1 gene. Pharmacol Biochem Behav 2019; 179:73-79. [PMID: 30779934 DOI: 10.1016/j.pbb.2019.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 01/27/2023]
Abstract
In humans, mutations in the Disrupted-in-schizophrenia 1 (DISC1) gene have been related to psychiatric disorders, including symptoms of abnormal cognitive and emotional behaviors. In our previous studies, overexpression of the human DISC1 gene in rats resulted in schizophrenia-like phenotypes showing deficits in motor learning, impaired cognitive function and dysfunctions of the dopamine system. Here we asked, whether the DISC1 overexpression affects locomotor activity in the open field (OF), anxiety in the elevated plus-maze (EPM), depression-related behavior in the forced swim test (FST), and attention-like/short-term working-memory in the spontaneous alternation behavior (SAB) in the T-maze in transgenic DISC1 (tgDISC1) rats and littermate controls (WT). TgDISC1 rats showed enhanced anxiety behavior in the EPM and an impairment in attention-like/short-term working-memory in the SAB. However, tgDISC1 animals showed no locomotor impairments or depression-like behavior in the OF and FST. These results suggest that DISC1 overexpression leads to higher anxiety level and an attention-like/working-memory deficit. These findings may expand the causal role of DISC1 in its contribution to multiple symptom dimensions of psychiatric disorders.
Collapse
Affiliation(s)
- An-Li Wang
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Owen Y Chao
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Biomedical Sciences, School of Medicine, University of Minnesota, Duluth, MN, USA.
| | - Yi-Mei Yang
- Department of Biomedical Sciences, School of Medicine, University of Minnesota, Duluth, MN, USA.
| | - Svenja V Trossbach
- Department Neuropathology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| | - Carsten Korth
- Department Neuropathology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Maria Angelica de Souza Silva
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
41
|
Piard J, Hu JH, Campeau PM, Rzonca S, Van Esch H, Vincent E, Han M, Rossignol E, Castaneda J, Chelly J, Skinner C, Kalscheuer VM, Wang R, Lemyre E, Kosinska J, Stawinski P, Bal J, Hoffman DA, Schwartz CE, Van Maldergem L, Wang T, Worley PF. FRMPD4 mutations cause X-linked intellectual disability and disrupt dendritic spine morphogenesis. Hum Mol Genet 2019; 27:589-600. [PMID: 29267967 DOI: 10.1093/hmg/ddx426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 12/12/2017] [Indexed: 11/13/2022] Open
Abstract
FRMPD4 (FERM and PDZ Domain Containing 4) is a neural scaffolding protein that interacts with PSD-95 to positively regulate dendritic spine morphogenesis, and with mGluR1/5 and Homer to regulate mGluR1/5 signaling. We report the genetic and functional characterization of 4 FRMPD4 deleterious mutations that cause a new X-linked intellectual disability (ID) syndrome. These mutations were found to be associated with ID in ten affected male patients from four unrelated families, following an apparent X-linked mode of inheritance. Mutations include deletion of an entire coding exon, a nonsense mutation, a frame-shift mutation resulting in premature termination of translation, and a missense mutation involving a highly conserved amino acid residue neighboring FRMPD4-FERM domain. Clinical features of these patients consisted of moderate to severe ID, language delay and seizures alongside with behavioral and/or psychiatric disturbances. In-depth functional studies showed that a frame-shift mutation, FRMPD4p.Cys618ValfsX8, results in a disruption of FRMPD4 binding with PSD-95 and HOMER1, and a failure to increase spine density in transfected hippocampal neurons. Behavioral studies of frmpd4-KO mice identified hippocampus-dependent spatial learning and memory deficits in Morris Water Maze test. These findings point to an important role of FRMPD4 in normal cognitive development and function in humans and mice, and support the hypothesis that FRMPD4 mutations cause ID by disrupting dendritic spine morphogenesis in glutamatergic neurons.
Collapse
Affiliation(s)
- Juliette Piard
- Centre de Génétique Humaine and Integrative and Cognitive Neuroscience Research Unit EA481, Université de Franche-Comté, Besançon, France
| | - Jia-Hua Hu
- Department of Neuroscience, Department of Pediatrics, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Program in Developmental Neuroscience, Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Hilde Van Esch
- Department of Human Genetics, University Hospitals Leuven, Belgium
| | - Elizabeth Vincent
- Department of Neuroscience, Department of Pediatrics, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mei Han
- Department of Neuroscience, Department of Pediatrics, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elsa Rossignol
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
| | | | - Jamel Chelly
- CNRS UMR7104, Institut de Génétique, Biologie Moléculaire et Cellulaire, Illkirch, France
| | | | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ruihua Wang
- Department of Neuroscience, Department of Pediatrics, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emmanuelle Lemyre
- Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | | | | | - Jerzy Bal
- Institute of Mother and Child, Warsaw, Poland
| | - Dax A Hoffman
- Program in Developmental Neuroscience, Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Lionel Van Maldergem
- Centre de Génétique Humaine and Integrative and Cognitive Neuroscience Research Unit EA481, Université de Franche-Comté, Besançon, France.,Centre of Clinical Investigation 1431, National Institute for Health and Medical Research (INSERM), Université de Franche-Comté, Besançon, France
| | - Tao Wang
- Department of Neuroscience, Department of Pediatrics, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul F Worley
- Department of Neuroscience, Department of Pediatrics, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
42
|
Winship IR, Dursun SM, Baker GB, Balista PA, Kandratavicius L, Maia-de-Oliveira JP, Hallak J, Howland JG. An Overview of Animal Models Related to Schizophrenia. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2019; 64:5-17. [PMID: 29742910 PMCID: PMC6364139 DOI: 10.1177/0706743718773728] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Schizophrenia is a heterogeneous psychiatric disorder that is poorly treated with current therapies. In this brief review, we provide an update regarding the use of animal models to study schizophrenia in an attempt to understand its aetiology and develop novel therapeutic strategies. Tremendous progress has been made developing and validating rodent models that replicate the aetiologies, brain pathologies, and behavioural abnormalities associated with schizophrenia in humans. Here, models are grouped into 3 categories-developmental, drug induced, and genetic-to reflect the heterogeneous risk factors associated with schizophrenia. Each of these models is associated with varied but overlapping pathophysiology, endophenotypes, behavioural abnormalities, and cognitive impairments. Studying schizophrenia using multiple models will permit an understanding of the core features of the disease, thereby facilitating preclinical research aimed at the development and validation of better pharmacotherapies to alter the progression of schizophrenia or alleviate its debilitating symptoms.
Collapse
Affiliation(s)
- Ian R Winship
- 1 Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta
| | - Serdar M Dursun
- 2 Department of Psychiatry, Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta.,3 National Institute of Science and Technology-Translational Science, Brazil
| | - Glen B Baker
- 2 Department of Psychiatry, Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta.,3 National Institute of Science and Technology-Translational Science, Brazil
| | - Priscila A Balista
- 4 Department of Pharmacy, Centro Universitario das Faculdades Metropolitanas Unidas, São Paulo, Brazil
| | - Ludmyla Kandratavicius
- 5 Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Joao Paulo Maia-de-Oliveira
- 3 National Institute of Science and Technology-Translational Science, Brazil.,6 Department of Clinical Medicine, Rio Grande do Norte Federal University, Natal, Brazil
| | - Jaime Hallak
- 3 National Institute of Science and Technology-Translational Science, Brazil.,5 Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil.,7 Department of Psychiatry (NRU), University of Alberta, Edmonton, Alberta
| | - John G Howland
- 8 Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan
| |
Collapse
|
43
|
Uzuneser TC, Speidel J, Kogias G, Wang AL, de Souza Silva MA, Huston JP, Zoicas I, von Hörsten S, Kornhuber J, Korth C, Müller CP. Disrupted-in-Schizophrenia 1 (DISC1) Overexpression and Juvenile Immune Activation Cause Sex-Specific Schizophrenia-Related Psychopathology in Rats. Front Psychiatry 2019; 10:222. [PMID: 31057438 PMCID: PMC6465888 DOI: 10.3389/fpsyt.2019.00222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/26/2019] [Indexed: 01/12/2023] Open
Abstract
Synaptic pruning is a critical refinement step during neurodevelopment, and schizophrenia has been associated with overpruning of cortical dendritic spines. Both human studies and animal models implicate disrupted-in-schizophrenia 1 (DISC1) gene as a strong susceptibility factor for schizophrenia. Accumulating evidence supports the involvement of DISC1 protein in the modulation of synaptic elimination during critical periods of neurodevelopment and of dopamine D2-receptor-mediated signaling during adulthood. In many species, synaptic pruning occurs during juvenile and adolescent periods and is mediated by microglia, which can be over-activated by an immune challenge, giving rise to overpruning. Therefore, we sought to investigate possible interactions between a transgenic DISC1 model (tgDISC1) and juvenile immune activation (JIA) by the bacterial cell wall endotoxin lipopolysaccharide on the induction of schizophrenia-related behavioral and neurochemical disruptions in adult female and male rats. We examined possible behavioral aberrations along three major symptom dimensions of schizophrenia including psychosis, social and emotional disruptions, and cognitive impairments. We detected significant gene-environment interactions in the amphetamine-induced locomotion in female animals and in the amphetamine-induced anxiety in male animals. Surprisingly, gene-environment interactions improved social memory in both male and female animals. JIA alone disrupted spatial memory and recognition memory, but only in male animals. DISC1 overexpression alone induced an improvement in sensorimotor gating, but only in female animals. Our neurochemical analyses detected sex- and manipulation-dependent changes in the postmortem monoamine content of animals. Taken together, we here report sex-specific effects of environment and genotype as well as their interaction on behavioral phenotypes and neurochemical profiles relevant for schizophrenia.
Collapse
Affiliation(s)
- Taygun C Uzuneser
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jil Speidel
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Georgios Kogias
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - An-Li Wang
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf, Germany
| | - Maria A de Souza Silva
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf, Germany
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf, Germany
| | - Iulia Zoicas
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy, Preclinical Experimental Center, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Carsten Korth
- Department of Neuropathology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
44
|
Naghavi-Gargari B, Zahirodin A, Ghaderian SMH, Shirvani-Farsani Z. Significant increasing of DISC2 long non-coding RNA expression as a potential biomarker in bipolar disorder. Neurosci Lett 2018; 696:206-211. [PMID: 30599263 DOI: 10.1016/j.neulet.2018.12.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/07/2018] [Accepted: 12/28/2018] [Indexed: 11/18/2022]
Abstract
Bipolar disorder (BD) is a mental disorder that is often misdiagnosed with ineffective treatment. It has strong genetic component but unknown pathophysiology. Long non-coding RNAs (lncRNAs) have been recently recognized as one of the important genetic factors and are considered as one of the regulatory mechanisms of nervous system. Given that lncRNAs may be diagnostic biomarkers for BD, we aimed to quantify the levels of DISC1 and DISC2 lncRNA transcripts. The levels of DISC1 and DISC2 lncRNA were tested in peripheral blood mononuclear cells (PBMCs) of 50 BD and 50 controls by real-time PCR. In addition, we performed ROC curve analysis as well as correlation analysis between the gene expression and some clinical features of BD cases. Computational analysis of miRNAs binding sites and CpG Islands on DISC1 and DISC2 lncRNA was performed as well. Significant down-regulation of DISC1 and up-regulation of DISC2 were observed in BD cases compared with controls. The areas under the ROC curve (AUC) for DISC1 and DISC2 lncRNA were 0.76 and 0.68 respectively. There was no significant correlation between the levels of mRNA expression in PBMCs of BD patients and clinical features. These data demonstrated that DISC1 and DISC2 lncRNA expression was potentially associated with an increased risk of bipolar disorder and might involve several molecular mechanisms. Our results revealed that the transcript levels of DISC1 and DISC2 lncRNA could be considered as a good putative biomarker for individuals with bipolar disorder.
Collapse
Affiliation(s)
- Bahar Naghavi-Gargari
- Department of Basic Science, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Alireza Zahirodin
- Behavioral Science Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | | | - Zeinab Shirvani-Farsani
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, Islamic Republic of Iran.
| |
Collapse
|
45
|
Proteomic Studies Reveal Disrupted in Schizophrenia 1 as a Player in Both Neurodevelopment and Synaptic Function. Int J Mol Sci 2018; 20:ijms20010119. [PMID: 30597994 PMCID: PMC6337115 DOI: 10.3390/ijms20010119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 02/03/2023] Open
Abstract
A balanced chromosomal translocation disrupting DISC1 (Disrupted in Schizophrenia 1) gene has been linked to psychiatric diseases, such as major depression, bipolar disorder and schizophrenia. Since the discovery of this translocation, many studies have focused on understating the role of the truncated isoform of DISC1, hypothesizing that the gain of function of this protein could be behind the neurobiology of mental conditions, but not so many studies have focused in the mechanisms impaired due to its loss of function. For that reason, we performed an analysis on the cellular proteome of primary neurons in which DISC1 was knocked down with the goal of identifying relevant pathways directly affected by DISC1 loss of function. Using an unbiased proteomic approach, we found that the expression of 31 proteins related to neurodevelopment (e.g., CRMP-2, stathmin) and synaptic function (e.g., MUNC-18, NCS-1) is altered by DISC1 in primary mouse neurons. Hence, this study reinforces the idea that DISC1 is a unifying regulator of both neurodevelopment and synaptic function, thereby providing a link between these two key anatomical and cellular circuitries.
Collapse
|
46
|
Kannan G, Prandovszky E, Severance E, Yolken RH, Pletnikov MV. A New T. gondii Mouse Model of Gene-Environment Interaction Relevant to Psychiatric Disease. SCIENTIFICA 2018; 2018:7590958. [PMID: 30631636 PMCID: PMC6305013 DOI: 10.1155/2018/7590958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/11/2018] [Indexed: 06/09/2023]
Abstract
Infection with the protozoan parasite, Toxoplasma gondii (T. gondii), was linked to several psychiatric disorders. The exact mechanisms of a hypothesized contribution of T. gondii infection are poorly understood, and it appears that only a subset of seropositive individuals go on to develop a mental illness, suggesting genetic vulnerability. In order to stimulate mechanistic studies of how exposure to T. gondii could interact with genetic predisposition to psychiatric disorders, we have generated and characterized a mouse model of chronic T. gondii infection in BALB/c mice with inducible forebrain neuronal expression of a C-terminus truncated dominant-negative form of disrupted-in-schizophrenia 1 (DN-DISC1). In this gene-environment interaction (GxE) model, exposing control and DN-DISC1 male and female mice to T. gondii produced sex-dependent abnormalities in locomotor activity and prepulse inhibition of the acoustic startle. No genotype- or sex-dependent effects were found on levels of anti-Toxoplasma IgG antibodies or anti-NMDAR or C1q antibodies. Our work demonstrates that a psychiatric genetic risk factor, DN-DISC1, modulates the neurobehavioral effects of chronic T. gondii infection in a sex-dependent manner. The present T. gondii model of GxE provides a valuable experimental system for future mechanistic studies and evaluation of new treatments.
Collapse
Affiliation(s)
- Geetha Kannan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emese Prandovszky
- Stanley Neurovirology Laboratory, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Emily Severance
- Stanley Neurovirology Laboratory, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert H. Yolken
- Stanley Neurovirology Laboratory, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mikhail V. Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
47
|
Kimoto S, Makinodan M, Kishimoto T. Neurobiology and treatment of social cognition in schizophrenia: Bridging the bed-bench gap. Neurobiol Dis 2018; 131:104315. [PMID: 30391541 DOI: 10.1016/j.nbd.2018.10.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/01/2018] [Accepted: 10/31/2018] [Indexed: 01/15/2023] Open
Abstract
Social cognition refers to the psychological processes involved in the perception, encoding, storage, retrieval, and regulation of information about others and ourselves. This process is essential for survival and reproduction in complex social environments. Recent evidence suggests that impairments in social cognition frequently occur in schizophrenia, mainly contributing to poor functional outcomes, including the inability to engage in meaningful work and maintain satisfying interpersonal relationships. With the ambiguous definition of social cognition, the neurobiology underlying impaired social cognition remains unknown, and the effectiveness of currently available intervention strategies in schizophrenia remain limited. Considering the advances and challenges of translational research for schizophrenia, social cognition has been considered a high-priority domain for treatment development. Here, we describe the current state of the framework, clinical concerns, and intervention approaches for social cognition in schizophrenia. Next, we introduce translatable rodent models associated with schizophrenia that allow the evaluation of different components of social behaviors, providing deeper insights into the neural substrates of social cognition in schizophrenia. Our review presents a valuable perspective that indicates the necessity of building bridges between basic and clinical science researchers for the development of novel therapeutic approaches in impaired social cognition in schizophrenia.
Collapse
Affiliation(s)
- Sohei Kimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan.
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Toshifumi Kishimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| |
Collapse
|
48
|
Umanah GKE, Pignatelli M, Yin X, Chen R, Crawford J, Neifert S, Scarffe L, Behensky AA, Guiberson N, Chang M, Ma E, Kim JW, Castro CC, Mao X, Chen L, Andrabi SA, Pletnikov MV, Pulver AE, Avramopoulos D, Bonci A, Valle D, Dawson TM, Dawson VL. Thorase variants are associated with defects in glutamatergic neurotransmission that can be rescued by Perampanel. Sci Transl Med 2018; 9:9/420/eaah4985. [PMID: 29237760 DOI: 10.1126/scitranslmed.aah4985] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 01/20/2017] [Accepted: 06/01/2017] [Indexed: 11/02/2022]
Abstract
The AAA+ adenosine triphosphatase (ATPase) Thorase plays a critical role in controlling synaptic plasticity by regulating the expression of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Bidirectional sequencing of exons of ATAD1, the gene encoding Thorase, in a cohort of patients with schizophrenia and healthy controls revealed rare Thorase variants. These variants caused defects in glutamatergic signaling by impairing AMPAR internalization and recycling in mouse primary cortical neurons. This contributed to increased surface expression of the AMPAR subunit GluA2 and enhanced synaptic transmission. Heterozygous Thorase-deficient mice engineered to express these Thorase variants showed altered synaptic transmission and several behavioral deficits compared to heterozygous Thorase-deficient mice expressing wild-type Thorase. These behavioral impairments were rescued by the competitive AMPAR antagonist Perampanel, a U.S. Food and Drug Administration-approved drug. These findings suggest that Perampanel may be useful for treating disorders involving compromised AMPAR-mediated glutamatergic neurotransmission.
Collapse
Affiliation(s)
- George K E Umanah
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Marco Pignatelli
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Xiling Yin
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rong Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joshua Crawford
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stewart Neifert
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Leslie Scarffe
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Adam A Behensky
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Noah Guiberson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Melissa Chang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Erica Ma
- School of Public Health, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jin Wan Kim
- Department of Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cibele C Castro
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Biochemistry, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Li Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shaida A Andrabi
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mikhail V Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ann E Pulver
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dimitrios Avramopoulos
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Antonello Bonci
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David Valle
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. .,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. .,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
49
|
Tropea D, Hardingham N, Millar K, Fox K. Mechanisms underlying the role of DISC1 in synaptic plasticity. J Physiol 2018; 596:2747-2771. [PMID: 30008190 PMCID: PMC6046077 DOI: 10.1113/jp274330] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/02/2018] [Indexed: 12/11/2022] Open
Abstract
Disrupted in schizophrenia 1 (DISC1) is an important hub protein, forming multimeric complexes by self-association and interacting with a large number of synaptic and cytoskeletal molecules. The synaptic location of DISC1 in the adult brain suggests a role in synaptic plasticity, and indeed, a number of studies have discovered synaptic plasticity impairments in a variety of different DISC1 mutants. This review explores the possibility that DISC1 is an important molecule for organizing proteins involved in synaptic plasticity and examines why mutations in DISC1 impair plasticity. It concentrates on DISC1's role in interacting with synaptic proteins, controlling dendritic structure and cellular trafficking of mRNA, synaptic vesicles and mitochondria. N-terminal directed mutations appear to impair synaptic plasticity through interactions with phosphodiesterase 4B (PDE4B) and hence protein kinase A (PKA)/GluA1 and PKA/cAMP response element-binding protein (CREB) signalling pathways, and affect spine structure through interactions with kalirin 7 (Kal-7) and Rac1. C-terminal directed mutations also impair plasticity possibly through altered interactions with lissencephaly protein 1 (LIS1) and nuclear distribution protein nudE-like 1 (NDEL1), thereby affecting developmental processes such as dendritic structure and spine maturation. Many of the same molecules involved in DISC1's cytoskeletal interactions are also involved in intracellular trafficking, raising the possibility that impairments in intracellular trafficking affect cytoskeletal development and vice versa. While the multiplicity of DISC1 protein interactions makes it difficult to pinpoint a single causal signalling pathway, we suggest that the immediate-term effects of N-terminal influences on GluA1, Rac1 and CREB, coupled with the developmental effects of C-terminal influences on trafficking and the cytoskeleton make up the two main branches of DISC1's effect on synaptic plasticity and dendritic spine stability.
Collapse
Affiliation(s)
- Daniela Tropea
- Neurospychiatric GeneticsTrinity Center for Health Sciences and Trinity College Institute of Neuroscience (TCIN)Trinity College DublinDublinIreland
| | - Neil Hardingham
- School of BiosciencesMuseum AvenueCardiff UniversityCardiffUK
| | - Kirsty Millar
- Centre for Genomic & Experimental MedicineMRC Institute of Genetics & Molecular MedicineWestern General HospitalUniversity of EdinburghCrewe RoadEdinburghUK
| | - Kevin Fox
- School of BiosciencesMuseum AvenueCardiff UniversityCardiffUK
| |
Collapse
|
50
|
Maeta K, Hattori S, Ikutomo J, Edamatsu H, Bilasy SE, Miyakawa T, Kataoka T. Comprehensive behavioral analysis of mice deficient in Rapgef2 and Rapgef6, a subfamily of guanine nucleotide exchange factors for Rap small GTPases possessing the Ras/Rap-associating domain. Mol Brain 2018; 11:27. [PMID: 29747665 PMCID: PMC5946393 DOI: 10.1186/s13041-018-0370-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/29/2018] [Indexed: 12/22/2022] Open
Abstract
Rapgef2 and Rapgef6 define a subfamily of guanine nucleotide exchange factors for Rap small GTPases, characterized by the possession of the Ras/Rap-associating domain. Previous genomic analyses suggested their possible involvement in the etiology of schizophrenia. We recently demonstrated the development of an ectopic cortical mass (ECM), which resembles the human subcortical band heterotopia, in the dorsal telencephalon-specific Rapgef2 conditional knockout (Rapgef2-cKO) brains. Additional knockout of Rapgef6 in Rapgef2-cKO mice resulted in gross enlargement of the ECM whereas knockout of Rapgef6 alone (Rapgef6-KO) had no discernible effect on the brain morphology. Here, we performed a battery of behavioral tests to examine the effects of Rapgef2 or Rapgef6 deficiency on higher brain functions. Rapgef2-cKO mice exhibited hyperlocomotion phenotypes. They showed decreased anxiety-like behavior in the elevated plus maze and the open-field tests as well as increased depression-like behavior in the Porsolt forced swim and tail suspension tests. They also exhibited increased sociability especially in novel environments. They showed defects in cognitive function as evidenced by reduced learning ability in the Barnes circular maze test and by impaired working memory in the T maze tests. In contrast, although Rapgef6 and Rapgef2 share similarities in biochemical roles, Rapgef6-KO mice exhibited mild behavioral abnormalities detected with a number of behavioral tests, such as hyperlocomotion phenotype in the open-field test and the social interaction test with a novel environment and working-memory defects in the T-maze test. In conclusion, although there were differences in their brain morphology and the magnitude of the behavioral abnormalities, Rapgef2-cKO mice and Rapgef6-KO mice exhibited hyperlocomotion phenotype and working-memory defect, both of which could be recognized as schizophrenia-like behavior.
Collapse
Affiliation(s)
- Kazuhiro Maeta
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
- Present address: Department of Neurotherapeutics, Osaka University Graduate School of Medicine, 2-2Yamadaoka, Suita, Osaka, 565-0871 Japan
| | - Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192 Japan
| | - Junji Ikutomo
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| | - Hironori Edamatsu
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| | - Shymaa E. Bilasy
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
- Present address: Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, El-shikh Zayed, Ismailia, 41522 Egypt
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192 Japan
| | - Tohru Kataoka
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| |
Collapse
|