1
|
Preedalikit W, Chittasupho C, Leelapornpisid P, Duangnin N, Kiattisin K. Potential of Coffee Cherry Pulp Extract against Polycyclic Aromatic Hydrocarbons in Air Pollution Induced Inflammation and Oxidative Stress for Topical Applications. Int J Mol Sci 2024; 25:9416. [PMID: 39273362 PMCID: PMC11395326 DOI: 10.3390/ijms25179416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Airborne particulate matter (PM) contains polycyclic aromatic hydrocarbons (PAHs) as primary toxic components, causing oxidative damage and being associated with various inflammatory skin pathologies such as premature aging, atopic dermatitis, and psoriasis. Coffee cherry pulp (CCS) extract, rich in chlorogenic acid, caffeine, and theophylline, has demonstrated strong antioxidant properties. However, its specific anti-inflammatory effects and ability to protect macrophages against PAH-induced inflammation remain unexplored. Thus, this study aimed to evaluate the anti-inflammatory properties of CCS extract on RAW 264.7 macrophage cells exposed to atmospheric PAHs, compared to chlorogenic acid (CGA), caffeine (CAF), and theophylline (THP) standards. The CCS extract was assessed for its impact on the production of nitric oxide (NO) and expression of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Results showed that CCS extract exhibited significant antioxidant activities and effectively inhibited protease and lipoxygenase (LOX) activities. The PAH induced the increase in intracellular reactive oxygen species, NO, TNF-α, IL-6, iNOS, and COX-2, which were markedly suppressed by CCS extract in a dose-dependent manner, comparable to the effects of chlorogenic acid, caffeine, and theophylline. In conclusion, CCS extract inhibits PAH-induced inflammation by reducing pro-inflammatory cytokines and reactive oxygen species (ROS) production in RAW 264.7 cells. This effect is likely due to the synergistic effects of its bioactive compounds. Chlorogenic acid showed strong antioxidant and anti-inflammatory activities, while caffeine and theophylline enhanced anti-inflammatory activity. CCS extract did not irritate the hen's egg chorioallantoic membrane. Therefore, CCS extract shows its potential as a promising cosmeceutical ingredient for safely alleviating inflammatory skin diseases caused by air pollution.
Collapse
Affiliation(s)
- Weeraya Preedalikit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Cosmetic Sciences, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | | | - Kanokwan Kiattisin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Djordjevic S, Itzykson R, Hague F, Lebon D, Legrand J, Ouled‐Haddou H, Jedraszak G, Harbonnier J, Collet L, Paubelle E, Marolleau J, Garçon L, Boyer T. STIM2 is involved in the regulation of apoptosis and the cell cycle in normal and malignant monocytic cells. Mol Oncol 2024; 18:1571-1592. [PMID: 38234211 PMCID: PMC11161727 DOI: 10.1002/1878-0261.13584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Calcium is a ubiquitous messenger that regulates a wide range of cellular functions, but its involvement in the pathophysiology of acute myeloid leukemia (AML) is not widely investigated. Here, we identified, from an analysis of The Cancer Genome Atlas and genotype-tissue expression databases, stromal interaction molecule 2 (STIM2) as being highly expressed in AML with monocytic differentiation and negatively correlated with overall survival. This was confirmed on a validation cohort of 407 AML patients. We then investigated the role of STIM2 in cell proliferation, differentiation, and survival in two leukemic cell lines with monocytic potential and in normal hematopoietic stem cells. STIM2 expression increased at the RNA and protein levels upon monocyte differentiation. Phenotypically, STIM2 knockdown drastically inhibited cell proliferation and induced genomic stress with DNA double-strand breaks, as shown by increased levels of phosphorylate histone H2AXγ (p-H2AXγ), followed by activation of the cellular tumor antigen p53 pathway, decreased expression of cell cycle regulators such as cyclin-dependent kinase 1 (CDK1)-cyclin B1 and M-phase inducer phosphatase 3 (CDC25c), and a decreased apoptosis threshold with a low antiapoptotic/proapoptotic protein ratio. Our study reports STIM2 as a new actor regulating genomic stability and p53 response in terms of cell cycle and apoptosis of human normal and malignant monocytic cells.
Collapse
Affiliation(s)
| | - Raphaël Itzykson
- Département Hématologie et ImmunologieHôpital Saint‐Louis, Assistance Publique‐Hôpitaux de ParisFrance
- Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRSUniversité Paris CitéFrance
| | - Frédéric Hague
- Laboratoire de Physiologie Cellulaire et Moléculaire UR4667Université Picardie Jules VerneAmiensFrance
| | - Delphine Lebon
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
- Service d'Hématologie Clinique et de Thérapie CellulaireCHU Amiens‐PicardieFrance
| | - Julien Legrand
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
| | | | - Guillaume Jedraszak
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
- Laboratoire de Génétique ConstitutionnelleCHU Amiens‐PicardieFrance
| | | | - Louison Collet
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
| | - Etienne Paubelle
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
- Service d'Hématologie Clinique et de Thérapie CellulaireCHU Amiens‐PicardieFrance
| | - Jean‐Pierre Marolleau
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
- Service d'Hématologie Clinique et de Thérapie CellulaireCHU Amiens‐PicardieFrance
| | - Loïc Garçon
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
- Service d'Hématologie BiologiqueCHU Amiens‐PicardieFrance
| | - Thomas Boyer
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
- Service d'Hématologie BiologiqueCHU Amiens‐PicardieFrance
| |
Collapse
|
3
|
John A, Raza H. Azadirachtin Attenuates Carcinogen Benzo(a) Pyrene-Induced DNA Damage, Cell Cycle Arrest, Apoptosis, Inflammatory, Metabolic, and Oxidative Stress in HepG2 Cells. Antioxidants (Basel) 2023; 12:2001. [PMID: 38001854 PMCID: PMC10669168 DOI: 10.3390/antiox12112001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Azadirachtin (AZD), a limonoid from the versatile, tropical neem tree (Azadirachta indica), is well known for its many medicinal, and pharmacological effects. Its effects as an anti-oxidant, anti-inflammatory, and anti-cancer agent are well known. However, not many studies have explored the effects of AZD on toxicities induced by benzo(a)pyrene (B(a)P), a toxic component of cigarette smoke known to cause DNA damage and cell cycle arrest, leading to different kinds of cancer. In the present study, using HepG2 cells, we investigated the protective effects of Azadirachtin (AZD) against B(a)P-induced oxidative/nitrosative and metabolic stress and mitochondrial dysfunction. Treatment with 25 µM B(a)P for 24 h demonstrated an increased production of reactive oxygen species (ROS), followed by increased lipid peroxidation and DNA damage presumably, due to the increased metabolic activation of B(a)P by CYP 450 1A1/1A2 enzymes. We also observed intrinsic and extrinsic apoptosis, alterations in glutathione-dependent redox homeostasis, cell cycle arrest, and inflammation after B(a)P treatment. Cells treated with 25 µM AZD for 24 h showed decreased oxidative stress and apoptosis, partial protection from DNA damage, and an improvement in mitochondrial functions and bioenergetics. The improvement in antioxidant status, anti-inflammatory potential, and alterations in cell cycle regulatory markers qualify AZD as a potential therapeutic in combination with anti-cancer drugs.
Collapse
Affiliation(s)
| | - Haider Raza
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, 5th Postal Region, Al Ain P.O. Box 15551, United Arab Emirates;
| |
Collapse
|
4
|
Nasrollahpour H, Khalilzadeh B, Hasanzadeh M, Rahbarghazi R, Estrela P, Naseri A, Tasoglu S, Sillanpää M. Nanotechnology‐based electrochemical biosensors for monitoring breast cancer biomarkers. Med Res Rev 2022; 43:464-569. [PMID: 36464910 DOI: 10.1002/med.21931] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/01/2022] [Accepted: 11/04/2022] [Indexed: 12/07/2022]
Abstract
Breast cancer is categorized as the most widespread cancer type among women globally. On-time diagnosis can decrease the mortality rate by making the right decision in the therapy procedure. These features lead to a reduction in medication time and socioeconomic burden. The current review article provides a comprehensive assessment for breast cancer diagnosis using nanomaterials and related technologies. Growing use of the nano/biotechnology domain in terms of electrochemical nanobiosensor designing was discussed in detail. In this regard, recent advances in nanomaterial applied for amplified biosensing methodologies were assessed for breast cancer diagnosis by focusing on the advantages and disadvantages of these approaches. We also monitored designing methods, advantages, and the necessity of suitable (nano) materials from a statistical standpoint. The main objective of this review is to classify the applicable biosensors based on breast cancer biomarkers. With numerous nano-sized platforms published for breast cancer diagnosis, this review tried to collect the most suitable methodologies for detecting biomarkers and certain breast cancer cell types.
Collapse
Affiliation(s)
- Hassan Nasrollahpour
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic and Electrical Engineering University of Bath Bath UK
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Savas Tasoglu
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer Istanbul Turkey
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Environment and Labour Safety Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
5
|
Štampar M, Žabkar S, Filipič M, Žegura B. HepG2 spheroids as a biosensor-like cell-based system for (geno)toxicity assessment. CHEMOSPHERE 2022; 291:132805. [PMID: 34767844 DOI: 10.1016/j.chemosphere.2021.132805] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/19/2021] [Accepted: 11/04/2021] [Indexed: 05/25/2023]
Abstract
3D spheroids developed from HepG2 cells were used as a biosensor-like system for the detection of (geno)toxic effects induced by chemicals. Benzo(a)pyrene (B(a)P) and amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) with well-known mechanisms of action were used for system validation. HepG2 spheroids grown for 3 days were exposed to BaP and PhIP for 24 and 72 h. The growth and viability of spheroids were monitored by planimetry and Live/Dead staining of cells. Multi-parametric flow cytometric analysis was applied for simultaneous detection of specific end-effects including cell cycle analysis (Hoechst staining), cell proliferation (KI67 marker), and DNA double-strand breaks (ℽH2AX) induced by genotoxic compounds. Depending on the exposure concentration/time, BaP reduced spheroid growth, affected cell proliferation by arresting cells in S and G2 phase and induced DNA double-strand breaks (DSB). Simultaneous staining of ℽH2AX formation and cell cycle analysis revealed that after BaP (10 μM; 24 h) exposure 60% of cells in G0/G1 phase had DNA DSB, while after 72 h only 20% of cells contained DSB indicating efficient repair of DNA lesions. PhIP did not influence the spheroid size whereas accumulation of cells in the G2 phase occurred after both treatment times. The evaluation of DNA damage revealed that at 200 μM PhIP 50% of cells in G0/G1 phase had DNA DSB, which after 72-h exposure dropped to 40%, showing lower repair capacity of PhIP-induced DSB compared to BaP-induced. The developed approach using simultaneous detection of several parameters provides mechanistic data and thus contributes to more reliable genotoxicity assessment of chemicals as a high-content screening tool.
Collapse
Affiliation(s)
- Martina Štampar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, Ljubljana, Slovenia.
| | - Sonja Žabkar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia.
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia.
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Hydroxyurea-loaded Fe 3O 4/SiO 2/chitosan-g-mPEG2000 nanoparticles; pH-dependent drug release and evaluation of cell cycle arrest and altering p53 and lincRNA-p21 genes expression. Naunyn Schmiedebergs Arch Pharmacol 2021; 395:51-63. [PMID: 34661718 DOI: 10.1007/s00210-021-02168-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
Carbohydrate polymers were widely used in pharmaceuticals and drug delivery systems due to their biodegradability and biocompatibility. Among them, chitosan (Cs) has been considered in many new drug delivery systems. Poly(ethylene glycol) as a hydrophilic polymer can increase the solubility and stealth functions of nanocarriers. The Fe3O4 nanoparticles functionalized with polymers act as non-toxic drug vehicles for tumor targeting under external magnetic fields. In present study, the Fe3O4/SiO2-NH2 nanoparticles were prepared and then functionalized with methoxy-PEGylated chitosan (Cs-g-mPEG2000) and the hydroxyurea (HU) was loaded on this nanoparticles. The structure, crystallinity, and morphology of HU/Fe3O4/SiO2/Cs-g-mPEG2000 were determined using spectroscopic and electron microscopy analysis. Encapsulation efficiency of HU and the percentage of loading and release rate at different pH values at 37 °C were examined. Maximum drug release was observed at pH = 7.4. According to TEM results, the nanoparticle sizes were between 18 and 157 nm. The cytotoxicity effect of HU-loaded nanoparticles against MCF-7 human breast cancer cell was evaluated using MTT assay and cell cycle arrest analysis. The inhibitory concentration (IC50) values were 249 and 85 μg/mL on the MCF-7 cell line compared to the control group in 24 h and 96 h, respectively. In addition, the expression of p53 and lincRNA-P21 genes in treated cells and control group was assessed using real-time PCR, and the results showed that the ratio of p53 expression to lincRNA-P21 in MCF-7 cells was significantly increased (P < 0.05). The cell cycle arrested in the S-phase and the population of cells increased 1.3-fold compared to the control group.
Collapse
|
7
|
Diallyl Sulfide Attenuation of Carcinogenesis in Mammary Epithelial Cells through the Inhibition of ROS Formation, and DNA Strand Breaks. Biomolecules 2021; 11:biom11091313. [PMID: 34572526 PMCID: PMC8470778 DOI: 10.3390/biom11091313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Garlic has long been used medicinally for many diseases, including cancer. One of the active garlic components is diallyl sulfide (DAS), which prevents carcinogenesis and reduces the incidence rate of several cancers. In this study, non-cancerous MCF-10A cells were used as a model to investigate the effect of DAS on Benzo (a)pyrene (BaP)-induced cellular carcinogenesis. The cells were evaluated based on changes in proliferation, cell cycle arrest, the formation of peroxides, 8-hydroxy-2-deoxyguanosine (8-OHdG) levels, the generation of DNA strand breaks, and DNA Polymerase β (Pol β) expression. The results obtained indicate that when co-treated with BaP, DAS inhibited BaP-induced cell proliferation (p < 0.05) to levels similar to the negative control. BaP treatment results in a two-fold increase in the accumulation of cells in the G2/M-phase of the cell cycle, which is restored to baseline levels, similar to untreated cells and vehicle-treated cells, when pretreated with 6 μM and 60 μM DAS, respectively. Co-treatment with DAS (60 μM and 600 μM) inhibited BaP-induced reactive oxygen species (ROS) formation by 132% and 133%, respectively, as determined by the accumulation of H2O2 in the extracellular medium and an increase in 8-OHdG levels of treated cells. All DAS concentrations inhibited BaP-induced DNA strand breaks through co-treatment and pre-treatment methods at all time points evaluated. Co-Treatment with 60 μM DAS increased DNA Pol β expression in response to BaP-induced lipid peroxidation and oxidative DNA damage. These results indicate that DAS effectively inhibited BaP-induced cell proliferation, cell cycle transitions, ROS, and DNA damage in an MCF-10A cell line. These results provide more experimental evidence for garlic's antitumor abilities and corroborate many epidemiological studies regarding the association between the increased intake of garlic and the reduced risk of several types of cancer.
Collapse
|
8
|
Hajiahmadi Z, Tavangar Z, Behzadi H. A DFT Study of the Reaction between Benzopyrene Epoxide and C 60 Derivatives as Possible Anticancer Activity. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2019.1607412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Zahra Hajiahmadi
- Department of Physical Chemistry, Faculty of Chemistry, University of Kashan, Iran
| | - Zahra Tavangar
- Department of Physical Chemistry, Faculty of Chemistry, University of Kashan, Iran
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, Iran
| | - Hadi Behzadi
- Department of Physical Chemistry, Faculty of Chemistry, University of Kharazmi, Iran
| |
Collapse
|
9
|
Lin HD, Yao CL, Ou WJ, Luo YH, Chen SC. 4-Aminobiphenyl suppresses homologous recombination repair by a reactive oxygen species-dependent p53/miR-513a-5p/p53 loop. Toxicology 2020; 444:152580. [DOI: 10.1016/j.tox.2020.152580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/22/2020] [Accepted: 09/01/2020] [Indexed: 01/19/2023]
|
10
|
Abstract
Folic acid is a necessary micronutrient for normal human growth and development. Benzo(a)pyrene (BaP) is a ubiquitously distributed environmental pollutant and its metabolite, benzo(a)pyrene-diol-epoxide, is known to exert a strong teratogenic and carcinogenic effect on the body’s tissues and cells. The aim of this study was to investigate the mechanism by which folic acid can inhibit the toxic effects of BaP both in vivo and in vitro. We measured changes in 16HBE cell activity affected by the intervention of folic acid on BaP using the cell counting kit-8 assay and that of cell cycle distribution by flow cytometry. At the same time, we assessed the xeroderma pigmentosum group A, xeroderma pigmentosum group C, excision repair cross complementation group 1, cyclinD1, and CKD4 mRNAs, and their related protein expression both in mouse lung tissue and in 16HBE cells. In conclusion, the mechanisms by which this effect is mediated were not entirely elucidated by our study, possibly because folic acid antagonizes the toxic effects of BaP by upregulating the levels of excision repair cross complementation group 1, xeroderma pigmentosum group A, and xeroderma pigmentosum group C gene expression to improve the rate of DNA repair, in turn accelerating the speed of repair for DNA damage caused by BaP. Meanwhile, folic acid could restrain BaP-induced cyclinD1 protein expression, which could help cells return to their normal cell cycle.
Collapse
|
11
|
Gao M, Zheng A, Chen L, Dang F, Liu X, Gao J. Benzo(a)pyrene affects proliferation with reference to metabolic genes and ROS/HIF-1α/HO-1 signaling in A549 and MCF-7 cancer cells. Drug Chem Toxicol 2020; 45:741-749. [PMID: 32506967 DOI: 10.1080/01480545.2020.1774602] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Benzo(a)pyrene (BaP) is a representative polycyclic aromatic hydrocarbon (PAH) compound, which has been implicated in cancer initiation and promotion. Although BaP is one of the most extensively studied pollutants, the underlying mechanisms through which BaP affects reactive oxygen species (ROS)/hypoxia-inducible factor 1α (HIF-1α)/heme oxygenase 1(HO-1) signaling during lung or breast carcinogenesis are not yet fully understood. In this study, we analyzed the effects of 0 (control), 1, 5, or 25 µM BaP exposure on A549 and MCF-7 cancer cells, by evaluating cell viability, cell cycle, and regulatory protein expression, metabolic gene expression, and ROS/HIF-1α/HO-1 signaling. Cell viability increased following exposure to 1 and 5 µM BaP in A549 cells but decreased following exposure to all concentrations of BaP in MCF-7 cells. BaP significantly increased the proportions of cells in S and G2/M phases, with concomitant reductions in the proportions of cells in G0/G1 phase, following 5 and 25 µM exposure, which was accompanied by the upregulation of the regulatory proteins cyclin A, cyclin B, cyclin-dependent kinase (CDK)1, and CDK2. The subsequent upregulation of cytochrome p450 (CYP)1A1, CYP1B1, CYP3A4, epoxide hydrolase (EH), aldo-keto reductase (AKRC1) expression, and the attenuation of multi-drug resistance protein 4 (MRP4), glutathione-S-transferase (GST)1A1, and GST1B1 were also observed in both cell lines. Moreover, the induction of ROS and the modulation of HIF-1α and HO-1 were observed after BaP exposure. Taken together, these findings suggest that BaP affects proliferation with reference to metabolic genes and ROS/HIF-1α/HO-1 signaling in A549 and MCF-7 cancer cells.
Collapse
Affiliation(s)
- Meili Gao
- Department of Biological Science and Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.,Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Preventive Dentistry, Colleague of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Aqun Zheng
- School of Science, Xi'an Jiaotong University, Xi'an, PR China
| | - Lan Chen
- Center of Shared Experimental Facilities, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Fan Dang
- Department of Biological Science and Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xiaojing Liu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Preventive Dentistry, Colleague of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jianghong Gao
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Preventive Dentistry, Colleague of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
12
|
Trikha P, Lee DA. The role of AhR in transcriptional regulation of immune cell development and function. Biochim Biophys Acta Rev Cancer 2019; 1873:188335. [PMID: 31816350 DOI: 10.1016/j.bbcan.2019.188335] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcriptional factor (TF) that is a member of the Per-Arnt-Sim family of proteins. AhR regulates diverse processes, including malignant transformation, hematopoietic cell development, and fate determination of immune cell lineages. Moreover, AhR forms a crucial link between innate and adaptive arms of the immune system. Malignant cells frequently evolve multiple mechanisms for suppressing tumor-specific responses, including the induction of suppressive pathways involving AhR and its metabolic byproducts in the tumor microenvironment that promote immune evasion and tumor progression. Thus, interest is high in further defining the role of AhR in carcinogenesis and immune development and regulation, particularly regarding the therapeutic interventions that unleash immune responses to cancer cells. Here, we provide an overview of the role of AhR in the regulation of innate and adaptive immune response and discuss the implications of targeting this pathway to augment the immune response in cancer patients.
Collapse
Affiliation(s)
- Prashant Trikha
- Cellular Therapy & Cancer Immunotherapy Program, Center for Childhood Cancer & Blood Diseases, WA-4112 Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, United States of America.
| | - Dean A Lee
- Cellular Therapy & Cancer Immunotherapy Program, Center for Childhood Cancer & Blood Diseases, WA-4112 Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, United States of America
| |
Collapse
|
13
|
Smith J, Neupane R, McAmis W, Singh U, Chatterjee S, Raychoudhury S. Toxicity of polycyclic aromatic hydrocarbons involves NOX2 activation. Toxicol Rep 2019; 6:1176-1181. [PMID: 31763181 PMCID: PMC6861563 DOI: 10.1016/j.toxrep.2019.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
PAHs cause decrease in cell viability and increase in lactate levels. The mixture of PAHs suppress S phase. Toxicity is accompanied by NOX2 activation.
Polycyclic Aromatic Hydrocarbons (PAHs) are environmental pollutants. The present study compares the toxic effects of BaP alone and a mixture of PAHs on human breast cancer cells. We hypothesize that PAH mixture is more toxic than BaP alone, and an increased NOX2 activation is related to PAH-induced oxidative stress. Initially, we exposed cultured human breast cancer cells to BaP alone (125 ng/mL and 500 ng/mL) and a mixture of PAHs (125 ng/mL and 500 ng/mL). After 24 h of exposure, the PAH mixture demonstrated a significant (P < 0.05) reduction in cell viability. The higher concentration of BaP alone (500 ng/mL) and both 125 ng/mL and 500 ng/mL PAH mixture significantly (P < 0.05) increased lactate production by MDA-MB-231 cells. We had observed an identical level of increased lactate levels when the cells were exposed to PAHs for 48 h. Flow cytometric analysis revealed that only PAHs mixture (both 125 ng/mL and 500 ng/mL) suppressed S phase significantly (P < 0.05). Finally, immunofluorescence microscopy was undertaken to examine the role of NOX2 due to PAHs toxicity. Colocalization of GP91phox and P47phox, a hallmark of NOX2 activation in the cell membrane of macrophage Kupffer cells demonstrated that higher concentration of BaP or PAH mixture showed increased colocalization events. These data suggest that the mixture of PAHs is more toxic and perturbing to DNA synthesis than BaP alone in cultured cells, and the toxicity is accompanied by NOX2 activation. Thus PAHs can lead to the increased burden of oxidative stress and alter the cellular redox status.
Collapse
Affiliation(s)
- Joycelyn Smith
- Department of Biology, Chemistry, and Environmental Health Science, Benedict College, 1600 Harden Street, Columbia, SC, 29204, USA
| | - Rajendra Neupane
- Department of Biology, Chemistry, and Environmental Health Science, Benedict College, 1600 Harden Street, Columbia, SC, 29204, USA
| | - William McAmis
- Department of Biology, Chemistry, and Environmental Health Science, Benedict College, 1600 Harden Street, Columbia, SC, 29204, USA
| | - Udai Singh
- School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Samir Raychoudhury
- Department of Biology, Chemistry, and Environmental Health Science, Benedict College, 1600 Harden Street, Columbia, SC, 29204, USA
| |
Collapse
|
14
|
Romagnolo DF, Donovan MG, Papoutsis AJ, Doetschman TC, Selmin OI. Genistein Prevents BRCA1 CpG Methylation and Proliferation in Human Breast Cancer Cells with Activated Aromatic Hydrocarbon Receptor. Curr Dev Nutr 2017; 1:e000562. [PMID: 29955703 PMCID: PMC5998349 DOI: 10.3945/cdn.117.000562] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/02/2017] [Accepted: 05/19/2017] [Indexed: 01/11/2023] Open
Abstract
Background: Previous studies have suggested a causative role for agonists of the aromatic hydrocarbon receptor (AhR) in the etiology of breast cancer 1, early-onset (BRCA-1)-silenced breast tumors, for which prospects for treatment remain poor. Objectives: We investigated the regulation of BRCA1 by the soy isoflavone genistein (GEN) in human estrogen receptor α (ERα)-positive Michigan Cancer Foundation-7 (MCF-7) and ERα-negative sporadic University of Arizona Cell Culture-3199 (UACC-3199) breast cancer cells, respectively, with inducible and constitutively active AhR. Methods: In MCF-7 cells, we analyzed the dose- and time-dependent effects of GEN and (-)-epigallocatechin-3-gallate (EGCG) control, selected as prototype dietary DNA methyltransferase (DNMT) inhibitors, on BRCA-1 expression after AhR activation with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and in TCDD-washout experiments. We compared the effects of GEN and EGCG on BRCA1 cytosine-phosphate-guanine (CpG) methylation and cell proliferation. Controls for DNA methylation and proliferation were changes in expression of DNMT-1, cyclin D1, and p53, respectively. In UACC-3199 cells, we compared the effects of GEN and α-naphthoflavone (αNF; 7,8-benzoflavone), a synthetic flavone and AhR antagonist, on BRCA1 expression and CpG methylation, cyclin D1, and cell growth. Finally, we examined the effects of GEN and αNF on BRCA1, AhR-inducible cytochrome P450 (CYP)-1A1 (CYP1A1) and CYP1B1, and AhR mRNA expression. Results: In MCF-7 cells, GEN exerted dose- and time-dependent preventative effects against TCDD-dependent downregulation of BRCA-1. After TCDD washout, GEN rescued BRCA-1 protein expression while reducing DNMT-1 and cyclin D1. GEN and EGCG reduced BRCA1 CpG methylation and cell proliferation associated with increased p53. In UACC-3199 cells, GEN reduced BRCA1 and estrogen receptor-1 (ESR1) CpG methylation, cyclin D1, and cell growth while inducing BRCA-1 and CYP1A1. Conclusions: Results suggest preventative effects for GEN and EGCG against BRCA1 CpG methylation and downregulation in ERα-positive breast cancer cells with activated AhR. GEN and flavone antagonists of AhR may be useful for reactivation of BRCA1 and ERα via CpG demethylation in ERα-negative breast cancer cells harboring constitutively active AhR.
Collapse
Affiliation(s)
- Donato F Romagnolo
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ
- Department of The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ
| | - Micah G Donovan
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ
- Department of The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ
| | - Andreas J Papoutsis
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ
- Department of The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ
| | - Tom C Doetschman
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ
- Department of The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ
| | - Ornella I Selmin
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ
- Department of The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ
| |
Collapse
|
15
|
Esakky P, Moley KH. Paternal smoking and germ cell death: A mechanistic link to the effects of cigarette smoke on spermatogenesis and possible long-term sequelae in offspring. Mol Cell Endocrinol 2016; 435:85-93. [PMID: 27424142 PMCID: PMC5014701 DOI: 10.1016/j.mce.2016.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 12/12/2022]
Abstract
Paternal exposure to constituents of cigarette smoke (CS) is reportedly associated with infertility, birth defects and childhood cancers even though the mechanism behind this relationship is still unclear. Chronic cigarette smoking by men leads to poor sperm quality and quantity mainly through oxidative stress and also direct assault by CS metabolites. Among several carcinogenic and teratogenic components of cigarette smoke condensate (CSC), polycyclic aromatic hydrocarbons (PAHs) display a preeminent role in accelerating germ cell death via the cytoplasmic transcription factor, aryl hydrocarbon receptor (AHR) that is present across all stages of spermatogenesis. Activation of AHR by growth factors though benefits normal cellular functions, its mediation by CSC in a spermatocyte cell line [Gc2(spd)ts] adversely affects the expression of a battery of genes associated with antioxidant mechanisms, cell proliferation and apoptosis, and cell cycle progress. Besides, the CSC-mediated cross talk either between AHR and NRF2 or AHR-NRF2 and MAPKs pathways inhibits normal proliferation of the spermatogenic GC-2spd(ts) cells in vitro and cell death of spermatocytes in vivo. Pharmacological inactivation of CSC-induced AHR but not its genetic manipulation seems preventing DNA and cell membrane damage in Gc2(spd)ts. Data from recent reports suggest that the cigarette smoke affects both the genomic and epigenomic components of the sperm and attributes any associated changes to developmental defects in the offspring. Thus, the studies discussed here in this review shed light on possible mechanistic factors that could probably be responsible for the paternally mediated birth defects in the offspring following exposure to the toxic constituents of cigarette smoke.
Collapse
Affiliation(s)
- Prabagaran Esakky
- Research, Department of Veterans Affairs Medical Center, St. Louis, MO, USA; Department of Obstetrics and Gynecology, Washington University School of Medicine in St. Louis, MO 63110, USA.
| | - Kelle H Moley
- Research, Department of Veterans Affairs Medical Center, St. Louis, MO, USA; Department of Obstetrics and Gynecology, Washington University School of Medicine in St. Louis, MO 63110, USA.
| |
Collapse
|
16
|
Romagnolo DF, Papoutsis AJ, Laukaitis C, Selmin OI. Constitutive expression of AhR and BRCA-1 promoter CpG hypermethylation as biomarkers of ERα-negative breast tumorigenesis. BMC Cancer 2015; 15:1026. [PMID: 26715507 PMCID: PMC4696163 DOI: 10.1186/s12885-015-2044-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/23/2015] [Indexed: 12/15/2022] Open
Abstract
Background Only 5–10 % of breast cancer cases is linked to germline mutations in the BRCA-1 gene and occurs early in life. Conversely, sporadic breast tumors, which represent 90-95 % of breast malignancies, have lower BRCA-1 expression, but not mutated BRCA-1 gene, and tend to occur later in life in combination with other genetic alterations and/or environmental exposures. The latter may include environmental and dietary factors that activate the aromatic hydrocarbon receptor (AhR). Therefore, understanding if changes in expression and/or activation of the AhR are associated with somatic inactivation of the BRCA-1 gene may provide clues for breast cancer therapy. Methods We evaluated Brca-1 CpG promoter methylation and expression in mammary tumors induced in Sprague–Dawley rats with the AhR agonist and mammary carcinogen 7,12-dimethyl-benzo(a)anthracene (DMBA). Also, we tested in human estrogen receptor (ER)α-negative sporadic UACC-3199 and ERα-positive MCF-7 breast cancer cells carrying respectively, hyper- and hypomethylated BRCA-1 gene, if the treatment with the AhR antagonist α-naphthoflavone (αNF) modulated BRCA-1 and ERα expression. Finally, we examined the association between expression of AhR and BRCA-1 promoter CpG methylation in human triple-negative (TNBC), luminal-A (LUM-A), LUM-B, and epidermal growth factor receptor-2 (HER-2)-positive breast tumor samples. Results Mammary tumors induced with DMBA had reduced BRCA-1 and ERα expression; higher Brca-1 promoter CpG methylation; increased expression of Ahr and its downstream target Cyp1b1; and higher proliferation markers Ccnd1 (cyclin D1) and Cdk4. In human UACC-3199 cells, low BRCA-1 was paralleled by constitutive high AhR expression; the treatment with αNF rescued BRCA-1 and ERα, while enhancing preferential expression of CYP1A1 compared to CYP1B1. Conversely, in MCF-7 cells, αNF antagonized estradiol-dependent activation of BRCA-1 without effects on expression of ERα. TNBC exhibited increased basal AhR and BRCA-1 promoter CpG methylation compared to LUM-A, LUM-B, and HER-2-positive breast tumors. Conclusions Constitutive AhR expression coupled to BRCA-1 promoter CpG hypermethylation may be predictive markers of ERα-negative breast tumor development. Regimens based on selected AhR modulators (SAhRMs) may be useful for therapy against ERα-negative tumors, and possibly, TNBC with increased AhR and hypermethylated BRCA-1 gene.
Collapse
Affiliation(s)
- Donato F Romagnolo
- Department of Nutritional Sciences, The University of Arizona, 303 Shantz Bldg, Tucson, AZ, 85721-0038, USA. .,The University of Arizona Cancer Center, 1515 N. Campbell Avenue, 3999A, Tucson, AZ, 85724-5024, USA.
| | - Andreas J Papoutsis
- Department of Nutritional Sciences, The University of Arizona, 303 Shantz Bldg, Tucson, AZ, 85721-0038, USA.
| | - Christina Laukaitis
- Department of Nutritional Sciences, The University of Arizona, 303 Shantz Bldg, Tucson, AZ, 85721-0038, USA. .,The University of Arizona Cancer Center, 1515 N. Campbell Avenue, 3999A, Tucson, AZ, 85724-5024, USA. .,Department of Medicine, University of Arizona College of Medicine, The University of Arizona, Tucson, AZ, USA.
| | - Ornella I Selmin
- Department of Nutritional Sciences, The University of Arizona, 303 Shantz Bldg, Tucson, AZ, 85721-0038, USA. .,The University of Arizona Cancer Center, 1515 N. Campbell Avenue, 3999A, Tucson, AZ, 85724-5024, USA.
| |
Collapse
|
17
|
Transcriptomic analyses of genes differentially expressed by high-risk and low-risk human papilloma virus E6 oncoproteins. Virusdisease 2015; 26:105-16. [PMID: 26396976 DOI: 10.1007/s13337-015-0259-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/10/2015] [Indexed: 12/18/2022] Open
Abstract
Human papilloma virus is the causative agent for cervical cancer with 99 % of cervical cancer cases containing HPV. The high risk HPV-16, 18 and 31 are the major causative agents. The low risk HPV-6, 11 have been reported to cause penile, laryngeal, bronchogenic and oesophageal cancer. Since E6 oncoprotein is frequently over expressed in cancers, we did gene expression studies to compare between the E6 genes of high-risk (HPV18) or low-risk (HPV11)stably transfected in epithelial cell line EPC-2 or mock transfected with the basic vector pCDNA3.1. Microarray studies showed a total of 697 genes showing differential expression between the samples. Genes involved in several key cellular processes such as cell adhesion, angiogenesis, transcription regulation, cell cycle regulation and cell division showed altered expression between the samples. Gene Ontology mapping of 44 genes according cellular pathways revealed 13 pathways namely angiogenesis, alzhemier's, Wnt, p53, interleukin, TGF-β, cadherin, integrin, PI3-kinase, catennin, insulin, chemokine and G protein signalling pathways. The microarray results were confirmed by quantitative real-time PCR for some representative genes like IFI27, CTNNA1, OSMR, CYP1B1, TNFSF13, LAMA2 and COL5A3. Analysis of differentially expressed genes by high-risk and low-risk HPV E6 proteins might help in identification of potential biomarkers for diagnosis, progression and therapy of oesophageal cancer. The understanding of mechanisms of activation of these genes as well as the function of gene products will give a further insight into their roles in oesophageal cancer.
Collapse
|
18
|
Stellas D, Souliotis VL, Bekyrou M, Smirlis D, Kirsch-Volders M, Degrassi F, Cundari E, Kyrtopoulos SA. Benzo[a]pyrene-induced cell cycle arrest in HepG2 cells is associated with delayed induction of mitotic instability. Mutat Res 2014; 769:59-68. [PMID: 25771725 DOI: 10.1016/j.mrfmmm.2014.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/19/2014] [Accepted: 07/11/2014] [Indexed: 06/04/2023]
Abstract
The environmental carcinogen benzo[a]pyrene (B[a]P) after being metabolised by cytochrome P450 enzymes forms DNA adducts. This abnormal situation induces changes in the cell cycle, DNA damage, chromosomal and mitotic aberrations, all of which may be related to carcinogenesis. In order to further investigate the mechanistic basis of these effects, HepG2 cells were treated with 3μM B[a]P for various time periods, followed by further incubation in the absence of B[a]P for up to 192h. B[a]P treatment led initially to S-phase arrest followed by recovery and subsequent induction of G2/M arrest, indicating activation of the corresponding DNA damage checkpoints. Immunofluorescence-based studies revealed accumulation of B[a]P-induced DNA adducts and chromosomal damage which persisted beyond mitosis and entry into a new cycle, thus giving rise to a new round of activation of the S-phase checkpoint. Prolonged further cultivation of the cells in the absence of B[a]P resulted in high frequencies of various abnormal mitotic events. Abrogation of the B[a]P-induced S-phase arrest by the Chk1 inhibitor UCN-01 triggered a strong apoptotic response but also dramatically decreased the frequency of mitotic abnormalities in the surviving cells, suggesting that events occurring during S-phase arrest contribute to the formation of delayed mitotic damage. Overall, our data demonstrate that, although S-phase arrest serves as a mechanism by which the cells reduce their load of genetic damage, its prolonged activation may also have a negative impact on the balance between cell death and heritable genetic damage.
Collapse
Affiliation(s)
- Dimitris Stellas
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece.
| | - Vassilis L Souliotis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Margarita Bekyrou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | | | | | | | - Enrico Cundari
- Laboratory for Cell Genetics,Vrije Universiteit Brussel, Brussels, Belgium; Institute of Molecular Biology and Pathology C.N.R., Rome, Italy
| | - Soterios A Kyrtopoulos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
19
|
SNX-2112, a Novel Hsp90 Inhibitor, Induces G2/M Cell Cycle Arrest and Apoptosis in MCF-7 Cells. Biosci Biotechnol Biochem 2014; 75:1540-5. [DOI: 10.1271/bbb.110225] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
20
|
Zhu W, Cromie MM, Cai Q, Lv T, Singh K, Gao W. Curcumin and vitamin E protect against adverse effects of benzo[a]pyrene in lung epithelial cells. PLoS One 2014; 9:e92992. [PMID: 24664296 PMCID: PMC3963982 DOI: 10.1371/journal.pone.0092992] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/27/2014] [Indexed: 11/18/2022] Open
Abstract
Benzo[a]pyrene (BaP), a well-known environmental carcinogen, promotes oxidative stress and DNA damage. Curcumin and vitamin E (VE) have potent antioxidative activity that protects cells from oxidative stress and cellular damage. The objectives of the present study were to investigate the adverse effects of BaP on normal human lung epithelial cells (BEAS-2B), the potential protective effects of curcumin and VE against BaP-induced cellular damage, and the molecular mechanisms of action. MTT assay, flow cytometry, fluorescence microplate assay, HPLC, qRT-PCR, and western blot were performed to analyze cytotoxicity, cell cycle, reactive oxygen species (ROS), BaP diol-epoxidation (BPDE)-DNA adducts, gene expression, and protein expression, respectively. Curcumin or VE prevented cells from BaP-induced cell cycle arrest and growth inhibition, significantly suppressed BaP-induced ROS levels, and decreased BPDE-DNA adducts. While CYP1A1 and 1B1 were induced by BaP, these inductions were not significantly reduced by curcumin or VE. Moreover, the level of activated p53 and PARP-1 were significantly induced by BaP, whereas this induction was markedly reduced after curcumin and VE co-treatment. Survivin was significantly down-regulated by BaP, and curcumin significantly restored survivin expression in BaP-exposed cells. The ratio of Bax/Bcl-2 was also significantly increased in cells exposed to BaP and this increase was reversed by VE co-treatment. Taken together, BaP-induced cytotoxicity occurs through DNA damage, cell cycle arrest, ROS production, modulation of metabolizing enzymes, and the expression/activation of p53, PARP-1, survivin, and Bax/Bcl-2. Curcumin and VE could reverse some of these BaP-mediated alterations and therefore be effective natural compounds against the adverse effects of BaP in lung cells.
Collapse
Affiliation(s)
- Wenbin Zhu
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, United States of America
| | - Meghan M. Cromie
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, United States of America
| | - Qingsong Cai
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, United States of America
| | - Tangfeng Lv
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, United States of America
| | - Kamaleshwar Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, United States of America
| | - Weimin Gao
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
21
|
Esakky P, Hansen DA, Drury AM, Moley KH. Modulation of cell cycle progression in the spermatocyte cell line [GC-2spd(ts) Cell-Line] by cigarette smoke condensate (CSC) via arylhydrocarbon receptor-nuclear factor erythroid 2-related factor 2 (Ahr-Nrf2) pathway. Biol Reprod 2014; 90:9. [PMID: 24258214 DOI: 10.1095/biolreprod.113.113225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Prior studies in our laboratory have demonstrated that cigarette smoke condensate (CSC) activates arylhydrocarbon receptor (Ahr) leading to upregulation of several antioxidant enzymes in murine spermatocytes. In this study, we show that exposure of the spermatocyte cell line GC-2spd(ts) to CSC induces an increase in Cyp1a1, demonstrating AHR activation, and simultaneous expression and nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2), where it is believed to modulate Ahr expression by a feedback mechanism. Pharmacological inhibition by the AHR-antagonist CH223191 and interference by Ahr- and Nrf2-small interfering RNA followed by quantitative real-time PCR implicate the Ahr-Nrf2 pathway in the modulation of DNA damage and growth suppression genes such as Gadd45a and P21 and oxidative stress-related genes Cyp1a1, Nrf2, and Ahrr. Flow cytometry accompanied with cell proliferation assay indicate the CSC induces accumulation of spermatocytes at the S-G2/M phase of the cell cycle. Thus, the data obtained suggest that CSC contains several AHR-agonists that are capable of altering the growth pattern of spermatocytes in vitro through the Ahr-Nrf2 signaling mechanism.
Collapse
Affiliation(s)
- Prabagaran Esakky
- Research, Department of Veterans Affairs Medical Center, St. Louis, Missouri
| | | | | | | |
Collapse
|
22
|
Harris KL, Myers JN, Ramesh A. Benzo(a)pyrene modulates fluoranthene-induced cellular responses in HT-29 colon cells in a dual exposure system. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:358-367. [PMID: 23732482 PMCID: PMC3826174 DOI: 10.1016/j.etap.2013.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/16/2013] [Accepted: 04/24/2013] [Indexed: 05/30/2023]
Abstract
Our environment is contaminated with a diverse array of chemicals; one of which is polycyclic aromatic hydrocarbons (PAHs). While some PAHs are potent by nature, others undergo interactions such as additivity, synergism, antagonism or potentiation to manifest their toxicity. Therefore, the objective of this study was to investigate whether exposure to benzo(a)pyrene (BaP), a PAH compound influences the cytotoxicity and metabolism of fluoranthene (FLA; another PAH compound) using HT-29 cells. Cells cultured in Dulbecco's Modified Eagle Medium were treated with 1, 5, 10, 25μM BaP and FLA (0.01% dimethylsulfoxide as vehicle) individually and in combination over the course of 0-96h. At the end of exposure, cells were stained with propidium iodide and the changes in cell cycle were analyzed using FACS analysis. Apoptosis was determined by caspase-3 assay. Post-incubation, samples were extracted and analyzed for FLA metabolites by reverse-phase HPLC with fluorescence detection. Cells exposed to BaP+FLA showed a marginal decrease in growth as compared to FLA alone and vehicle controls. Also, a decline in the percentage of cells in the S and G2 phases compared to G1 phase of cell cycle was noted when cells were treated with BaP and FLA together, compared to individual FLA treatment. The rate of FLA metabolism was more when cells were exposed to FLA in combination with BaP, compared to FLA alone. The enhanced biotransformation of FLA as a result of concomitant exposure to BaP may have implications for colon cancer risks arising from human dietary exposure to PAH mixtures through consumption of barbecued meat.
Collapse
Affiliation(s)
- Kelly L Harris
- Department of Biochemistry & Cancer Biology, Meharry Medical College, 1005 D.B. Todd Boulevard, Nashville, TN 37208, USA
| | - Jeremy N Myers
- Department of Biochemistry & Cancer Biology, Meharry Medical College, 1005 D.B. Todd Boulevard, Nashville, TN 37208, USA
| | - Aramandla Ramesh
- Department of Biochemistry & Cancer Biology, Meharry Medical College, 1005 D.B. Todd Boulevard, Nashville, TN 37208, USA.
| |
Collapse
|
23
|
Zhao P, Fu J, Yao B, Song Y, Yuan L, Jia Y, Ma S, Chen W, Zhou Z. The cell cycle distribution should be given more consideration in cell-based in vitro toxicological studies. Arch Toxicol 2013; 88:337-43. [PMID: 23887207 DOI: 10.1007/s00204-013-1103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022]
Abstract
In this study, to discuss the importance of the cell cycle distribution in cell-based in vitro toxicity mechanism studies, diethyl sulfate (DES) was selected as a model chemical that induced the alteration of the cell cycle distribution in human bronchial epithelial cell line 16HBE 14o- (HBE) cells. Cells were treated with various concentrations of DES, cell proliferation and apoptosis were then determined. The results showed that DES concentration-dependently inhibited HBE cells proliferation and induced apoptosis. When cells were treated with 2.0 mM of DES for 20 or 28 h, significant S and G2/M phase accumulation was observed. Then, the relative cellular levels of Cdk4, p-Cdk2 (Thr160), Cyclins A and B1 in DES-treated HBE cells at 20 and 28 h were determined by two ways. The differences of the cell cycle distribution between DES and control groups were ignored in one way and eliminated by using flow cytometric cell sorting in the other. The results obtained by the two ways were quite different, which indicated that the cell cycle distribution might result in confounding if it was significantly different between the treated and control groups. Therefore, we propose that the cell cycle distribution should be given more consideration in cell-based in vitro toxicological studies.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Toxicology, Peking University Health Science Center, Beijing, 100191, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Huderson AC, Myers JN, Niaz MS, Washington MK, Ramesh A. Chemoprevention of benzo(a)pyrene-induced colon polyps in ApcMin mice by resveratrol. J Nutr Biochem 2012; 24:713-24. [PMID: 22889612 DOI: 10.1016/j.jnutbio.2012.04.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 03/31/2012] [Accepted: 04/04/2012] [Indexed: 02/06/2023]
Abstract
Human dietary exposure to benzo(a)pyrene (BaP) has generated interest with regard to the association of BaP with gastrointestinal carcinogenesis. Since colon cancer ranks third among cancer-related mortalities, it is necessary to evaluate the effect of phytochemicals on colon cancer initiation and progression. In this study, we investigated the preventive effects of resveratrol (RVT) on BaP-induced colon carcinogenesis in Apc(Min) mouse model. For the first group of mice, 100 μg BaP/kg body weight was administered to mice in peanut oil via oral gavage over a 60-day period. For the second group, RVT was coadministered with BaP at a dose of 45 μg/kg. For the third group, RVT was administered for 1 week prior to BaP exposure for 60 days. Jejunum, colon and liver were collected at 60 days post BaP and RVT exposure; adenomas in jejunum and colon were counted and subjected to histopathology. RVT reduced the number of colon adenomas in BaP+RVT-treated mice significantly compared to that in mice that received BaP alone. While dysplasia of varying degrees was noted in colon of BaP-treated mice, the dysplasias were of limited occurrence in RVT-treated mice. To ascertain whether the tumor inhibition is a result of altered BaP-induced toxicity of tumor cells, growth, apoptosis and proliferation of adenocarcinoma cells were assessed posttreatment with RVT and BaP. Cotreatment with RVT increased apoptosis and decreased cell proliferation to a greater extent than with BaP alone. Overall, our observations reveal that RVT inhibits colon tumorigenesis when given together with BaP and holds promise as a therapeutic agent.
Collapse
Affiliation(s)
- Ashley C Huderson
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | | | | | | | | |
Collapse
|
25
|
Li D, Wang Q, Liu C, Duan H, Zeng X, Zhang B, Li X, Zhao J, Tang S, Li Z, Xing X, Yang P, Chen L, Zeng J, Zhu X, Zhang S, Zhang Z, Ma L, He Z, Wang E, Xiao Y, Zheng Y, Chen W. Aberrant expression of miR-638 contributes to benzo(a)pyrene-induced human cell transformation. Toxicol Sci 2011; 125:382-91. [PMID: 22048643 DOI: 10.1093/toxsci/kfr299] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Identification of aberrant microRNA (miRNA) expression during chemical carcinogen-induced cell transformation will lead to a better understanding of the substantial role of miRNAs in cancer development. To explore whether aberrant miRNAs expression can be used as biomarkers of chemical exposure in risk assessment of chemical carcinogenesis, we analyzed miRNA expression profiles of human bronchial epithelial cells expressing an oncogenic allele of H-Ras (HBER) at different stages of transformation induced by benzo(a)pyrene (BaP) by miRNA array. It revealed 12 miRNAs differentially expressed in HBER cells at both pretransformed and transformed stages. Differentially expressed miRNAs were confirmed in transformed cells and examined in 50 pairs of primary human non-small-cell lung cancer (NSCLC) tissues using real-time PCR. Among these miRNAs, downregulation of miR-638 was found in 68% (34/50) of NSCLC tissues. However, the expression of miR-638 in HBER cells increased upon treatment of BaP in a dose-dependent manner. The expression of miR-638 was also examined in peripheral lymphocytes from 86 polycyclic aromatic hydrocarbons (PAHs)-exposed (PE) workers. We found that the average expression level of miR-638 in peripheral lymphocytes from 86 PE workers increased by 72% compared with control group. The levels of miR-638 were correlated with the concentration of urinary 1-hydroxypyrene (1-OHP) and external levels of PAHs. Overexpression of miR-638 aggravated cell DNA damage induced by BaP, which might be mediated by suppression of breast cancer 1 (BRCA1), one of the target genes of miR-638. In summary, we suggest that miR-638 is involved in the BaP-induced carcinogenesis by targeting BRCA1.
Collapse
Affiliation(s)
- Daochuan Li
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hamouchene H, Arlt VM, Giddings I, Phillips DH. Influence of cell cycle on responses of MCF-7 cells to benzo[a]pyrene. BMC Genomics 2011; 12:333. [PMID: 21714911 PMCID: PMC3145607 DOI: 10.1186/1471-2164-12-333] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 06/29/2011] [Indexed: 01/26/2023] Open
Abstract
Background Benzo[a]pyrene (BaP) is a widespread environmental genotoxic carcinogen that damages DNA by forming adducts. This damage along with activation of the aryl hydrocarbon receptor (AHR) induces complex transcriptional responses in cells. To investigate whether human cells are more susceptible to BaP in a particular phase of the cell cycle, synchronised breast carcinoma MCF-7 cells were exposed to BaP. Cell cycle progression was analysed by flow cytometry, DNA adduct formation was assessed by 32P-postlabeling analysis, microarrays of 44K human genome-wide oligos and RT-PCR were used to detect gene expression (mRNA) changes and Western blotting was performed to determine the expression of some proteins, including cytochrome P450 (CYP) 1A1 and CYP1B1, which are involved in BaP metabolism. Results Following BaP exposure, cells evaded G1 arrest and accumulated in S-phase. Higher levels of DNA damage occurred in S- and G2/M- compared with G0/G1-enriched cultures. Genes that were found to have altered expression included those involved in xenobiotic metabolism, apoptosis, cell cycle regulation and DNA repair. Gene ontology and pathway analysis showed the involvement of various signalling pathways in response to BaP exposure, such as the Catenin/Wnt pathway in G1, the ERK pathway in G1 and S, the Nrf2 pathway in S and G2/M and the Akt pathway in G2/M. An important finding was that higher levels of DNA damage in S- and G2/M-enriched cultures correlated with higher levels of CYP1A1 and CYP1B1 mRNA and proteins. Moreover, exposure of synchronised MCF-7 cells to BaP-7,8-diol-9,10-epoxide (BPDE), the ultimate carcinogenic metabolite of BaP, did not result in significant changes in DNA adduct levels at different phases of the cell cycle. Conclusions This study characterised the complex gene response to BaP in MCF-7 cells and revealed a strong correlation between the varying efficiency of BaP metabolism and DNA damage in different phases of the cell cycle. Our results suggest that growth kinetics within a target-cell population may be important determinants of susceptibility and response to a genotoxic agent.
Collapse
Affiliation(s)
- Hamza Hamouchene
- Section of Molecular Carcinogenesis, Institute of Cancer Research, Brookes Lawley Building, Cotswold Road, Sutton, Surrey SM2 5NG, UK.
| | | | | | | |
Collapse
|
27
|
Lack of association between GSTT1 polymorphism and endogenous or benzo[a]pyrene-induced sister chromatid exchanges as analyzed in metaphase or G2-phase lymphocytes. Mol Biol Rep 2010; 38:3959-66. [DOI: 10.1007/s11033-010-0513-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 11/13/2010] [Indexed: 11/27/2022]
|
28
|
van Delft JHM, Mathijs K, Staal YCM, van Herwijnen MHM, Brauers KJJ, Boorsma A, Kleinjans JCS. Time Series Analysis of Benzo[A]Pyrene-Induced Transcriptome Changes Suggests That a Network of Transcription Factors Regulates the Effects on Functional Gene Sets. Toxicol Sci 2010; 117:381-92. [DOI: 10.1093/toxsci/kfq214] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
29
|
Duan H, Jiang Y, Zhang H, Wu Y. MiR-320 and miR-494 affect cell cycles of primary murine bronchial epithelial cells exposed to benzo[a]pyrene. Toxicol In Vitro 2010; 24:928-35. [DOI: 10.1016/j.tiv.2009.11.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 11/02/2009] [Accepted: 11/09/2009] [Indexed: 10/20/2022]
|
30
|
Claspin is involved in S-phase checkpoint induced by benzo(a)pyrene in 16HBE cells. Toxicol In Vitro 2009; 23:880-6. [DOI: 10.1016/j.tiv.2009.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 04/06/2009] [Accepted: 05/13/2009] [Indexed: 12/20/2022]
|
31
|
Georgakilas AG, Aziz K, Ziech D, Georgakila S, Panayiotidis MI. BRCA1 involvement in toxicological responses and human cancer etiology. Toxicol Lett 2009; 188:77-83. [PMID: 19375487 DOI: 10.1016/j.toxlet.2009.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 04/03/2009] [Accepted: 04/06/2009] [Indexed: 11/18/2022]
Abstract
Breast cancer associated gene 1 (BRCA1) gene is located on the long (q) arm of chromosome 17 at position 21. In the nucleus of many types of normal cells, BRCA1 protein interacts with several other proteins to mend strand breaks in DNA. It is generally considered a key regulatory protein participating in cell cycle checkpoint and DNA damage repair networks. Exposure to various environmental and genetic factors can induce a severe impact on life span and lead to neoplastic transformation. BRCA1 through its participation in the control mechanisms of cell growth and DNA repair is lately considered as an important component of mammary homeostasis. In this review we summarize the different cellular functions and roles of this gene, the experimental evidence for its linkage to carcinogenesis and recent evidence tying BRCA1 to environmentally induced toxic-stress responses. Finally, we discuss the new insights in the exploitation of BRCA1 defects for the development of new therapeutic strategies in cancer treatment and clinical applications.
Collapse
Affiliation(s)
- Alexandros G Georgakilas
- Department of Biology, Thomas Harriot College of Arts and Sciences, East Carolina University, Greenville, NC 27858, USA.
| | | | | | | | | |
Collapse
|
32
|
Wang Z, Qi Y, Chen Q, Yang D, Tang S, Jin X, Gao J, Fu J, Zhou Z, Wang J, Xiao X. Cyclin A is essential for the p53-modulated inhibition from benzo(a)pyrene toxicity in A549 cells. Toxicology 2009; 256:1-6. [DOI: 10.1016/j.tox.2008.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 10/18/2008] [Accepted: 10/25/2008] [Indexed: 12/23/2022]
|
33
|
Shen W, liu H, Yu Y. Translation initiation proteins, ubiquitin-proteasome system related proteins, and 14-3-3 proteins as response proteins in FL cells exposed to anti-benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide. Proteomics 2008; 8:3450-68. [DOI: 10.1002/pmic.200800085] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
Schlezinger JJ, Liu D, Farago M, Seldin DC, Belguise K, Sonenshein GE, Sherr DH. A role for the aryl hydrocarbon receptor in mammary gland tumorigenesis. Biol Chem 2008; 387:1175-87. [PMID: 16972784 DOI: 10.1515/bc.2006.145] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is an evolutionarily conserved transcription factor bound and activated by ubiquitous environmental pollutants. Historically, the AhR has been studied for its transcriptional regulation of genes encoding cytochrome P450 enzymes, which metabolize many of these chemicals into mutagenic and toxic intermediates. However, recent studies demonstrate that the AhR plays an important role in the biology of several cell types in the absence of environmental chemicals. Here, this paradigm shift is discussed in the context of a putative role for the AhR in mammary gland tumorigenesis. Data demonstrating high levels of constitutively active AhR in mammary tumors are summarized. Particular focus is placed on the likelihood that the AhR contributes to ongoing mammary tumor cell growth and on the possibility that the AhR inhibits apoptosis while promoting transition to an invasive, metastatic phenotype. A working model is proposed that may help explain the sometimes contradictory outcomes observed after AhR manipulation and that serves as a blueprint for the design of therapeutics which target the AhR in breast cancer. The theme that malignant cells reveal the functions for which the AhR has been evolutionarily conserved is presented throughout this discussion.
Collapse
Affiliation(s)
- Jennifer J Schlezinger
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Hockley SL, Arlt VM, Brewer D, Te Poele R, Workman P, Giddings I, Phillips DH. AHR- and DNA-damage-mediated gene expression responses induced by benzo(a)pyrene in human cell lines. Chem Res Toxicol 2007; 20:1797-810. [PMID: 17944540 DOI: 10.1021/tx700252n] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Carcinogens induce complex transcriptional responses in cells that may hold key mechanistic information. Benzo(a)pyrene (BaP) modulation of transcription may occur through the activation of the aryl hydrocarbon receptor (AHR) or through responses to DNA damage. To characterize further the expression profiles induced by BaP in HepG2 and MCF-7 cells obtained in our previous study, they were compared to those induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which activates AHR but does not bind to DNA, and anti-benzo(a)pyrene- trans-7,8-dihydrodiol-9,10-epoxide (BPDE), which binds directly to DNA but does not activate AHR. A total of 22 genes had altered expression in MCF-7 cells after both BaP and TCDD exposure, and a total of 29 genes had altered expression in HepG2 cells. In both cell lines, xenobiotic metabolism was upregulated through induction of NQO1, MGST1, and CYP1B1. A total of 78 expression changes were induced by both BaP and BPDE in MCF-7 cells, and a total of 29 expression changes were induced by both BaP and BPDE in HepG2 cells. These genes were predominantly involved in cell cycle regulation, apoptosis, and DNA repair. BaP and BPDE caused the repression of histone genes in both cell lines, suggesting that regulation of these genes is an important component of the DNA damage response. Interestingly, overlap of the BPDE and TCDD gene expression profiles was also observed. Furthermore, some genes were modulated by BaP but not by TCDD or BPDE, including induction of CRY1 and MAK, which may represent novel signaling pathways that are independent of both AHR activation and DNA damage. Promoter analysis identified candidate genes for direct transcriptional regulation by either AHR or p53. These analyses have further dissected and characterized the complex cellular response to BaP.
Collapse
Affiliation(s)
- Sarah L Hockley
- Section of Molecular Carcinogenesis, The Institute of Cancer Research, Surrey, UK.
| | | | | | | | | | | | | |
Collapse
|
36
|
Shen W, Liu H, Yu Y. Proteomic Analysis of Cellular Responses to Different Concentrations of anti-Benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide in Human Amniotic Epithelial FL Cells. J Proteome Res 2007; 6:4737-48. [DOI: 10.1021/pr070406b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Wenyan Shen
- Department of Pathophysiology, Zhejiang University, School of Medicine, Hangzhou 310058, China
| | - Hui Liu
- Department of Pathophysiology, Zhejiang University, School of Medicine, Hangzhou 310058, China
| | - Yingnian Yu
- Department of Pathophysiology, Zhejiang University, School of Medicine, Hangzhou 310058, China
| |
Collapse
|
37
|
Sun YW, Herzog CR, Krzeminski J, Amin S, Perdew G, El-Bayoumy K. Effects of the environmental mammary carcinogen 6-nitrochrysene on p53 and p21(Cip1) protein expression and cell cycle regulation in MCF-7 and MCF-10A cells. Chem Biol Interact 2007; 170:31-9. [PMID: 17678638 PMCID: PMC2682711 DOI: 10.1016/j.cbi.2007.06.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 06/21/2007] [Accepted: 06/22/2007] [Indexed: 02/02/2023]
Abstract
The environmental pollutant 6-nitrochrysene (6-NC) is a potent mammary carcinogen in rats; it is more potent than numerous classical mammary carcinogens such as benzo[a]pyrene (BaP). The mechanisms that account for the remarkable carcinogenicity of 6-NC remain elusive. Similar to BaP, 6-NC is also known to induce DNA damage in rodents and in human breast tissues. As an initial investigation, we reasoned that DNA damage induced by 6-NC may alter the expression of p53 protein in a manner that differs from other DNA damaging carcinogens (e.g. BaP). Using human breast adenocarcinoma MCF-7 cells and immortalized human mammary epithelial MCF-10A cells, we determined the effects of 6-NC on the expression of p53 protein and its direct downstream target cyclin-dependent kinase inhibitor p21(Cip1) as well as on the cell cycle progression. Western blot analysis demonstrated that treatments of MCF-7 and MCF-10A cells with 6-NC for 12, 24 or 48h did not increase the level of total p53 protein; however, an increase of p21(Cip1) protein and a commitment increase of G(1) phase were observed in MCF-10A cells but not in MCF-7 cells. Further studies using 1,2-dihydroxy-1,2-dihydro-6-hydroxylaminochrysene (1,2-DHD-6-NHOH-C), the putative ultimate genotoxic metabolite of 6-NC, was conducted and showed a significant induction of p53 (p<0.05) in MCF-7 cells; however, this effect was not evident in MCF-10A cells, indicating the varied DNA damage responses between the two cell lines. By contrast to numerous DNA damaging agents such as BaP which is known to stimulate p53 expression, the lack of p53 response by 6-NC imply the lack of protective functions mediated by p53 (e.g. DNA repair machinery) after exposure to 6-NC and this may, in part, account for its remarkable carcinogenicity in the mammary tissue.
Collapse
Affiliation(s)
- Yuan-Wan Sun
- Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| | - Christopher R. Herzog
- Department of Pharmacology, College of Medicine, Pennsylvania State University, University Park 16802
| | - Jacek Krzeminski
- Department of Pharmacology, College of Medicine, Pennsylvania State University, University Park 16802
| | - Shantu Amin
- Department of Pharmacology, College of Medicine, Pennsylvania State University, University Park 16802
| | - Gary Perdew
- Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park 16802
| | - Karam El-Bayoumy
- Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| |
Collapse
|
38
|
Hockley SL, Arlt VM, Jahnke G, Hartwig A, Giddings I, Phillips DH. Identification through microarray gene expression analysis of cellular responses to benzo(a)pyrene and its diol-epoxide that are dependent or independent of p53. Carcinogenesis 2007; 29:202-10. [PMID: 17942461 DOI: 10.1093/carcin/bgm227] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Human colon carcinoma cells (HCT116) differing in p53 status were exposed to benzo(a)pyrene (BaP) or anti-benzo(a)pyrene-trans-7,8-dihydrodiol-9,10-epoxide (BPDE) and their gene expression responses compared by complementary DNA microarray technology. Exposure of cells to BPDE for up to 24 h resulted in gene expression profiles more distinguishable by duration of exposure than by p53 status, although a subset of genes were identified that had significantly different expression in p53 wild-type (WT) cells relative to p53-null cells. Apoptotic signalling genes were up-regulated in p53-WT cells but not in p53-null cells and, consistent with this, reduced viability and caspase activity were also p53 dependent. BPDE modulated cell cycle and histone genes in both cell lines and, in agreement with this, both cell lines accumulated in S phase. In p53-WT cells, G(2) arrest was also evident, which was associated with accumulation of CDKN1A. Regardless of p53 status, exposure to BaP for up to 48 h had subtle effects on gene transcription and had no influence on cell viability or cell cycle. Interestingly, DNA adduct formation after BaP, but not BPDE, exposure was p53 dependent with 10-fold lower levels detected in p53-null cells. Other cell lines were investigated for BaP-DNA adduct formation and in these the effect of p53 knockdown was also to reduce adduct formation. Taken together, these results give further insight into the role of p53 in the response of human cells to BaP and BPDE and suggest that loss of this tumour suppressor can influence the metabolic activation of BaP.
Collapse
Affiliation(s)
- Sarah L Hockley
- Section of Molecular Carcinogenesis, The Institute of Cancer Research, Brookes Lawley Building, Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | | | | | | | | | | |
Collapse
|
39
|
Yao B, Fu J, Hu E, Qi Y, Zhou Z. The Cdc25A is involved in S-phase checkpoint induced by benzo(a)pyrene. Toxicology 2007; 237:210-217. [PMID: 17602818 DOI: 10.1016/j.tox.2007.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 05/15/2007] [Accepted: 05/16/2007] [Indexed: 12/21/2022]
Abstract
Environmental carcinogen benzo(a)pyrene (BaP) generates electrophilic products BaP diolepoxide (BPDE) that react covalently with genomic DNA. Cells that acquire BaP/BPDE-induced DNA damage undergo S-phase arrest in a p53-independent manner. However, the role of Cdc25A in the BaP/BPDE-induced checkpoint is not clear. In the present study, we investigated the change of checkpoint kinase 1 (Chk1) and Cdc25A in S-phase arrest elicited by BaP. The results indicated that BaP (10microM, with S9 mixture) treatment induced S-phase arrest in both human lung carcinoma A549 cells and human bronchial epithelial cells line 16HBE cells, increasing the proportions of cells in S-phase 19.0% and 21.1%, respectively, at 12h after treatment, compared with DMSO control (p<0.01). Then, the S-phase arrest was weakened after 24h. The level of phorsphorylated Chk1 obviously increased and Cdc25A protein level decreased in both two cell lines after treatment with BaP. The results of RT-PCR indicate Cdc25A mRNA in both A549 cells and 16HBE cells was not changed after BaP treatment 12h, and 24h. The treatment of the proteasome inhibitor MG132 greatly increased Cdc25A protein in abundance. Over all, our results indicated Chk1-Cdc25A checkpoint pathway is involved in BaP-induced S-phase arrest. Moreover, transcription of Cdc25A did not change in BaP induced S-phase arrest, the decrease of Cdc25A level was due to increased degradation through the ubiqutin-proteasome pathway.
Collapse
Affiliation(s)
- Biyun Yao
- Department of Toxicology, Peking University Health Science Center, Beijing 100083, PR China
| | - Juanling Fu
- Department of Toxicology, Peking University Health Science Center, Beijing 100083, PR China
| | - Entan Hu
- Department of Toxicology, Peking University Health Science Center, Beijing 100083, PR China
| | - Yanmin Qi
- Department of Toxicology, Peking University Health Science Center, Beijing 100083, PR China
| | - Zongcan Zhou
- Department of Toxicology, Peking University Health Science Center, Beijing 100083, PR China.
| |
Collapse
|
40
|
Hockley SL, Arlt VM, Brewer D, Giddings I, Phillips DH. Time- and concentration-dependent changes in gene expression induced by benzo(a)pyrene in two human cell lines, MCF-7 and HepG2. BMC Genomics 2006; 7:260. [PMID: 17042939 PMCID: PMC1621085 DOI: 10.1186/1471-2164-7-260] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 10/16/2006] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The multi-step process of carcinogenesis can be more fully understood by characterizing gene expression changes induced in cells by carcinogens. In this study, expression microarrays were used to monitor the activity of 18,224 cDNA clones in MCF-7 and HepG2 cells exposed to the carcinogen benzo(a)pyrene (BaP) or its non-carcinogenic isomer benzo(e)pyrene (BeP). Time and concentration gene expression effects of BaP exposure have been assessed and linked to other measures of cellular stress to aid in the identification of novel genes/pathways involved in the cellular response to genotoxic carcinogens. RESULTS BaP (0.25-5.0 muM; 6-48 h exposure) modulated 202 clones in MCF-7 cells and 127 in HepG2 cells, including 27 that were altered in both. In contrast, BeP did not induce consistent gene expression changes at the same concentrations. Significant time- and concentration-dependent responses to BaP were seen in both cell lines. Expression changes observed in both cell lines included genes involved in xenobiotic metabolism (e.g., CYP1B1, NQO1, MGST1, AKR1C1, AKR1C3,CPM), cell cycle regulation (e.g., CDKN1A), apoptosis/anti-apoptosis (e.g., BAX, IER3), chromatin assembly (e.g., histone genes), and oxidative stress response (e.g., TXNRD1). RTqPCR was used to validate microarray data. Phenotypic anchoring of the expression data to DNA adduct levels detected by 32P-postlabelling, cell cycle data and p53 protein expression identified a number of genes that are linked to these biological outcomes, thereby strengthening the identification of target genes. The overall response to BaP consisted of up-regulation of tumour suppressor genes and down-regulation of oncogenes promoting cell cycle arrest and apoptosis. Anti-apoptotic signalling that may increase cell survival and promote tumourigenesis was also evident. CONCLUSION This study has further characterised the gene expression response of human cells after genotoxic insult, induced after exposure to concentrations of BaP that result in minimal cytotoxicity. We have demonstrated that investigating the time and concentration effect of a carcinogen on gene expression related to other biological end-points gives greater insight into cellular responses to such compounds and strengthens the identification of target genes.
Collapse
Affiliation(s)
- Sarah L Hockley
- Section of Molecular Carcinogenesis, Institute of Cancer Research, Brookes Lawley Building, Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Volker M Arlt
- Section of Molecular Carcinogenesis, Institute of Cancer Research, Brookes Lawley Building, Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Daniel Brewer
- Section of Molecular Carcinogenesis, Institute of Cancer Research, Brookes Lawley Building, Cotswold Road, Sutton, Surrey SM2 5NG, UK
- Cancer Research UK DNA Microarray Facility, Institute of Cancer Research, Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Ian Giddings
- Section of Molecular Carcinogenesis, Institute of Cancer Research, Brookes Lawley Building, Cotswold Road, Sutton, Surrey SM2 5NG, UK
- Cancer Research UK DNA Microarray Facility, Institute of Cancer Research, Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - David H Phillips
- Section of Molecular Carcinogenesis, Institute of Cancer Research, Brookes Lawley Building, Cotswold Road, Sutton, Surrey SM2 5NG, UK
| |
Collapse
|
41
|
Kemp MQ, Liu W, Thorne PA, Kane MD, Selmin O, Romagnolo DF. Induction of the transferrin receptor gene by benzo[a]pyrene in breast cancer MCF-7 cells: potential as a biomarker of PAH exposure. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2006; 47:518-26. [PMID: 16721748 DOI: 10.1002/em.20221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental DNA-damaging agents regarded as risk factors for human disease, including lung and breast cancer. The biotransformation of PAHs to carcinogenic metabolites is mediated by the aromatic hydrocarbon receptor (AhR), which activates transcription at xenobiotic responsive elements (XREs = 5'-GCGTG-3') found in the promoter regions of genes encoding for detoxifying enzymes, including CYP1A1 and CYP1B1. In this study, we wished to identify novel biomarkers that may be useful in monitoring critical carcinogenic events of the breast induced by PAHs. Using a GeneMAP CancerArray, we analyzed in breast cancer MCF-7 cells the temporal effects of the AhR agonist benzo[a]pyrene (B[a]P), which is a prototype PAH and known environmental carcinogen. Genes upregulated at least threefold by B[a]P and containing potential XREs within their promoter regions included CYP1A1, CYP1B1, paired box gene 3 (PAX3), cortactin (CTTN/EMS1), beta-2-microglobulin (B2M), and transferrin receptor (TfR). The stimulatory effects of B[a]P on expression of these genes were abrogated by cotreatment with the AhR antagonist flavonoid, alpha-napthoflavone (ANF). The TfR gene was selected for further analysis as its promoter region contains two potential XREs and its expression has been shown to be increased in breast cancer cells. Accumulation of TfR mRNA in B[a]P-treated cells was confirmed by quantitative real time PCR. Transient transfection studies indicated that the transcriptional activity of the TfR promoter was stimulated by B[a]P, whereas ANF counteracted this induction. These results indicate that the TfR gene may be a potential biomarker of PAH exposure.
Collapse
Affiliation(s)
- Michael Q Kemp
- Laboratory of Mammary Gland Biology, Department of Nutritional Sciences, University of Arizona, Tucson, Arizona 85721-0038, USA
| | | | | | | | | | | |
Collapse
|
42
|
Jeffy BD, Hockings JK, Kemp MQ, Morgan SS, Hager JA, Beliakoff J, Whitesell LJ, Bowden GT, Romagnolo DF. An estrogen receptor-alpha/p300 complex activates the BRCA-1 promoter at an AP-1 site that binds Jun/Fos transcription factors: repressive effects of p53 on BRCA-1 transcription. Neoplasia 2006; 7:873-82. [PMID: 16229810 PMCID: PMC1501940 DOI: 10.1593/neo.05256] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 05/24/2005] [Accepted: 05/25/2005] [Indexed: 01/07/2023] Open
Abstract
One of the puzzles in cancer predisposition is that women carrying BRCA-1 mutations preferentially develop tumors in epithelial tissues of the breast and ovary. Moreover, sporadic breast tumors contain lower levels of BRCA-1 in the absence of mutations in the BRCA-1 gene. The problem of tissue specificity requires analysis of factors that are unique to tissues of the breast. For example, the expression of estrogen receptor-alpha (ER alpha) is inversely correlated with breast cancer risk, and 90% of BRCA-1 tumors are negative for ER alpha. Here, we show that estrogen stimulates BRCA-1 promoter activity in transfected cells and the recruitment of ER alpha and its cofactor p300 to an AP-1 site that binds Jun/Fos transcription factors. The recruitment of ER alpha/p300 coincides with accumulation in the S-phase of the cell cycle and is antagonized by the antiestrogen tamoxifen. Conversely, we document that overexpression of wild-type p53 prevents the recruitment of ER alpha to the AP-1 site and represses BRCA-1 promoter activity. Taken together, our findings support a model in which an ER alpha/AP-1 complex modulates BRCA-1 transcription under conditions of estrogen stimulation. Conversely, the formation of this transcription complex is abrogated in cells overexpressing p53.
Collapse
Affiliation(s)
- Brandon D Jeffy
- Cancer Biology Interdisciplinary Program, Arizona Health Sciences Center, Tuczon, AZ, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Morse DL, Gray H, Payne CM, Gillies RJ. Docetaxel induces cell death through mitotic catastrophe in human breast cancer cells. Mol Cancer Ther 2006; 4:1495-504. [PMID: 16227398 DOI: 10.1158/1535-7163.mct-05-0130] [Citation(s) in RCA: 217] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apoptosis has long been considered to be the prevailing mechanism of cell death in response to chemotherapy. Currently, a more heterogeneous model of tumor response to therapy is acknowledged wherein multiple modes of death combine to generate the overall tumor response. The resulting mechanisms of cell death are likely determined by the mechanism of action of the drug, the dosing regimen used, and the genetic background of the cells within the tumor. This study describes a nonapoptotic response to docetaxel therapy in human breast cancer cells of increasing cancer progression (MCF-10A, MCF-7, and MDA-mb-231). Docetaxel is a microtubule-stabilizing taxane that is being used in the clinic for the treatment of breast and prostate cancers and small cell carcinoma of the lung. The genetic backgrounds of these cells were characterized for the status of key pathways and gene products involved in drug response and cell death. Cellular responses to docetaxel were assessed by characterizing cell viability, cell cycle checkpoint arrest, and mechanisms of cell death. Mechanisms of cell death were determined by Annexin V binding and scoring of cytology-stained cells by morphology and transmission electron microscopy. The primary mechanism of death was determined to be mitotic catastrophe by scoring of micronucleated cells and cells undergoing aberrant mitosis. Other, nonapoptotic modes of death were also determined. No significant changes in levels of apoptosis were observed in response to docetaxel.
Collapse
Affiliation(s)
- David L Morse
- Arizona Cancer Center, University of Arizona, P.O. Box 245024, Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|
44
|
Miller ME, Holloway AC, Foster WG. Benzo-[a]-pyrene increases invasion in MDA-MB-231 breast cancer cells via increased COX-II expression and prostaglandin E2 (PGE2) output. Clin Exp Metastasis 2005; 22:149-56. [PMID: 16086235 DOI: 10.1007/s10585-005-6536-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Accepted: 04/21/2005] [Indexed: 01/28/2023]
Abstract
Benzo-[a]-pyrene (B[a]P), a carcinogenic component of cigarette smoke, has been shown to increase both COX-II expression and prostaglandin output in vascular smooth muscle and oral epithelial cells. In addition, invasive breast cancer cells have been reported to over express COX-II and PGE(2). Therefore, the objective of this study was to quantify the effect of increasing B[a]P concentrations on COX-II expression, PGE(2) output, and invasion using MDA-MB-231 cells, an invasive estrogen unresponsive breast cancer cell line. B[a]P significantly increased invasion in MDA-MB-231 cells at concentrations greater than 4 x 10(-8) M. Treatment of MDA-MB-231 cells with Vomitoxin (a selective COX-II inducer) enhanced invasion whereas co-treatment with NS398 (a selective COX-II inhibitor) attenuated B[a]P-induced invasion in MDA-MB-231 cells. Immunohistochemical staining and Western blots demonstrated a significant B[a]P treatment-induced increase in both the number of COX-II immunopositive MDA-MB-231 cells and COX-II protein levels. Moreover, B[a]P-treatment induced a profound (46 fold) increase in PGE(2) production by MDA-MB-231 cells. The aryl hydrocarbon receptor (AhR) antagonists resveratrol (RES) and alpha-naphthaflavone (alpha-NF) had no effect on their own, whereas B[a]P-induced invasion was significantly inhibited by co-treatment with RES and alpha-NF. Our data demonstrate that B[a]P-induced changes in invasion are mediated through augmented COX-II expression and PGE(2) production involving an AhR regulated pathway. Moreover, these results suggest a potential role for the AhR signalling pathway in breast cancer invasion.
Collapse
Affiliation(s)
- M E Miller
- Reproductive Biology Division, Department of Obstetrics & Gynecology, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
45
|
Akerman GS, Rosenzweig BA, Domon OE, McGarrity LJ, Blankenship LR, Tsai CA, Culp SJ, MacGregor JT, Sistare FD, Chen JJ, Morris SM. Gene expression profiles and genetic damage in benzo(a)pyrene diol epoxide-exposed TK6 cells. Mutat Res 2004; 549:43-64. [PMID: 15120962 DOI: 10.1016/j.mrfmmm.2003.11.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Revised: 11/21/2003] [Accepted: 11/25/2003] [Indexed: 12/23/2022]
Abstract
Microarray analysis is a powerful tool to identify the biological effects of drugs or chemicals on cellular gene expression. In this study, we compare the relationships between traditional measures of genetic toxicology and mutagen-induced alterations in gene expression profiles. TK6 cells were incubated with 0.01, 0.1, or 1.0 microM +/-anti-benzo(a)pyrene-trans-7,8-dihydrodiol-9,10-epoxide (BPDE) for 4 h and then cultured for an additional 20 h. Aliquots of the exposed cells were removed at 4 and 24 h in order to quantify DNA adduct levels by 32P post-labeling and measure cell viability by cloning efficiency and flow cytometry. Gene expression profiles were developed by extracting total RNA from the control and exposed cells at 4 and 24 h, labeling with Cy3 or Cy5 and hybridizing to a human 350 gene array. Mutant frequencies in the Thymidine Kinase and Hypoxanthine Phosphoribosyl Transferase genes were also determined. The 10alpha-(deoxyguanosin-N(2)-yl)-7alpha,8beta,9beta-trihydroxy-7,8,9,10-tetrahydrobenzo(a)pyrene (dG-N(2)-BPDE) adduct increased as a function of dose and was the only adduct identified. A dose-related decrease in cell viability was evident at 24 h, but not at 4 h. Cell death occurred by apoptosis. At 4 h, analysis of the gene expression profiles revealed that Glutathione Peroxidase and Gadd45 were consistently upregulated (greater than 1.5-fold and significantly (P < 0.001) greater than the control in two experiments) in response to 1.0 microM BPDE exposure. Fifteen genes were consistently down-regulated (less than 0.67-fold and significantly (P < 0.001) lower than the control in two experiments) at 4 h in cultures exposed to 1.0 microM BPDE. Genes with altered expression at 4 h included genes important in the progression of the cell-cycle and those that inhibit apoptosis. At 24 h post-exposure, 16 genes, involved in cell-cycle control, detoxification, and apoptosis were consistently upregulated; 10 genes were repressed in cultures exposed to the high dose of BPDE. Real-time quantitative PCR confirmed the differential expression of selected genes. These data suggest that changes in gene expression will help to identify effects of drugs and chemicals on molecular pathways in cells, and will provide useful information about the molecular responses associated with DNA damage. Of the endpoints evaluated, DNA adduct formation was the most sensitive indicator of DNA damage. DNA adduct formation was clearly evident at low doses, but the number of genes with significantly altered expression (P < 0.001) was minimal. Alterations in gene expression were more robust at doses associated with cellular toxicity and induction of mutations.
Collapse
Affiliation(s)
- G S Akerman
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sadikovic B, Haines TR, Butcher DT, Rodenhiser DI. Chemically induced DNA hypomethylation in breast carcinoma cells detected by the amplification of intermethylated sites. Breast Cancer Res 2004; 6:R329-37. [PMID: 15217500 PMCID: PMC468641 DOI: 10.1186/bcr799] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Revised: 02/10/2004] [Accepted: 03/31/2004] [Indexed: 12/31/2022] Open
Abstract
Introduction Compromised patterns of gene expression result in genomic instability, altered patterns of gene expression and tumour formation. Specifically, aberrant DNA hypermethylation in gene promoter regions leads to gene silencing, whereas global hypomethylation events can result in chromosomal instability and oncogene activation. Potential links exist between environmental agents and DNA methylation, but the destabilizing effects of environmental exposures on the DNA methylation machinery are not understood within the context of breast cancer aetiology. Methods We assessed genome-wide changes in methylation patterns using a unique methylation profiling technique called amplification of intermethylated sites (AIMS). This method generates easily readable fingerprints that represent the investigated cell line's methylation profile, based on the differential cleavage of DNA with methylation-specific isoschisomeric restriction endonucleases. Results We validated this approach by demonstrating both unique and reoccurring sites of genomic hypomethylation in four breast carcinoma cell lines treated with the cytosine analogue 5-azacytidine. Comparison of treated with control samples revealed individual bands that exhibited methylation changes, and these bands were excized and cloned, and the precise genomic location individually identified. In most cases, these regions of hypomethylation coincided with susceptible target regions previously associated with chromosome breakage, rearrangement and gene amplification. Similarly, we observed that acute benzopyrene exposure is associated with altered methylation patterns in these cell lines. Conclusion These results reinforce the link between environmental exposures, DNA methylation and breast cancer, and support a role for AIMS as a rapid, affordable screening method to identify environmentally induced DNA methylation changes that occur in tumourigenesis.
Collapse
Affiliation(s)
- Bekim Sadikovic
- The London Regional Cancer Centre, London Health Sciences Centre, Child Health Research Institute, and the Departments of Biochemistry, Paediatrics and Oncology, at the University of Western Ontario, London, Ontario, Canada
| | - Thomas R Haines
- The London Regional Cancer Centre, London Health Sciences Centre, Child Health Research Institute, and the Departments of Biochemistry, Paediatrics and Oncology, at the University of Western Ontario, London, Ontario, Canada
| | - Darci T Butcher
- The London Regional Cancer Centre, London Health Sciences Centre, Child Health Research Institute, and the Departments of Biochemistry, Paediatrics and Oncology, at the University of Western Ontario, London, Ontario, Canada
| | - David I Rodenhiser
- The London Regional Cancer Centre, London Health Sciences Centre, Child Health Research Institute, and the Departments of Biochemistry, Paediatrics and Oncology, at the University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
47
|
Romagnolo DF, Chirnomas RB, Ku J, Jeffy BD, Payne CM, Holubec H, Ramsey L, Bernstein H, Bernstein C, Kunke K, Bhattacharyya A, Warneke J, Garewal H. Deoxycholate, an endogenous tumor promoter and DNA damaging agent, modulates BRCA-1 expression in apoptosis-sensitive epithelial cells: loss of BRCA-1 expression in colonic adenocarcinomas. Nutr Cancer 2004; 46:82-92. [PMID: 12925308 DOI: 10.1207/s15327914nc4601_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Deoxycholate, a bile salt present at high levels in the colonic lumen of individuals on a high-fat diet, is a promoter of colon cancer. Deoxycholate also causes DNA damage. BRCA-1 functions in repair of DNA and in induction of apoptosis. We show that, when cultured cells of colonic origin are exposed to deoxycholate at different concentrations, BRCA-1 expression is induced at a low noncytotoxic concentration (10 microM) but is strongly inhibited at higher cytotoxic concentrations ( > or =100 microM). Indication of phosphorylation of BRCA-1 by deoxycholate (100 microM) at a lower dose was seen by Western blot analysis, whereas, at a higher dose, deoxycholate (200 and 300 microM) caused a complete loss of BRCA-1 expression. We show that BRCA-1 is substantially lower in colon adenocarcinomas from five patients compared with associated non-neoplastic colon tissue from the same patients, suggesting that the loss of BRCA-1 expression contributes to the malignant phenotype. In the non-neoplastic colon tissue, BRCA-1 was localized to the nongoblet cells. Our results imply that reduced expression of BRCA-1 may be associated with carcinoma of the colon.
Collapse
Affiliation(s)
- Donato F Romagnolo
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Spink BC, Hussain MM, Katz BH, Eisele L, Spink DC. Transient induction of cytochromes P450 1A1 and 1B1 in MCF-7 human breast cancer cells by indirubin. Biochem Pharmacol 2004; 66:2313-21. [PMID: 14637189 DOI: 10.1016/j.bcp.2003.08.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aryl hydrocarbon receptor (AhR), when activated by exogenous ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), regulates expression of several phase I and phase II enzymes and is also involved in the regulation of cell proliferation. Several studies suggest that endogenous AhR ligand(s) may exist. One putative endogenous ligand is indirubin, which was recently identified in human urine and bovine serum. We determined the effect of indirubin in MCF-7 breast cancer cells on induction of the activities of cytochromes P450 (CYP) 1A1 and 1B1, as measured by estradiol and ethoxyresorufin metabolism, and on induction of the CYP1A1 and CYP1B1 mRNAs. With 4-hr exposure, the effects of indirubin and TCDD at 10nM on CYP activity were comparable, but the effects of indirubin, unlike those of TCDD, were transitory. Indirubin-induced ethoxyresorufin-O-deethylase activity was maximal by 6-9 hr post-exposure and had disappeared by 24 hr, whereas TCDD-induced activities remained elevated for at least 72 hr. The effects of indirubin on CYP mRNA induction were maximal at 3 hr. Indirubin was metabolized by microsomes containing cDNA-expressed human CYP1A1 or CYP1B1. The potency of indirubin was comparable to that of TCDD in a CYP1B1-promoter-driven luciferase assay, when MCF-7 cells were co-exposed to the AhR ligands together with the CYP inhibitor, ellipticine. Thus, if indirubin is an endogenous AhR ligand, then AhR-mediated signaling by indirubin is likely to be transient and tightly controlled by the ability of indirubin to induce CYP1A1 and CYP1B1, and hence its own metabolism.
Collapse
Affiliation(s)
- Barbara C Spink
- New York State Department of Health, Wadsworth Center, Albany, NY 12201-0509, USA
| | | | | | | | | |
Collapse
|
49
|
Kemp MQ, Jeffy BD, Romagnolo DF. Conjugated Linoleic Acid Inhibits Cell Proliferation through a p53-Dependent Mechanism: Effects on the Expression of G1-Restriction Points in Breast and Colon Cancer Cells. J Nutr 2003; 133:3670-7. [PMID: 14608092 DOI: 10.1093/jn/133.11.3670] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Previous reports have documented the antiproliferative properties of a mixture of conjugated isomers (CLA) of linoleic acid [LA (18:2)]. In this study, we investigated the mechanisms of CLA action on cell cycle progression in breast and colon cancer cells. Treatment with CLA inhibited cell proliferation in breast cancer MCF-7 cells containing wild-type p53 (p53(+/+)). At cytostatic concentrations, CLA elicited cell cycle arrest in G1 and induced the accumulation of the tumor suppressors p53, p27 and p21 protein. Conversely, CLA reduced the expression of factors required for G1 to S-phase transition including cyclins D1 and E, and hyperphoshorylated retinoblastoma Rb protein. In contrast, the overexpression of mutant p53 (175Arg to His) in MFC-7 cells prevented the CLA-dependent accumulation of p21 and the reduction of cyclin E levels suggesting that the expression of wild-type p53 is required for CLA-mediated activation of the G1 restriction point. To further elucidate the role of p53, the effects of CLA in colon cancer HCT116 cells (p53(+/+)) and p53-deficient (p53(-/-)) HCT116 cells (HCTKO) were examined. The treatment of HCT116 cells with CLA increased the levels of p53, p21, p27 and hypophosphorylated (pRb) protein and reduced the expression of cyclin E, whereas these effects were not seen in p53-deficient HCTKO cells. The t10,c12-CLA isomer was more effective than c9,t11-CLA in inhibiting cell proliferation of MCF-7 breast cancer cells and enhancing the accumulation of p53 and pRb. We conclude that the antiproliferative properties of CLA appear to be a function, at least in part, of the relative content of specific isomers and their ability to elicit a p53 response that leads to the accumulation of pRb and cell growth arrest.
Collapse
Affiliation(s)
- Michael Q Kemp
- Nutritional Sciences Interdisciplinary Program, Laboratory of Mammary Gland Biology, Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85718, USA
| | | | | |
Collapse
|
50
|
Jeffy BD, Chirnomas RB, Romagnolo DF. Epigenetics of breast cancer: polycyclic aromatic hydrocarbons as risk factors. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2002; 39:235-244. [PMID: 11921194 DOI: 10.1002/em.10051] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the absence of a causal relationship between the incidence of sporadic breast cancer and occurrence of mutations in breast cancer susceptibility genes, efforts directed to investigating the contribution of environmental xenobiotics in the etiology of sporadic mammary neoplasia are warranted. Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants, which have been shown to induce DNA damage and disrupt cell cycle progression. In this report we discuss published data pointing to PAHs as a risk factor in carcinogenesis, and present findings generated in our laboratory suggesting that the mammary tumorigenicity of PAHs may be attributable, at least in part, to disruption of BRCA-1 expression by reactive PAH-metabolites. We report that benzo[a]pyrene (B[a]P), selected as a prototype PAH, disrupts BRCA-1 transcription in estrogen receptor (ER)-positive but not ER-negative breast cancer cells. The reduced potential for BRCA-1 expression in B[a]P-treated cells coincides with disruption of cell cycle kinetics and accumulation of p53. These effects are counteracted by the AhR-antagonist alpha-naphthoflavone (ANF), and in breast cancer cells expressing mutant p53 or the E6 human papilloma virus protein. We suggest that exposure to PAHs may be a predisposing factor in the etiology of sporadic breast cancer by disrupting the expression of BRCA-1.
Collapse
MESH Headings
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/pharmacology
- BRCA1 Protein/metabolism
- Benzo(a)pyrene/pharmacology
- Benzoflavones/pharmacology
- Blotting, Western
- Breast Neoplasms/chemically induced
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinogens/pharmacology
- DNA Damage/drug effects
- Female
- Flow Cytometry
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, BRCA1/drug effects
- Humans
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/physiology
- RNA, Messenger/metabolism
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Estrogen/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Risk Factors
- Tumor Cells, Cultured/drug effects
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Brandon D Jeffy
- Cancer Biology Interdisciplinary Program, The University of Arizona, Tucson, Arizona 85721-0038, USA
| | | | | |
Collapse
|