1
|
Hibler W, Merlino G, Yu Y. CAR NK Cell Therapy for the Treatment of Metastatic Melanoma: Potential & Prospects. Cells 2023; 12:2750. [PMID: 38067178 PMCID: PMC10706172 DOI: 10.3390/cells12232750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Melanoma is among the most lethal forms of cancer, accounting for 80% of deaths despite comprising just 5% of skin cancer cases. Treatment options remain limited due to the genetic and epigenetic mechanisms associated with melanoma heterogeneity that underlie the rapid development of secondary drug resistance. For this reason, the development of novel treatments remains paramount to the improvement of patient outcomes. Although the advent of chimeric antigen receptor-expressing T (CAR-T) cell immunotherapies has led to many clinical successes for hematological malignancies, these treatments are limited in their utility by their immune-induced side effects and a high risk of systemic toxicities. CAR natural killer (CAR-NK) cell immunotherapies are a particularly promising alternative to CAR-T cell immunotherapies, as they offer a more favorable safety profile and have the capacity for fine-tuned cytotoxic activity. In this review, the discussion of the prospects and potential of CAR-NK cell immunotherapies touches upon the clinical contexts of melanoma, the immunobiology of NK cells, the immunosuppressive barriers preventing endogenous immune cells from eliminating tumors, and the structure and design of chimeric antigen receptors, then finishes with a series of proposed design innovations that could improve the efficacy CAR-NK cell immunotherapies in future studies.
Collapse
Affiliation(s)
| | | | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Khilji SK, Op 't Hoog C, Warschkau D, Lühle J, Goerdeler F, Freitag A, Seeberger PH, Moscovitz O. Smaller size packs a stronger punch - Recent advances in small antibody fragments targeting tumour-associated carbohydrate antigens. Theranostics 2023; 13:3041-3063. [PMID: 37284439 PMCID: PMC10240822 DOI: 10.7150/thno.80901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/26/2023] [Indexed: 06/08/2023] Open
Abstract
Attached to proteins, lipids, or forming long, complex chains, glycans represent the most versatile post-translational modification in nature and surround all human cells. Unique glycan structures are monitored by the immune system and differentiate self from non-self and healthy from malignant cells. Aberrant glycosylations, termed tumour-associated carbohydrate antigens (TACAs), are a hallmark of cancer and are correlated with all aspects of cancer biology. Therefore, TACAs represent attractive targets for monoclonal antibodies for cancer diagnosis and therapy. However, due to the thick and dense glycocalyx as well as the tumour micro-environment, conventional antibodies often suffer from restricted access and limited effectiveness in vivo. To overcome this issue, many small antibody fragments have come forth, showing similar affinity with better efficiency than their full-length counterparts. Here we review small antibody fragments against specific glycans on tumour cells and highlight their advantages over conventional antibodies.
Collapse
Affiliation(s)
- Sana Khan Khilji
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Charlotte Op 't Hoog
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Graduate School of Life Sciences, Utrecht University, 3584 CH Utrecht, Netherlands
| | - David Warschkau
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jost Lühle
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Felix Goerdeler
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Anika Freitag
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Oren Moscovitz
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| |
Collapse
|
3
|
Lokhov PG, Balashova EE, Trifonova OP, Maslov DL, Archakov AI. Cell Proteomic Footprinting: Advances in the Quality of Cellular and Cell-Derived Cancer Vaccines. Pharmaceutics 2023; 15:661. [PMID: 36839983 PMCID: PMC9963030 DOI: 10.3390/pharmaceutics15020661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
In omics sciences, many compounds are measured simultaneously in a sample in a single run. Such analytical performance opens up prospects for improving cellular cancer vaccines and other cell-based immunotherapeutics. This article provides an overview of proteomics technology, known as cell proteomic footprinting. The molecular phenotype of cells is highly variable, and their antigenic profile is affected by many factors, including cell isolation from the tissue, cell cultivation conditions, and storage procedures. This makes the therapeutic properties of cells, including those used in vaccines, unpredictable. Cell proteomic footprinting makes it possible to obtain controlled cell products. Namely, this technology facilitates the cell authentication and quality control of cells regarding their molecular phenotype, which is directly connected with the antigenic properties of cell products. Protocols for cell proteomic footprinting with their crucial moments, footprint processing, and recommendations for the implementation of this technology are described in this paper. The provided footprints in this paper and program source code for their processing contribute to the fast implementation of this technology in the development and manufacturing of cell-based immunotherapeutics.
Collapse
Affiliation(s)
- Petr G. Lokhov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia
| | | | | | | | | |
Collapse
|
4
|
Kundu N, Holz MK. Lymphangioleiomyomatosis: a metastatic lung disease. Am J Physiol Cell Physiol 2023; 324:C320-C326. [PMID: 36571446 PMCID: PMC9886342 DOI: 10.1152/ajpcell.00202.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare disease affecting women, caused by somatic mutations in the TSC1 or TSC2 genes, and driven by estrogen. Similar to many cancers, it is metastatic, primarily to the lung. Despite its monogenetic nature, like many cancers, LAM is a heterogeneous disease. The cellular constituents of LAM are very diverse, including mesenchymal, epithelial, endothelial, and immune cells. LAM is characterized by dysregulation of many cell signaling pathways, distinct populations of LAM cells, and a rich microenvironment, in which the immune system appears to play an important role. This review delineates the heterogeneity of LAM and focuses on the metastatic features of LAM, the deregulated signaling mechanisms and the tumor microenvironment. Understanding the tumor-host interaction in LAM may provide insights into the development of new therapeutic strategies, which could be combinatorial or superlative to Sirolimus, the current U.S. Food and Drug Administration-approved treatment.
Collapse
Affiliation(s)
- Nandini Kundu
- Department of Cell Biology and Anatomy, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, New York
| | - Marina K Holz
- Department of Cell Biology and Anatomy, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, New York
- Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, New York
| |
Collapse
|
5
|
Thomas A, Sumughan S, Dellacecca ER, Shivde RS, Lancki N, Mukhatayev Z, Vaca CC, Han F, Barse L, Henning SW, Zamora-Pineda J, Akhtar S, Gupta N, Zahid JO, Zack SR, Ramesh P, Jaishankar D, Lo AS, Moss J, Picken MM, Darling TN, Scholtens DM, Dilling DF, Junghans RP, Le Poole IC. Benign tumors in TSC are amenable to treatment by GD3 CAR T cells in mice. JCI Insight 2021; 6:e152014. [PMID: 34806651 PMCID: PMC8663788 DOI: 10.1172/jci.insight.152014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Mutations underlying disease in tuberous sclerosis complex (TSC) give rise to tumors with biallelic mutations in TSC1 or TSC2 and hyperactive mammalian target of rapamycin complex 1 (mTORC1). Benign tumors might exhibit de novo expression of immunogens, targetable by immunotherapy. As tumors may rely on ganglioside D3 (GD3) expression for mTORC1 activation and growth, we compared GD3 expression in tissues from patients with TSC and controls. GD3 was overexpressed in affected tissues from patients with TSC and also in aging Tsc2+/- mice. As GD3 overexpression was not accompanied by marked natural immune responses to the target molecule, we performed preclinical studies with GD3 chimeric antigen receptor (CAR) T cells. Polyfunctional CAR T cells were cytotoxic toward GD3-overexpressing targets. In mice challenged with Tsc2-/- tumor cells, CAR T cells substantially and durably reduced the tumor burden, correlating with increased T cell infiltration. We also treated aged Tsc2+/- heterozygous (>60 weeks) mice that carry spontaneous Tsc2-/- tumors with GD3 CAR or untransduced T cells and evaluated them at endpoint. Following CAR T cell treatment, the majority of mice were tumor free while all control animals carried tumors. The outcomes demonstrate a strong treatment effect and suggest that targeting GD3 can be successful in TSC.
Collapse
Affiliation(s)
- Ancy Thomas
- Department of Dermatology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center
| | | | | | | | - Nicola Lancki
- Quantitative Data Sciences Core, Robert H. Lurie Comprehensive Cancer Center; and
| | | | | | - Fei Han
- Department of Dermatology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center
| | - Levi Barse
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Jesus Zamora-Pineda
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Suhail Akhtar
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Nikhilesh Gupta
- Robert H. Lurie Comprehensive Cancer Center
- Illinois Mathematics and Science Academy, Aurora, Illinois, USA
| | - Jasmine O. Zahid
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Stephanie R. Zack
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | | | | | - Agnes S.Y. Lo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Maria M. Picken
- Department of Pathology, Loyola University, Maywood, Illinois, USA
| | - Thomas N. Darling
- Department of Dermatology, School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Denise M. Scholtens
- Quantitative Data Sciences Core, Robert H. Lurie Comprehensive Cancer Center; and
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniel F. Dilling
- Department of Medicine, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Richard P. Junghans
- Department of Hematology/Oncology, School of Medicine, Boston University, Boston, Massachusetts, USA
| | - I. Caroline Le Poole
- Department of Dermatology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
6
|
Mukhatayev Z, Dellacecca ER, Cosgrove C, Shivde R, Jaishankar D, Pontarolo-Maag K, Eby JM, Henning SW, Ostapchuk YO, Cedercreutz K, Issanov A, Mehrotra S, Overbeck A, Junghans RP, Leventhal JR, Le Poole IC. Antigen Specificity Enhances Disease Control by Tregs in Vitiligo. Front Immunol 2020; 11:581433. [PMID: 33335528 PMCID: PMC7736409 DOI: 10.3389/fimmu.2020.581433] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
Vitiligo is an autoimmune skin disease characterized by melanocyte destruction. Regulatory T cells (Tregs) are greatly reduced in vitiligo skin, and replenishing peripheral skin Tregs can provide protection against depigmentation. Ganglioside D3 (GD3) is overexpressed by perilesional epidermal cells, including melanocytes, which prompted us to generate GD3-reactive chimeric antigen receptor (CAR) Tregs to treat vitiligo. Mice received either untransduced Tregs or GD3-specific Tregs to test the hypothesis that antigen specificity contributes to reduced autoimmune reactivity in vitro and in vivo. CAR Tregs displayed increased IL-10 secretion in response to antigen, provided superior control of cytotoxicity towards melanocytes, and supported a significant delay in depigmentation compared to untransduced Tregs and vehicle control recipients in a TCR transgenic mouse model of spontaneous vitiligo. The latter findings were associated with a greater abundance of Tregs and melanocytes in treated mice versus both control groups. Our data support the concept that antigen-specific Tregs can be prepared, used, and stored for long-term control of progressive depigmentation.
Collapse
Affiliation(s)
- Zhussipbek Mukhatayev
- Department of Dermatology, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States.,Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan.,Laboratory of Molecular immunology and Immunobiotechnology, M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Emilia R Dellacecca
- Department of Dermatology, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States
| | - Cormac Cosgrove
- Department of Dermatology, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States
| | - Rohan Shivde
- Department of Dermatology, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States
| | - Dinesh Jaishankar
- Department of Dermatology, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States
| | | | - Jonathan M Eby
- Oncology Research Institute, Loyola University, Maywood, IL, United States
| | - Steven W Henning
- Oncology Research Institute, Loyola University, Maywood, IL, United States
| | - Yekaterina O Ostapchuk
- Laboratory of Molecular immunology and Immunobiotechnology, M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Kettil Cedercreutz
- Department of Dermatology, Northwestern University, Chicago, IL, United States
| | - Alpamys Issanov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Andreas Overbeck
- Department for Surgery of Pigment Disorders, Lumiderm, Madrid, Spain
| | - Richard P Junghans
- Department of Hematology/Oncology, Boston University, Boston MA, United States
| | - Joseph R Leventhal
- Comprehensive Transplant Center, Northwestern Memorial Hospital, Chicago, IL, United States
| | - I Caroline Le Poole
- Department of Dermatology, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States
| |
Collapse
|
7
|
Jain S, Kumar S. Cancer immunotherapy: dawn of the death of cancer? Int Rev Immunol 2020; 39:1-18. [PMID: 32530336 DOI: 10.1080/08830185.2020.1775827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 02/08/2023]
Abstract
Cancer is one of the proficient evaders of the immune system which claims millions of lives every year. Developing therapeutics against cancer is extremely challenging as cancer involves aberrations in self, most of which are not detected by the immune system. Conventional therapeutics like chemotherapy, radiotherapy are not only toxic but they significantly lower the quality of life. Immunotherapy, which gained momentum in the 20th century, is emerging as one of the alternatives to the conventional therapies and is relatively less harmful but more costly. This review explores the modern advances in an array of such therapies and try to compare them along with a limited analysis of concerns associated with them.
Collapse
Affiliation(s)
- Sidhant Jain
- Department of Zoology, University of Delhi, Delhi, India
| | - Sahil Kumar
- Department of Pharmacology, Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, India
| |
Collapse
|
8
|
Immunotherapy for Lymphangioleiomyomatosis and Tuberous Sclerosis: Progress and Future Directions. Chest 2019; 156:1062-1067. [PMID: 31437431 DOI: 10.1016/j.chest.2019.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/24/2019] [Accepted: 08/04/2019] [Indexed: 01/19/2023] Open
Abstract
Pulmonary lymphangioleiomyomatosis (LAM) is a rare genetic multisystem disease characterized by the nodular proliferation of smooth muscle-like LAM cells, progressive cystic changes of the lung, lymphatic abnormalities, and renal angiomyolipomas (AMLs). LAM can arise sporadically or in women with the autosomal dominant disorder, tuberous sclerosis complex (TSC), in which hamartomatous tumors of brain, heart, skin, kidney, and lung are found. LAM and TSC are caused by mutations in the TSC1 or TSC2 tumor suppressor genes leading to elevated mechanistic/mammalian target of rapamycin complex activity. Recent data indicate that T cells within LAM nodules and renal AMLs exhibit features of T-cell exhaustion, with coinhibitory receptor programmed cell death protein 1 (PD-1) expression on tumor-infiltrating T cells. Treatment of animal models of TSC and LAM with anti-PD-1 antibodies or with the combination of anti-PD-1 and anti-CTLA4 antibodies has led to remarkable results, suppressing TSC2-null tumor growth and inducing tumor rejection. Here we review our current knowledge about the potential for immunotherapy for the treatment of LAM and TSC and highlight critical unknowns and key next steps.
Collapse
|
9
|
Shenoy GN, Loyall J, Berenson CS, Kelleher RJ, Iyer V, Balu-Iyer SV, Odunsi K, Bankert RB. Sialic Acid-Dependent Inhibition of T Cells by Exosomal Ganglioside GD3 in Ovarian Tumor Microenvironments. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:3750-3758. [PMID: 30446565 PMCID: PMC6289713 DOI: 10.4049/jimmunol.1801041] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/15/2018] [Indexed: 01/07/2023]
Abstract
The tumor microenvironment is rendered immunosuppressive by a variety of cellular and acellular factors that represent potential cancer therapeutic targets. Although exosomes isolated from ovarian tumor ascites fluids have been previously reported to induce a rapid and reversible T cell arrest, the factors present on or within exosomes that contribute to immunosuppression have not been fully defined. In this study, we establish that GD3, a ganglioside expressed on the surface of exosomes isolated from human ovarian tumor ascites fluids, is causally linked to the functional arrest of T cells activated through their TCR. This arrest is inhibited by Ab blockade of exosomal GD3 or by the removal of GD3+ exosomes. Empty liposomes expressing GD3 on the surface also inhibit the activation of T cells, establishing that GD3 contributes to the functional arrest of T cells independent of factors present in exosomes. Finally, we demonstrate that the GD3-mediated arrest of the TCR activation is dependent upon sialic acid groups, because their enzymatic removal from exosomes or liposomes results in a loss of inhibitory capacity. Collectively, these data define GD3 as a potential immunotherapeutic target.
Collapse
Affiliation(s)
- Gautam N. Shenoy
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Jenni Loyall
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Charles S. Berenson
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, Infectious Disease Division, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, and Department of Veteran Affairs, Western New York Health Care System, Buffalo, New York
| | - Raymond J. Kelleher
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Vandana Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York
| | - Sathy V. Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York
| | - Richard B. Bankert
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
10
|
Pietrobon A, Delaney SP, Stanford WL. Could Immunotherapy Sink Its Teeth into Lymphangioleiomyomatosis? Am J Respir Cell Mol Biol 2018; 59:663-665. [DOI: 10.1165/rcmb.2018-0251ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Adam Pietrobon
- Regenerative Medicine ProgramOttawa Hospital Research InstituteOttawa, Ontario, Canada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawa, Ontario, Canada
- Ottawa Institute of Systems BiologyOttawa, Ontario, Canada
| | - Sean P. Delaney
- Regenerative Medicine ProgramOttawa Hospital Research InstituteOttawa, Ontario, Canada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawa, Ontario, Canada
- Ottawa Institute of Systems BiologyOttawa, Ontario, Canada
| | - William L. Stanford
- Regenerative Medicine ProgramOttawa Hospital Research InstituteOttawa, Ontario, Canada
- Ottawa Institute of Systems BiologyOttawa, Ontario, Canada
- Department of Cellular and Molecular Medicineand
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawa, Ontario, Canada
| |
Collapse
|
11
|
Adoptive cellular therapies: the current landscape. Virchows Arch 2018; 474:449-461. [PMID: 30470934 PMCID: PMC6447513 DOI: 10.1007/s00428-018-2484-0] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022]
Abstract
For many cancer types, the immune system plays an essential role in their development and growth. Based on these rather novel insights, immunotherapeutic strategies have been developed. In the past decade, immune checkpoint blockade has demonstrated a major breakthrough in cancer treatment and has currently been approved for the treatment of multiple tumor types. Adoptive cell therapy (ACT) with tumor-infiltrating lymphocytes (TIL) or gene-modified T cells expressing novel T cell receptors (TCR) or chimeric antigen receptors (CAR) is another strategy to modify the immune system to recognize tumor cells and thus carry out an anti-tumor effector function. These treatments have shown promising results in various tumor types, and multiple clinical trials are being conducted worldwide to further optimize this treatment modality. Most successful results were obtained in hematological malignancies with the use of CD19-directed CAR T cell therapy and already led to the commercial approval by the FDA. This review provides an overview of the developments in ACT, the associated toxicity, and the future potential of ACT in cancer treatment.
Collapse
|
12
|
Rossig C, Kailayangiri S, Jamitzky S, Altvater B. Carbohydrate Targets for CAR T Cells in Solid Childhood Cancers. Front Oncol 2018; 8:513. [PMID: 30483473 PMCID: PMC6240699 DOI: 10.3389/fonc.2018.00513] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/22/2018] [Indexed: 12/23/2022] Open
Abstract
Application of the CAR targeting strategy in solid tumors is challenged by the need for adequate target antigens. As a consequence of their tissue origin, embryonal cancers can aberrantly express membrane-anchored gangliosides. These are carbohydrate molecules consisting of a glycosphingolipid linked to sialic acids residues. The best-known example is the abundant expression of ganglioside GD2 on the cell surface of neuroblastomas which derive from GD2-positive neuroectoderm. Gangliosides are involved in various cellular functions, including signal transduction, cell proliferation, differentiation, adhesion and cell death. In addition, transformation of human cells to cancer cells can be associated with distinct glycosylation profiles which provide advantages for tumor growth and dissemination and can serve as immune targets. Both gangliosides and aberrant glycosylation of proteins escape the direct molecular and proteomic screening strategies currently applied to identify further immune targets in cancers. Due to their highly restricted expression and their functional roles in the malignant behavior, they are attractive targets for immune engineering strategies. GD2-redirected CAR T cells have shown activity in clinical phase I/II trials in neuroblastoma and next-generation studies are ongoing. Further carbohydrate targets for CAR T cells in preclinical development are O-acetyl-GD2, NeuGc-GM3 (N-glycolyl GM3), GD3, SSEA-4, and oncofetal glycosylation variants. This review summarizes knowledge on the role and function of some membrane-expressed non-protein antigens, including gangliosides and abnormal protein glycosylation patterns, and discusses their potential to serve as a CAR targets in pediatric solid cancers.
Collapse
Affiliation(s)
- Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Muenster, Muenster, Germany
| | - Sareetha Kailayangiri
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Silke Jamitzky
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| |
Collapse
|
13
|
Dalal AR, Homsy S, Balkhi MY. Third-Generation Human Epidermal Growth Factor Receptor 2 Chimeric Antigen Receptor Expression on Human T Cells Improves with Two-Signal Activation. Hum Gene Ther 2018; 29:845-852. [PMID: 29373929 DOI: 10.1089/hum.2017.244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Patient derived T cells activated ex vivo with CD3/CD28 beads show superior expansion. Therefore, CD3/CD28 beads have huge potential to be used in the clinic for immunotherapy applications. Two protocols were devised to evaluate if the expression of third-generation human epidermal growth factor receptor 2 chimeric antigen receptor (CAR) can be improved on human T cells activated with CD3/CD28 beads. In protocol 1, unconcentrated human epidermal growth factor receptor 2 CAR retroviral supernatants were used, and in protocol 2, concentrated virus was used. The results demonstrate that compared to unconcentrated viral supernatants, transduction with the concentrated virus improved the infection rate of bead activated CD4 T cells from ∼40% to ∼70%, and the fluorescent intensity values improved from ∼12,000 to ∼28,000 mean fluorescence intensity units. These results demonstrate the utility of these protocols for CAR immunotherapies.
Collapse
Affiliation(s)
- Al-Rubaye Dalal
- Division of Hematology/Oncology, Tufts University School of Medicine, Boston, Massachusetts.,Division of Biomedical Engineering, Boston University, Boston, Massachusetts.,Biotechnology Department, College of Science, University of Baghdad, Baghdad, Iraq
| | - Sylvester Homsy
- Division of Hematology/Oncology, Tufts University School of Medicine, Boston, Massachusetts
| | - Mumtaz Y Balkhi
- Division of Hematology/Oncology, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
14
|
Current status and perspectives of chimeric antigen receptor modified T cells for cancer treatment. Protein Cell 2017; 8:896-925. [PMID: 28466386 PMCID: PMC5712290 DOI: 10.1007/s13238-017-0400-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/15/2017] [Indexed: 12/21/2022] Open
Abstract
Chimeric antigen receptor (CAR) is a recombinant immunoreceptor combining an antibody-derived targeting fragment with signaling domains capable of activating cells, which endows T cells with the ability to recognize tumor-associated surface antigens independent of the expression of major histocompatibility complex (MHC) molecules. Recent early-phase clinical trials of CAR-modified T (CAR-T) cells for relapsed or refractory B cell malignancies have demonstrated promising results (that is, anti-CD19 CAR-T in B cell acute lymphoblastic leukemia (B-ALL)). Given this success, broadening the clinical experience of CAR-T cell therapy beyond hematological malignancies has been actively investigated. Here we discuss the basic design of CAR and review the clinical results from the studies of CAR-T cells in B cell leukemia and lymphoma, and several solid tumors. We additionally discuss the major challenges in the further development and strategies for increasing anti-tumor activity and safety, as well as for successful commercial translation.
Collapse
|
15
|
Allogeneic Antigen Composition for Preparing Universal Cancer Vaccines. J Immunol Res 2016; 2016:5031529. [PMID: 27781211 PMCID: PMC5066006 DOI: 10.1155/2016/5031529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/08/2016] [Accepted: 08/28/2016] [Indexed: 01/05/2023] Open
Abstract
Recently it was demonstrated that tumors induce specific changes to the surface of human endothelial cells thereby providing the basis for designing endothelial cell-based vaccines that directly target antigens expressed by the tumor endothelium. The present report extends these studies in vitro by investigating the efficacy of allogeneic antigens with regard to their ability to target immune responses against the tumor vasculature since alloantigens simplify vaccine development and implementation in clinical practice. We demonstrated that allogeneic SANTAVAC (Set of All Natural Target Antigens for Vaccination Against Cancer), which presents a specifically prepared composition of cell surface antigens from tumor-stimulated endothelial cells, allows targeting of the tumor vasculature with efficacy of 17, where efficacy represents the killing rate of target cells before normal cells are adversely affected, and efficacy of 60, where efficacy represents the fold decrease in the number of target cells and directly relates to tumor growth arrest. These data suggest that allogeneic SANTAVAC may be considered an antigenic composition that following administration in the presence of respective adjuvants may be clinically tested as a therapeutic or prophylactic universal cancer vaccine without adverse side effects to the normal vasculature.
Collapse
|
16
|
CAR T Cell Therapy: A Game Changer in Cancer Treatment. J Immunol Res 2016; 2016:5474602. [PMID: 27298832 PMCID: PMC4889848 DOI: 10.1155/2016/5474602] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/28/2016] [Accepted: 05/04/2016] [Indexed: 01/13/2023] Open
Abstract
The development of novel targeted therapies with acceptable safety profiles is critical to successful cancer outcomes with better survival rates. Immunotherapy offers promising opportunities with the potential to induce sustained remissions in patients with refractory disease. Recent dramatic clinical responses in trials with gene modified T cells expressing chimeric antigen receptors (CARs) in B-cell malignancies have generated great enthusiasm. This therapy might pave the way for a potential paradigm shift in the way we treat refractory or relapsed cancers. CARs are genetically engineered receptors that combine the specific binding domains from a tumor targeting antibody with T cell signaling domains to allow specifically targeted antibody redirected T cell activation. Despite current successes in hematological cancers, we are only in the beginning of exploring the powerful potential of CAR redirected T cells in the control and elimination of resistant, metastatic, or recurrent nonhematological cancers. This review discusses the application of the CAR T cell therapy, its challenges, and strategies for successful clinical and commercial translation.
Collapse
|
17
|
Spear TT, Nagato K, Nishimura MI. Strategies to genetically engineer T cells for cancer immunotherapy. Cancer Immunol Immunother 2016; 65:631-49. [PMID: 27138532 DOI: 10.1007/s00262-016-1842-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/25/2016] [Indexed: 12/15/2022]
Abstract
Immunotherapy is one of the most promising and innovative approaches to treat cancer, viral infections, and other immune-modulated diseases. Adoptive immunotherapy using gene-modified T cells is an exciting and rapidly evolving field. Exploiting knowledge of basic T cell biology and immune cell receptor function has fostered innovative approaches to modify immune cell function. Highly translatable clinical technologies have been developed to redirect T cell specificity by introducing designed receptors. The ability to engineer T cells to manifest desired phenotypes and functions is now a thrilling reality. In this review, we focus on outlining different varieties of genetically engineered T cells, their respective advantages and disadvantages as tools for immunotherapy, and their promise and drawbacks in the clinic.
Collapse
Affiliation(s)
- Timothy T Spear
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Loyola University Chicago, 2160 S. 1st Ave, Bldg 112, Room 308, Maywood, IL, 60153, USA.
| | - Kaoru Nagato
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Loyola University Chicago, 2160 S. 1st Ave, Bldg 112, Room 308, Maywood, IL, 60153, USA
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Michael I Nishimura
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Loyola University Chicago, 2160 S. 1st Ave, Bldg 112, Room 308, Maywood, IL, 60153, USA
| |
Collapse
|
18
|
T cell exhaustion and Interleukin 2 downregulation. Cytokine 2015; 71:339-47. [DOI: 10.1016/j.cyto.2014.11.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 01/30/2023]
|
19
|
Dotti G, Gottschalk S, Savoldo B, Brenner MK. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev 2014; 257:107-26. [PMID: 24329793 DOI: 10.1111/imr.12131] [Citation(s) in RCA: 379] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Investigators developed chimeric antigen receptors (CARs) for expression on T cells more than 25 years ago. When the CAR is derived from an antibody, the resultant cell should combine the desirable targeting features of an antibody (e.g. lack of requirement for major histocompatibility complex recognition, ability to recognize non-protein antigens) with the persistence, trafficking, and effector functions of a T cell. This article describes how the past two decades have seen a crescendo of research which has now begun to translate these potential benefits into effective treatments for patients with cancer. We describe the basic design of CARs, describe how antigenic targets are selected, and the initial clinical experience with CAR-T cells. Our review then describes our own and other investigators' work aimed at improving the function of CARs and reviews the clinical studies in hematological and solid malignancies that are beginning to exploit these approaches. Finally, we show the value of adding additional engineering features to CAR-T cells, irrespective of their target, to render them better suited to function in the tumor environment, and discuss how the safety of these heavily modified cells may be maintained.
Collapse
Affiliation(s)
- Gianpietro Dotti
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | | | | | | |
Collapse
|
20
|
Berois N, Osinaga E. Glycobiology of neuroblastoma: impact on tumor behavior, prognosis, and therapeutic strategies. Front Oncol 2014; 4:114. [PMID: 24904828 PMCID: PMC4033258 DOI: 10.3389/fonc.2014.00114] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/02/2014] [Indexed: 01/28/2023] Open
Abstract
Neuroblastoma (NB), accounting for 10% of childhood cancers, exhibits aberrant cell-surface glycosylation patterns. There is evidence that changes in glycolipids and protein glycosylation pathways are associated to NB biological behavior. Polysialic acid (PSA) interferes with cellular adhesion, and correlates with NB progression and poor prognosis, as well as the expression of sialyltransferase STX, the key enzyme responsible for PSA synthesis. Galectin-1 and gangliosides, overexpressed and actively shedded by tumor cells, can modulate normal cells present in the tumor microenvironment, favoring angiogenesis and immunological escape. Different glycosyltransferases are emerging as tumor markers and potential molecular targets. Immunotherapy targeting disialoganglioside GD2 rises as an important treatment option. One anti-GD2 antibody (ch14.18), combined with IL-2 and GM-CSF, significantly improves survival for high-risk NB patients. This review summarizes our current knowledge on NB glycobiology, highlighting the molecular basis by which carbohydrates and protein–carbohydrate interactions impact on biological behavior and patient clinical outcome.
Collapse
Affiliation(s)
- Nora Berois
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo , Montevideo , Uruguay
| | - Eduardo Osinaga
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo , Montevideo , Uruguay ; Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República , Montevideo , Uruguay
| |
Collapse
|
21
|
Möller MG, Salwa S, Soden DM, O’Sullivan GC. Electrochemotherapy as an adjunct or alternative to other treatments for unresectable or in-transit melanoma. Expert Rev Anticancer Ther 2014; 9:1611-30. [DOI: 10.1586/era.09.129] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Engineered T cells for cancer treatment. Cytotherapy 2013; 16:713-33. [PMID: 24239105 DOI: 10.1016/j.jcyt.2013.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/01/2013] [Accepted: 10/05/2013] [Indexed: 01/08/2023]
Abstract
Adoptively transferred T cells have the capacity to traffic to distant tumor sites, infiltrate fibrotic tissue and kill antigen-expressing tumor cells. Various groups have investigated different genetic engineering strategies designed to enhance tumor specificity, increase T cell potency, improve proliferation, persistence or migratory capacity and increase safety. This review focuses on recent developments in T cell engineering, discusses the clinical application of these engineered cell products and outlines future prospects for this therapeutic modality.
Collapse
|
23
|
Lokhov PG, Balashova EE. Tumor-induced endothelial cell surface heterogeneity directly affects endothelial cell escape from a cell-mediated immune response in vitro. Hum Vaccin Immunother 2013; 9:198-209. [PMID: 23442592 PMCID: PMC3667939 DOI: 10.4161/hv.22828] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Immune-mediated damage to tumor vessels is a potential means of preventing solid tumor progression. Antiangiogenic cancer vaccines capable of inducing this kind of damage include formulations comprised of endothelial cell-specific antigens. Identification of antigens capable of eliciting efficient vaccination is difficult because the endothelial cell phenotype is affected by surrounding tissues, including angiogenic stimuli received from surrounding tumor cells. Therefore, phenotype endothelial cell variations (heterogeneity) were examined in the context of the development of an efficient vaccine using mass spectrometry-based cell surface profiling. This approach was applied to primary human microvascular endothelial cell (HMEC) cultures proliferated under growth stimuli provided by either normal tissues (growth supplement from human hypothalamus) or cancer cells (MCF-7, LNCap and HepG2). It was found that tumors induced pronounced, tumor type-dependent changes to HMEC surface targets that in an in vitro model of human antiangiogenic vaccination directly facilitated HMEC escape from cytotoxic T cell-mediated cell death. Furthermore, it was found that tumors influenced the HMEC phenotype unidirectionally and that HMEC imunogenicity was reciprocal to the intensity of tumor-induced changes to the HMEC surface. These findings provide data for the design of tumor-specific endothelial cell based vaccines with sufficient immunogenicity without posing a risk to the elicitation of autoimmunity if administered in vivo.
Collapse
Affiliation(s)
- Petr G Lokhov
- Institute of Biomedical Chemistry, RAMS, Moscow, Russia.
| | | |
Collapse
|
24
|
Abstract
Adoptive transfer of antigen-specific T cells has been adapted by investigators for treatment of chronic lymphocytic leukemia (CLL). To overcome issues of immune tolerance which limits the endogenous adaptive immune response to tumor-associated antigens (TAAs), robust systems for the genetic modification and characterization of T cells expressing chimeric antigen receptors (CARs) to redirect specificity have been produced. Refinements with regards to persistence and trafficking of the genetically modified T cells are underway to help improve potency. Clinical trials utilizing this technology demonstrate feasibility, and increasingly, these early-phase trials are demonstrating impressive anti-tumor effects, particularly for CLL patients, paving the way for multi-center trials to establish the efficacy of CAR(+) T cell therapy.
Collapse
|
25
|
Maher J. Immunotherapy of malignant disease using chimeric antigen receptor engrafted T cells. ISRN ONCOLOGY 2012; 2012:278093. [PMID: 23304553 PMCID: PMC3523553 DOI: 10.5402/2012/278093] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 11/14/2012] [Indexed: 12/11/2022]
Abstract
Chimeric antigen receptor- (CAR-) based immunotherapy has been under development for almost 25 years, over which period it has progressed from a new but cumbersome technology to an emerging therapeutic modality for malignant disease. The approach involves the genetic engineering of fusion receptors (CARs) that couple the HLA-independent binding of cell surface target molecules to the delivery of a tailored activating signal to host immune cells. Engineered CARs are delivered most commonly to peripheral blood T cells using a range of vector systems, most commonly integrating viral vectors. Preclinical refinement of this approach has proceeded over several years to the point that clinical testing is now being undertaken at several centres, using increasingly sophisticated and therapeutically successful genetic payloads. This paper considers several aspects of the pre-clinical and clinical development of CAR-based immunotherapy and how this technology is acquiring an increasing niche in the treatment of both solid and haematological malignancies.
Collapse
Affiliation(s)
- John Maher
- CAR Mechanics Group, Department of Research Oncology, King's Health Partners Integrated Cancer Centre, King's College London, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK
- Department of Immunology, Barnet and Chase Farm Hospitals NHS Trust, Barnet, Hertfordshire EN5 3DJ, UK
- Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| |
Collapse
|
26
|
Aspord C, Leccia MT, Salameire D, Laurin D, Chaperot L, Charles J, Plumas J. HLA-A*0201 + Plasmacytoid Dendritic Cells Provide a Cell-Based Immunotherapy for Melanoma Patients. J Invest Dermatol 2012; 132:2395-2406. [DOI: 10.1038/jid.2012.152] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Gao J, Bernatchez C, Sharma P, Radvanyi LG, Hwu P. Advances in the development of cancer immunotherapies. Trends Immunol 2012; 34:90-8. [PMID: 23031830 DOI: 10.1016/j.it.2012.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 12/31/2022]
Abstract
Manipulating the immune system in order to induce clinically relevant responses against cancer is a longstanding goal. Interventions to enhance tumor-specific immunity through vaccination, sustaining effector T cell activation, or increasing the numbers of tumor-specific T cells using ex vivo expansion, have all resulted in clinical successes. Here, we examine recent clinical advances and major ongoing studies in the field of cancer immunotherapy. Single agents have so far benefited a limited proportion of patients, and future studies combining different types of immunotherapies and other therapeutic modalities, such as drugs against specific signaling pathways driving cancer cell growth, are needed to pave the way for the development of effective anticancer treatments causing durable responses.
Collapse
Affiliation(s)
- Jianjun Gao
- Center for Cancer Immunology Research, GU and Melanoma Medical Oncology Department, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
Carbohydrate signatures on tumor cells have functional implications in tumor growth and metastasis and constitute valuable tools in cancer diagnosis and immunotherapy. Increasing data regarding the mechanisms by which they are recognized by the immune system are facilitating the design of more efficient immunotherapeutic protocols based on cancer-associated glycan structures. Recent molecular and proteomic studies revealed that carbohydrates are recognized, not only by B cells and antibodies, but also by cells from the innate arm of immunity, as well as by T cells, and are able to induce specific T-cell immunity and cytotoxicity. In this review, we discuss and update the different strategies targeting tumor-associated carbohydrate antigens that are being evaluated for antitumor immunotherapy, an approach that will be highly relevant, especially when combined with other strategies, in the future fight against cancer.
Collapse
Affiliation(s)
- Teresa Freire
- UdelaR, Facultad de Medicina, Dept. Inmunobiología, Gral. Flores 2125, 11800, Montevideo, Uruguay
| | - Eduardo Osinaga
- UdelaR, Facultad de Medicina, Dept. Inmunobiología, Gral. Flores 2125, 11800, Montevideo, Uruguay
- Institut Pasteur Montevideo, Laboratorio de Glicobiología e Inmunología tumoral, Mataojo 2020, 11400, Montevideo, Uruguay
| |
Collapse
|
29
|
Kebriaei P, Kelly SS, Manuri P, Jena B, Jackson R, Shpall E, Champlin R, Cooper LJN. Chimeric antibody receptors (CARs): driving T-cell specificity to enhance anti-tumor immunity. Front Biosci (Schol Ed) 2012; 4:520-31. [PMID: 22202074 DOI: 10.2741/282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adoptive transfer of antigen-specific T cells is a compelling tool to treat cancer. To overcome issues of immune tolerance which limits the endogenous adaptive immune response to tumor-associated antigens, robust systems for the genetic modification and characterization of T cells expressing chimeric antigen receptors (CARs) to redirect specificity have been produced. Refinements with regards to persistence and trafficking of the genetically modified T cells are underway to help improve the potency of genetically modified T cells. Clinical trials utilizing this technology demonstrate feasibility, and increasingly, antitumor activity, paving the way for multi-center trials to establish the efficacy of this novel T-cell therapy.
Collapse
Affiliation(s)
- Partow Kebriaei
- Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Balashova EE, Dashtiev MI, Lokhov PG. Proteomic footprinting of drug-treated cancer cells as a measure of cellular vaccine efficacy for the prevention of cancer recurrence. Mol Cell Proteomics 2011; 11:M111.014480. [PMID: 22074704 PMCID: PMC3277770 DOI: 10.1074/mcp.m111.014480] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The comparative proteomic study of cell surfaces of native and drug-treated cancer cells was performed. To this end, cell proteomic footprinting, which reflects the mass spectrometry profiling of cell surface proteins, was applied to breast adenocarcinoma cells (MCF-7), which were untreated or treated with doxorubicin, tamoxifen, or etoposide. The footprints of drug-treated cells were compared with the footprints of untreated cells and the footprint of a randomly selected control cancer cell culture. It was found that drug-treated cells have reproducible, pronounced, and drug-specific changes in cell surface protein expression. Cytotoxicity assays, which are an in vitro model of human antitumor vaccination, revealed that the degree of these changes correlates directly with the ability of the cancer cells to escape cell death induced by a cytotoxic T-cell-mediated immune response. Moreover, cancer cells escape from the immune response was linearly approximated (R(2) equal to 0.99) with the degree by which their proteomic footprints diverged from the footprint of the targeted (native) cancer cells. From these findings, it was concluded that the design of anticancer vaccines intended to prevent cancer recurrence after primary treatment should consider the drug-specific changes in cancer cell-surface antigens. Such changes can be easily identified by cell proteomic footprinting, renewing hopes for development of efficient cellular cancer vaccines.
Collapse
Affiliation(s)
- Elena E Balashova
- Cardiology Research Center, 3rd Cherepkovskaya St. 15A, 121552, Moscow, Russia
| | | | | |
Collapse
|
31
|
Chicaybam L, Laino Sodré A, Bonamino M. Chimeric Antigen Receptors in Cancer Immuno-Gene Therapy: Current Status and Future Directions. Int Rev Immunol 2011; 30:294-311. [DOI: 10.3109/08830185.2011.595855] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Ramos CA, Dotti G. Chimeric antigen receptor (CAR)-engineered lymphocytes for cancer therapy. Expert Opin Biol Ther 2011; 11:855-73. [PMID: 21463133 DOI: 10.1517/14712598.2011.573476] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Chimeric antigen receptors (CARs) usually combine the antigen binding site of a monoclonal antibody with the signal activating machinery of a T cell, freeing antigen recognition from MHC restriction and thus breaking one of the barriers to more widespread application of cellular therapy. Similar to treatment strategies employing monoclonal antibodies, T cells expressing CARs are highly targeted, but additionally offer the potential benefits of active trafficking to tumor sites, in vivo expansion and long-term persistence. Furthermore, gene transfer allows the introduction of countermeasures to tumor immune evasion and of safety mechanisms. AREAS COVERED The basic structure of so-called first and later generation CARs and their potential advantages over other immune therapy systems. How these molecules can be grafted into immune cells (including retroviral and non-retroviral transduction methods) and strategies to improve the in vivo persistence and function of immune cells expressing CARs. Examples of tumor-associated antigens that have been targeted in preclinical models and clinical experience with these modified cells. Safety issues surrounding CAR gene transfer into T cells and potential solutions to them. EXPERT OPINION Because of recent advances in immunology, genetics and cell processing, CAR-modified T cells will likely play an increasing role in the cellular therapy of cancer, chronic infections and autoimmune disorders.
Collapse
Affiliation(s)
- Carlos A Ramos
- Center for Cell and Gene Therapy, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
33
|
Al-Khami AA, Mehrotra S, Nishimura MI. Adoptive immunotherapy of cancer: Gene transfer of T cell specificity. SELF NONSELF 2011; 2:80-84. [PMID: 22299059 DOI: 10.4161/self.2.2.15832] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 04/14/2011] [Indexed: 01/13/2023]
Abstract
Adoptive transfer of tumor-reactive T cells has emerged as a promising advance in tumor immunotherapy. Specifically, infusion of tumor-infiltrating lymphocytes has led to long-term objective clinical responses for patients with metastatic melanoma. Donor lymphocyte infusion is also an effective treatment of post-transplant lymphoproliferative disease. However, adoptive T cell therapy has restrictions in the isolation and expansion of antigen-specific lymphocytes for a large group of patients. One approach to circumvent this limitation and extend adoptive immunotherapy to other cancer types is the genetic modification of T cells with antigen-specific receptors. In this article, we review strategies to redirect T cell specificity, including T cell receptor gene transfer and antibody receptor gene transfer.
Collapse
Affiliation(s)
- Amir A Al-Khami
- Division of General Surgery; Department of Surgery; Medical University of South Carolina; Charleston, SC USA
| | | | | |
Collapse
|
34
|
Focus on adoptive T cell transfer trials in melanoma. Clin Dev Immunol 2010; 2010:260267. [PMID: 21234353 PMCID: PMC3018069 DOI: 10.1155/2010/260267] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/08/2010] [Indexed: 11/17/2022]
Abstract
Adoptive Cell Transfer (ACT) of Tumor-Infiltrating Lymphocytes (TIL) in combination with lymphodepletion has proven to be an effective treatment for metastatic melanoma patients, with an objective response rate in 50%–70% of the patients. It is based on the ex vivo expansion and activation of tumor-specific T lymphocytes extracted from the tumor and their administration back to the patient. Various TIL-ACT trials, which differ in their TIL generation procedures and patient preconditioning, have been reported. In the latest clinical studies, genetically engineered peripheral T cells were utilized instead of TIL. Further improvement of adoptive T cell transfer depends on new investigations which seek higher TIL quality, increased durable response rates, and aim to treat more patients. Simplifying this therapy may encourage cancer centers worldwide to adopt this promising technology. This paper focuses on the latest progress regarding adoptive T cell transfer, comparing the currently available protocols and discussing their advantages, disadvantages, and implication in the future.
Collapse
|
35
|
Davies DM, Maher J. Adoptive T-cell immunotherapy of cancer using chimeric antigen receptor-grafted T cells. Arch Immunol Ther Exp (Warsz) 2010; 58:165-78. [PMID: 20373147 DOI: 10.1007/s00005-010-0074-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 10/27/2009] [Indexed: 12/25/2022]
Abstract
Harnessing the power of the immune system to target cancer has long been a goal of tumor immunologists. One avenue under investigation is the modification of T cells to express a chimeric antigen receptor (CAR). Expression of such a receptor enables T-cell specificity to be redirected against a chosen tumor antigen. Substantial research in this field has been carried out, incorporating a wide variety of malignancies and tumor-associated antigens. Ongoing investigations will ensure this area continues to expand at a rapid pace. This review will explain the evolution of CAR technology over the last two decades in addition to detailing the associated benefits and disadvantages. The outcome of recent phase I clinical trials and the impact that these have had upon the direction of future research in this field will also be addressed.
Collapse
Affiliation(s)
- David Marc Davies
- King's College London School of Medicine, Research Oncology Section, Division of Cancer Studies, Third Floor Bermondsey Wing, Guy's Hospital Campus, St Thomas Street, London SE1 9RT, UK
| | | |
Collapse
|
36
|
Lo ASY, Ma Q, Liu DL, Junghans RP. Anti-GD3 chimeric sFv-CD28/T-cell receptor zeta designer T cells for treatment of metastatic melanoma and other neuroectodermal tumors. Clin Cancer Res 2010; 16:2769-80. [PMID: 20460472 DOI: 10.1158/1078-0432.ccr-10-0043] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The aims of this study are to compare antitumor activities of two generations of GD3-specific chimeric antigen receptors (CAR) in human primary T lymphocytes in vitro and to evaluate the antitumor efficacy of using a combination of systemic infusion of interleukin-2 (IL2) and designer T cells to eradicate subcutaneous established GD3+ melanoma in nude mice. EXPERIMENTAL DESIGN Antitumor activities were compared for two generations of designer T cells, the progenitor first-generation with immunoglobulin T-cell receptor (TCR) with Signal 1 and the second-generation designer T cells with Signal 1+2. Osmotic IL2 pumps were used to deliver the maximum tolerated dose of IL2 to enhance the antitumor effects of designer T cells on subcutaneous established melanoma in nude mice. RESULTS Melanoma is associated with high expression of ganglioside GD3, which has been targeted with modest effect in antibody therapies. We previously showed that an anti-GD3 CAR (sFv-TCRzeta) will recruit T cells to target this non-T-dependent antigen, with potent killing of melanoma cells. Here, we report the addition of a CD28 costimulation domain to create a second-generation CAR, called Tandem for two signals. We show that this Tandem sFv-CD28/TCRzeta receptor on T cells confers advantages of improved cytokine secretion, cytotoxicity, proliferation, and clonal expansion on tumor contact versus the same CAR without costimulation. In an adoptive transfer model using established melanoma tumors, designer T cells with CD28 showed a 50% rate of complete remissions but only where IL2 was supplemented. CONCLUSIONS As a reagent for clinical development, the second-generation product is shown to have superior properties to warrant its preference for clinical designer T-cell immunotherapy for melanoma and other tumors. Systemic IL2 was required for optimal activity in an established tumor model.
Collapse
Affiliation(s)
- Agnes S Y Lo
- Division of Surgical Research, Department of Surgery, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island 02908, USA
| | | | | | | |
Collapse
|
37
|
Redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor. Blood 2010; 116:1035-44. [PMID: 20439624 DOI: 10.1182/blood-2010-01-043737] [Citation(s) in RCA: 229] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Infusions of antigen-specific T cells have yielded therapeutic responses in patients with pathogens and tumors. To broaden the clinical application of adoptive immunotherapy against malignancies, investigators have developed robust systems for the genetic modification and characterization of T cells expressing introduced chimeric antigen receptors (CARs) to redirect specificity. Human trials are under way in patients with aggressive malignancies to test the hypothesis that manipulating the recipient and reprogramming T cells before adoptive transfer may improve their therapeutic effect. These examples of personalized medicine infuse T cells designed to meet patients' needs by redirecting their specificity to target molecular determinants on the underlying malignancy. The generation of clinical grade CAR(+) T cells is an example of bench-to-bedside translational science that has been accomplished using investigator-initiated trials operating largely without industry support. The next-generation trials will deliver designer T cells with improved homing, CAR-mediated signaling, and replicative potential, as investigators move from the bedside to the bench and back again.
Collapse
|
38
|
Abstract
Adoptive transfer of T cells with restricted tumor specificity provides a promising approach to immunotherapy of cancers. However, the isolation of autologous cytotoxic T cells that recognize tumor-associated antigens is time consuming and fails in many instances. Alternatively, gene modification with tumor antigen-specific T-cell receptors (TCR) or chimeric antigen receptors (CARs) can be used to redirect the specificity of large numbers of immune cells toward the malignant cells. Chimeric antigen receptors are composed of the single-chain variable fragment (scFv) of a tumor-recognizing antibody cloned in frame with human T-cell signaling domains (e.g., CD3zeta, CD28, OX40, 4-1BB), thus combining the specificity of antibodies with the effector functions of cytotoxic T cells. Upon antigen binding, the intracellular signaling domains of the CAR initiate cellular activation mechanisms including cytokine secretion and cytolysis of the antigen-positive target cell.In this chapter, we provide detailed protocols for large-scale ex vivo expansion of T cells and manufacturing of medium-scale batches of CAR-expressing T cells for translational research by mRNA electroporation. An anti-CD19 chimeric receptor for the targeting of leukemias and lymphomas was used as a model system. We are currently scaling up the protocols to adapt them to cGMP production of a large number of redirected T cells for clinical applications.
Collapse
Affiliation(s)
- Hilde Almåsbak
- Department of Immunology, Radiumhospitalet-Rikshospitalet, University Hospital, Oslo, Norway
| | | | | |
Collapse
|
39
|
Berry LJ, Moeller M, Darcy PK. Adoptive immunotherapy for cancer: the next generation of gene-engineered immune cells. ACTA ACUST UNITED AC 2009; 74:277-89. [PMID: 19775368 DOI: 10.1111/j.1399-0039.2009.01336.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adoptive cellular immunotherapy involving transfer of tumor-reactive T cells has shown some notable antitumor responses in a minority of cancer patients. In particular, transfer of tumor-infiltrating lymphocytes has resulted in long-term objective responses in patients with advanced melanoma. However, the inability to isolate sufficient numbers of tumor-specific T cells from most malignancies has restricted the broad utility of this approach. An emerging approach to circumvent this limitation involves the genetic modification of effector cells with T cell receptor (TCR) transgenes or chimeric single-chain variable fragment (scFv) receptors that can specifically redirect T cells to tumor. There has been much progress in the design of TCR and scFv receptors to enhance the antigen-specific activation of effector cells and their trafficking and persistence in vivo. Considerable effort has been directed toward improving the safety of this approach and reducing the immunogenicity of the receptor. This review discusses the latest developments in the field of adoptive immunotherapy using genetically modified immune cells that have been transduced with either TCR or scFv receptor transgenes and used in preclinical and clinical settings as anticancer agents.
Collapse
Affiliation(s)
- L J Berry
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Victoria, Australia
| | | | | |
Collapse
|
40
|
Abstract
Adoptive T cell therapies can produce objective clinical responses in patients with hematologic and solid malignancies. Genetic manipulation of T lymphocytes has been proposed as a means of increasing the potency and range of this anti-tumor activity. We now review how coupling expression of transgenic receptors with countermeasures against potent tumor immune evasion strategies is proving highly effective in pre-clinical models and describe how these approaches are being evaluated in human subjects.
Collapse
Affiliation(s)
- Juan F. Vera
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children’s Hospital, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, The Methodist Hospital and Texas Children’s Hospital, Houston, TX, 77030, USA
| | - Malcolm K. Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children’s Hospital, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, The Methodist Hospital and Texas Children’s Hospital, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, The Methodist Hospital and Texas Children’s Hospital, Houston, TX, 77030, USA
| | - Gianpietro Dotti
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children’s Hospital, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, The Methodist Hospital and Texas Children’s Hospital, Houston, TX, 77030, USA
- Department of Immunology, Baylor College of Medicine, The Methodist Hospital and Texas Children’s Hospital, Houston, TX, 77030, USA
| |
Collapse
|
41
|
Yvon E, Del Vecchio M, Savoldo B, Hoyos V, Dutour A, Anichini A, Dotti G, Brenner MK. Immunotherapy of metastatic melanoma using genetically engineered GD2-specific T cells. Clin Cancer Res 2009; 15:5852-60. [PMID: 19737958 DOI: 10.1158/1078-0432.ccr-08-3163] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Genetic engineering of human T lymphocytes to express tumor-directed chimeric antigen receptors (CAR) can produce antitumor effector cells that bypass tumor immune escape mechanisms that are due to abnormalities in protein-antigen processing and presentation. Moreover, these transgenic receptors can be directed to tumor-associated antigens that are not protein-derived, such as the ganglioside GD2, which is expressed in a high proportion of melanoma cells. EXPERIMENTAL DESIGN We generated chimeric T cells specific for the ganglioside GD2 by joining an extracellular antigen-binding domain derived from the GD2-specific antibody sc14.G2a to cytoplasmic signaling domains derived from the T-cell receptor zeta-chain, with the endodomains of the costimulatory molecules CD28 and OX40. We expressed this CAR in human T cells and assessed the targeting of GD2-positive melanoma tumors in vitro and in a murine xenograft. RESULTS Upon coincubation with GD2-expressing melanoma cells, CAR-GD2 T lymphocytes incorporating the CD28 and OX40 endodomains secreted significant levels of cytokines in a pattern comparable with the cytokine response obtained by engagement of the native CD3 receptor. These CAR-T cells had antimelanoma activity in vitro and in our xenograft model, increasing the survival of tumor-bearing animals. CONCLUSION Redirecting human T lymphocytes to the tumor-associated ganglioside GD2 generates effector cells with antimelanoma activity that should be testable in subjects with disease.
Collapse
Affiliation(s)
- Eric Yvon
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
The Lewis-Y carbohydrate antigen is expressed by many human tumors and can serve as a target for genetically redirected T cells despite the presence of soluble antigen in serum. J Immunother 2009; 32:292-301. [PMID: 19242371 DOI: 10.1097/cji.0b013e31819b7c8e] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this study we aimed to determine the suitability of the Lewis-Y carbohydrate antigen as a target for immunotherapy using genetically redirected T cells. Using the 3S193 monoclonal antibody and immunohistochemistry, Lewis-Y was found to be expressed on a range of tumors including 42% squamous cell lung carcinoma, 80% lung adenocarcinoma, 25% ovarian carcinoma, and 25% colorectal adenocarcinoma. Expression levels varied from low to intense on between 1% and 90% of tumor cells. Lewis- was also found in soluble form in sera from both normal donors and cancer patients using a newly developed enzyme-linked immunosorbent assay. Serum levels in patients was often less than 1 ng/mL, similar to normal donors, but approximately 30% of patients had soluble Lewis-Y levels exceeding 1 ng/mL and up to 9 ng/mL. Lewis-Y-specific human T cells were generated by genetic modification with a chimeric receptor encoding a single-chain humanized antibody linked to the T-cell signaling molecules, T-cell receptor-zeta, and CD28. T cells responded against the Lewis-Y antigen by cytokine secretion and cytolysis in response to tumor cells. Importantly, the T-cell response was not inhibited by patient serum containing soluble Lewis-Y. This study demonstrates that Lewis-Y is expressed on a large number of tumors and Lewis-Y-specific T cells can retain antitumor function in the presence of patient serum, indicating that this antigen is a suitable target for this form of therapy.
Collapse
|
43
|
Sadelain M, Brentjens R, Rivière I. The promise and potential pitfalls of chimeric antigen receptors. Curr Opin Immunol 2009; 21:215-23. [PMID: 19327974 DOI: 10.1016/j.coi.2009.02.009] [Citation(s) in RCA: 370] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 02/25/2009] [Indexed: 12/26/2022]
Abstract
One important purpose of T cell engineering is to generate tumor-targeted T cells through the genetic transfer of antigen-specific receptors, which consist of either physiological, MHC-restricted T cell receptors (TCRs) or non MHC-restricted chimeric antigen receptors (CARs). CARs combine antigen-specificity and T cell activating properties in a single fusion molecule. First generation CARs, which included as their signaling domain the cytoplasmic region of the CD3zeta or Fc receptor gamma chain, effectively redirected T cell cytotoxicity but failed to enable T cell proliferation and survival upon repeated antigen exposure. Receptors encompassing both CD28 and CD3zeta are the prototypes for second generation CARs, which are now rapidly expanding to a diverse array of receptors with different functional properties. First generation CARs have been tested in phase I clinical studies in patients with ovarian cancer, renal cancer, lymphoma, and neuroblastoma, where they have induced modest responses. Second generation CARs, which are just now entering the clinical arena in the B cell malignancies and other cancers, will provide a more significant test for this approach. If the immunogenicity of CARs can be averted, the versatility of their design and HLA-independent antigen recognition will make CARs tools of choice for T cell engineering for the development of targeted cancer immunotherapies.
Collapse
Affiliation(s)
- Michel Sadelain
- Center for Cell Engineering, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | | | |
Collapse
|
44
|
Emtage PCR, Lo ASY, Liu DL, Gomes EM, Gonzalo-Daganzo R, Junghans RP. Second-generation anti-carcinoembryonic antigen designer T cells resist activation-induced cell death, proliferate on tumor contact, secrete cytokines, and exhibit superior antitumor activity in vivo: a preclinical evaluation. Clin Cancer Res 2008; 14:8112-22. [PMID: 19088026 PMCID: PMC2659496 DOI: 10.1158/1078-0432.ccr-07-4910] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE This report describes the development and preclinical qualification tests of second-generation anti-carcinoembryonic (CEA) designer T cells for use in human trials. EXPERIMENTAL DESIGN The progenitor first-generation immunoglobulin-T-cell receptor (IgTCR) that transmits Signal 1-only effectively mediated chimeric immune receptor (CIR)-directed cytotoxicity, but expressor T cells succumbed to activation-induced cell death (AICD). The second-generation CIR (termed "Tandem" for two signals) was designed to transmit TCR Signal 1 and CD28 Signal 2 to render T cells resistant to AICD and provide prolonged antitumor effect in vivo. RESULTS A CIR was created that combines portions of CD28, TCRzeta, and a single chain antibody domain (sFv) specific for CEA into a single molecule (IgCD28TCR). As designed, the gene-modified Tandem T cells exhibit the new property of being resistant to AICD, showing instead an accelerated proliferation on tumor contact. Tandem T cells are more potent than first generation in targeting and lysing CEA+ tumor. Tandem T cells secrete high levels of interleukin-2 and IFNgamma on tumor contact that first-generation T cells lacked, but secretion was exhaustible, suggesting a need for interleukin-2 supplementation in therapy even for these second-generation agents. Finally, second-generation T cells were more effective in suppressing tumor in animal models. CONCLUSION An advanced generation of anti-CEA designer T cells is described with features that promise a more potent and enduring antitumor immune response in vivo. These preclinical data qualify the human use of this agent that is currently undergoing trial in patients with CEA+ cancers.
Collapse
Affiliation(s)
- PCR Emtage
- Division of Hematology –Oncology, Beth Israel Deaconess Medical Center, Harvard Institute of Human Genetics, Harvard Medical School, Boston, MA 02215
| | - ASY Lo
- Division of Hematology –Oncology, Beth Israel Deaconess Medical Center, Harvard Institute of Human Genetics, Harvard Medical School, Boston, MA 02215
| | - DL Liu
- Division of Hematology –Oncology, Beth Israel Deaconess Medical Center, Harvard Institute of Human Genetics, Harvard Medical School, Boston, MA 02215
| | - EM Gomes
- Division of Surgical Research, Department of Surgery, Boston University School of Medicine, Roger Williams Medical Center, Providence, RI 02908
| | - R Gonzalo-Daganzo
- Division of Hematology –Oncology, Beth Israel Deaconess Medical Center, Harvard Institute of Human Genetics, Harvard Medical School, Boston, MA 02215
| | - RP Junghans
- Division of Hematology –Oncology, Beth Israel Deaconess Medical Center, Harvard Institute of Human Genetics, Harvard Medical School, Boston, MA 02215
- Division of Surgical Research, Department of Surgery, Boston University School of Medicine, Roger Williams Medical Center, Providence, RI 02908
| |
Collapse
|
45
|
Agostino NM, Ali A, Nair SG, Mosca PJ. Current Immunotherapeutic Strategies in Malignant Melanoma. Surg Oncol Clin N Am 2007; 16:945-73, xi. [DOI: 10.1016/j.soc.2007.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Abstract
Adoptive transfer of antigen-specific T lymphocytes is a powerful therapy for the treatment of opportunistic disease and some virus-associated malignancies such as Epstein-Barr virus-positive post-transplant lymphoproliferative disease. However, this strategy has been less successful in patients with nonviral cancers owing to their many and varied immune evasion mechanisms. These mechanisms include downregulation of target antigens and antigen-presenting machinery, secretion of inhibitory cytokines, and recruitment of regulatory immune cells to the tumor site. With increased understanding of the tumor microenvironment and the behavior and persistence of ex vivo-manipulated, adoptively transferred T cells, two novel approaches for increasing the efficacy of T cell therapy have been proposed. The first involves genetic modification of tumor-specific T cells to improve their biological function, for example by augmenting their ability to recognize tumor cells or their resistance to tumor-mediated immunosuppression. The second requires modifications to the host environment to improve the homeostatic expansion of infused T cells or to eliminate inhibitory T cell subsets. In this review, we discuss current, promising strategies to improve adoptive T cell therapy for the treatment of cancer.
Collapse
Affiliation(s)
- Ann M Leen
- Center for Cell and Gene Therapy, Department of Pediatrics, Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital, Houston, Texas 77030, USA
| | | | | |
Collapse
|
47
|
Simmons A, Whitehead RP, Kolokoltsov AA, Davey RA. Use of recombinant lentivirus pseudotyped with vesicular stomatitis virus glycoprotein G for efficient generation of human anti-cancer chimeric T cells by transduction of human peripheral blood lymphocytes in vitro. Virol J 2006; 3:8. [PMID: 16507098 PMCID: PMC1413513 DOI: 10.1186/1743-422x-3-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 02/28/2006] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Genetic redirection of lymphocytes that have been genetically engineered to recognize antigens other than those originally programmed in their germlines is a potentially powerful tool for immunotherapy of cancers and potentially also of persistent viral infections. The basis for this procedure is that both cancers and some viruses have developed strikingly similar mechanisms of evading attacks by host immune mechanisms. To redirect human peripheral blood lymphocytes (PBLs) with a chimeric T cell receptor (chTCR) so that they recognize a new target requires a high degree of transfection efficiency, a process that is regarded as technically demanding. RESULTS Infection with a retroviral vector carrying a chTCR cassette was shown to transduce 100% of rapidly dividing murine T cells but typically, only approximately 10% of PBLs could be infected with the same vector. In contrast with other retroviruses, lentiviruses integrate their genomes into non-dividing cells. To increase host cell range, vesicular stomatitis virus G protein was pseudotyped with a lentivirus vector, which resulted in approximately 100% PBL transduction efficiency. Signaling of PBLs bearing chimeric receptors was shown by specific proliferation on exposure to cells expressing cognate ligand. Further, T-bodies against CEA showed a startling ability to cause regression of malignant colon tumors in a nude mouse model of human cancer. CONCLUSION A lentivirus/VSV pseudotyped virus, which does not require replicating cells for integration of its genome, efficiently transduced a high proportion of human PBLs with chTCRs against CEA. PBLs transduced by infection with a lentivirus/VSV pseudotyped vector were able to proliferate specifically in vitro on exposure to CEA-expressing cells and further they had a startling therapeutic effect in a mouse model of human colon cancer.
Collapse
Affiliation(s)
- Anthony Simmons
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Robert P Whitehead
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Andrey A Kolokoltsov
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Robert A Davey
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
48
|
Kershaw MH, Teng MWL, Smyth MJ, Darcy PK. Supernatural T cells: genetic modification of T cells for cancer therapy. Nat Rev Immunol 2006; 5:928-40. [PMID: 16322746 DOI: 10.1038/nri1729] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Immunotherapy is receiving much attention as a means of treating cancer, but complete, durable responses remain rare for most malignancies. The natural immune system seems to have limitations and deficiencies that might affect its ability to control malignant disease. An alternative to relying on endogenous components in the immune repertoire is to generate lymphocytes with abilities that are greater than those of natural T cells, through genetic modification to produce 'supernatural' T cells. This Review describes how such T cells can circumvent many of the barriers that are inherent in the tumour microenvironment while optimizing T-cell specificity, activation, homing and antitumour function.
Collapse
Affiliation(s)
- Michael H Kershaw
- Peter MacCallum Cancer Centre, Saint Andrews Place, East Melbourne, Victoria 3002, Australia.
| | | | | | | |
Collapse
|
49
|
McKee MD, Roszkowski JJ, Nishimura MI. T cell avidity and tumor recognition: implications and therapeutic strategies. J Transl Med 2005; 3:35. [PMID: 16174302 PMCID: PMC1262785 DOI: 10.1186/1479-5876-3-35] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Accepted: 09/20/2005] [Indexed: 12/22/2022] Open
Abstract
In the last two decades, great advances have been made studying the immune response to human tumors. The identification of protein antigens from cancer cells and better techniques for eliciting antigen specific T cell responses in vitro and in vivo have led to improved understanding of tumor recognition by T cells. Yet, much remains to be learned about the intricate details of T cell – tumor cell interactions. Though the strength of interaction between T cell and target is thought to be a key factor influencing the T cell response, investigations of T cell avidity, T cell receptor (TCR) affinity for peptide-MHC complex, and the recognition of peptide on antigen presenting targets or tumor cells reveal complex relationships. Coincident with these investigations, therapeutic strategies have been developed to enhance tumor recognition using antigens with altered peptide structures and T cells modified by the introduction of new antigen binding receptor molecules. The profound effects of these strategies on T cell – tumor interactions and the clinical implications of these effects are of interest to both scientists and clinicians. In recent years, the focus of much of our work has been the avidity and effector characteristics of tumor reactive T cells. Here we review concepts and current results in the field, and the implications of therapeutic strategies using altered antigens and altered effector T cells.
Collapse
Affiliation(s)
- Mark D McKee
- Department of Surgery, The University of Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
50
|
Kotlan B, Simsa P, Teillaud JL, Fridman WH, Toth J, McKnight M, Glassy MC. Novel Ganglioside Antigen Identified by B Cells in Human Medullary Breast Carcinomas: The Proof of Principle Concerning the Tumor-Infiltrating B Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2005; 175:2278-85. [PMID: 16081796 DOI: 10.4049/jimmunol.175.4.2278] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The potential tumor-recognizing capacity of B cells infiltrating human breast carcinoma is an important aspect of breast cancer biology. As an experimental system, we used human medullary breast carcinoma because of its heavy B lymphocytic infiltration paralleled to a relatively better prognosis. Ig-rearranged V region V(H)-J(H), Vkappa-Jkappa, and Vlambda-Jlambda genes, amplified by RT-PCR of the infiltrating B cells, were cloned, sequenced, and subjected to a comparative DNA analysis. A combinatorial single-chain variable fragment Ab minilibrary was constructed out of randomly selected V(H) and Vkappa clones and tested for binding activity. Our data analysis revealed that some of the V(H)-J(H), Vkappa-Jkappa, and Vlambda-Jlambda region sequences were being assigned to clusters with oligoclonal predominance, while other characteristics of the Ab repertoire were defined also. A tumor-restricted binder clone could be selected out of the single-chain variable fragment kappa minilibrary tested against membrane fractions of primary breast tumor cells and tumor cell lines, the V(H) of which proved to be the overexpressed V(H)3-1 cluster. The specific binding was confirmed by FACS analysis with primary breast carcinoma cells and MDA-MB 231 cell line. ELISA and thin layer chromatography dot-blot experiments showed this target Ag to be a ganglioside D3 (GD3). Our results are a proof of principle about the capacity of B cells infiltrating breast carcinomas to reveal key cancer-related Ags, such as the GD3. GD3-specific Abs may influence tumor cell progression and could be used for further development of diagnostic and/or therapeutic purposes.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/pathology
- Binding Sites, Antibody/genetics
- Breast Neoplasms/chemistry
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- COS Cells
- Carcinoma, Ductal, Breast/chemistry
- Carcinoma, Ductal, Breast/immunology
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Medullary/chemistry
- Carcinoma, Medullary/immunology
- Carcinoma, Medullary/pathology
- Cell Line
- Cell Line, Tumor
- Clone Cells
- DNA Mutational Analysis
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Gangliosides/chemistry
- Gangliosides/immunology
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Gene Rearrangement, B-Lymphocyte, Light Chain
- Humans
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/genetics
- Immunoglobulin Joining Region/genetics
- Immunoglobulin Joining Region/isolation & purification
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/isolation & purification
- Immunoglobulin lambda-Chains/genetics
- Immunoglobulin lambda-Chains/isolation & purification
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/pathology
- Neoplasm Invasiveness
- Peptide Library
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Beatrix Kotlan
- National Medical Center/Institute of Haematology and Immunology, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|