1
|
López-Caballero F, Auksztulewicz R, Howard Z, Rosch RE, Todd J, Salisbury DF. Computational Synaptic Modeling of Pitch and Duration Mismatch Negativity in First-Episode Psychosis Reveals Selective Dysfunction of the N-Methyl-D-Aspartate Receptor. Clin EEG Neurosci 2025; 56:22-34. [PMID: 38533562 PMCID: PMC11427614 DOI: 10.1177/15500594241238294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Mismatch negativity (MMN) to pitch (pMMN) and to duration (dMMN) deviant stimuli is significantly more attenuated in long-term psychotic illness compared to first-episode psychosis (FEP). It was recently shown that source-modeling of magnetically recorded MMN increases the detection of left auditory cortex MMN deficits in FEP, and that computational circuit modeling of electrically recorded MMN also reveals left-hemisphere auditory cortex abnormalities. Computational modeling using dynamic causal modeling (DCM) can also be used to infer synaptic activity from EEG-based scalp recordings. We measured pMMN and dMMN with EEG from 26 FEP and 26 matched healthy controls (HCs) and used a DCM conductance-based neural mass model including α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, N-methyl-D-Aspartate (NMDA), and Gamma-aminobutyric acid receptors to identify any changes in effective connectivity and receptor rate constants in FEP. We modeled MMN sources in bilateral A1, superior temporal gyrus, and inferior frontal gyrus (IFG). No model parameters distinguished groups for pMMN. For dMMN, reduced NMDA receptor activity in right IFG in FEP was detected. This finding is in line with literature of prefrontal NMDA receptor hypofunction in chronic schizophrenia and suggests impaired NMDA-induced synaptic plasticity may be present at psychosis onset where scalp dMMN is only moderately reduced. To the best of our knowledge, this is the first report of impaired NMDA receptor activity in FEP found through computational modeling of dMMN and shows the potential of DCM to non-invasively reveal synaptic-level abnormalities that underly subtle functional auditory processing deficits in early psychosis.
Collapse
Affiliation(s)
- F López-Caballero
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - R Auksztulewicz
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | - Z Howard
- School of Psychological Science, University of Western Australia, Perth, Australia
| | - R E Rosch
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK
| | - J Todd
- School of Psychological Sciences, University of Newcastle, Callaghan, Australia
| | - D F Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Cho KIK, Zhang F, Penzel N, Seitz-Holland J, Tang Y, Zhang T, Xu L, Li H, Keshavan M, Whitfield-Gabrieli S, Niznikiewicz M, Stone WS, Wang J, Shenton ME, Pasternak O. Excessive interstitial free-water in cortical gray matter preceding accelerated volume changes in individuals at clinical high risk for psychosis. Mol Psychiatry 2024; 29:3623-3634. [PMID: 38830974 DOI: 10.1038/s41380-024-02597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024]
Abstract
Recent studies show that accelerated cortical gray matter (GM) volume reduction seen in anatomical MRI can help distinguish between individuals at clinical high risk (CHR) for psychosis who will develop psychosis and those who will not. This reduction is suggested to represent atypical developmental or degenerative changes accompanying an accumulation of microstructural changes, such as decreased spine density and dendritic arborization. Detecting the microstructural sources of these changes before they accumulate into volume loss is crucial. Our study aimed to detect these microstructural GM alterations using diffusion MRI (dMRI). We tested for baseline and longitudinal group differences in anatomical and dMRI data from 160 individuals at CHR and 96 healthy controls (HC) acquired in a single imaging site. Of the CHR individuals, 33 developed psychosis (CHR-P), while 127 did not (CHR-NP). Among all participants, longitudinal data was available for 45 HCs, 17 CHR-P, and 66 CHR-NP. Eight cortical lobes were examined for GM volume and GM microstructure. A novel dMRI measure, interstitial free water (iFW), was used to quantify GM microstructure by eliminating cerebrospinal fluid contribution. Additionally, we assessed whether these measures differentiated the CHR-P from the CHR-NP. In addition, for completeness, we also investigated changes in cortical thickness and in white matter (WM) microstructure. At baseline the CHR group had significantly higher iFW than HC in the prefrontal, temporal, parietal, and occipital lobes, while volume was reduced only in the temporal lobe. Neither iFW nor volume differentiated between the CHR-P and CHR-NP groups at baseline. However, in many brain areas, the CHR-P group demonstrated significantly accelerated changes (iFW increase and volume reduction) with time than the CHR-NP group. Cortical thickness provided similar results as volume, and there were no significant changes in WM microstructure. Our results demonstrate that microstructural GM changes in individuals at CHR have a wider extent than volumetric changes or microstructural WM changes, and they predate the acceleration of brain changes that occur around psychosis onset. Microstructural GM changes, as reflected by the increased iFW, are thus an early pathology at the prodromal stage of psychosis that may be useful for a better mechanistic understanding of psychosis development.
Collapse
Affiliation(s)
- Kang Ik K Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nora Penzel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Huijun Li
- Department of Psychology, Florida A&M University, Tallahassee, FL, USA
| | - Matcheri Keshavan
- The Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Susan Whitfield-Gabrieli
- Department of Psychology, Northeastern University, Boston, MA, USA
- The McGovern Institute for Brain Research and the Poitras Center for Affective Disorders Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Margaret Niznikiewicz
- The Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - William S Stone
- The Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Asad Z, Fakheir Y, Abukhaled Y, Khalil R. Implications of altered pyramidal cell morphology on clinical symptoms of neurodevelopmental disorders. Eur J Neurosci 2024; 60:4877-4892. [PMID: 39054743 DOI: 10.1111/ejn.16484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/26/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
The prevalence of pyramidal cells (PCs) in the mammalian cerebral cortex underscore their value as they play a crucial role in various brain functions, ranging from cognition, sensory processing, to motor output. PC morphology significantly influences brain connectivity and plays a critical role in maintaining normal brain function. Pathological alterations to PC morphology are thought to contribute to the aetiology of neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia. This review explores the relationship between abnormalities in PC morphology in key cortical areas and the clinical manifestations in schizophrenia and ASD. We focus largely on human postmortem studies and provide evidence that dendritic segment length, complexity and spine density are differentially affected in these disorders. These morphological alterations can lead to disruptions in cortical connectivity, potentially contributing to the cognitive and behavioural deficits observed in these disorders. Furthermore, we highlight the importance of investigating the functional and structural characteristics of PCs in these disorders to illuminate the underlying pathogenesis and stimulate further research in this area.
Collapse
Affiliation(s)
- Zummar Asad
- School of Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Yara Fakheir
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Yara Abukhaled
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Reem Khalil
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
4
|
Schoonover KE, Miller NE, Fish KN, Lewis DA. Scaling of smaller pyramidal neuron size and lower energy production in schizophrenia. Neurobiol Dis 2024; 191:106394. [PMID: 38176569 PMCID: PMC10898364 DOI: 10.1016/j.nbd.2023.106394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Dorsolateral prefrontal cortex (DLPFC) dysfunction in schizophrenia appears to reflect alterations in layer 3 pyramidal neurons (L3PNs), including smaller cell bodies and lower expression of mitochondrial energy production genes. However, prior somal size studies used biased strategies for identifying L3PNs, and somal size and levels of energy production markers have not been assessed in individual L3PNs. STUDY DESIGN We combined fluorescent in situ hybridization (FISH) of vesicular glutamate transporter 1 (VGLUT1) mRNA and immunohistochemical-labeling of NeuN to determine if the cytoplasmic distribution of VGLUT1 mRNA permits the unbiased identification and somal size quantification of L3PNs. Dual-label FISH for VGLUT1 mRNA and cytochrome C oxidase subunit 4I1 (COX4I1) mRNA, a marker of energy production, was used to assess somal size and COX4I1 transcript levels in individual DLPFC L3PNs from schizophrenia (12 males; 2 females) and unaffected comparison (13 males; 1 female) subjects. STUDY RESULTS Measures of L3PN somal size with NeuN immunohistochemistry or VGLUT1 mRNA provided nearly identical results (ICC = 0.96, p < 0.0001). Mean somal size of VGLUT1-identified L3PNs was 8.7% smaller (p = 0.004) and mean COX4I1 mRNA levels per L3PN were 16.7% lower (p = 0.01) in schizophrenia. These measures were correlated across individual L3PNs in both subject groups (rrm = 0.81-0.86). CONCLUSIONS This preliminary study presents a novel method for combining unbiased neuronal identification with quantitative assessments of somal size and mRNA levels. We replicated findings of smaller somal size and lower COX4I1 mRNA levels in DLPFC L3PNs in schizophrenia. The normal scaling of COX4I1 mRNA levels with somal size in schizophrenia suggests that lower markers of energy production are secondary to L3PN morphological alterations in the illness.
Collapse
Affiliation(s)
- Kirsten E Schoonover
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Department of Psychiatry Biomedical Science Tower, W1653 3811 O'Hara Street Pittsburgh, PA 15213, United States of America
| | - Nora E Miller
- Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Department of Psychiatry, Biomedical Science Tower W1653 3811 O'Hara Street Pittsburgh, PA 15213, United States of America
| | - Kenneth N Fish
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Department of Psychiatry Biomedical Science Tower, W1653 3811 O'Hara Street Pittsburgh, PA 15213, United States of America
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Department of Psychiatry Biomedical Science Tower, W1653 3811 O'Hara Street Pittsburgh, PA 15213, United States of America.
| |
Collapse
|
5
|
Kang IC, Pasternak O, Zhang F, Penzel N, Seitz-Holland J, Tang Y, Zhang T, Xu L, Li H, Keshavan M, Whitfield-Gabrielli S, Niznikiewicz M, Stone W, Wang J, Shenton M. Microstructural Cortical Gray Matter Changes Preceding Accelerated Volume Changes in Individuals at Clinical High Risk for Psychosis. RESEARCH SQUARE 2023:rs.3.rs-3179575. [PMID: 37841868 PMCID: PMC10571628 DOI: 10.21203/rs.3.rs-3179575/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Recent studies show that accelerated cortical gray matter (GM) volume reduction seen in anatomical MRI can help distinguish between individuals at clinical high risk (CHR) for psychosis who will develop psychosis and those who will not. This reduction is thought to result from an accumulation of microstructural changes, such as decreased spine density and dendritic arborization. Detecting the microstructural sources of these changes before they accumulate is crucial, as volume reduction likely indicates an underlying neurodegenerative process. Our study aimed to detect these microstructural GM alterations using diffusion MRI (dMRI). We tested for baseline and longitudinal group differences in anatomical and dMRI data from 160 individuals at CHR and 96 healthy controls (HC) acquired in a single imaging site. Eight cortical lobes were examined for GM volume and GM microstructure. A novel dMRI measure, interstitial free water (iFW), was used to quantify GM microstructure by eliminating cerebrospinal fluid contribution. Additionally, we assessed whether these measures differentiated the 33 individuals at CHR who developed psychosis (CHR-P) from the 127 individuals at CHR who did not (CHR-NP). At baseline the CHR group had significantly higher iFW than HC in the prefrontal, temporal, parietal, and occipital lobes, while volume was reduced only in the temporal lobe. Neither iFW nor volume differentiated between the CHR-P and CHR-NP groups at baseline. However, in most brain areas, the CHR-P group demonstrated significantly accelerated iFW increase and volume reduction with time than the CHR-NP group. Our results demonstrate that microstructural GM changes in individuals at CHR have a wider extent than volumetric changes and they predate the acceleration of brain changes that occur around psychosis onset. Microstructural GM changes are thus an early pathology at the prodromal stage of psychosis that may be useful for early detection and a better mechanistic understanding of psychosis development.
Collapse
Affiliation(s)
| | | | | | | | - Johanna Seitz-Holland
- Brigham and Women's Hospital and Massachusetts General Hospital, Harvard Medical School
| | - Yingying Tang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| | - Tianhong Zhang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, PR China
| | | | | | | | | | | | | | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| | | |
Collapse
|
6
|
Slapø NB, Nerland S, Nordbø Jørgensen K, Mørch-Johnsen L, Pettersen JH, Roelfs D, Parker N, Valstad M, Pentz A, Timpe CMF, Richard G, Beck D, Werner MCF, Lagerberg TV, Melle I, Agartz I, Westlye LT, Steen NE, Andreassen OA, Moberget T, Elvsåshagen T, Jönsson EG. Auditory Cortex Thickness Is Associated With N100 Amplitude in Schizophrenia Spectrum Disorders. SCHIZOPHRENIA BULLETIN OPEN 2023; 4:sgad015. [PMID: 38812720 PMCID: PMC7616042 DOI: 10.1093/schizbullopen/sgad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Background and Hypothesis The auditory cortex (AC) may play a central role in the pathophysiology of schizophrenia and auditory hallucinations (AH). Previous schizophrenia studies report thinner AC and impaired AC function, as indicated by decreased N100 amplitude of the auditory evoked potential. However, whether these structural and functional alterations link to AH in schizophrenia remain poorly understood. Study Design Patients with a schizophrenia spectrum disorder (SCZspect), including patients with a lifetime experience of AH (AH+), without (AH-), and healthy controls underwent magnetic resonance imaging (39 SCZspect, 22 AH+, 17 AH-, and 146 HC) and electroencephalography (33 SCZspect, 17 AH+, 16 AH-, and 144 HC). Cortical thickness of the primary (AC1, Heschl's gyrus) and secondary (AC2, Heschl's sulcus, and the planum temporale) AC was compared between SCZspect and controls and between AH+, AH-, and controls. To examine if the association between AC thickness and N100 amplitude differed between groups, we used regression models with interaction terms. Study Results N100 amplitude was nominally smaller in SCZspect (P = .03, d = 0.42) and in AH- (P = .020, d = 0.61), while AC2 was nominally thinner in AH+ (P = .02, d = 0.53) compared with controls. AC1 thickness was positively associated with N100 amplitude in SCZspect (t = 2.56, P = .016) and AH- (t = 3.18, P = .008), while AC2 thickness was positively associated with N100 amplitude in SCZspect (t = 2.37, P = .024) and in AH+ (t = 2.68, P = .019). Conclusions The novel findings of positive associations between AC thickness and N100 amplitude in SCZspect, suggest that a common neural substrate may underlie AC thickness and N100 amplitude alterations.
Collapse
Affiliation(s)
- Nora Berz Slapø
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Stener Nerland
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Kjetil Nordbø Jørgensen
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Telemark Hospital, Skien, Norway
| | - Lynn Mørch-Johnsen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychiatry, Østfold Hospital, Grålum, Norway
- Department of Clinical Research, Østfold Hospital, Grålum, Norway
| | | | - Daniel Roelfs
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nadine Parker
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mathias Valstad
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Atle Pentz
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Clara M. F. Timpe
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Geneviève Richard
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dani Beck
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Maren C. Frogner Werner
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Ingrid Melle
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatry, Telemark Hospital, Skien, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Sweden
| | - Lars T. Westlye
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A. Andreassen
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Torgeir Moberget
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Behavioral Sciences, Faculty of Health Sciences, Oslo Metropolitan University, OsloMet, Oslo, Norway
| | - Torbjørn Elvsåshagen
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Erik G. Jönsson
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Lee D, Seo J, Jeong HC, Lee H, Lee SB. The Perspectives of Early Diagnosis of Schizophrenia Through the Detection of Epigenomics-Based Biomarkers in iPSC-Derived Neurons. Front Mol Neurosci 2021; 14:756613. [PMID: 34867186 PMCID: PMC8633873 DOI: 10.3389/fnmol.2021.756613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
The lack of early diagnostic biomarkers for schizophrenia greatly limits treatment options that deliver therapeutic agents to affected cells at a timely manner. While previous schizophrenia biomarker research has identified various biological signals that are correlated with certain diseases, their reliability and practicality as an early diagnostic tool remains unclear. In this article, we discuss the use of atypical epigenetic and/or consequent transcriptional alterations (ETAs) as biomarkers of early-stage schizophrenia. Furthermore, we review the viability of discovering and applying these biomarkers through the use of cutting-edge technologies such as human induced pluripotent stem cell (iPSC)-derived neurons, brain models, and single-cell level analyses.
Collapse
Affiliation(s)
- Davin Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Jinsoo Seo
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Hae Chan Jeong
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Hyosang Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Sung Bae Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| |
Collapse
|
8
|
Sakamoto K, Chen L, Miyaoka T, Yamada M, Masutani T, Ishimoto K, Hino N, Nakagawa S, Asano S, Ago Y. Generation of KS-133 as a Novel Bicyclic Peptide with a Potent and Selective VIPR2 Antagonist Activity that Counteracts Cognitive Decline in a Mouse Model of Psychiatric Disorders. Front Pharmacol 2021; 12:751587. [PMID: 34819858 PMCID: PMC8607231 DOI: 10.3389/fphar.2021.751587] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Worldwide, more than 20 million people suffer from schizophrenia, but effective and definitive new therapeutic drugs/treatments have not been established. Vasoactive intestinal peptide receptor 2 (VIPR2) might be an attractive drug target for the treatment of schizophrenia because both preclinical and clinical studies have demonstrated a strong link between high expression/overactivation of VIPR2 and schizophrenia. Nevertheless, VIPR2-targeting drugs are not yet available. VIPR2 is a class-B G protein-coupled receptor that possesses high structural homology to its subtypes, vasoactive intestinal peptide receptor 1 (VIPR1) and pituitary adenylate cyclase-activating polypeptide type-1 receptor (PAC1). These biological and structural properties have made it difficult to discover small molecule drugs against VIPR2. In 2018, cyclic peptide VIpep-3, a VIPR2-selective antagonist, was reported. The aim of this study was to generate a VIpep-3 derivative for in vivo experiments. After amino acid substitution and structure optimization, we successfully generated KS-133 with 1) a VIPR2-selective and potent antagonistic activity, 2) at least 24 h of stability in plasma, and 3) in vivo pharmacological efficacies in a mouse model of psychiatric disorders through early postnatal activation of VIPR2. To the best of our knowledge, this is the first report of a VIPR2-selective antagonistic peptide that counteracts cognitive decline, a central feature of schizophrenia. KS-133 may contribute to studies and development of novel schizophrenia therapeutic drugs that target VIPR2.
Collapse
Affiliation(s)
- Kotaro Sakamoto
- Research and Development Department, Ichimaru Pharcos Company Limited, Gifu, Japan
| | - Lu Chen
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Tatsunori Miyaoka
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Mei Yamada
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Teruaki Masutani
- Research and Development Department, Ichimaru Pharcos Company Limited, Gifu, Japan
| | - Kenji Ishimoto
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Nobumasa Hino
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Shinsaku Nakagawa
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Satoshi Asano
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yukio Ago
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan.,Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
9
|
Development of Auditory Cortex Circuits. J Assoc Res Otolaryngol 2021; 22:237-259. [PMID: 33909161 DOI: 10.1007/s10162-021-00794-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/03/2021] [Indexed: 02/03/2023] Open
Abstract
The ability to process and perceive sensory stimuli is an essential function for animals. Among the sensory modalities, audition is crucial for communication, pleasure, care for the young, and perceiving threats. The auditory cortex (ACtx) is a key sound processing region that combines ascending signals from the auditory periphery and inputs from other sensory and non-sensory regions. The development of ACtx is a protracted process starting prenatally and requires the complex interplay of molecular programs, spontaneous activity, and sensory experience. Here, we review the development of thalamic and cortical auditory circuits during pre- and early post-natal periods.
Collapse
|
10
|
Mavroudis I, Petrides F, Kazis D, Chatzikonstantinou S, Karantali E, Ciobica A, Iordache AC, Dobrin R, Trus C, Njau S, Costa V, Baloyannis S. Morphological alterations of the pyramidal and stellate cells of the visual cortex in schizophrenia. Exp Ther Med 2021; 22:669. [PMID: 33986834 PMCID: PMC8111868 DOI: 10.3892/etm.2021.10101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/19/2021] [Indexed: 11/05/2022] Open
Abstract
Schizophrenia is a severe brain disorder characterized by certain types of delusion, hallucination and thought disorder. Studies have revealed impaired synaptic plasticity and reduced gamma-aminobutyric acid levels of the visual cortex in patients with schizophrenia. While previous work established a critical role for interneurons and cortical connectivity in the generation of hallucinations, the present study set out to examine the morphology of pyramidal cells and interneurons from layers 3 and 4 in the primary visual cortex from schizophrenic brains and to identify any dendritic and spinal alterations in comparison to normal control brains. The morphological and morphometric changes of the pyramidal cells and the interneurons of the visual cortices of 10 brains obtained from patients with schizophrenia, in comparison to 10 age-matched controls, were studied using the Golgi method and 3D neuronal reconstruction techniques. Analysis using the Golgi impregnation technique revealed a significant loss of distal dendritic segments, tortuous branches and varicosities and an overall restriction of the dendritic field in the brains of schizophrenic patients in both pyramidal cells and in aspiny interneurons. The present results may explain certain clinical phenomena associated with the visual cortex usually encountered in schizophrenia.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Laboratory of Neuropathology and Electron Microscopy First Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 54634, Greece.,Department of Neurology, Leeds Teaching Hospitals, Leeds LS1 3EX, UK.,Institute For Research Of Alzheimer's Disease, Other Neurodegenerative Diseases And Normal Aging, Heraklion Langada 57200, Greece
| | - Foivos Petrides
- Laboratory of Neuropathology and Electron Microscopy First Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 54634, Greece.,Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | | | - Eleni Karantali
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, Iasi 700506, Romania.,Academy of Romanian Scientists, Bucuresti 050094, Romania.,Center of Biomedical Research, Romanian Academy, Iasi 700506, Romania
| | - Alin-Constantin Iordache
- Faculty of Medicine, 'Grigore T. Popa', University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Romeo Dobrin
- Faculty of Medicine, 'Grigore T. Popa', University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Constantin Trus
- Department of Morphological and Functional Sciences, Faculty of Medicine, Dunarea de Jos University, Galati 050094, Romania
| | - Samuel Njau
- Department of Forensic Medicine and Toxicology, Aristotle University of Thessaloniki, Thessaloniki 54634, Greece
| | - Vasiliki Costa
- Laboratory of Neuropathology and Electron Microscopy First Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 54634, Greece.,Institute For Research Of Alzheimer's Disease, Other Neurodegenerative Diseases And Normal Aging, Heraklion Langada 57200, Greece
| | - Stavros Baloyannis
- Laboratory of Neuropathology and Electron Microscopy First Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 54634, Greece.,Institute For Research Of Alzheimer's Disease, Other Neurodegenerative Diseases And Normal Aging, Heraklion Langada 57200, Greece
| |
Collapse
|
11
|
Hoftman GD, Bazmi HH, Ciesielski AJ, Dinka LA, Chen K, Lewis DA. Postnatal Development of Glutamate and GABA Transcript Expression in Monkey Visual, Parietal, and Prefrontal Cortices. Cereb Cortex 2021; 31:2026-2037. [PMID: 33279960 PMCID: PMC8248841 DOI: 10.1093/cercor/bhaa342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 11/14/2022] Open
Abstract
Visuospatial working memory (vsWM) requires information transfer among multiple cortical regions, from primary visual (V1) to prefrontal (PFC) cortices. This information is conveyed via layer 3 glutamatergic neurons whose activity is regulated by gamma-aminobutyric acid (GABA)ergic interneurons. In layer 3 of adult human neocortex, molecular markers of glutamate neurotransmission were lowest in V1 and highest in PFC, whereas GABA markers had the reverse pattern. Here, we asked if these opposite V1-visual association cortex (V2)-posterior parietal cortex (PPC)-PFC gradients across the vsWM network are present in layer 3 of monkey neocortex, when they are established during postnatal development, and if they are specific to this layer. We quantified transcript levels of glutamate and GABA markers in layers 3 and 6 of four vsWM cortical regions in a postnatal developmental series of 30 macaque monkeys. In adult monkeys, glutamate transcript levels in layer 3 increased across V1-V2-PPC-PFC regions, whereas GABA transcripts showed the opposite V1-V2-PPC-PFC gradient. Glutamate transcripts established adult-like expression patterns earlier during postnatal development than GABA transcripts. These V1-V2-PPC-PFC gradients and developmental patterns were less evident in layer 6. These findings demonstrate that expression of glutamate and GABA transcripts differs across cortical regions and layers during postnatal development, revealing potential molecular substrates for vsWM functional maturation.
Collapse
Affiliation(s)
- Gil D Hoftman
- Department of Psychiatry, University of California, Los Angeles, CA 90095, USA
| | - H Holly Bazmi
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Andrew J Ciesielski
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Liban A Dinka
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kehui Chen
- Department of Statistics, School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David A Lewis
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
12
|
Hirano Y, Oribe N, Onitsuka T, Kanba S, Nestor PG, Hosokawa T, Levin M, Shenton ME, McCarley RW, Spencer KM. Auditory Cortex Volume and Gamma Oscillation Abnormalities in Schizophrenia. Clin EEG Neurosci 2020; 51:244-251. [PMID: 32204613 DOI: 10.1177/1550059420914201] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We investigated whether the gray matter volume of primary auditory cortex (Heschl's gyrus [HG]) was associated with abnormal patterns of auditory γ activity in schizophrenia, namely impaired γ synchronization in the 40-Hz auditory steady-state response (ASSR) and increased spontaneous broadband γ power. (The γ data were previously reported in Hirano et al, JAMA Psychiatry, 2015;72:813-821). Participants were 24 healthy controls (HC) and 23 individuals with chronic schizophrenia (SZ). The ASSR was obtained from the electroencephalogram to click train stimulation at 20, 30, and 40 Hz rates. Dipole source localization of the ASSR was used to provide a spatial filter of auditory cortex activity, from which ASSR evoked power and phase locking factor (PLF), and induced γ power were computed. HG gray matter volume was derived from structural magnetic resonance imaging at 3 T with manually traced regions of interest. As expected, HG gray matter volume was reduced in SZ compared with HC. In SZ, left hemisphere ASSR PLF and induced γ power during the 40-Hz stimulation condition were positively and negatively correlated with left HG gray matter volume, respectively. These results provide evidence that cortical gray matter structure, possibly resulting from reduced synaptic connectivity at the microcircuit level, is related to impaired γ synchronization and increased spontaneous γ activity in schizophrenia.
Collapse
Affiliation(s)
- Yoji Hirano
- Neural Dynamics Laboratory, Research Service, Veterans Affairs Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, MA, USA.,Departments of Psychiatry and Radiology, Veterans Affairs Boston Healthcare System, and Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoya Oribe
- Neural Dynamics Laboratory, Research Service, Veterans Affairs Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, MA, USA.,Departments of Psychiatry and Radiology, Veterans Affairs Boston Healthcare System, and Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Onitsuka
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigenobu Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Paul G Nestor
- Neural Dynamics Laboratory, Research Service, Veterans Affairs Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, MA, USA.,Department of Psychology, University of Massachusetts, Boston, MA, USA
| | - Taiga Hosokawa
- Neural Dynamics Laboratory, Research Service, Veterans Affairs Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, MA, USA.,Departments of Psychiatry and Radiology, Veterans Affairs Boston Healthcare System, and Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Martha E Shenton
- Departments of Psychiatry and Radiology, Veterans Affairs Boston Healthcare System, and Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert W McCarley
- Laboratory of Neuroscience, Veterans Affairs Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kevin M Spencer
- Neural Dynamics Laboratory, Research Service, Veterans Affairs Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Liang S, Li Y, Zhang Z, Kong X, Wang Q, Deng W, Li X, Zhao L, Li M, Meng Y, Huang F, Ma X, Li XM, Greenshaw AJ, Shao J, Li T. Classification of First-Episode Schizophrenia Using Multimodal Brain Features: A Combined Structural and Diffusion Imaging Study. Schizophr Bull 2019; 45:591-599. [PMID: 29947804 PMCID: PMC6483586 DOI: 10.1093/schbul/sby091] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent neuroanatomical pattern recognition studies have shown some promises for developing an objective neuroimaging-based classification related to schizophrenia. This study explored the feasibility of reliably identifying schizophrenia using single and multimodal multivariate neuroimaging features. Multiple brain measures including regional gray matter (GM) volume, cortical thickness, gyrification, fractional anisotropy (FA), and mean diffusivity (MD) were extracted using fully automated procedures. We used Gradient Boosting Decision Tree to identify the most frequently selected features of each set of neuroanatomical metric and fused multimodal measures. The current classification model was trained and validated based on 98 patients with first-episode schizophrenia (FES) and 106 matched healthy controls (HCs). The classification model was trained and tested in an independent dataset of 54 patients with FES and 48 HCs using imaging data acquired on a different magnetic resonance imaging scanner. Using the most frequently selected features from fused structural and diffusion tensor imaging metrics, a classification accuracy of 75.05% was achieved, which was higher than accuracy derived from a single imaging metric. Most prominent discriminative features included cortical thickness of left transverse temporal gyrus and right parahippocampal gyrus, the FA of left corticospinal tract and right external capsule. In the independent cohort, average accuracy was 76.54%, derived from combined features selected from cortical thickness, gyrification, FA, and MD. These features characterized by GM abnormalities and white matter disruptions have discriminative power with respect to the underlying pathological changes in the brain of individuals having schizophrenia. Our results further highlight the potential advantage of multimodal data fusion for identifying schizophrenia.
Collapse
Affiliation(s)
- Sugai Liang
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China,West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yinfei Li
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China,West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhong Zhang
- Big Data Research Center, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiangzhen Kong
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Qiang Wang
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Deng
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China,West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaojing Li
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liansheng Zhao
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mingli Li
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yajing Meng
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Huang
- Big Data Research Center, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaohong Ma
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin-min Li
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Andrew J Greenshaw
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Junming Shao
- Big Data Research Center, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Li
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China,West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China,To whom correspondence should be addressed; West China Mental Health Centre, West China Hospital, Sichuan University, No. 28th Dianxin Nan Str., Chengdu, Sichuan 610041, China; tel.: 86-28-85423561, fax: 86-28-85422632, e-mail:
| |
Collapse
|
14
|
Asafu-Adjei JK, Sampson AR. Covariate adjusted classification trees. Biostatistics 2019; 19:42-53. [PMID: 28520903 DOI: 10.1093/biostatistics/kxx015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/16/2017] [Indexed: 11/12/2022] Open
Abstract
In studies that compare several diagnostic groups, subjects can be measured on certain features and classification trees can be used to identify which of them best characterize the differences among groups. However, subjects may also be measured on additional covariates whose ability to characterize group differences is not meaningful or of interest, but may still have an impact on the examined features. Therefore, it is important to adjust for the effects of covariates on these features. We present a new semi-parametric approach to adjust for covariate effects when constructing classification trees based on the features of interest that is readily implementable. An application is given for postmortem brain tissue data to compare the neurobiological characteristics of subjects with schizophrenia to those of normal controls. We also evaluate the performance of our approach using a simulation study.
Collapse
Affiliation(s)
- Josephine K Asafu-Adjei
- Department of Biostatistics, School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Allan R Sampson
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
15
|
Kim S, Jang SK, Kim DW, Shim M, Kim YW, Im CH, Lee SH. Cortical volume and 40-Hz auditory-steady-state responses in patients with schizophrenia and healthy controls. NEUROIMAGE-CLINICAL 2019; 22:101732. [PMID: 30851675 PMCID: PMC6407311 DOI: 10.1016/j.nicl.2019.101732] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 01/05/2019] [Accepted: 02/20/2019] [Indexed: 11/25/2022]
Abstract
Background Abnormalities in the 40-Hz auditory steady-state response (ASSR) of the gamma range have been reported in schizophrenia (SZ) and are regarded as important pathophysiological features. Many of the previous studies reported diminished gamma oscillations in SZ, although some studies reported increased spontaneous gamma oscillations. Furthermore, brain morphological correlates of the gamma band ASSR deficits have rarely examined. We investigated different measures of the 40-Hz ASSR and their association with brain volumes and psychological measures of SZ. Methods The 40-Hz ASSR was measured for 80 dB click sounds (1 ms, 500-ms trains at 40-Hz, with 3050 to 3500 inter-train interval) using electroencephalography with 64 electrodes in 33 patients with SZ (male: 16, female: 17 (age range: 21–60)) and 30 healthy controls (HCs) (male: 13, female: 17 (age range: 23–64)). Four gamma oscillation measures (evoked power, spontaneous oscillations (baseline and total power), and inter-trial phase coherence (ITC)) were assessed. The source activities of the ASSR were also analyzed. Brain volumes were assessed using high-resolution magnetic resonance imaging and voxel-based morphometry and superior temporal gyrus (STG) volume measures were obtained. Results Patients with SZ had larger total and evoked powers and higher ITC than HCs. Both groups showed significantly different association between mean evoked power and right STG volume. In HCs but not SZ, mean evoked power showed significant positive correlation with right STG volume. In addition, the two groups showed significantly different association between verbal fluency and mean evoked power. High evoked power was significantly correlated with poor verbal fluency in SZ. Conclusions The current study found increased gamma oscillation in SZ and suggests significant involvement of the STG in gamma oscillations. SZ had larger total and evoked powers and higher ITC than HCs. Evoked power positively correlated with right STG volume in HCs. High evoked power correlated with poor verbal fluency in SZ.
Collapse
Affiliation(s)
- Sungkean Kim
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea; Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Seon-Kyeong Jang
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea
| | - Do-Won Kim
- Department of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea
| | - Miseon Shim
- Department of Psychiatry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Yong-Wook Kim
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea; Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Chang-Hwan Im
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea; Department of Psychiatry, Inje University, Ilsan-Paik Hospital, Goyang, Republic of Korea.
| |
Collapse
|
16
|
Electrophysiological assessment methodology of sensory processing dysfunction in schizophrenia and dementia of the Alzheimer type. Neurosci Biobehav Rev 2019; 97:70-84. [DOI: 10.1016/j.neubiorev.2018.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/26/2022]
|
17
|
Mørch-Johnsen L, Nerland S, Jørgensen KN, Osnes K, Hartberg CB, Andreassen OA, Melle I, Nesvåg R, Agartz I. Cortical thickness abnormalities in bipolar disorder patients with a lifetime history of auditory hallucinations. Bipolar Disord 2018; 20:647-657. [PMID: 29441665 DOI: 10.1111/bdi.12627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES We aimed to investigate morphometric correlates of auditory hallucinations in bipolar disorder (BD) by comparing cortical thickness and cortical surface area in bipolar disorder patients with (BD+) and without (BD-) a lifetime history of auditory hallucinations. Based on previous findings in schizophrenia patients, we hypothesized that the cortex would be thinner in the auditory cortex in BD+ compared to BD-. METHODS Bipolar disorder spectrum (n = 157) patients and healthy controls (n = 279) underwent 1.5T magnetic resonance imaging (MRI) scanning. Hypothesis-driven analyses of cortical thickness and surface area in regions of the auditory cortex (Heschl's gyrus [HG], planum temporale and superior temporal gyrus) were conducted comparing BD+ (n = 49) and BD- (n = 108) using linear regression models, covaried for age and sex. Furthermore, we explored vertex-wise group differences in thickness and surface area across the whole cerebral cortex. RESULTS Hypothesis-driven analyses:BD+ had significantly thicker cortex in the left HG compared to BD- (B = 0.128, P = .0046). The finding was not explained by duration of illness, global functioning, bipolar subtype, IQ or use of antipsychotic, antidepressant or antiepileptic medication, or by lithium. Exploratory analyses: A small region of thicker cortex in BD+ compared to BD- was seen in the left superior parietal lobule (false discovery rate <0.05). There were no significant group differences in cortical surface area. CONCLUSION A lifetime history of auditory hallucinations in BD was associated with cortical thickness alterations in both the left HG and the superior parietal lobule. Contrary to our hypothesis, BD+ showed thicker, rather than thinner cortex compared to BD-. Replications in independent samples are needed.
Collapse
Affiliation(s)
- Lynn Mørch-Johnsen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Stener Nerland
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kjetil N Jørgensen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kåre Osnes
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Cecilie B Hartberg
- NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Melle
- NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ragnar Nesvåg
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Neuropil contraction in relation to Complement C4 gene copy numbers in independent cohorts of adolescent-onset and young adult-onset schizophrenia patients-a pilot study. Transl Psychiatry 2018; 8:134. [PMID: 30026462 PMCID: PMC6053402 DOI: 10.1038/s41398-018-0181-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/14/2018] [Indexed: 02/08/2023] Open
Abstract
A recent report suggested Complement 4 (C4A) gene copy numbers (GCN) as risk factors for schizophrenia. Rodent model showed association of C4 with synaptic pruning suggesting its pathophysiological significance (Sekar, A. et al. (2016)). We, therefore, predicted that C4A GCN would be positively correlated with neuropil contraction in the human brain among schizophrenia patients showing more prominent correlations in ventral regions among young adults and dorsal regions among adolescents since neuromaturation progresses dorsoventrally. Whole-brain, multi-voxel, in vivo phosphorus magnetic resonance spectroscopy (31P MRS) assessed neuropil changes by estimating levels of membrane phospholipid (MPL) precursors and catabolites. Increased MPL catabolites and/or decreased MPL precursors indexed neuropil contraction. Digital droplet PCR-based assay was used to estimate C4A and C4B GCN. We evaluated two independent cohorts (young adult-onset early-course schizophrenia (YASZ = 15) and adolescent-onset schizophrenia (AOSZ = 12) patients), and controls matched for each group, n = 22 and 15, respectively. Separate forward stepwise linear regression models with Akaike information Criterion were built for MPL catabolites and precursors. YASZ cohort: Consistent with the rodent model (Sekar, A. et al. 2016)), C4A GCN positively correlated with neuropil contraction (increased pruning/decreased formation) in the inferior frontal cortex and inferior parietal lobule. AOSZ cohort: C4A GCN positively correlated with neuropil contraction in the dorsolateral prefrontal cortex and thalamus. Exploratory analysis of C4B GCN showed positive correlation with neuropil contraction in the cerebellum and superior temporal gyrus among YASZ while AOSZ showed neuropil contraction in the prefrontal and subcortical structures. Thus, C4A and C4B GCN are associated with neuropil contraction in regions often associated with schizophrenia, and may be neuromaturationally dependent.
Collapse
|
19
|
Kohlbrenner EA, Shaskan N, Pietersen CY, Sonntag KC, Woo TUW. Gene expression profile associated with postnatal development of pyramidal neurons in the human prefrontal cortex implicates ubiquitin ligase E3 in the pathophysiology of schizophrenia onset. J Psychiatr Res 2018; 102:110-117. [PMID: 29635114 PMCID: PMC6347389 DOI: 10.1016/j.jpsychires.2018.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 03/17/2018] [Accepted: 03/25/2018] [Indexed: 11/25/2022]
Abstract
Schizophrenia is a neurodevelopmental disorder with the typical age of onset of overt symptoms and deficits occurring during late adolescence or early adulthood, coinciding with the final maturation of the cortical network involving the prefrontal cortex. These observations have led to the hypothesis that disturbances of the developmental events that take place in the prefrontal cortex during this period, specifically the remodeling of synaptic connectivities between pyramidal neurons, may contribute to the onset of illness. In this context, we investigated the gene expression changes of pyramidal neurons in the human prefrontal cortex during normal periadolescent development in order to gain insight into the possible molecular mechanisms involved in synaptic remodeling of pyramidal neuronal circuitry. Our data suggest that genes associated with the ubiquitination system, which has been implicated in the biology of synaptic plasticity, may play a major role. Among these genes, UBE3B, which encodes the ubiquitin ligase E3, was found to undergo periadolescent increase and was validated at the protein level to be upregulated during periadolescent development. Furthermore, we found that the density of UBE3B-immunoreactive pyramidal neurons was decreased in schizophrenia subjects, consistent with the result of a previous study of decreased UBE3B mRNA expression in pyramidal neurons in this illness. Altogether these findings point to the novel hypothesis that this specific ligase may play a role in the developmental pathogenesis of schizophrenia onset by possibly altering the synaptic remodeling process.
Collapse
Affiliation(s)
- Emily A Kohlbrenner
- Laboratory for Cellular Neuropathology, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA; Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA
| | - Noel Shaskan
- Laboratory for Cellular Neuropathology, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA; Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA
| | - Charmaine Y Pietersen
- Laboratory for Cellular Neuropathology, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA; Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA
| | - Kai-C Sonntag
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, 02215, USA
| | - Tsung-Ung W Woo
- Laboratory for Cellular Neuropathology, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA; Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA; Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
20
|
Parker EM, Sweet RA. Stereological Assessments of Neuronal Pathology in Auditory Cortex in Schizophrenia. Front Neuroanat 2018; 11:131. [PMID: 29375326 PMCID: PMC5767177 DOI: 10.3389/fnana.2017.00131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022] Open
Abstract
It has long been known that auditory processing is disrupted in schizophrenia. More recently, postmortem studies have provided direct evidence that morphological alterations to neurons in auditory cortex are implicated in the pathophysiology of this illness, confirming previous predictions. Potential neural substrates for auditory impairment and gray matter loss in auditory cortex in schizophrenia have been identified, described, and are the focus of this review article. Pyramidal cell somal volume is reduced in auditory cortex, as are dendritic spine density and number in schizophrenia. Pyramidal cells are not lost in this region in schizophrenia, indicating that dendritic spine reductions reflect fewer spines per pyramidal cell, consistent with the reduced neuropil hypothesis of schizophrenia. Stereological methods have aided in the proper collection, reporting and interpretation of this data. Mechanistic studies exploring relationships between genetic risk for schizophrenia and altered dendrite morphology represent an important avenue for future research in order to further elucidate cellular pathology in auditory cortex in schizophrenia.
Collapse
Affiliation(s)
- Emily M Parker
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robert A Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States.,VISN 4 Mental Illness Research, Education and Clinical Center (MIRECC), VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
| |
Collapse
|
21
|
Wu C, Zheng Y, Li J, She S, Peng H, Li L. Cortical Gray Matter Loss, Augmented Vulnerability to Speech-on-Speech Masking, and Delusion in People With Schizophrenia. Front Psychiatry 2018; 9:287. [PMID: 30022955 PMCID: PMC6040158 DOI: 10.3389/fpsyt.2018.00287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/12/2018] [Indexed: 11/13/2022] Open
Abstract
People with schizophrenia exhibit impairments in target-speech recognition (TSR) against multiple-talker-induced informational speech masking. Up to date, the underlying neural mechanisms and its relationships with psychotic symptoms remain largely unknown. This study aimed to investigate whether the schizophrenia-associated TSR impairment contribute to certain psychotic symptoms by sharing underlying alternations in cortical gray-matter volume (GMV) with the psychotic symptoms. Participants with schizophrenia (N = 34) and their matched healthy controls (N = 29) were tested for TSR against a two-talker-speech masker. Psychotic symptoms of participants with schizophrenia were evaluated using the Positive and Negative Syndrome Scale. The regional GMV across various cortical regions was assessed using the voxel-based morphometry. The results of partial-correlation and mediation analyses showed that in participants with schizophrenia, the TSR was negatively correlated with the delusion severity, but positively with the GMV in the bilateral superior/middle temporal cortex, bilateral insular, left medial orbital frontal gyrus, left Rolandic operculum, left mid-cingulate cortex, left posterior fusiform, and left cerebellum. Moreover, the association between GMV and delusion was based on the mediating role played by the TSR performance. Thus, in people with schizophrenia, both delusions and the augmented vulnerability of TSR to informational masking are associated with each other and share the underlying cortical GMV reduction, suggesting that the origin of delusion in schizophrenia may be related to disorganized or limited informational processing (e.g., the incapability of adequately filtering information from multiple sources at the perceptual level). The TSR impairment can be a potential marker for predicting delusion severity.
Collapse
Affiliation(s)
- Chao Wu
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Yingjun Zheng
- Guangzhou Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Juanhua Li
- Guangzhou Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shenglin She
- Guangzhou Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hongjun Peng
- Guangzhou Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liang Li
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Key Laboratory on Machine Perception, Ministry of Education, Peking University, Beijing, China.,Beijing Institute for Brain Disorder, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Mørch-Johnsen L, Nesvåg R, Jørgensen KN, Lange EH, Hartberg CB, Haukvik UK, Kompus K, Westerhausen R, Osnes K, Andreassen OA, Melle I, Hugdahl K, Agartz I. Auditory Cortex Characteristics in Schizophrenia: Associations With Auditory Hallucinations. Schizophr Bull 2017; 43:75-83. [PMID: 27605526 PMCID: PMC5216858 DOI: 10.1093/schbul/sbw130] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Neuroimaging studies have demonstrated associations between smaller auditory cortex volume and auditory hallucinations (AH) in schizophrenia. Reduced cortical volume can result from a reduction of either cortical thickness or cortical surface area, which may reflect different neuropathology. We investigate for the first time how thickness and surface area of the auditory cortex relate to AH in a large sample of schizophrenia spectrum patients. METHODS Schizophrenia spectrum (n = 194) patients underwent magnetic resonance imaging. Mean cortical thickness and surface area in auditory cortex regions (Heschl's gyrus [HG], planum temporale [PT], and superior temporal gyrus [STG]) were compared between patients with (AH+, n = 145) and without (AH-, n = 49) a lifetime history of AH and 279 healthy controls. RESULTS AH+ patients showed significantly thinner cortex in the left HG compared to AH- patients (d = 0.43, P = .0096). There were no significant differences between AH+ and AH- patients in cortical thickness in the PT or STG, or in auditory cortex surface area in any of the regions investigated. Group differences in cortical thickness in the left HG was not affected by duration of illness or current antipsychotic medication. CONCLUSIONS AH in schizophrenia patients were related to thinner cortex, but not smaller surface area of the left HG, a region which includes the primary auditory cortex. The results support that structural abnormalities of the auditory cortex underlie AH in schizophrenia.
Collapse
Affiliation(s)
- Lynn Mørch-Johnsen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; .,NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ragnar Nesvåg
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway;,Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Kjetil N. Jørgensen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway;,NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Elisabeth H. Lange
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway;,NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Cecilie B. Hartberg
- NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Unn K. Haukvik
- NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kristiina Kompus
- NORMENT, Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | | | - Kåre Osnes
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ole A. Andreassen
- NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway;,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Melle
- NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway;,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Kenneth Hugdahl
- NORMENT, Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway;,Division of Psychiatry and Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway;,NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
23
|
Coffman BA, Haigh SM, Murphy TK, Salisbury DF. Event-related potentials demonstrate deficits in acoustic segmentation in schizophrenia. Schizophr Res 2016; 173:109-15. [PMID: 27032476 PMCID: PMC4993213 DOI: 10.1016/j.schres.2016.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/07/2016] [Accepted: 03/10/2016] [Indexed: 11/25/2022]
Abstract
Segmentation of the acoustic environment into discrete percepts is an important facet of auditory scene analysis (ASA). Segmentation of auditory stimuli into perceptually meaningful and localizable groups is central to ASA in everyday situations; for example, separation of discrete words from continuous sentences when processing language. This is particularly relevant to schizophrenia, where deficits in perceptual organization have been linked to symptoms and cognitive dysfunction. Here we examined event-related potentials in response to grouped tones to elucidate schizophrenia-related differences in acoustic segmentation. We report for the first time in healthy subjects a sustained potential that begins with group initiation and ends with the last tone of the group. These potentials were reduced in schizophrenia, with the greatest differences in responses to first and final tones. Importantly, reductions in sustained potentials in schizophrenia patients were associated with greater negative symptoms and deficits in IQ, working memory, learning, and social cognition. These results suggest deficits in auditory pattern segmentation in schizophrenia may compound deficits in many higher-order facets of the disorder.
Collapse
Affiliation(s)
- Brian A. Coffman
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Institute & Clinic, University of Pittsburgh School of Medicine
| | - Sarah M. Haigh
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Institute & Clinic, University of Pittsburgh School of Medicine
| | - Tim K. Murphy
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Institute & Clinic, University of Pittsburgh School of Medicine
| | - Dean F. Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Institute & Clinic, University of Pittsburgh School of Medicine,Correspondence to: Dean F. Salisbury, PhD, , Clinical Neurophysiology Research Laboratory, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, 3501 Forbes Ave, Suite 420, Pittsburgh, PA 15213
| |
Collapse
|
24
|
Datta D, Arion D, Corradi JP, Lewis DA. Altered expression of CDC42 signaling pathway components in cortical layer 3 pyramidal cells in schizophrenia. Biol Psychiatry 2015; 78:775-85. [PMID: 25981171 PMCID: PMC4600637 DOI: 10.1016/j.biopsych.2015.03.030] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/30/2015] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Cognitive dysfunction in schizophrenia is associated with a lower density of dendritic spines on deep layer 3 pyramidal cells in the dorsolateral prefrontal cortex (DLPFC). These alterations appear to reflect dysregulation of the actin cytoskeleton required for spine formation and maintenance. Consistent with this idea, altered expression of genes in the cell division cycle 42 (CDC42)-CDC42 effector protein (CDC42EP) signaling pathway, a key organizer of the actin cytoskeleton, was previously reported in DLPFC gray matter from subjects with schizophrenia. We examined the integrity of the CDC42-p21-activated serine/threonine protein kinases (PAK)-LIM domain-containing serine/threonine protein kinases (LIMK) signaling pathway in schizophrenia in a layer-specific and cell type-specific fashion in DLPFC deep layer 3. METHODS Using laser microdissection, samples of DLPFC deep layer 3 were collected from 56 matched pairs of subjects with schizophrenia and comparison subjects, and levels of CDC42-PAK-LIMK pathway messenger RNAs were measured by quantitative polymerase chain reaction. These same transcripts also were quantified by microarray in samples of individually microdissected deep layer 3 pyramidal cells from a subset of the same subjects and from monkeys exposed to antipsychotics. RESULTS Relative to comparison subjects, CDC42EP4, LIMK1, LIMK2, ARHGDIA, and PAK3 messenger RNA levels were significantly upregulated in subjects with schizophrenia in laminar and cellular samples. In contrast, CDC42 and PAK1 messenger RNA levels were significantly downregulated specifically in deep layer 3 pyramidal cells. These differences were not attributable to psychotropic medications or other comorbid factors. CONCLUSIONS Findings from the present and prior studies converge on synergistic alterations in CDC42 signaling pathway that could destabilize actin dynamics and produce spine deficits preferentially in deep layer 3 pyramidal cells in schizophrenia.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Neuroscience, University of Pittsburgh School of Medicine,Translational Neuroscience Program, University of Pittsburgh School of Medicine
| | - Dominique Arion
- Department of Psychiatry, University of Pittsburgh School of Medicine,Translational Neuroscience Program, University of Pittsburgh School of Medicine
| | | | - David A. Lewis
- Department of Neuroscience, University of Pittsburgh School of Medicine,Department of Psychiatry, University of Pittsburgh School of Medicine,Translational Neuroscience Program, University of Pittsburgh School of Medicine
| |
Collapse
|
25
|
Bakhshi K, Chance S. The neuropathology of schizophrenia: A selective review of past studies and emerging themes in brain structure and cytoarchitecture. Neuroscience 2015; 303:82-102. [DOI: 10.1016/j.neuroscience.2015.06.028] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 01/12/2023]
|
26
|
MacDonald ML, Ding Y, Newman J, Hemby S, Penzes P, Lewis DA, Yates N, Sweet RA. Altered glutamate protein co-expression network topology linked to spine loss in the auditory cortex of schizophrenia. Biol Psychiatry 2015; 77:959-68. [PMID: 25433904 PMCID: PMC4428927 DOI: 10.1016/j.biopsych.2014.09.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 08/11/2014] [Accepted: 09/02/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Impaired glutamatergic signaling is believed to underlie auditory cortex pyramidal neuron dendritic spine loss and auditory symptoms in schizophrenia. Many schizophrenia risk loci converge on the synaptic glutamate signaling network. We therefore hypothesized that alterations in glutamate signaling protein expression and co-expression network features are present in schizophrenia. METHODS Gray matter homogenates were prepared from auditory cortex gray matter of 22 schizophrenia and 23 matched control subjects, a subset of whom had been previously assessed for dendritic spine density. One hundred fifty-five selected synaptic proteins were quantified by targeted mass spectrometry. Protein co-expression networks were constructed using weighted gene co-expression network analysis. RESULTS Proteins with evidence for altered expression in schizophrenia were significantly enriched for glutamate signaling pathway proteins (GRIA4, GRIA3, ATP1A3, and GNAQ). Synaptic protein co-expression was significantly decreased in schizophrenia with the exception of a small group of postsynaptic density proteins, whose co-expression increased and inversely correlated with spine density in schizophrenia subjects. CONCLUSIONS We observed alterations in the expression of glutamate signaling pathway proteins. Among these, the novel observation of reduced ATP1A3 expression is supported by strong genetic evidence indicating it may contribute to psychosis and cognitive impairment phenotypes. The observations of altered protein network topology further highlight the complexity of glutamate signaling network pathology in schizophrenia and provide a framework for evaluating future experiments to model the contribution of genetic risk to disease pathology.
Collapse
Affiliation(s)
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA
| | - Jason Newman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Scott Hemby
- Neuroscience Program, Wake Forest University School of Medicine, Winston-Salem, NC,Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Il,Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Il
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | | | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA,VISN 4 Mental Illness Research, Education and Clinical Center (MIRECC), VA Pittsburgh Healthcare System, Pittsburgh, PA,Department of Neurology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
27
|
Preliminary evidence for reduced auditory lateral suppression in schizophrenia. Schizophr Res 2015; 162:269-75. [PMID: 25583249 PMCID: PMC4339496 DOI: 10.1016/j.schres.2014.12.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 11/21/2022]
Abstract
BACKGROUND Well-documented auditory processing deficits such as impaired frequency discrimination and reduced suppression of auditory brain responses in schizophrenia (SZ) may contribute to abnormal auditory functioning in everyday life. Lateral suppression of non-stimulated neurons by stimulated neurons has not been extensively assessed in SZ and likely plays an important role in precise encoding of sounds. Therefore, this study evaluated whether lateral suppression of activity in auditory cortex is impaired in SZ. METHODS SZ participants and control participants watched a silent movie with subtitles while listening to trials composed of a 0.5s control stimulus (CS), a 3s filtered masking noise (FN), and a 0.5s test stimulus (TS). The CS and TS were identical on each trial and had energy corresponding to the high energy (recurrent suppression) or low energy (lateral suppression) portions of the FN. Event-related potentials were recorded and suppression was measured as the amplitude change between CS and TS. RESULTS Peak amplitudes of the auditory P2 component (160-260ms) showed reduced lateral but not recurrent suppression in SZ participants. CONCLUSIONS Reduced lateral suppression in SZ participants may lead to overlap of neuronal populations representing different auditory stimuli. Such imprecise neural representations may contribute to the difficulties SZ participants have in discriminating complex stimuli in everyday life.
Collapse
|
28
|
Hu W, MacDonald ML, Elswick DE, Sweet RA. The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies. Ann N Y Acad Sci 2014; 1338:38-57. [PMID: 25315318 DOI: 10.1111/nyas.12547] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A number of studies have indicated that antagonists of the N-methyl-d-aspartate subtypes of glutamate receptors can cause schizophrenia-like symptoms in healthy individuals and exacerbate symptoms in individuals with schizophrenia. These findings have led to the glutamate hypothesis of schizophrenia. Here we review the evidence for this hypothesis in postmortem studies of brain tissue from individuals affected by schizophrenia, summarizing studies of glutamate neuron morphology, of expression of glutamate receptors and transporters, and of the synthesizing and metabolizing enzymes for glutamate and its co-agonists. We found consistent evidence of morphological alterations of dendrites of glutamatergic neurons in the cerebral cortex of subjects with schizophrenia and of reduced levels of the axon bouton marker synaptophysin. There were no consistent alterations of mRNA expression of glutamate receptors, although there has been limited study of the corresponding proteins. Studies of the glutamate metabolic pathway have been limited, although there is some evidence that excitatory amino acid transporter-2, glutamine synthetase, and glutaminase have altered expression in schizophrenia. Future studies would benefit from additional direct examination of glutamatergic proteins. Further advances, such as selective testing of synaptic microdomains, cortical layers, and neuronal subtypes, may also be required to elucidate the nature of glutamate signaling impairments in schizophrenia.
Collapse
Affiliation(s)
- Wei Hu
- Department of Behavioral Medicine and Psychiatry, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | | | | | | |
Collapse
|
29
|
Simple method for evaluation of planum temporale pyramidal neurons shrinkage in postmortem tissue of Alzheimer disease patients. BIOMED RESEARCH INTERNATIONAL 2014; 2014:607171. [PMID: 24719875 PMCID: PMC3956417 DOI: 10.1155/2014/607171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/17/2013] [Accepted: 01/04/2014] [Indexed: 11/18/2022]
Abstract
We measured the length of the pyramidal neurons in the cortical layer III in four subregions of the planum temporale (transitions into superior temporal gyrus, Heschl's gyrus, insular cortex, and Sylvian fissure) in control group and Alzheimer disease patients. Our hypothesis was that overall length of the pyramidal neurons would be smaller in the Alzheimer disease group compared to controls and also there would be right-left asymmetry in both the control and Alzheimer disease groups. We found pyramidal neuron length asymmetry only in controls—in the transition into the Sylvian fissure—and the rest of the subregions in the control group and Alzheimer disease patients did not show size difference. However, control-Alzheimer disease group pyramidal neuron length comparison revealed (a) no length difference in superior temporal gyrus transition area, (b) reversal of asymmetry in the insular transition area with left insular transition significantly shorter in the Alzheimer disease group compared to the control group, (c) both right and left Heschl's gyrus transitions significantly shorter in the Alzheimer disease group compared to the control group, and (d) right Sylvian fissure transition significantly shorter in the Alzheimer disease group compared to the control group. This neuronal length measurement method could supplement already existing neuropathological criteria for postmortem Alzheimer disease diagnostics.
Collapse
|
30
|
Pietersen CY, Mauney SA, Kim SS, Lim MP, Rooney RJ, Goldstein JM, Petryshen TL, Seidman LJ, Shenton ME, McCarley RW, Sonntag KC, Woo TUW. Molecular profiles of pyramidal neurons in the superior temporal cortex in schizophrenia. J Neurogenet 2014; 28:53-69. [PMID: 24702465 PMCID: PMC4196521 DOI: 10.3109/01677063.2014.882918] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/09/2014] [Indexed: 12/22/2022]
Abstract
Disrupted synchronized oscillatory firing of pyramidal neuronal networks in the cerebral cortex in the gamma frequency band (i.e., 30-100 Hz) mediates many of the cognitive deficits and symptoms of schizophrenia. In fact, the density of dendritic spines and the average somal area of pyramidal neurons in layer 3 of the cerebral cortex, which mediate both long-range (associational) and local (intrinsic) corticocortical connections, are decreased in subjects with this illness. To explore the molecular pathophysiology of pyramidal neuronal dysfunction, we extracted ribonucleic acid (RNA) from laser-captured pyramidal neurons from layer 3 of Brodmann's area 42 of the superior temporal gyrus (STG) from postmortem brains from schizophrenia and normal control subjects. We then profiled the messenger RNA (mRNA) expression of these neurons, using microarray technology. We identified 1331 mRNAs that were differentially expressed in schizophrenia, including genes that belong to the transforming growth factor beta (TGF-β) and the bone morphogenetic proteins (BMPs) signaling pathways. Disturbances of these signaling mechanisms may in part contribute to the altered expression of other genes found to be differentially expressed in this study, such as those that regulate extracellular matrix (ECM), apoptosis, and cytoskeletal and synaptic plasticity. In addition, we identified 10 microRNAs (miRNAs) that were differentially expressed in schizophrenia; enrichment analysis of their predicted gene targets revealed signaling pathways and gene networks that were found by microarray to be dysregulated, raising an interesting possibility that dysfunction of pyramidal neurons in schizophrenia may in part be mediated by a concerted dysregulation of gene network functions as a result of the altered expression of a relatively small number of miRNAs. Taken together, findings of this study provide a neurobiological framework within which specific hypotheses about the molecular mechanisms of pyramidal cell dysfunction in schizophrenia can be formulated.
Collapse
Affiliation(s)
- Charmaine Y. Pietersen
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah A. Mauney
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
| | - Susie S. Kim
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
| | - Maribel P. Lim
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
| | | | - Jill M. Goldstein
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Tracey L. Petryshen
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Larry J. Seidman
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Martha E. Shenton
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Robert W. McCarley
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton, Massachusetts, USA
| | - Kai-C. Sonntag
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, McLean Hospital, Belmont, Massachusetts, USA
| | - Tsung-Ung W. Woo
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Edgar JC, Chen YH, Lanza M, Howell B, Chow VY, Heiken K, Liu S, Wootton C, Hunter MA, Huang M, Miller GA, Cañive JM. Cortical thickness as a contributor to abnormal oscillations in schizophrenia? NEUROIMAGE-CLINICAL 2013; 4:122-9. [PMID: 24371794 PMCID: PMC3871288 DOI: 10.1016/j.nicl.2013.11.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 11/06/2013] [Accepted: 11/12/2013] [Indexed: 11/25/2022]
Abstract
Introduction Although brain rhythms depend on brain structure (e.g., gray and white matter), to our knowledge associations between brain oscillations and structure have not been investigated in healthy controls (HC) or in individuals with schizophrenia (SZ). Observing function–structure relationships, for example establishing an association between brain oscillations (defined in terms of amplitude or phase) and cortical gray matter, might inform models on the origins of psychosis. Given evidence of functional and structural abnormalities in primary/secondary auditory regions in SZ, the present study examined how superior temporal gyrus (STG) structure relates to auditory STG low-frequency and 40 Hz steady-state activity. Given changes in brain activity as a function of age, age-related associations in STG oscillatory activity were also examined. Methods Thirty-nine individuals with SZ and 29 HC were recruited. 40 Hz amplitude-modulated tones of 1 s duration were presented. MEG and T1-weighted sMRI data were obtained. Using the sources localizing 40 Hz evoked steady-state activity (300 to 950 ms), left and right STG total power and inter-trial coherence were computed. Time–frequency group differences and associations with STG structure and age were also examined. Results Decreased total power and inter-trial coherence in SZ were observed in the left STG for initial post-stimulus low-frequency activity (~ 50 to 200 ms, ~ 4 to 16 Hz) as well as 40 Hz steady-state activity (~ 400 to 1000 ms). Left STG 40 Hz total power and inter-trial coherence were positively associated with left STG cortical thickness in HC, not in SZ. Left STG post-stimulus low-frequency and 40 Hz total power were positively associated with age, again only in controls. Discussion Left STG low-frequency and steady-state gamma abnormalities distinguish SZ and HC. Disease-associated damage to STG gray matter in schizophrenia may disrupt the age-related left STG gamma-band function–structure relationships observed in controls. Associations between brain oscillations and structure were investigated in SZ The present study examined how superior temporal gyrus (STG) structure and agerelate to auditory STG low-frequency and 40 Hz steady-state activity Decreased total power and inter-trial coherence in SZ were observed in the left STG for early low-frequency activity (~ 50 to 200 ms, ~ 4 to 16 Hz) as well as 40 Hz steady-state activity (~ 400 to 1000 ms) Left STG 40 Hz total power and inter-trial coherence were positively associated with left STG cortical thickness in HC, not in SZ Disease-associated damage to STG gray matter in schizophrenia may disrupt the age-related left STG function-structure relationships observed in controls.
Collapse
Affiliation(s)
- J Christopher Edgar
- The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Yu-Han Chen
- The University of New Mexico School of Medicine, Department of Psychiatry, Center for Psychiatric Research, Albuquerque, NM, USA ; New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Albuquerque, NM, USA
| | - Matthew Lanza
- The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Breannan Howell
- The University of New Mexico School of Medicine, Department of Psychiatry, Center for Psychiatric Research, Albuquerque, NM, USA ; New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Albuquerque, NM, USA
| | - Vivian Y Chow
- The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Kory Heiken
- The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Song Liu
- The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Cassandra Wootton
- The University of New Mexico School of Medicine, Department of Psychiatry, Center for Psychiatric Research, Albuquerque, NM, USA ; New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Albuquerque, NM, USA
| | - Michael A Hunter
- The University of New Mexico School of Medicine, Department of Psychiatry, Center for Psychiatric Research, Albuquerque, NM, USA ; New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Albuquerque, NM, USA
| | - Mingxiong Huang
- The University of California San Diego, Department of Radiology, San Diego, CA, USA ; San Diego VA Healthcare System, Department of Radiology, San Diego, CA, USA
| | - Gregory A Miller
- University of California, Los Angeles, Department of Psychology, USA
| | - José M Cañive
- The University of New Mexico School of Medicine, Department of Psychiatry, Center for Psychiatric Research, Albuquerque, NM, USA ; New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Albuquerque, NM, USA
| |
Collapse
|
32
|
Ahmad A, Momenan R, van Gelderen P, Moriguchi T, Greiner RS, Salem N. Gray and White Matter Brain Volume in Aged Rats Raised onn-3 Fatty Acid Deficient Diets. Nutr Neurosci 2013; 7:13-20. [PMID: 15085554 DOI: 10.1080/1028415042000202009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Omega-3 or n-3 fatty acids, especially docosahexaenoic acid, are important structural lipids in the brain. Their deficiency leads to a number of sensory, cognitive and behavioral effects. In previous studies, we showed that n-3 deficiency led to a decrease in the neuronal size of a number of brain regions in young rats. In particular, the neuronal size in the hippocampus CA1-CA3 layers decreased with a slight increase in the volumes of these layers. Therefore, we asked whether fatty acid deficiency could affect rat brain morphology in older animals. To address this question, we carried out gross morphological analysis using Magnetic Resonance Imaging on the gray and white matter volumes of brains in older rats (> 15 months) that were raised on n-3 deficient diets for three generations. We did not detect any differences in the total or regional gray and white matter volumes of brains of old rats maintained on a n-3 deficient or supplemented diet.
Collapse
Affiliation(s)
- Aneeq Ahmad
- Section of Nutritional Neuroscience, Laboratory of Membrane Biochemistry and Biophysics, National Institutes on Alcohol Abuse and Alcoholism, Rockville, MD, USA
| | | | | | | | | | | |
Collapse
|
33
|
Chen YH, Edgar JC, Huang M, Hunter MA, Epstein E, Howell B, Lu BY, Bustillo J, Miller GA, Cañive JM. Frontal and superior temporal auditory processing abnormalities in schizophrenia. NEUROIMAGE-CLINICAL 2013; 2:695-702. [PMID: 24179821 PMCID: PMC3777790 DOI: 10.1016/j.nicl.2013.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Although magnetoencephalography (MEG) studies show superior temporal gyrus (STG) auditory processing abnormalities in schizophrenia at 50 and 100 ms, EEG and corticography studies suggest involvement of additional brain areas (e.g., frontal areas) during this interval. Study goals were to identify 30 to 130 ms auditory encoding processes in schizophrenia (SZ) and healthy controls (HC) and group differences throughout the cortex. METHODS The standard paired-click task was administered to 19 SZ and 21 HC subjects during MEG recording. Vector-based Spatial-temporal Analysis using L1-minimum-norm (VESTAL) provided 4D maps of activity from 30 to 130 ms. Within-group t-tests compared post-stimulus 50 ms and 100 ms activity to baseline. Between-group t-tests examined 50 and 100 ms group differences. RESULTS Bilateral 50 and 100 ms STG activity was observed in both groups. HC had stronger bilateral 50 and 100 ms STG activity than SZ. In addition to the STG group difference, non-STG activity was also observed in both groups. For example, whereas HC had stronger left and right inferior frontal gyrus activity than SZ, SZ had stronger right superior frontal gyrus and left supramarginal gyrus activity than HC. CONCLUSIONS Less STG activity was observed in SZ than HC, indicating encoding problems in SZ. Yet auditory encoding abnormalities are not specific to STG, as group differences were observed in frontal and SMG areas. Thus, present findings indicate that individuals with SZ show abnormalities in multiple nodes of a concurrently activated auditory network.
Collapse
Key Words
- Auditory
- DTI, diffusion tensor imaging
- ECG, electrocardiogram
- EEG, electroencephalography
- EOG, electro-oculogram
- ERF, event-related field
- ERP, event-related potential
- FDR, false discovery rates
- Frontal cortex
- HC, healthy controls
- IFG, inferior frontal gyrus
- ITG, inferior temporal gyrus
- MEG
- MEG, magnetoencephalography
- PANSS, Positive and Negative Syndrome Scale
- PFC, prefrontal cortex
- S1, first click
- S2, second click
- SES, socioeconomic status
- SFG, superior frontal gyrus
- SMA, supplementary motor area
- SMG, supramarginal gyrus
- SSS, Signal Space Separation
- STG, superior temporal gyrus
- Schizophrenia
- Superior temporal gyrus
- VESTAL, Vector-based Spatio-temporal Analysis using L1-minimum norm
- fMRI, functional magnetic resonance imaging
- sMRI, structural magnetic resonance imaging
Collapse
Affiliation(s)
- Yu-Han Chen
- University of New Mexico School of Medicine, Department of Psychiatry, Albuquerque, NM, USA
- New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Albuquerque, NM, USA
- Corresponding author at: The University of New Mexico, Center for Psychiatric Research, 1101 Yale Blvd NE, 2nd Floor, Albuquerque, NM 87106, USA. Tel.: + 1 5052722670.
| | - J. Christopher Edgar
- Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Mingxiong Huang
- University of California San Diego, Department of Radiology, San Diego, CA, USA
- San Diego VA Healthcare System, Department of Radiology, San Diego, CA, USA
| | - Michael A. Hunter
- University of New Mexico School of Medicine, Department of Psychiatry, Albuquerque, NM, USA
- New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Albuquerque, NM, USA
- University of New Mexico, Department of Psychology, Albuquerque, NM, USA
| | - Emerson Epstein
- University of New Mexico School of Medicine, Department of Psychiatry, Albuquerque, NM, USA
- New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Albuquerque, NM, USA
| | - Breannan Howell
- University of New Mexico School of Medicine, Department of Psychiatry, Albuquerque, NM, USA
- New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Albuquerque, NM, USA
| | - Brett Y. Lu
- University of Hawaii at Manoa, Department of Psychiatry, Honolulu, HI, USA
| | - Juan Bustillo
- University of New Mexico School of Medicine, Department of Psychiatry, Albuquerque, NM, USA
| | | | - José M. Cañive
- University of New Mexico School of Medicine, Department of Psychiatry, Albuquerque, NM, USA
- New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Albuquerque, NM, USA
| |
Collapse
|
34
|
Asafu-Adjei JK, Sampson AR, Sweet RA, Lewis DA. Adjusting for matching and covariates in linear discriminant analysis. Biostatistics 2013; 14:779-91. [PMID: 23640791 DOI: 10.1093/biostatistics/kxt017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In studies that compare several diagnostic or treatment groups, subjects may not only be measured on a certain set of feature variables, but also be matched on a number of demographic characteristics and measured on additional covariates. Linear discriminant analysis (LDA) is sometimes used to identify which feature variables best discriminate among groups, while accounting for the dependencies among the feature variables. We present a new approach to LDA for multivariate normal data that accounts for the subject matching used in a particular study design, as well as covariates not used in the matching. Applications are given for post-mortem tissue data with the aim of comparing neurobiological characteristics of subjects with schizophrenia with those of normal controls, and for a post-mortem tissue primate study comparing brain biomarker measurements across three treatment groups. We also investigate the performance of our approach using a simulation study.
Collapse
|
35
|
Kompus K, Falkenberg LE, Bless JJ, Johnsen E, Kroken RA, Kråkvik B, Larøi F, Løberg EM, Vedul-Kjelsås E, Westerhausen R, Hugdahl K. The role of the primary auditory cortex in the neural mechanism of auditory verbal hallucinations. Front Hum Neurosci 2013. [PMID: 23630479 DOI: 10.3389/fnhum.2013.0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Auditory verbal hallucinations (AVHs) are a subjective experience of "hearing voices" in the absence of corresponding physical stimulation in the environment. The most remarkable feature of AVHs is their perceptual quality, that is, the experience is subjectively often as vivid as hearing an actual voice, as opposed to mental imagery or auditory memories. This has lead to propositions that dysregulation of the primary auditory cortex (PAC) is a crucial component of the neural mechanism of AVHs. One possible mechanism by which the PAC could give rise to the experience of hallucinations is aberrant patterns of neuronal activity whereby the PAC is overly sensitive to activation arising from internal processing, while being less responsive to external stimulation. In this paper, we review recent research relevant to the role of the PAC in the generation of AVHs. We present new data from a functional magnetic resonance imaging (fMRI) study, examining the responsivity of the left and right PAC to parametrical modulation of the intensity of auditory verbal stimulation, and corresponding attentional top-down control in non-clinical participants with AVHs, and non-clinical participants with no AVHs. Non-clinical hallucinators showed reduced activation to speech sounds but intact attentional modulation in the right PAC. Additionally, we present data from a group of schizophrenia patients with AVHs, who do not show attentional modulation of left or right PAC. The context-appropriate modulation of the PAC may be a protective factor in non-clinical hallucinations.
Collapse
Affiliation(s)
- Kristiina Kompus
- Department of Biological and Medical Psychology, University of Bergen Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kompus K, Falkenberg LE, Bless JJ, Johnsen E, Kroken RA, Kråkvik B, Larøi F, Løberg EM, Vedul-Kjelsås E, Westerhausen R, Hugdahl K. The role of the primary auditory cortex in the neural mechanism of auditory verbal hallucinations. Front Hum Neurosci 2013; 7:144. [PMID: 23630479 PMCID: PMC3633947 DOI: 10.3389/fnhum.2013.00144] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/02/2013] [Indexed: 12/21/2022] Open
Abstract
Auditory verbal hallucinations (AVHs) are a subjective experience of “hearing voices” in the absence of corresponding physical stimulation in the environment. The most remarkable feature of AVHs is their perceptual quality, that is, the experience is subjectively often as vivid as hearing an actual voice, as opposed to mental imagery or auditory memories. This has lead to propositions that dysregulation of the primary auditory cortex (PAC) is a crucial component of the neural mechanism of AVHs. One possible mechanism by which the PAC could give rise to the experience of hallucinations is aberrant patterns of neuronal activity whereby the PAC is overly sensitive to activation arising from internal processing, while being less responsive to external stimulation. In this paper, we review recent research relevant to the role of the PAC in the generation of AVHs. We present new data from a functional magnetic resonance imaging (fMRI) study, examining the responsivity of the left and right PAC to parametrical modulation of the intensity of auditory verbal stimulation, and corresponding attentional top-down control in non-clinical participants with AVHs, and non-clinical participants with no AVHs. Non-clinical hallucinators showed reduced activation to speech sounds but intact attentional modulation in the right PAC. Additionally, we present data from a group of schizophrenia patients with AVHs, who do not show attentional modulation of left or right PAC. The context-appropriate modulation of the PAC may be a protective factor in non-clinical hallucinations.
Collapse
Affiliation(s)
- Kristiina Kompus
- Department of Biological and Medical Psychology, University of Bergen Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Deo AJ, Goldszer IM, Li S, DiBitetto JV, Henteleff R, Sampson A, Lewis DA, Penzes P, Sweet RA. PAK1 protein expression in the auditory cortex of schizophrenia subjects. PLoS One 2013; 8:e59458. [PMID: 23613712 PMCID: PMC3632562 DOI: 10.1371/journal.pone.0059458] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 02/18/2013] [Indexed: 01/09/2023] Open
Abstract
Deficits in auditory processing are among the best documented endophenotypes in schizophrenia, possibly due to loss of excitatory synaptic connections. Dendritic spines, the principal post-synaptic target of excitatory projections, are reduced in schizophrenia. p21-activated kinase 1 (PAK1) regulates both the actin cytoskeleton and dendritic spine density, and is a downstream effector of both kalirin and CDC42, both of which have altered expression in schizophrenia. This study sought to determine if there is decreased auditory cortex PAK1 protein expression in schizophrenia through the use of quantitative western blots of 25 schizophrenia subjects and matched controls. There was no significant change in PAK1 level detected in the schizophrenia subjects in our cohort. PAK1 protein levels within subject pairs correlated positively with prior measures of total kalirin protein in the same pairs. PAK1 level also correlated with levels of a marker of dendritic spines, spinophilin. These latter two findings suggest that the lack of change in PAK1 level in schizophrenia is not due to limited sensitivity of our assay to detect meaningful differences in PAK1 protein expression. Future studies are needed to evaluate whether alterations in PAK1 phosphorylation states, or alterations in protein expression of other members of the PAK family, are present in schizophrenia.
Collapse
Affiliation(s)
- Anthony J. Deo
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Physician Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Isaac M. Goldszer
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Siyu Li
- Department of Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - James V. DiBitetto
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Ruth Henteleff
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Allan Sampson
- Department of Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - David A. Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Robert A. Sweet
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- VISN 4 Mental Illness Research, Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
38
|
O'Donnell BF, Vohs JL, Krishnan GP, Rass O, Hetrick WP, Morzorati SL. The auditory steady-state response (ASSR): a translational biomarker for schizophrenia. SUPPLEMENTS TO CLINICAL NEUROPHYSIOLOGY 2013; 62:101-12. [PMID: 24053034 DOI: 10.1016/b978-0-7020-5307-8.00006-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Electrophysiological methods have demonstrated disturbances of neural synchrony and oscillations in schizophrenia which affect a broad range of sensory and cognitive processes. These disturbances may account for a loss of neural integration and effective connectivity in the disorder. The mechanisms responsible for alterations in synchrony are not well delineated, but may reflect disturbed interactions within GABAergic and glutamatergic circuits, particularly in the gamma range. Auditory steady-state responses (ASSRs) provide a non-invasive technique used to assess neural synchrony in schizophrenia and in animal models at specific response frequencies. ASSRs are electrophysiological responses entrained to the frequency and phase of a periodic auditory stimulus generated by auditory pathway and auditory cortex activity. Patients with schizophrenia show reduced ASSR power and phase locking to gamma range stimulation. We review alterations of ASSRs in schizophrenia, schizotypal personality disorder, and first-degree relatives of patients with schizophrenia. In vitro and in vivo approaches have been used to test cellular mechanisms for this pattern of findings. This translational, cross-species approach provides support for the role of N-methyl-D-aspartate and GABAergic dysregulation in the genesis of perturbed ASSRs in schizophrenia and persons at risk.
Collapse
Affiliation(s)
- Brian F O'Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Lewis DA. Cortical circuit dysfunction and cognitive deficits in schizophrenia--implications for preemptive interventions. Eur J Neurosci 2012; 35:1871-8. [PMID: 22708598 DOI: 10.1111/j.1460-9568.2012.08156.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Schizophrenia is a devastating disorder that is common, usually chronic, frequently associated with substantial co-morbidity for addictive and medical disorders and, as a consequence, very costly in both personal and economic terms. At present, no proven means for preventing or modifying the course of the illness exist. This review discusses evidence supporting the ideas that: (i) impairments in certain cognitive processes are the core feature of schizophrenia; (ii) these cognitive impairments reflect abnormalities in specific cortical circuits; and (iii) these circuitry abnormalities arise during childhood-adolescence. The implications of these findings for the development and implementation of safe, preemptive, disease-modifying interventions in individuals at high risk for a clinical diagnosis of schizophrenia are considered.
Collapse
Affiliation(s)
- David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, 3811 O'Hara Street, Biomedical Science Tower W1654, Pittsburgh, PA 15213, USA.
| |
Collapse
|
40
|
Edgar JC, Hunter MA, Huang M, Smith AK, Chen Y, Sadek J, Lu BY, Miller GA, Cañive JM. Temporal and frontal cortical thickness associations with M100 auditory activity and attention in healthy controls and individuals with schizophrenia. Schizophr Res 2012; 140:250-7. [PMID: 22766129 PMCID: PMC3423523 DOI: 10.1016/j.schres.2012.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND Although gray matter (GM) abnormalities are frequently observed in individuals with schizophrenia (SCZ), the functional consequences of these structural abnormalities are not yet understood. The present study sought to better understand GM abnormalities in SCZ by examining associations between GM and two putative functional SCZ biomarkers: weak 100 ms (M100) auditory responses and impairment on tests of attention. METHODS Data were available from 103 subjects (healthy controls=52, SCZ=51). GM cortical thickness measures were obtained for superior temporal gyrus (STG) and prefrontal cortex (PFC). Magnetoencephalography (MEG) provided measures of left and right STG M100 source strength. Subjects were administered the Trail Making Test A and the Connors' Continuous Performance Test to assess attention. RESULTS A strong trend indicated less GM cortical thickness in SCZ than controls in both regions and in both hemispheres (p=0.06). Individuals with SCZ had weaker M100 responses than controls bilaterally, and individuals with SCZ performed more poorly than controls on tests of attention. Across groups, left STG GM was positively associated with left M00 source strength. In SCZ only, less left and right STG and PFC GM predicted poorer performance on tests of attention. After removing variance in attention associated with age, associations between GM and attention remained significant only in left and right STG. CONCLUSIONS Reduced GM cortical thickness may serve as a common substrate for multiple functional abnormalities in SCZ, with structural-functional abnormalities in STG GM especially prominent. As suggested by others, functional abnormalities in SCZ may be a consequence of elimination of the neuropil (dendritic arbors and associated synaptic infrastructure) between neuron bodies.
Collapse
Affiliation(s)
- J. Christopher Edgar
- The Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA,Corresponding Author: J. Christopher Edgar, Children’s Hospital of Philadelphia, 34 and Civic Center Blvd, Department of Neuroradiology, Wood Building (Room 2115), Philadelphia, PA 19104, 215-590-3573,
| | - Michael A. Hunter
- The University of New Mexico, Department of Psychology, Albuquerque, NM, USA,New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Behavioral Health Care Line, Albuquerque, NM, USA,The University of New Mexico School of Medicine, Department of Psychiatry, Albuquerque, NM, USA
| | - Mingxiong Huang
- San Diego VA Healthcare System, Department of Radiology, San Diego, CA, USA,The University of California, Department of Radiology, San Diego, CA, USA
| | - Ashley K. Smith
- The University of Colorado, Department of Psychology and Neuroscience, Boulder, CO, USA
| | - Yuhan Chen
- New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Behavioral Health Care Line, Albuquerque, NM, USA,The University of New Mexico School of Medicine, Department of Psychiatry, Albuquerque, NM, USA
| | - Joseph Sadek
- New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Behavioral Health Care Line, Albuquerque, NM, USA,The University of New Mexico School of Medicine, Department of Psychiatry, Albuquerque, NM, USA
| | - Brett Y Lu
- The University of Hawaii, Department of Psychiatry, Honolulu, HI, USA
| | - Gregory A. Miller
- The University of Illinois at Urbana-Champaign, Department of Psychology, USA, and the University of Delaware, Department of Psychology, USA
| | - José M. Cañive
- The University of New Mexico, Department of Psychology, Albuquerque, NM, USA,New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Behavioral Health Care Line, Albuquerque, NM, USA
| |
Collapse
|
41
|
Rubio MD, Haroutunian V, Meador-Woodruff JH. Abnormalities of the Duo/Ras-related C3 botulinum toxin substrate 1/p21-activated kinase 1 pathway drive myosin light chain phosphorylation in frontal cortex in schizophrenia. Biol Psychiatry 2012; 71:906-14. [PMID: 22458949 PMCID: PMC3334466 DOI: 10.1016/j.biopsych.2012.02.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 02/07/2012] [Accepted: 02/09/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND Recent studies on GTPases have suggested that reduced Duo and cell division cycle 42 (Cdc42) transcript expression is involved in dendritic spine loss in schizophrenia. In murine models, Duo and Cdc42 phosphorylate p21-activated kinase 1 (PAK1), which modifies the activity of regulatory myosin light chain (MLC) and cofilin by altering their phosphorylation. Therefore, we hypothesized that in schizophrenia abnormal Duo and Cdc42 expression result in changes in MLC and/or cofilin phosphorylation, which might alter actin cytoskeleton dynamics underlying dendritic spine maintenance. METHODS We performed Western blot protein expression analysis in postmortem brains from patients diagnosed with schizophrenia and a comparison group. We focused our studies in the anterior cingulate cortex (ACC; n = 33 comparison group; n = 36 schizophrenia) and dorsolateral prefrontal cortex (DLPFC; n = 29 comparison group; n = 35 schizophrenia). RESULTS In both ACC and DLPFC, we found a reduction of Duo expression and PAK1 phosphorylation in schizophrenia. Cdc42 protein expression was decreased in ACC but not in DLPFC. In ACC, we observed decreased PAK1 phosphorylation and increased MLC phosphorylation (pMLC), whereas in DLPFC pMLC remained unchanged. CONCLUSIONS These data suggest a novel mechanism that might underlie dendritic spine loss in schizophrenia. The increase in pMLC seen in ACC might be associated with dendritic spine shrinkage. The lack of an effect on pMLC in DLPFC suggests that in schizophrenia PAK1 downstream pathways are differentially affected in these cortical areas.
Collapse
Affiliation(s)
- María D. Rubio
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA,Corresponding author: , Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1719 6th Ave. S., CIRC 590C, Birmingham, AL 35294-0021, USA
| | - Vahram Haroutunian
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA
| | - James H. Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
42
|
Glausier JR, Lewis DA. Dendritic spine pathology in schizophrenia. Neuroscience 2012; 251:90-107. [PMID: 22546337 DOI: 10.1016/j.neuroscience.2012.04.044] [Citation(s) in RCA: 421] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/22/2012] [Accepted: 04/05/2012] [Indexed: 01/22/2023]
Abstract
Schizophrenia is a neurodevelopmental disorder whose clinical features include impairments in perception, cognition and motivation. These impairments reflect alterations in neuronal circuitry within and across multiple brain regions that are due, at least in part, to deficits in dendritic spines, the site of most excitatory synaptic connections. Dendritic spine alterations have been identified in multiple brain regions in schizophrenia, but are best characterized in layer 3 of the neocortex, where pyramidal cell spine density is lower. These spine deficits appear to arise during development, and thus are likely the result of disturbances in the molecular mechanisms that underlie spine formation, pruning, and/or maintenance. Each of these mechanisms may provide insight into novel therapeutic targets for preventing or repairing the alterations in neural circuitry that mediate the debilitating symptoms of schizophrenia.
Collapse
Affiliation(s)
- J R Glausier
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
43
|
Auditory steady state response in the schizophrenia, first-degree relatives, and schizotypal personality disorder. Schizophr Res 2012; 136:143-9. [PMID: 22285558 PMCID: PMC3298621 DOI: 10.1016/j.schres.2012.01.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/29/2011] [Accepted: 01/04/2012] [Indexed: 11/24/2022]
Abstract
The power and phase synchronization of the auditory steady state response (ASSR) at 40 Hz stimulation is usually reduced in schizophrenia (SZ). The sensitivity of the 40 Hz ASSR to schizophrenia spectrum phenotypes, such as schizotypal personality disorder (SPD), or to familial risk has been less well characterized. We compared the ASSR of patients with SZ, persons with schizotypal personality disorder, first degree relatives of patients with SZ, and healthy control participants. ASSRs were obtained to 20, 30, 40 and 50 Hz click trains, and assessed using measures of power (mean trial power or MTP) and phase consistency (phase locking factor or PLF). The MTP to 40 Hz stimulation was reduced in relatives, and there was a trend for MTP reduction in SZ. The 40 Hz ASSR was not reduced in SPD participants. PLF did not differ among groups. These data suggest the 40 Hz ASSR is sensitive to familial risk factors associated with schizophrenia.
Collapse
|
44
|
Differential relationships of mismatch negativity and visual p1 deficits to premorbid characteristics and functional outcome in schizophrenia. Biol Psychiatry 2012; 71:521-9. [PMID: 22192361 PMCID: PMC4469217 DOI: 10.1016/j.biopsych.2011.10.037] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 10/18/2011] [Accepted: 10/19/2011] [Indexed: 11/21/2022]
Abstract
BACKGROUND Mismatch negativity (MMN) and visual P1 are established event-related potential (ERP) markers of impaired auditory and visual sensory function in schizophrenia. Differential relationships of these measures with premorbid and present function and with clinical course have been noted previously in independent cohorts, but measures have not yet been compared within the same patient group. METHODS Twenty-six schizophrenia patients and 19 control subjects participated in a simultaneous visual and auditory ERPs experiment. Attended visual ERPs were obtained to low- and high-spatial frequency stimuli. Simultaneously, MMN was obtained to unattended pitch, duration, and intensity deviant stimuli. Premorbid function, symptom, and global outcome measures were obtained as correlational measures. RESULTS Patients showed substantial P1 reductions to low- but not high-spatial frequency stimuli, unrelated to visual acuity. Patients also exhibited reduced MMN to all deviant types. No significant correlations were observed between visual ERPs and premorbid or global outcome measures or illness duration. In contrast, MMN amplitude correlated significantly and independently with premorbid educational achievement, cognitive symptoms, global function, and illness duration. The MMN to duration versus other deviants was differentially reduced in individuals with poor premorbid function. CONCLUSIONS Visual and auditory ERP measures are differentially related to the pathophysiology of schizophrenia. Visual deficits correlate poorly with functional measures and illness duration and serve primarily as trait vulnerability markers. The MMN deficits are independently related to premorbid function and illness duration, suggesting independent neurodevelopmental and neurodegenerative contributions. The lack of correlation between auditory and visual ERPs in schizophrenia suggests contributions from divergent underlying neurophysiological processes.
Collapse
|
45
|
Deo AJ, Cahill ME, Li S, Goldszer I, Henteleff R, Vanleeuwen JE, Rafalovich I, Gao R, Stachowski EK, Sampson AR, Lewis DA, Penzes P, Sweet RA. Increased expression of Kalirin-9 in the auditory cortex of schizophrenia subjects: its role in dendritic pathology. Neurobiol Dis 2011; 45:796-803. [PMID: 22120753 DOI: 10.1016/j.nbd.2011.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/07/2011] [Indexed: 11/25/2022] Open
Abstract
Reductions in dendritic arbor length and complexity are among the most consistently replicated changes in neuronal structure in post mortem studies of cerebral cortical samples from subjects with schizophrenia, however, the underlying molecular mechanisms have not been identified. This study is the first to identify an alteration in a regulatory protein which is known to promote both dendritic length and arborization in developing neurons, Kalirin-9. We found Kalirin-9 expression to be paradoxically increased in schizophrenia. We followed up this observation by overexpressing Kalirin-9 in mature primary neuronal cultures, causing reduced dendritic length and complexity. Kalirin-9 overexpression represents a potential mechanism for dendritic changes seen in schizophrenia.
Collapse
Affiliation(s)
- Anthony J Deo
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Asami T, Bouix S, Whitford TJ, Shenton ME, Salisbury DF, McCarley RW. Longitudinal loss of gray matter volume in patients with first-episode schizophrenia: DARTEL automated analysis and ROI validation. Neuroimage 2011; 59:986-96. [PMID: 21924364 DOI: 10.1016/j.neuroimage.2011.08.066] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 08/07/2011] [Accepted: 08/21/2011] [Indexed: 11/25/2022] Open
Abstract
Region of Interest (ROI) longitudinal studies have detected progressive gray matter (GM) volume reductions in patients with first-episode schizophrenia (FESZ). However, there are only a few longitudinal voxel-based morphometry (VBM) studies, and these have been limited in ability to detect relationships between volume loss and symptoms, perhaps because of methodologic issues. Nor have previous studies compared and validated VBM results with manual Region of Interest (ROI) analysis. In the present VBM study, high-dimensional warping and individualized baseline-rescan templates were used to evaluate longitudinal volume changes within subjects and compared with longitudinal manual ROI analysis on the same subjects. VBM evaluated thirty-three FESZ and thirty-six matched healthy control subjects (HC) at baseline (cross-sectionally) and longitudinally evaluated 21 FESZ and 23 HC after an average of 1.5 years from baseline scans. Correlation analyses detected the relationship between changes in regional GM volumes in FESZ and clinical symptoms derived from the Brief Psychiatric Rating Scale, as well as cognitive function as assessed by the Mini-Mental State Examination. At baseline, patients with FESZ had significantly smaller GM volume compared to HC in some regions including the left superior temporal gyrus (STG). On rescan after 1.5 years, patients showed significant GM volume reductions compared with HC in the left STG including Heschl's gyrus, and in widespread brain neocortical regions of frontal, parietal, and limbic regions including the cingulate gyrus. FESZ showed an association of positive symptoms and volume loss in temporal (especially STG) and frontal regions, and negative symptoms and volume loss in STG and frontal regions. Worse cognitive function was linked to widespread volume reduction, in frontal, temporal and parietal regions. The validation VBM analyses showed results similar to our previous ROI findings for STG and cingulate gyrus. We conclude FESZ show widespread, progressive GM volume reductions in many brain regions. Importantly, these reductions are directly associated with a worse clinical course. Congruence with ROI analyses suggests the promise of this longitudinal VBM methodology.
Collapse
Affiliation(s)
- Takeshi Asami
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, Boston Veterans Affairs Healthcare System, Brockton Division, Harvard Medical School, Brockton, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
47
|
The relationship between callosal axons and cortical neurons in the planum temporale: alterations in schizophrenia. Neurosci Res 2011; 71:405-10. [PMID: 21893112 DOI: 10.1016/j.neures.2011.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 08/15/2011] [Indexed: 01/10/2023]
Abstract
The relationship between "connectivity" measures such as DTI and the cellular alterations in the cortex that give rise to those connections remains unclear. Cytoarchitectural changes in the planum temporale (PT) suggest impaired layer III feedforward projection neurons in schizophrenia. Altered hemispheric asymmetry of the PT has been reported in patients, along with altered white matter density in the corpus callosum, and there is anomalous activation of the PT during auditory hallucinations. We measured layer III cell density and pyramidal neuron size in PT of both hemispheres of post-mortem brains from patients with schizophrenia (n=16) and control subjects (n=16). We found reduced cell density and the loss of a correlation between magnopyramidal neuron density and axon number in the isthmus of the corpus callosum in schizophrenia. The normal asymmetry indicated that magnopyramidal neurons tend towards being larger and denser in the left PT but this asymmetry is significantly reduced in schizophrenia. The findings offer cytoarchitectural insight into the relationship between PT cortex and callosal white matter abnormalities in schizophrenia.
Collapse
|
48
|
Krishnan RR, Kraus MS, Keefe RSE. Comprehensive model of how reality distortion and symptoms occur in schizophrenia: could impairment in learning-dependent predictive perception account for the manifestations of schizophrenia? Psychiatry Clin Neurosci 2011; 65:305-17. [PMID: 21447049 DOI: 10.1111/j.1440-1819.2011.02203.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Conventional wisdom has not laid out a clear and uniform profile of schizophrenia as a unitary entity. One of the key first steps in elucidating the neurobiology of this entity would be to characterize the essential and common elements in the group of entities called schizophrenia. Kraepelin in his introduction notes 'the conviction seems to be more and more gaining ground that dementia praecox on the whole represents, a well characterized form of disease, and that we are justified in regarding the majority of the clinical pictures which are brought together here as the expression of a single morbid process, though outwardly they often diverge very far from one another'. But what is that single morbid process? We suggest that just as the uniform defect in all types of cancer is impaired regulation of cell proliferation, the primary defect in the group of entities called schizophrenia is persistent defective hierarchical temporal processing. This manifests in the form of chronic memory-prediction errors or deficits in learning-dependent predictive perception. These deficits account for the symptoms that present as reality distortion (delusions, thought disorder and hallucinations). This constellation of symptoms corresponds with the profile of most patients currently diagnosed as suffering from schizophrenia. In this paper we describe how these deficits can lead to the various symptoms of schizophrenia.
Collapse
Affiliation(s)
- Ranga R Krishnan
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, North Carolina 27710, USA
| | | | | |
Collapse
|
49
|
Hoftman GD, Lewis DA. Postnatal developmental trajectories of neural circuits in the primate prefrontal cortex: identifying sensitive periods for vulnerability to schizophrenia. Schizophr Bull 2011; 37:493-503. [PMID: 21505116 PMCID: PMC3080694 DOI: 10.1093/schbul/sbr029] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a disorder of cognitive neurodevelopment with characteristic abnormalities in working memory attributed, at least in part, to alterations in the circuitry of the dorsolateral prefrontal cortex. Various environmental exposures from conception through adolescence increase risk for the illness, possibly by altering the developmental trajectories of prefrontal cortical circuits. Macaque monkeys provide an excellent model system for studying the maturation of prefrontal cortical circuits. Here, we review the development of glutamatergic and γ-aminobutyric acid (GABA)-ergic circuits in macaque monkey prefrontal cortex and discuss how these trajectories may help to identify sensitive periods during which environmental exposures, such as those associated with increased risk for schizophrenia, might lead to the types of abnormalities in prefrontal cortical function present in schizophrenia.
Collapse
Affiliation(s)
- Gil D. Hoftman
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA
| | - David A. Lewis
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA,To whom correspondence should be addressed; 3811 O'Hara Street, Biomedical Science Tower, W-1654, Pittsburgh, PA 15213, US; tel: 412-383-8548, fax: 412-624-9910, e-mail:
| |
Collapse
|
50
|
Faludi G, Mirnics K. Synaptic changes in the brain of subjects with schizophrenia. Int J Dev Neurosci 2011; 29:305-9. [PMID: 21382468 PMCID: PMC3074034 DOI: 10.1016/j.ijdevneu.2011.02.013] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 02/26/2011] [Indexed: 01/16/2023] Open
Abstract
Clinical, epidemiological, neuroimaging and postmortem data all suggest schizophrenia is a neurodevelopmental disorder, and that synaptic disturbances might play a critical role in developing the disease. In 1982, Feinberg proposed that the schizophrenia might arise as a result of abnormal synaptic pruning. His hypothesis has survived 40years of accumulated data, and we review the critical findings related to synaptic dysfunction of schizophrenia. While it is clear that synaptic disturbances are integral and important for understanding the pathophysiology of schizophrenia, it has also become obvious that synaptic disturbances cannot be studied and understood as an independent disease hallmark, but only as a part of a complex network of homeostatic events. Development, glial-neural interaction, changes in energy homeostasis, diverse genetic predisposition, neuroimmune processes and environmental influences all can tip the delicate homeostatic balance of the synaptic morphology and connectivity in a uniquely individual fashion, thus contributing to the emergence of the various symptoms of this devastating disorder. Finally, we argue that based on a predominant change in gene expression pattern we can broadly sub-stratify schizophrenia into "synaptic" "oligodendroglial", "metabolic" and "inflammatory" subclasses.
Collapse
Affiliation(s)
- Gábor Faludi
- Department of Psychiatry, Kútvölgyi Clinical Centre, Semmelweis University, Budapest, Hungary
| | - Károly Mirnics
- Department of Psychiatry, Vanderbilt University, Nashville, USA
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, USA
| |
Collapse
|