1
|
Peterchev AV, Deng ZD, Sikes-Keilp C, Feuer EC, Rosa MA, Lisanby SH. Optimal Frequency for Seizure Induction With Electroconvulsive Therapy and Magnetic Seizure Therapy in Nonhuman Primates. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100471. [PMID: 40213706 PMCID: PMC11985115 DOI: 10.1016/j.bpsgos.2025.100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/27/2024] [Accepted: 02/11/2025] [Indexed: 04/16/2025] Open
Abstract
Background Electroconvulsive therapy (ECT) and magnetic seizure therapy (MST) are effective in the treatment of medication-resistant depression. Determining the stimulus frequency that results in the lowest seizure threshold could produce fewer adverse effects by reducing the overall stimulus intensity. Methods To determine the optimal frequency for seizure induction, 4 male rhesus macaques were titrated with an increasing number of pulses at fixed frequencies ranging from 5 to 240 pulses per second (pps) using ultrabrief pulse right-unilateral ECT and circular-coil-on-vertex MST. Bilateral electroencephalography was recorded to characterize the seizure expression. Results The seizure threshold dependence on stimulus frequency was similar for ECT and MST. While higher frequencies required progressively shorter trains to induce a seizure, the middle frequency range was associated with the fewest pulses (and therefore the least charge and energy), with a minimum at 16 pps and similarly low thresholds for 10 and 25 pps. The number of pulses at seizure threshold increased markedly at lower and higher frequencies. The lowest stimulus frequencies, 5 and 10 pps, were associated with the greatest ictal power measured by electroencephalography. Conclusions While neither efficacy nor side effects were assessed in this study, the results highlight the significance of stimulus frequency for seizure induction, suggest efficient titration schedules that minimize exposure to the electrical stimulus, and can inform studies to assess the impact on clinical outcomes. These data can also support safety guidelines for interventions such as transcranial magnetic stimulation that must avoid seizure induction.
Collapse
Affiliation(s)
- Angel V. Peterchev
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina
- Department of Neurosurgery, Duke University, Durham, North Carolina
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Christopher Sikes-Keilp
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - Elyssa C. Feuer
- University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Moacyr A. Rosa
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina
- Institute for Advanced Research in Neurostimulation, São Paulo, São Paulo, Brazil
| | - Sarah H. Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
2
|
Li J, Wang J, Yang Y, Gao J, Zhang X. The Effect of Electroconvulsive and Magnetic Seizure Therapy (MST) on Cortical Thickness in Schizophrenia. CNS Neurosci Ther 2025; 31:e70309. [PMID: 40032619 PMCID: PMC11875757 DOI: 10.1111/cns.70309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 02/08/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Identifying ways to conduct brain stimulation that match the clinical efficacy of electroconvulsive therapy (ECT) without the side effects of ECT is an important goal in schizophrenia (SCS). Magnetic seizure therapy (MST) is a potential alternative, which has shown considerable efficacy but with mild cognitive impairment. OBJECTIVE This study compared the clinical efficacy and cognitive side effects of ECT and MST. In addition, we also investigated the possible contribution of cortical thickness changes to treatment response. METHODS Thirty-four confirmed schizophrenia patients were randomly treated with ECT (n = 16) or MST (n = 18) for 4 weeks. Mental symptoms were measured through PANSS, cognition was measured through the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), and changes in cortical thickness before and after treatment were compared using FreeSurfer. RESULTS Both treatments reduced the PANSS score and had comparable efficacy, while MST was superior in preserving the RBANS language score. CONCLUSION In this study, neither the MST group nor the ECT group showed significant changes in cortical thickness after treatment. MST, like ECT, effectively alleviates symptoms of schizophrenia but retains cognitive function slightly better. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02746965.
Collapse
Affiliation(s)
- Jin Li
- Institute of Mental Health, Suzhou Psychiatric HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Junjie Wang
- Institute of Mental Health, Suzhou Psychiatric HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yong Yang
- Institute of Mental Health, Suzhou Psychiatric HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Ju Gao
- Institute of Mental Health, Suzhou Psychiatric HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Xiaobin Zhang
- Institute of Mental Health, Suzhou Psychiatric HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
3
|
Jiang J, Li J, Xu Y, Zhang B, Sheng J, Liu D, Wang W, Yang F, Guo X, Li Q, Zhang T, Tang Y, Jia Y, Wang J, Li C. Does Electroencephalography Seizure Duration Account for an Adequate Treatment of Magnetic Seizure Therapy for Schizophrenia? J ECT 2025; 41:55-61. [PMID: 39178051 DOI: 10.1097/yct.0000000000001047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
OBJECTIVES A seizure lasting >15 s has been considered to indicate treatment for magnetic seizure therapy (MST), a modification of electroconvulsive therapy (ECT), without much validation. This study aimed to investigate whether this seizure duration was suitable for the treatment of schizophrenia. METHODS Altogether, 34 and 33 in-patients with schizophrenia received 10 sessions of MST and ECT, respectively. Clinical symptoms were assessed using the Positive and Negative Symptom Scale at baseline and at the 4-week follow-up. Electroencephalogram (EEG) was monitored during each MST or ECT treatment using bifrontal electrodes. RESULTS The proportion of participants who achieved the 15-second threshold was only 28.6% in the MST group, with a significant difference between responders and nonresponders. For patients receiving MST, the average EEG seizure duration correlated with the percentage of Positive and Negative Symptom Scale reduction ( t(32) = 2.51, P = 0.017, uncorrected; t(32) = 2.00, P = 0.055, corrected with clinical characteristics). The average EEG seizure duration predicted the clinical response at a trend level ( Z = 1.76, P = 0.078) with an optimal cutoff of 11.3 seconds. All patients in the ECT group achieved the 15-second threshold. However, their average EEG seizure duration was uncorrelated with clinical improvement. CONCLUSIONS The duration of EEG seizures may be associated with the antipsychotic effects of MST. This association may have been influenced by various clinical and technical factors. More research is needed to define the specific criteria for adequate MST in schizophrenia in order to achieve personalized dosing.
Collapse
Affiliation(s)
| | - Jin Li
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuanhong Xu
- From the Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Zhang
- Psychiatric & Psychological Neuroimage Laboratory (PsyNI Lab), Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, Tianjin, China
| | - Jianhua Sheng
- From the Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dengtang Liu
- From the Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenzheng Wang
- From the Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuzhong Yang
- From the Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyun Guo
- From the Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingwei Li
- Department of Psychiatry, Tongji Hospital of Tongji University, Shanghai, China
| | - Tianhong Zhang
- From the Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Tang
- From the Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuping Jia
- From the Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | |
Collapse
|
4
|
Trapp NT, Purgianto A, Taylor JJ, Singh MK, Oberman LM, Mickey BJ, Youssef NA, Solzbacher D, Zebley B, Cabrera LY, Conroy S, Cristancho M, Richards JR, Flood MJ, Barbour T, Blumberger DM, Taylor SF, Feifel D, Reti IM, McClintock SM, Lisanby SH, Husain MM. Consensus review and considerations on TMS to treat depression: A comprehensive update endorsed by the National Network of Depression Centers, the Clinical TMS Society, and the International Federation of Clinical Neurophysiology. Clin Neurophysiol 2025; 170:206-233. [PMID: 39756350 PMCID: PMC11825283 DOI: 10.1016/j.clinph.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/13/2024] [Accepted: 12/01/2024] [Indexed: 01/07/2025]
Abstract
This article updates the prior 2018 consensus statement by the National Network of Depression Centers (NNDC) on the use of transcranial magnetic stimulation (TMS) in the treatment of depression, incorporating recent research and clinical developments. Publications on TMS and depression between September 2016 and April 2024 were identified using methods informed by PRISMA guidelines. The NNDC Neuromodulation Work Group met monthly between October 2022 and April 2024 to define important clinical topics and review pertinent literature. A modified Delphi method was used to achieve consensus. 2,396 abstracts and manuscripts met inclusion criteria for review. The work group generated consensus statements which include an updated narrative review of TMS safety, efficacy, and clinical features of use for depression. Considerations related to training, roles/responsibilities of providers, and documentation are also discussed. TMS continues to demonstrate broad evidence for safety and efficacy in treating depression. Newer forms of TMS are faster and potentially more effective than conventional repetitive TMS. Further exploration of targeting methods, use in special populations, and accelerated protocols is encouraged. This article provides an updated overview of topics relevant to the administration of TMS for depression and summarizes expert, consensus opinion on the practice of TMS in the United States.
Collapse
Affiliation(s)
- Nicholas T Trapp
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
| | - Anthony Purgianto
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Joseph J Taylor
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Manpreet K Singh
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Sacramento, CA, USA
| | - Lindsay M Oberman
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Brian J Mickey
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA
| | - Nagy A Youssef
- Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA; Division of Psychiatry and Behavioral Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Daniela Solzbacher
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA
| | - Benjamin Zebley
- Department of Psychiatry, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Laura Y Cabrera
- Department of Engineering Science and Mechanics, Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
| | - Susan Conroy
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mario Cristancho
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Jackson R Richards
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | - Tracy Barbour
- Division of Neuropsychiatry and Neuromodulation, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel M Blumberger
- Department of Psychiatry, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Stephan F Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - David Feifel
- Kadima Neuropsychiatry Institute, La Jolla, CA, USA; University of California-San Diego, San Diego, CA, USA
| | - Irving M Reti
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Shawn M McClintock
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas,TX, USA
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA; Division of Translational Research, National Institute of Mental Health, Bethesda, MD, USA; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Mustafa M Husain
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas,TX, USA; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
5
|
McClintock SM, Deng ZD, Husain MM, Thakkar VJ, Bernhardt E, Weiner RD, Luber B, Lisanby SH. Comparing the Neurocognitive Effects of Right Unilateral Ultra-Brief Pulse Electroconvulsive Therapy and Magnetic Seizure Therapy for the Treatment of Major Depressive Episode. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:175-185. [PMID: 39515580 DOI: 10.1016/j.bpsc.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Magnetic seizure therapy (MST) is under investigation as a treatment for adults with major depression. Previous research has suggested that MST has antidepressant efficacy comparable to that of electroconvulsive therapy (ECT), but with greater cognitive safety. The objective of the study was to compare the neurocognitive outcomes of patients receiving an acute course of MST with the outcomes of those receiving ECT for the treatment of major depressive episode. METHODS This was a between-subjects, double-masked, randomized, multicenter clinical trial. Seventy-three participants with a severe major depressive episode were enrolled and randomly assigned to treatment with MST (n = 35) or ultra-brief pulse right unilateral ECT (n = 38). The main outcome was change in performance from baseline to the end of acute treatment on multiple neurocognitive measures. RESULTS Compared with patients who received ECT, patients who received MST had superior cognitive outcomes up to 72 hours posttreatment. Specifically, following MST treatment, there was significant improvement in fine motor dexterity (p = .017) and no significant change in cognitive domains of attention, verbal fluency, executive function, or verbal learning and memory. In contrast, following treatment with ECT, patients demonstrated significantly worse performance on measures of verbal fluency (p < .001), executive function (p = .038), and verbal memory retention (p < .001). Autobiographical memory consistency decreased significantly following treatment with both ECT (p < .001) and MST, although the magnitude of change was greater for ECT. CONCLUSIONS The study findings confirm previous work and provide new evidence supporting the enhanced cognitive safety of MST relative to ECT. Future research on MST is warranted to optimize its application to individuals with neuropsychiatric illnesses across the life span.
Collapse
Affiliation(s)
- Shawn M McClintock
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas; Perot Foundation Neuroscience Translational Research Center, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas.
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics Branch, Intramural Research Program, National Institute of Mental Health, Bethesda, Maryland; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Mustafa M Husain
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Vishal J Thakkar
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - Elisabeth Bernhardt
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Richard D Weiner
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Bruce Luber
- Noninvasive Neuromodulation Unit, Experimental Therapeutics Branch, Intramural Research Program, National Institute of Mental Health, Bethesda, Maryland
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics Branch, Intramural Research Program, National Institute of Mental Health, Bethesda, Maryland; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
6
|
Shi ZM, Su ZA, Ning T, Zheng W. Magnetic seizure therapy versus electroconvulsive therapy for major mental disorders: A systematic review. Asian J Psychiatr 2025; 103:104336. [PMID: 39689575 DOI: 10.1016/j.ajp.2024.104336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/21/2024] [Accepted: 11/30/2024] [Indexed: 12/19/2024]
Affiliation(s)
- Zhan-Ming Shi
- Chongqing Jiangbei Mental Health Center, Chongqing, China
| | - Zhi-Ang Su
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Ting Ning
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Wei Zheng
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Peterchev AV, Deng ZD, Sikes-Keilp C, Feuer EC, Rosa MA, Lisanby SH. Optimal Frequency for Seizure Induction with Electroconvulsive Therapy and Magnetic Seizure Therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.28.615333. [PMID: 39803550 PMCID: PMC11722405 DOI: 10.1101/2024.09.28.615333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Electroconvulsive therapy (ECT) and magnetic seizure therapy (MST) are effective in the treatment of medication-resistant depression. Determining the stimulus frequency resulting in the lowest seizure threshold could produce fewer adverse effects by reducing the overall stimulus intensity. To determine the optimal frequency for seizure induction, four male rhesus macaques were titrated with an increasing number of pulses at fixed frequencies ranging from 5 to 240 pulses per second (pps) using ultrabrief-pulse right-unilateral ECT and circular-coil-on-vertex MST. The seizure threshold dependence on stimulus frequency was similar for ECT and MST. While higher frequencies required progressively shorter trains to induce a seizure, the middle frequency range was associated with the fewest pulses (and hence the least charge and energy), with a minimum at 16 pps and similarly low thresholds for 10 and 25 pps. The number of pulses at seizure threshold increased markedly at lower and higher frequencies. The lowest stimulus frequencies, 5 and 10 pps, were associated with the greatest ictal power measured by electroencephalography. While this study did not assess efficacy or side effects, the results highlight the significance of stimulus frequency for seizure induction, suggest efficient titration schedules that minimize exposure to the electrical stimulus, and can inform studies to assess the impact on clinical outcomes.
Collapse
|
8
|
Liu C, Liu S, Hu X, Guo Z, Xu Y. Fluctuations in resting motor threshold during electroconvulsive and magnetic seizure therapy. Int J Neurosci 2024:1-12. [PMID: 39230589 DOI: 10.1080/00207454.2024.2401418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVES Magnetic seizure therapy (MST) is more benign than electroconvulsive therapy (ECT) in terms of cognitive impairment. However, whether these two 'artificial seizures' facilitate the central motor neural pathway and the motor cortical effects have not been investigated. The study aimed to compare the effects of ECT and MST on motor-evoked potential (MEP) in patients with mental disorders. METHODS Forty-nine patients with mental disorders (major depressive disorder, bipolar disorder type II and schizophrenia [SCZ]) received 6 treatment sessions of vertex MST versus 6 bifrontal ECT treatments in a nonrandomized comparative clinical design. Data on the duration of motor seizures were collected for each treatment. MEP latency and the resting motor threshold (rMT) were measured at baseline and after every two treatments. Comparisons were performed between or within the groups. RESULTS Seizure durations were significantly longer in the ECT group compared to the MST group across multiple sessions. Both MST and ECT demonstrated a significant reduction in rMT in the left and right hemispheres after the fourth (T3) and sixth treatments (T4) compared to baseline (T1). However, there were no significant changes in MEP latency within or between the groups throughout the treatment sessions. The only difference was that the rMT in the left cerebral hemisphere was significantly lower after T4 than after the second treatment (T2). There was no difference in rMT between the ECT and MST groups. CONCLUSIONS Both ECT and MST facilitate the central motor pathway, with a shared mechanism of increased motor cortex excitability.
Collapse
Affiliation(s)
- Chaojie Liu
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Anaesthesiology, Shanxi Province Cancer Hospital (Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Science, Cancer Hospital Affiliated to Shanxi Medical University), Taiyuan, Shanxi, China
| | - Sha Liu
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, Taiyuan, Shanxi, China
| | - Xiaodong Hu
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhenglong Guo
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yong Xu
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
9
|
Siafis S, Lorenz C, Wu H, Zhu Y, Schneider-Thoma J, Bighelli I, Li C, Hansen WP, Padberg F, Salanti G, Leucht S. Non-invasive brain stimulation for treatment-resistant schizophrenia: protocol of a systematic review and network meta-analysis. Syst Rev 2024; 13:165. [PMID: 38915121 PMCID: PMC11195004 DOI: 10.1186/s13643-024-02585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 06/16/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Non-invasive brain stimulation (NIBS) is a promising intervention for treatment-resistant schizophrenia. However, there are multiple available techniques and a comprehensive synthesis of evidence is lacking. Thus, we will conduct a systematic review and network meta-analysis to investigate the comparative efficacy and safety of NIBS techniques as an add-on to antipsychotics for treatment-resistant schizophrenia. METHODS We will include single- and double-blind randomized-controlled trials (RCT) comparing any NIBS technique with each other or with a control intervention as an add-on to antipsychotics in adult patients with treatment-resistant schizophrenia. We will exclude studies focusing on predominant negative symptoms, maintenance treatment, and single sessions. The primary outcome will be a change in overall symptoms, and secondary outcomes will be a change in symptom domains, cognitive performance, quality of life, functioning, response, dropouts, and side effects. We will search for eligible studies in previous reviews, multiple electronic databases and clinical trial registries from inception onwards. At least two independent reviewers will perform the study selection, data extraction, and risk of bias assessment. We will measure the treatment differences using standardized mean difference (SMD) and odds ratio (OR) for continuous and dichotomous outcomes, respectively. We will conduct pairwise and network meta-analysis within a frequentist framework using a random-effects model, except for rare event outcomes where we will use a fixed-effects Mantel-Haenszel method. We will investigate potential sources of heterogeneity in subgroup analyses. Reporting bias will be assessed with funnel plots and the Risk of Bias due to Missing Evidence in Network meta-analysis (ROB-MEN) tool. The certainty in the evidence will be evaluated using the Confidence in Network Meta-analysis (CINeMA) approach. DISCUSSION Our network meta-analysis would provide an up-to-date synthesis of the evidence from all available RCTs on the comparative efficacy and safety of NIBS for treatment-resistant schizophrenia. This information could guide evidence-based clinical practice and improve the outcomes of patients. SYSTEMATIC REVIEW REGISTRATION PROSPERO-ID CRD42023410645.
Collapse
Affiliation(s)
- Spyridon Siafis
- Technical University of Munich, TUM School of Medicine and Health, Department of Psychiatry and Psychotherapy, Munich, Germany.
| | - Carolin Lorenz
- Technical University of Munich, TUM School of Medicine and Health, Department of Psychiatry and Psychotherapy, Munich, Germany
| | - Hui Wu
- Technical University of Munich, TUM School of Medicine and Health, Department of Psychiatry and Psychotherapy, Munich, Germany
| | - Yikang Zhu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Johannes Schneider-Thoma
- Technical University of Munich, TUM School of Medicine and Health, Department of Psychiatry and Psychotherapy, Munich, Germany
| | - Irene Bighelli
- Technical University of Munich, TUM School of Medicine and Health, Department of Psychiatry and Psychotherapy, Munich, Germany
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | | | - Frank Padberg
- Department of Psychiatry and Psychotherapy, LMU University Hospital Munich, Munich, Germany
| | - Georgia Salanti
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Stefan Leucht
- Technical University of Munich, TUM School of Medicine and Health, Department of Psychiatry and Psychotherapy, Munich, Germany
| |
Collapse
|
10
|
Deng ZD, Luber B, McClintock SM, Weiner RD, Husain MM, Lisanby SH. Clinical Outcomes of Magnetic Seizure Therapy vs Electroconvulsive Therapy for Major Depressive Episode: A Randomized Clinical Trial. JAMA Psychiatry 2024; 81:240-249. [PMID: 38055283 PMCID: PMC10701670 DOI: 10.1001/jamapsychiatry.2023.4599] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/06/2023] [Indexed: 12/07/2023]
Abstract
Importance Electroconvulsive therapy (ECT) is highly effective and rapid in treating depression, but it carries a risk of significant cognitive adverse effects. Magnetic seizure therapy (MST), an investigational antidepressant treatment, may maintain the robust antidepressant efficacy of ECT while substantially reducing adverse effects due to its enhanced focality and weaker stimulation strength; however, previous clinical trials of MST were limited by small sample sizes. Objective To compare the antidepressant efficacy of MST vs ultrabrief pulse right unilateral (RUL) ECT. Design, Setting, and Participants A between-participants, double-blinded, randomized clinical trial was conducted at 3 academic hospitals from June 2007 to August 2012. Adults aged 18 to 90 years who were referred for treatment with ECT, had a major depressive episode in the context of major depressive disorder or bipolar disorder, and had a baseline 24-item Hamilton Depression Rating Scale (HDRS-24) total score of 18 or higher were included. Participants were randomly assigned 1:1 to treatment with MST or ultrabrief pulse RUL ECT. After the treatment course, patients were naturalistically followed up for up to 6 months to examine the durability of clinical effects. Interventions Treatment with MST, applied at 100 Hz at 100% of the maximum device power for 10 seconds, or ultrabrief pulse RUL ECT, applied at 6 times seizure threshold. Main Outcomes and Measures The primary outcome was change from baseline in HDRS-24 total score, with patients followed up for up to 6 months. A reduction of at least 50% in the HDRS-24 score indicated response, and at least a 60% decrease in the HDRS-24 score and a total score of 8 or less indicated remission. Results Of the 73 participants (41 [56.2%] female; mean [SD] age, 48 [14.1] years), 35 were randomized to MST and 38 to ECT. Among them, 53 (72.6%) were classified as completers (29 in the MST group and 24 in the ECT group). Both MST and ECT demonstrated clinically meaningful antidepressant effects. In the intent-to-treat sample, 18 participants (51.4%) in the MST group and 16 (42.1%) in the ECT group met response criteria; 13 (37.1%) in the MST group and 10 (26.3%) in the ECT group met remission criteria. Among completers, 17 of 29 (58.6%) in the MST group and 15 of 24 (62.5%) in the ECT group met response criteria; 13 of 29 (44.8%) in the MST group and 10 of 24 (41.7%) in the ECT group met remission criteria. There was no significant difference between MST and ECT for either response or remission rates. However, the mean (SD) number of treatments needed to achieve remission was 9.0 (3.1) with MST and 6.7 (3.3) with ECT, a difference of 2.3 treatments (t71.0 = 3.1; P = .003). Both MST and ECT showed a sustained benefit over a 6-month follow-up period, again with no significant difference between them. Compared with MST, ECT had significantly longer time to orientation after treatment (threshold level: F1,56 = 10.0; P = .003) and greater severity of subjective adverse effects, particularly in the physical and cognitive domains. Conclusions and Relevance This randomized clinical trial found that the efficacy of MST was indistinguishable from that of ultrabrief pulse RUL ECT, the safest form of ECT currently available. These results support the continued development of MST and provide evidence for advantages relative to state-of-the-art ECT. Trial Registration ClinicalTrials.gov Identifier: NCT00488748.
Collapse
Affiliation(s)
- Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics Branch, Intramural Research Program, National Institute of Mental Health, Bethesda, Maryland
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Bruce Luber
- Noninvasive Neuromodulation Unit, Experimental Therapeutics Branch, Intramural Research Program, National Institute of Mental Health, Bethesda, Maryland
| | - Shawn M. McClintock
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas
| | - Richard D. Weiner
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Mustafa M. Husain
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas
| | - Sarah H. Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics Branch, Intramural Research Program, National Institute of Mental Health, Bethesda, Maryland
| |
Collapse
|
11
|
Deng ZD, Robins PL, Regenold W, Rohde P, Dannhauer M, Lisanby SH. How electroconvulsive therapy works in the treatment of depression: is it the seizure, the electricity, or both? Neuropsychopharmacology 2024; 49:150-162. [PMID: 37488281 PMCID: PMC10700353 DOI: 10.1038/s41386-023-01677-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
We have known for nearly a century that triggering seizures can treat serious mental illness, but what we do not know is why. Electroconvulsive Therapy (ECT) works faster and better than conventional pharmacological interventions; however, those benefits come with a burden of side effects, most notably memory loss. Disentangling the mechanisms by which ECT exerts rapid therapeutic benefit from the mechanisms driving adverse effects could enable the development of the next generation of seizure therapies that lack the downside of ECT. The latest research suggests that this goal may be attainable because modifications of ECT technique have already yielded improvements in cognitive outcomes without sacrificing efficacy. These modifications involve changes in how the electricity is administered (both where in the brain, and how much), which in turn impacts the characteristics of the resulting seizure. What we do not completely understand is whether it is the changes in the applied electricity, or in the resulting seizure, or both, that are responsible for improved safety. Answering this question may be key to developing the next generation of seizure therapies that lack these adverse side effects, and ushering in novel interventions that are better, faster, and safer than ECT.
Collapse
Affiliation(s)
- Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Pei L Robins
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - William Regenold
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Paul Rohde
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Moritz Dannhauer
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Smith SE, Kosik EL, van Engen Q, Kohn J, Hill AT, Zomorrodi R, Blumberger DM, Daskalakis ZJ, Hadas I, Voytek B. Magnetic seizure therapy and electroconvulsive therapy increase aperiodic activity. Transl Psychiatry 2023; 13:347. [PMID: 37968260 PMCID: PMC10651875 DOI: 10.1038/s41398-023-02631-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023] Open
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide. One of the most efficacious treatments for treatment-resistant MDD is electroconvulsive therapy (ECT). Recently, magnetic seizure therapy (MST) was developed as an alternative to ECT due to its more favorable side effect profile. While these approaches have been very successful clinically, the neural mechanisms underlying their therapeutic effects are unknown. For example, clinical "slowing" of the electroencephalogram beginning in the postictal state and extending days to weeks post-treatment has been observed in both treatment modalities. However, a recent longitudinal study of a small cohort of ECT patients revealed that, rather than delta oscillations, clinical slowing was better explained by increases in aperiodic activity, an emerging EEG signal linked to neural inhibition. Here we investigate the role of aperiodic activity in a cohort of patients who received ECT and a cohort of patients who received MST treatment. We find that aperiodic neural activity increases significantly in patients receiving either ECT or MST. Although not directly related to clinical efficacy in this dataset, increased aperiodic activity is linked to greater amounts of neural inhibition, which is suggestive of a potential shared neural mechanism of action across ECT and MST.
Collapse
Affiliation(s)
- Sydney E Smith
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA.
| | - Eena L Kosik
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
| | - Quirine van Engen
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
| | - Jordan Kohn
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
- Department of Psychiatry, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Itay Hadas
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Bradley Voytek
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA
- Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
13
|
Smith SE, Kosik EL, van Engen Q, Kohn J, Hill AT, Zomorrodi R, Blumberger DM, Daskalakis ZJ, Hadas I, Voytek B. Magnetic seizure therapy and electroconvulsive therapy increase aperiodic activity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.11.23284450. [PMID: 36711765 PMCID: PMC9882553 DOI: 10.1101/2023.01.11.23284450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide. One of the most efficacious treatments for treatment-resistant MDD is electroconvulsive therapy (ECT). Recently, magnetic seizure therapy (MST) was developed as an alternative to ECT due to its more favorable side effect profile. While these approaches have been very successful clinically, the neural mechanisms underlying their therapeutic effects are unknown. For example, clinical "slowing" of the electroencephalogram beginning in the postictal state and extending days to weeks post-treatment has been observed in both treatment modalities. However, a recent longitudinal study of a small cohort of ECT patients revealed that, rather than delta oscillations, clinical slowing was better explained by increases in aperiodic activity, an emerging EEG signal linked to neural inhibition. Here we investigate the role of aperiodic activity in a cohort of patients who received ECT and a cohort of patients who received MST treatment. We find that aperiodic neural activity increases significantly in patients receiving either ECT or MST. Although not directly related to clinical efficacy in this dataset, increased aperiodic activity is linked to greater amounts of neural inhibition, which is suggestive of a potential shared neural mechanism of action across ECT and MST.
Collapse
Affiliation(s)
- Sydney E. Smith
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Eena L. Kosik
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
| | - Quirine van Engen
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
| | - Jordan Kohn
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Aron T. Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
- Department of Psychiatry, Central Clinical School, Monash University, Melbourne, Australia
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Daniel M. Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Zafiris J. Daskalakis
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Itay Hadas
- Department of Psychiatry, Central Clinical School, Monash University, Melbourne, Australia
| | - Bradley Voytek
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA
- Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
14
|
Bellini H, Cretaz E, Carneiro AM, da Silva PHR, dos Santos LA, Gallucci-Neto J, Brunoni AR. Magnetic Waves vs. Electric Shocks: A Non-Inferiority Study of Magnetic Seizure Therapy and Electroconvulsive Therapy in Treatment-Resistant Depression. Biomedicines 2023; 11:2150. [PMID: 37626647 PMCID: PMC10452083 DOI: 10.3390/biomedicines11082150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Treatment-resistant depression (TRD), characterized by the failure to achieve symptomatic remission despite multiple pharmacotherapeutic treatments, poses a significant challenge for clinicians. Electroconvulsive therapy (ECT) is an effective but limited option due to its cognitive side effects. In this context, magnetic seizure therapy (MST) has emerged as a promising alternative, offering comparable antidepressant efficacy with better cognitive outcomes. However, the clinical outcomes and cognitive effects of MST require further investigation. This double-blinded, randomized, non-inferiority study aims to compare the efficacy, tolerability, cognitive adverse effects, and neurophysiological biomarkers of MST with bilateral ECT (BT ECT) in patients with TRD. This study will employ multimodal nuclear magnetic resonance imaging (MRI) and serum neurotrophic markers to gain insight into the neurobiological basis of seizure therapy. Additionally, neurophysiological biomarkers will be evaluated as secondary outcomes to predict the antidepressant and cognitive effects of both techniques. The study design, recruitment methods, ethical considerations, eligibility criteria, interventions, and blinding procedures are described. The expected outcomes will advance the field by offering a potential alternative to ECT with improved cognitive outcomes and a better understanding of the underlying pathophysiology of depression and antidepressant therapies.
Collapse
Affiliation(s)
- Helena Bellini
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil; (H.B.); (E.C.); (A.M.C.); (P.H.R.d.S.); (L.A.d.S.); (J.G.-N.)
- Service of Electroconvulsive Therapy, Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Eric Cretaz
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil; (H.B.); (E.C.); (A.M.C.); (P.H.R.d.S.); (L.A.d.S.); (J.G.-N.)
- Service of Electroconvulsive Therapy, Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Adriana Munhoz Carneiro
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil; (H.B.); (E.C.); (A.M.C.); (P.H.R.d.S.); (L.A.d.S.); (J.G.-N.)
- Service of Electroconvulsive Therapy, Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Pedro Henrique Rodrigues da Silva
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil; (H.B.); (E.C.); (A.M.C.); (P.H.R.d.S.); (L.A.d.S.); (J.G.-N.)
- Service of Electroconvulsive Therapy, Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Leonardo Afonso dos Santos
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil; (H.B.); (E.C.); (A.M.C.); (P.H.R.d.S.); (L.A.d.S.); (J.G.-N.)
- Service of Electroconvulsive Therapy, Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - José Gallucci-Neto
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil; (H.B.); (E.C.); (A.M.C.); (P.H.R.d.S.); (L.A.d.S.); (J.G.-N.)
- Service of Electroconvulsive Therapy, Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - André Russowsky Brunoni
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil; (H.B.); (E.C.); (A.M.C.); (P.H.R.d.S.); (L.A.d.S.); (J.G.-N.)
- Service of Electroconvulsive Therapy, Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
| |
Collapse
|
15
|
Yang S, Enkhzaya G, Zhu BH, Chen J, Wang ZJ, Kim ES, Kim NY. High-Definition Transcranial Direct Current Stimulation in the Right Ventrolateral Prefrontal Cortex Lengthens Sustained Attention in Virtual Reality. Bioengineering (Basel) 2023; 10:721. [PMID: 37370652 DOI: 10.3390/bioengineering10060721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Due to the current limitations of three-dimensional (3D) simulation graphics technology, mind wandering commonly occurs in virtual reality tasks, which has impeded it being applied more extensively. The right ventrolateral prefrontal cortex (rVLPFC) plays a vital role in executing continuous two-dimensional (2D) mental paradigms, and transcranial direct current stimulation (tDCS) over this cortical region has been shown to successfully modulate sustained 2D attention. Accordingly, we further explored the effects of electrical activation of the rVLPFC on 3D attentional tasks using anodal high-definition (HD)-tDCS. A 3D Go/No-go (GNG) task was developed to compare the after effects of real and sham brain stimulation. Specifically, GNG tasks were periodically interrupted to assess the subjective perception of attentional level, behavioral reactions were tracked and decomposed into an underlying decision cognition process, and electroencephalography data were recorded to calculate event-related potentials (ERPs) in rVLPFC. The p-values statistically indicated that HD-tDCS improved the subjective mentality, led to more cautious decisions, and enhanced neuronal discharging in rVLPFC. Additionally, the neurophysiological P300 ERP component and stimulation being active or sham could effectively predict several objective outcomes. These findings indicate that the comprehensive approach including brain stimulation, 3D mental paradigm, and cross-examined performance could significantly lengthen and robustly compare sustained 3D attention.
Collapse
Affiliation(s)
- Shan Yang
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Nonwon-gu, Seoul 01897, Republic of Korea
- NDAC Center, Department of Electronic Engineering, Kwangwoon University, Nonwon-gu, Seoul 01897, Republic of Korea
| | - Ganbold Enkhzaya
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Nonwon-gu, Seoul 01897, Republic of Korea
- NDAC Center, Department of Electronic Engineering, Kwangwoon University, Nonwon-gu, Seoul 01897, Republic of Korea
| | - Bao-Hua Zhu
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Nonwon-gu, Seoul 01897, Republic of Korea
| | - Jian Chen
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Nonwon-gu, Seoul 01897, Republic of Korea
| | - Zhi-Ji Wang
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Nonwon-gu, Seoul 01897, Republic of Korea
- Department of Pediatrics, Severance Children's Hospital, Yonsei University, Seoul 03722, Republic of Korea
| | - Eun-Seong Kim
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Nonwon-gu, Seoul 01897, Republic of Korea
| | - Nam-Young Kim
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Nonwon-gu, Seoul 01897, Republic of Korea
- NDAC Center, Department of Electronic Engineering, Kwangwoon University, Nonwon-gu, Seoul 01897, Republic of Korea
| |
Collapse
|
16
|
Wu H, Jiang J, Cao X, Wang J, Li C. Magnetic seizure therapy for people with schizophrenia. Cochrane Database Syst Rev 2023; 6:CD012697. [PMID: 37272857 PMCID: PMC10241155 DOI: 10.1002/14651858.cd012697.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
BACKGROUND Schizophrenia is one of the most common and disabling mental disorders. About 20% of people with schizophrenia do not respond to antipsychotics, which are the mainstay of the treatment for schizophrenia today, and need to seek other treatment options. Magnetic seizure therapy (MST) is one of the novel non-invasive brain stimulation techniques that are being investigated in recent years. OBJECTIVES: To evaluate the efficacy and tolerability of MST for people with schizophrenia. SEARCH METHODS On 6 March 2022, we searched the Cochrane Schizophrenia Group's Study-Based Register of Trials which is based on CENTRAL, CINAHL, ClinicalTrials.Gov, Embase, ISRCTN, MEDLINE, PsycINFO, PubMed, and WHO ICTRP. SELECTION CRITERIA All randomised controlled trials (RCTs) comparing MST alone or plus standard care with ECT or any other interventions for people with schizophrenia. DATA COLLECTION AND ANALYSIS: We performed reference screening, study selection, data extraction and risk of bias and quality assessment in duplicate. We calculated the risk ratios (RRs) and their 95% confidence intervals (CIs) for binary outcomes and the mean difference (MD) and their 95% CIs for continuous outcomes. We used the original risk of bias tool for risk of bias assessment and created a Summary of findings table using GRADE. MAIN RESULTS We included one four-week study with 79 adults in acute schizophrenia, comparing MST plus standard care to ECT plus standard care in this review. We rated the overall risk of bias as high due to high risk of bias in the domains of selective reporting and other biases (early termination and baseline imbalance) and unclear risk of bias in the domain of blinding of participants and personnel. We found that MST and ECT may not differ in improving the global state (n = 79, risk ratio (RR) 1.12, 95% confidence interval (CI) 0.73 to 1.70), overall (n = 79, mean difference (MD) -0.20, 95% CI -8.08 to 7.68), the positive symptoms (n = 79, MD 1.40, 95% CI -1.97 to 4.77) and the negative symptoms (n = 79, MD -1.00, 95% CI -3.85 to 1.85) in people with schizophrenia. We found that MST compared to ECT may cause less delayed memory deficit and less cognitive deterioration (n = 79, number of people with a delayed memory deficit, RR 0.63, 95% CI 0.41 to 0.96; n = 79, mean change in global cognitive function, MD 5.80, 95% CI 0.80 to 10.80), but also may improve more cognitive function (n = 47, number of people with any cognitive improvement, RR 3.30, 95% CI 1.29 to 8.47). We found that there may be no difference between the two groups in terms of leaving the study early due to any reason (n = 79, RR 2.51, 95% CI 0.73 to 8.59), due to adverse effects (n = 79, RR 3.35, 95% CI 0.39 to 28.64) or due to inefficacy (n = 79, RR 2.52, 95% CI 0.11 to 60.10). Since all findings were based on one study with high risk of bias and the confidence in the evidence was very low, we were not sure these comparable or favourable effects of MST over ECT were its true effects. AUTHORS' CONCLUSIONS: Due to the paucity of data, we cannot draw any conclusion on the efficacy and tolerability of MST for people with schizophrenia. Well-designed RCTs are warranted to answer the question.
Collapse
Affiliation(s)
- Hui Wu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Section for Evidence Based Medicine in Psychiatry and Psychotherapy, Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jiangling Jiang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Cao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jijun Wang
- Department of EEG Source Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Kritzer MD, Peterchev AV, Camprodon JA. Electroconvulsive Therapy: Mechanisms of Action, Clinical Considerations, and Future Directions. Harv Rev Psychiatry 2023; 31:101-113. [PMID: 37171471 PMCID: PMC10198476 DOI: 10.1097/hrp.0000000000000365] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
LEARNING OBJECTIVES • Outline and discuss the fundamental physiologic, cellular, and molecular mechanisms of ECT to devise strategies to optimize therapeutic outcomes• Summarize the overview of ECT, its efficacy in treating depression, the known effects on cognition, evidence of mechanisms, and future directions. ABSTRACT Electroconvulsive therapy (ECT) is the most effective treatment for a variety of psychiatric illnesses, including treatment-resistant depression, bipolar depression, mania, catatonia, and clozapine-resistant schizophrenia. ECT is a medical and psychiatric procedure whereby electrical current is delivered to the brain under general anesthesia to induce a generalized seizure. ECT has evolved a great deal since the 1930s. Though it has been optimized for safety and to reduce adverse effects on cognition, issues persist. There is a need to understand fundamental physiologic, cellular, and molecular mechanisms of ECT to devise strategies to optimize therapeutic outcomes. Clinical trials that set out to adjust parameters, electrode placement, adjunctive medications, and patient selection are critical steps towards the goal of improving outcomes with ECT. This narrative review provides an overview of ECT, its efficacy in treating depression, its known effects on cognition, evidence of its mechanisms, and future directions.
Collapse
Affiliation(s)
- Michael D Kritzer
- From the Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA (Drs. Kritzer, Camprodon); Department of Psychiatry and Behavioral Sciences, Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Department of Neurosurgery, Duke University, Durham, NC (Dr. Peterchev)
| | | | | |
Collapse
|
18
|
Comparison of Efficacy and Safety of Magnetic Seizure Therapy and Electroconvulsive Therapy for Depression: A Systematic Review. J Pers Med 2023; 13:jpm13030449. [PMID: 36983629 PMCID: PMC10057006 DOI: 10.3390/jpm13030449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Objectives: As a new physical therapeutic technique, magnetic seizure therapy (MST) has established efficacy in the treatment of depression with few cognitive side effects, and thus appears to be a potential alternative to electroconvulsive therapy (ECT). The findings of randomized controlled trials (RCTs) examining the efficacy and safety of MST versus ECT for depression are inconsistent. This systematic review of RCTs was designed with the aim of assessing the safety and efficacy of MST versus ECT for patients with depression. Methods: The WanFang, Chinese Journal Net (CNKI), EMBASE, PubMed, Cochrane Library, and PsycINFO databases were systematically searched by three independent investigators, from their inceptions to July 24, 2021. Results: In total, four RCTs (n = 86) were included and analyzed. Meta-analyses of study-defined response (risk ratio (RR) = 1.36; 95% CI = 0.78 to 2.36; p = 0.28; I2 = 0%), study-defined remission (RR = 1.17; 95% CI = 0.61 to 2.23; p = 0.64; I2 = 0%), and the improvement in depressive symptoms (standardized mean difference (SMD) = 0.21; 95% CI = −0.29 to 0.71; p = 0.42; I2 = 0%) did not present significant differences between MST and ECT. Three RCTs evaluated the cognitive effects of MST compared with ECT using different cognitive measuring tools, but with mixed findings. Only two RCTs reported adverse drug reactions (ADRs), but these lacked specific data. Only one RCT reported discontinuation due to any reason. Conclusions: This preliminary study suggests that MST appears to have a similar antidepressant effect as ECT for depression, but mixed findings on adverse cognitive effects were reported.
Collapse
|
19
|
Cretaz E, Bellini H, Gallucci-Neto J, Carneiro AM, Dos Santos LA, Miranda CS, Brunoni AR. Use of Magnetic Seizure Therapy for Treatment-Resistant Depression: A Case Series. J ECT 2022; 38:261-262. [PMID: 35900079 DOI: 10.1097/yct.0000000000000868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Eric Cretaz
- Instituto de Psiquiatria do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
20
|
Noda Y, Knyahnytska Y, Zomorrodi R, Downar J, Rajji TK, Daskalakis ZJ, Blumberger DM. Vagally Mediated Heart Rate Variability Is Associated With Executive Function Changes in Patients With Treatment-Resistant Depression Following Magnetic Seizure Therapy. Neuromodulation 2022; 25:1378-1386. [PMID: 32870549 DOI: 10.1111/ner.13262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/03/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Magnetic seizure therapy (MST) is a novel investigational brain stimulation modality for patients with treatment-resistant depression (TRD). MST is a potential alternative seizure-based treatment to electroconvulsive therapy (ECT), given that it may offer equivalent antidepressant efficacy, yet with a relative sparing of cognitive functioning. Heart rate variability (HRV) is a marker of central autonomic functioning. We aimed to explore the relationships among baseline HRV, age, clinical outcome, and executive function following MST, in patients with TRD. MATERIALS AND METHODS Eighty-eight TRD patients (55 females; 18-70 years) were enrolled and 48 patients completed a course of MST in an open-label study. Patients received MST treatments two to three times per week, using one of three stimulation frequencies (ie, 100 Hz, 50 Hz, or 25 Hz) at 100% stimulator output. Root mean square of the successive R-R differences (RMSSD), an index of HRV, was computed from a baseline electrocardiogram (ECG) recording. Clinical symptoms were assessed using the Hamilton Depression Rating Scale (HAM-D24) and the Quick Inventory of Depressive Symptomatology (QIDS16). Executive function was assessed using the Trail Making Test and the Mazes Test from the MATRICS battery. RESULTS Baseline RMSSD was correlated with baseline HAM-D24 (r = -0.340, p = 0.001) and baseline Mazes Test (r = 0.417, p = 0.0007) but not with baseline Trail Making Test. Furthermore, baseline RMSSD was not correlated with changes on the HAM-D24, QIDS16, or total scores on the Trail Making Test. However, there was a significant correlation between baseline RMSSD and improvement on the Mazes Test following MST (r = 0.502, p = 0.0004). CONCLUSIONS Since this is an open-label trial, the influence of the placebo effect cannot be excluded. However, our results suggest that baseline RMSSD may be a state-biomarker of depression and executive function impairment. Additionally, while baseline vagally mediated resting cardiac activity did not predict the outcome of depression, it may mediate executive function improvements following MST.
Collapse
Affiliation(s)
- Yoshihiro Noda
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yuliya Knyahnytska
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jonathan Downar
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; MRI-Guided rTMS Clinic, University Health Network, Toronto, ON, Canada
| | - Tarek K Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| |
Collapse
|
21
|
Zhang JY, Wu H, Jia LN, Jiang W, Luo J, Liu Y, Gao Q, Ren YP, Ma X, Tang YL, McDonald WM. Cardiovascular Effects of High-Frequency Magnetic Seizure Therapy Compared With Electroconvulsive Therapy. J ECT 2022; 38:185-191. [PMID: 35220358 PMCID: PMC9422761 DOI: 10.1097/yct.0000000000000833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/16/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Magnetic seizure therapy (MST) is a novel convulsive therapy that has been shown to have antidepressant efficacy comparable to electroconvulsive therapy (ECT) with fewer cognitive side effects. However, the cardiovascular (CVS) effects of high frequency MST in comparison to ECT have not been investigated. MATERIALS AND METHODS Forty-five patients with depression received 6 treatment sessions of 100 Hz MST versus 6 bifrontal ECT treatments in a nonrandomized comparative clinical design. Data on CVS function including heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and rate pressure product (RPP) were collected at baseline (T0), after the induction of anesthesia but before the electrical stimulation (T1), during convulsion (T2), 2 minutes after cessation of motor seizure (T3), 5 minutes after cessation of motor seizure (T4), and 10 minutes after cessation of motor seizure (T5). Comparisons were made with baseline data and between MST and ECT groups. RESULTS There were statistically significant elevations in the maximum HR, SBP, DBP, and RPP in patients receiving ECT compared with MST both in the initial and sixth treatments (all P < 0.05). Particularly, at T2, the ECT group had significantly higher HR, SBP, DBP, and RPP than those in MST group both in initial and sixth treatment (all P < 0.001). At the sixth treatment, the ECT group had significantly higher SBP, DBP, and RPP during the treatment than in the MST group (all P < 0.001). LIMITATIONS The anesthetic choices for this study may limit the generalizability of our findings. The sample size was relatively small. CONCLUSIONS Compared with ECT, high-frequency MST has fewer CVS side effects and may be a safer option for depression patients with CVS disorders.
Collapse
Affiliation(s)
- Jun-yan Zhang
- From the The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital
- Advanced Innovation Center for Human Brain Protection
| | - Han Wu
- From the The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital
- Advanced Innovation Center for Human Brain Protection
| | - Li-na Jia
- From the The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital
- Advanced Innovation Center for Human Brain Protection
| | - Wei Jiang
- From the The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital
- Advanced Innovation Center for Human Brain Protection
| | - Jiong Luo
- From the The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital
- Advanced Innovation Center for Human Brain Protection
| | - Yi Liu
- From the The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital
- Advanced Innovation Center for Human Brain Protection
| | - Qi Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Yan-ping Ren
- From the The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital
- Advanced Innovation Center for Human Brain Protection
| | - Xin Ma
- From the The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital
- Advanced Innovation Center for Human Brain Protection
| | - Yi-lang Tang
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta
- Mental Health Service Line, Atlanta VA Medical Center, Decatur, GA
| | - William M. McDonald
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta
| |
Collapse
|
22
|
Leaver AM, Espinoza R, Wade B, Narr KL. Parsing the Network Mechanisms of Electroconvulsive Therapy. Biol Psychiatry 2022; 92:193-203. [PMID: 35120710 PMCID: PMC9196257 DOI: 10.1016/j.biopsych.2021.11.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/03/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022]
Abstract
Electroconvulsive therapy (ECT) is one of the oldest and most effective forms of neurostimulation, wherein electrical current is used to elicit brief, generalized seizures under general anesthesia. When electrodes are positioned to target frontotemporal cortex, ECT is arguably the most effective treatment for severe major depression, with response rates and times superior to other available antidepressant therapies. Neuroimaging research has been pivotal in improving the field's mechanistic understanding of ECT, with a growing number of magnetic resonance imaging studies demonstrating hippocampal plasticity after ECT, in line with evidence of upregulated neurotrophic processes in the hippocampus in animal models. However, the precise roles of the hippocampus and other brain regions in antidepressant response to ECT remain unclear. Seizure physiology may also play a role in antidepressant response to ECT, as indicated by early positron emission tomography, single-photon emission computed tomography, and electroencephalography research and corroborated by recent magnetic resonance imaging studies. In this review, we discuss the evidence supporting neuroplasticity in the hippocampus and other brain regions during and after ECT, and their associations with antidepressant response. We also offer a mechanistic, circuit-level model that proposes that core mechanisms of antidepressant response to ECT involve thalamocortical and cerebellar networks that are active during seizure generalization and termination over repeated ECT sessions, and their interactions with corticolimbic circuits that are dysfunctional prior to treatment and targeted with the electrical stimulus.
Collapse
Affiliation(s)
- Amber M Leaver
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Evanston, Illinois.
| | - Randall Espinoza
- Department of Psychiatry and Behavioral Sciences, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Benjamin Wade
- Department of Neurology, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Katherine L Narr
- Department of Neurology, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; Department of Psychiatry and Behavioral Sciences, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
23
|
Li J, Zhang X, Jiang J, Zhang B, Tang Y, Zhang T, Jia Y, Li Q, Xia M, Sheng J, Li C, Wang J. Comparison of electroconvulsive therapy and magnetic seizure therapy in schizophrenia: Structural changes/neuroplasticity. Psychiatry Res 2022; 312:114523. [PMID: 35378453 DOI: 10.1016/j.psychres.2022.114523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 12/13/2022]
Abstract
Electroconvulsive therapy (ECT) can effectively reduce the symptoms of schizophrenia, but may also impair cognitive function. A potential alternative is magnetic seizure therapy (MST), which has shown comparable efficacy with less severe cognitive disruption. This study compared ECT to MST for clinical efficacy and cognitive side effects. In addition, we examined the possible contributions of hippocampal volume changes and enhanced brain derived neurotrophic factor (BDNF) signaling to the therapeutic responses. Thirty-four confirmed schizophrenia patients were allocated to receive ECT (n = 16) or MST (n = 18) over a 4-week period. Schizophrenia symptoms were measured by PANSS, cognition by the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), and serum BDNF and its precursor proBDNF by ELISA at baseline and following ECT or MST. Both treatments reduced PANSS scores with comparable efficacy, while MST was superior for preservation of RBANS language score. ECT significantly increased the volumes of the bilateral hippocampus and multiple subfields, while MST had no effect on hippocampal volume. The change in right hippocampal volume was correlated with proBDNF change among ECT and MST non-responders (< 25% decrease in PANSS score). MST reduced schizophrenia symptoms as effectively as ECT with slightly better preservation of cognitive function.
Collapse
Affiliation(s)
- Jin Li
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, 11 Guangqian Road, Suzhou 215137, Jiangsu, China.
| | - Xiaobin Zhang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, 11 Guangqian Road, Suzhou 215137, Jiangsu, China.
| | - Jiangling Jiang
- Shanghai Key Laboratory of Psychotic Disorders, Department of EEG and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Bin Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Department of EEG and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Department of EEG and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Yuping Jia
- Shanghai Key Laboratory of Psychotic Disorders, Department of EEG and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China.
| | - Qingwei Li
- Shanghai Key Laboratory of Psychotic Disorders, Department of EEG and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China.
| | - Mengqing Xia
- Shanghai Key Laboratory of Psychotic Disorders, Department of EEG and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Jianhua Sheng
- Shanghai Key Laboratory of Psychotic Disorders, Department of EEG and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China.
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Department of EEG and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China.
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Department of EEG and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China.
| |
Collapse
|
24
|
Jiang J, Li J, Xu Y, Zhang B, Sheng J, Liu D, Wang W, Yang F, Guo X, Li Q, Zhang T, Tang Y, Jia Y, Daskalakis ZJ, Wang J, Li C. Magnetic Seizure Therapy Compared to Electroconvulsive Therapy for Schizophrenia: A Randomized Controlled Trial. Front Psychiatry 2021; 12:770647. [PMID: 34899429 PMCID: PMC8656219 DOI: 10.3389/fpsyt.2021.770647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Magnetic seizure therapy (MST) is a potential alternative to electroconvulsive therapy (ECT). However, reports on the use of MST for patients with schizophrenia, particularly in developing countries, which is a main indication for ECT, are limited. Methods: From February 2017 to July 2018, 79 inpatients who met the DSM-5 criteria for schizophrenia were randomized to receive 10 sessions of MST (43 inpatients) or ECT (36 inpatients) over the course of 4 weeks. At baseline and 4-week follow-up, the Positive and Negative Syndrome Scale (PANSS) and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) were used to assess symptom severity and cognitive functions, respectively. Results: Seventy-one patients who completed at least half of the treatment protocol were included in the per-protocol analysis. MST generated a non-significant larger antipsychotic effect in terms of a reduction in PANSS total score [g = 0.17, 95% confidence interval (CI) = -0.30, 0.63] and response rate [relative risk (RR) = 1.41, 95% CI = 0.83-2.39]. Twenty-four participants failed to complete the cognitive assessment as a result of severe psychotic symptoms. MST showed significant less cognitive impairment over ECT in terms of immediate memory (g = 1.26, 95% CI = 0.63-1.89), language function (g =1.14, 95% CI = 0.52-1.76), delayed memory (g = 0.75, 95% CI = 0.16-1.35), and global cognitive function (g = 1.07, 95% CI = 0.45-1.68). The intention-to-treat analysis generated similar results except for the differences in delayed memory became statistically insignificant. Better baseline cognitive performance predicted MST and ECT response. Conclusions: Compared to bitemporal ECT with brief pulses and age-dose method, MST had similar antipsychotic efficacy with fewer cognitive impairments, indicating that MST is a promising alternative to ECT as an add-on treatment for schizophrenia. Clinical Trial Registration: ClinicalTrials.gov, identifier: NCT02746965.
Collapse
Affiliation(s)
- Jiangling Jiang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanhong Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Zhang
- Psychological and Psychiatric Neuroimage Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianhua Sheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dengtang Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenzheng Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuzhong Yang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyun Guo
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingwei Li
- Department of Psychiatry, Tongji Hospital of Tongji University, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuping Jia
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zafiris J. Daskalakis
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
- Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
- Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Tang VM, Blumberger DM, Hill AT, Weissman CR, Voineskos D, Rajji TK, Downar J, Knyahnytska Y, Mulsant BH, Fitzgerald PB, Daskalakis ZJ. Magnetic Seizure Therapy for the Treatment of Suicidality in Bipolar Depression. Biol Psychiatry 2021; 90:e51-e53. [PMID: 33172609 DOI: 10.1016/j.biopsych.2020.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Victor M Tang
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Aron T Hill
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Australia
| | - Cory R Weissman
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Daphne Voineskos
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Tarek K Rajji
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan Downar
- Centre for Mental Health, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Yuliya Knyahnytska
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Benoit H Mulsant
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Paul B Fitzgerald
- Epworth Centre for Innovation in Mental Health, Epworth HealthCare and Monash University, Camberwell, Victoria, Australia; Department of Psychiatry, Monash University, Camberwell, Victoria, Australia
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, UC San Diego Health, La Jolla, California.
| |
Collapse
|
26
|
Daskalakis ZJ, Tamminga C, Throop A, Palmer L, Dimitrova J, Farzan F, Thorpe KE, McClintock SM, Blumberger DM. Confirmatory Efficacy and Safety Trial of Magnetic Seizure Therapy for Depression (CREST-MST): study protocol for a randomized non-inferiority trial of magnetic seizure therapy versus electroconvulsive therapy. Trials 2021; 22:786. [PMID: 34749782 PMCID: PMC8576983 DOI: 10.1186/s13063-021-05730-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is well-established and effective for treatment-resistant depression (TRD), but in Canada and the USA, less than 1% of patients with TRD receive ECT mainly due to its cognitive adverse effects (i.e. amnesia). Thus, new treatment alternatives for TRD are urgently needed. One such treatment is magnetic seizure therapy (MST). ECT involves applying a train of high-frequency electrical stimuli to induce a seizure, whereas MST involves applying a train of high-frequency magnetic stimuli to induce a seizure. METHODS In this manuscript, we introduce our international, two-site, double-blinded, randomized, non-inferiority clinical trial to develop MST as an effective and safe treatment for TRD. This trial will compare the efficacy of MST to right unilateral ultra-brief pulse width electroconvulsive therapy (RUL-UB-ECT) with a combined primary endpoint of remission of depression and superior cognitive adverse effects in 260 patients with TRD. Amelioration of suicidal ideation will be assessed as a secondary endpoint. Inpatients or outpatients, over 18 years of age with a MINI International Neuropsychiatric Interview (MINI) diagnosis of non-psychotic major depressive disorder (MDD) can be enrolled in the study provided that they meet illness severity and full eligibility criteria. Participants are randomized to receive MST or RUL-UB ECT, 2-3 days per week over seven weeks, or a maximum of 21 treatments. The study will involve before-, during-, and after-treatment assessments of depression severity, suicidal ideation, subjective side-effects, and cognitive performance consistent with an intent-to-treat study design approach. DISCUSSION Positive results from this trial could have an immediate and tremendous impact for patients with TRD. If MST demonstrates comparable antidepressant treatment efficacy to ECT, but with greater cognitive safety, it could rapidly be adopted into clinical practice. Indeed, given that the administration of MST is nearly identical to ECT, the majority of ECT facilities in North America could readily adopt MST. Furthermore, the potential for cognitive safety could lead to improved treatment acceptability. Healthcare providers, patients and care partners, and policymakers would therefore demand this form of convulsive therapy. TRIAL STATUS Enrollment for this study began on June 26, 2018, and is estimated to complete recruitment by July 2024. At the time of submission, we have enrolled and randomized 117 participants. TRIAL REGISTRATION ClinicalTrials.gov NCT03191058 , Registered on June 19, 2017. Primary sponsor: Daniel Blumberger (DMB), Principal Investigator Daniel.Blumberger@camh.ca , 416-535-8501 x 33662 Contact for public queries: DMB, Daniel.Blumberger@camh.ca Contact for scientific queries: ZJD, Zdaskalakis@health.ucsd.edu.
Collapse
Affiliation(s)
- Zafiris J Daskalakis
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
| | - Carol Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alanah Throop
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Lucy Palmer
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Julia Dimitrova
- Department of Psychology, University at Buffalo, The State University of New York | SUNY Buffalo, Buffalo, USA
| | - Faranak Farzan
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia, Canada
| | - Kevin E Thorpe
- Applied Health Research Centre, Li Ka Shing Knowledge Institute of St. Michael's, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Shawn M McClintock
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel M Blumberger
- Institute of Medical Science and Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Singh R, Sharma R, Prakash J, Chatterjee K. Magnetic seizure therapy. Ind Psychiatry J 2021; 30:S320-S321. [PMID: 34908721 PMCID: PMC8611602 DOI: 10.4103/0972-6748.328841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/03/2021] [Accepted: 07/22/2021] [Indexed: 12/02/2022] Open
Abstract
Magnetic seizure therapy is a novel form of focal convulsive treatment wherein magnetic field passes through the scalp and skull without impedance. In many ways, it has the potential to be superior to electroconvulsive therapy (ECT) as the anesthesia-associated side effects and cognitive impairments are less. It also may be an alternative for those who do not opt for ECT because of the stigma associated with it.
Collapse
Affiliation(s)
- Rishabh Singh
- Department of Psychiatry, Armed Forces Medical College, Pune, Maharashtra, India
| | - Rachit Sharma
- Department of Psychiatry, Armed Forces Medical College, Pune, Maharashtra, India
| | - Jyoti Prakash
- Department of Psychiatry, Armed Forces Medical College, Pune, Maharashtra, India
| | - Kaushik Chatterjee
- Department of Psychiatry, Armed Forces Medical College, Pune, Maharashtra, India
| |
Collapse
|
28
|
Chen M, Yang X, Liu C, Li J, Wang X, Yang C, Hu X, Li J, Zhao J, Li X, Xu Y, Liu S. Comparative efficacy and cognitive function of magnetic seizure therapy vs. electroconvulsive therapy for major depressive disorder: a systematic review and meta-analysis. Transl Psychiatry 2021; 11:437. [PMID: 34420033 PMCID: PMC8380249 DOI: 10.1038/s41398-021-01560-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/28/2021] [Accepted: 08/11/2021] [Indexed: 12/28/2022] Open
Abstract
Magnetic seizure therapy (MST) has established efficacy in the treatment of depression and a growing evidence base in the treatment of depression. We conducted the first systematic review and meta-analysis of the efficacy of MST in anti-depressive treatment and its impact on cognitive function (INPLASY registration number: INPLASY202170061). We searched for controlled trials published in English between 1 January 2001 to 31 December 2020 in PubMed, EMBASE, Cochrane Library, Web of Science, and PsycINFO databases. The evaluation process strictly followed the Cochrane bias risk assessment tool into the literature, and Meta-analysis was performed according to the Cochrane System Reviewer's Manual. Data from a total of 285 patients from 10 studies were retained in the quantitative synthesis. The results showed no significant difference between MST and ECT in the antidepressant effect (SDM -0.13 [-0.78;0.52]). Compared with ECT, MST showed shorter recovery time (MD -5.67 [-9.75; -1.60]) and reorientation time (MD -14.67 [-27.96; -1.41]); and MST showed less cognitive impairment on the immediate recall of words (SDM 0.80 [0.35;1.25]), delayed recall of words (SDM 0.99 [0.01;0.74]), visual-spatial immediate memory (SDM 0.51 [0.20;0.83]), visual-spatial delayed memory (SDM 0.57 [0.11;1.02]), and the verbal fluency (SDM 0.51 [0.20;0.83]). Our evidence-based study is the first meta-analysis on the efficacy of MST in anti-depressive treatment and its effect on cognitive function. It showed that the curative effect of MST in anti-depressive treatment is equivalent to that of ECT. Besides, depressive patients with MST benefit more from cognitive function compared with ECT.
Collapse
Affiliation(s)
- Miao Chen
- grid.263452.40000 0004 1798 4018Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001 Taiyuan, China ,grid.452461.00000 0004 1762 8478Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorders, First Hospital of Shanxi Medical University, 030001 Taiyuan, China ,grid.263452.40000 0004 1798 4018College of Humanities and Social Sciences, Shanxi Medical University, 030001 Taiyuan, China
| | - Xuhui Yang
- grid.263452.40000 0004 1798 4018Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001 Taiyuan, China ,grid.452461.00000 0004 1762 8478Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorders, First Hospital of Shanxi Medical University, 030001 Taiyuan, China
| | - Chaojie Liu
- grid.263452.40000 0004 1798 4018Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001 Taiyuan, China ,grid.452461.00000 0004 1762 8478Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorders, First Hospital of Shanxi Medical University, 030001 Taiyuan, China
| | - Jianying Li
- grid.263452.40000 0004 1798 4018Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001 Taiyuan, China
| | - Xiao Wang
- grid.263452.40000 0004 1798 4018Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001 Taiyuan, China ,grid.452461.00000 0004 1762 8478Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorders, First Hospital of Shanxi Medical University, 030001 Taiyuan, China
| | - Chunxia Yang
- grid.263452.40000 0004 1798 4018Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001 Taiyuan, China
| | - Xiaodong Hu
- grid.263452.40000 0004 1798 4018Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001 Taiyuan, China
| | - Jianhong Li
- grid.263452.40000 0004 1798 4018Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001 Taiyuan, China
| | - Juan Zhao
- grid.263452.40000 0004 1798 4018Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001 Taiyuan, China
| | - Xinrong Li
- grid.263452.40000 0004 1798 4018Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001 Taiyuan, China ,grid.452461.00000 0004 1762 8478Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorders, First Hospital of Shanxi Medical University, 030001 Taiyuan, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001, Taiyuan, China. .,Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorders, First Hospital of Shanxi Medical University, 030001, Taiyuan, China. .,College of Humanities and Social Sciences, Shanxi Medical University, 030001, Taiyuan, China.
| | - Sha Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001, Taiyuan, China. .,Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorders, First Hospital of Shanxi Medical University, 030001, Taiyuan, China. .,College of Humanities and Social Sciences, Shanxi Medical University, 030001, Taiyuan, China.
| |
Collapse
|
29
|
Jiang J, Zhang C, Li C, Chen Z, Cao X, Wang H, Li W, Wang J. Magnetic seizure therapy for treatment-resistant depression. Cochrane Database Syst Rev 2021; 6:CD013528. [PMID: 34131914 PMCID: PMC8205924 DOI: 10.1002/14651858.cd013528.pub2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Magnetic seizure therapy (MST) is a potential alternative to electroconvulsive therapy (ECT). Reports to date on use of MST for patients with treatment-resistant depression (TRD) are limited. OBJECTIVES To evaluate the effects of MST in comparison with sham-MST, antidepressant, and other forms of electric or magnetic treatment for adults with TRD. SEARCH METHODS In March 2020, we searched a wide range of international electronic sources for published, unpublished, and ongoing studies. We handsearched the reference lists of all included studies and relevant systematic reviews and conference proceedings of the Annual Meeting of the American College of Neuropsychopharmacology (ACNP), the Annual Scientific Convention and Meeting, and the Annual Meeting of the European College of Neuropsychopharmacology (ECNP) to identify additional studies. SELECTION CRITERIA All randomised clinical trials (RCTs) focused on MST for adults with TRD. DATA COLLECTION AND ANALYSIS Two review authors extracted data independently. For binary outcomes, we calculated risk ratios (RRs) and 95% confidence intervals (CIs). For continuous data, we estimated mean differences (MDs) between groups and 95% CIs. We employed a random-effects model for analyses. We assessed risk of bias for included studies and created a 'Summary of findings' table using the GRADE approach. Our main outcomes of interest were symptom severity, cognitive function, suicide, quality of life, social functioning, dropout for any reason, serious adverse events, and adverse events that led to discontinuation of treatment. MAIN RESULTS We included three studies (65 participants) comparing MST with ECT. Two studies reported depressive symptoms with the Hamilton Rating Scale for Depression (HAMD). However, in one study, the data were skewed and there was an imbalance in baseline characteristics. Analysis of these two studies showed no clear differences in depressive symptoms between treatment groups (MD 0.71, 95% CI -2.23 to 3.65; 2 studies, 40 participants; very low-certainty evidence). Two studies investigated multiple domains of cognitive function. However most of the outcomes were not measured by validated neuropsychological tests, and many of the data suffered from unbalanced baseline and skewed distribution. Analysis of immediate memory performance measured by the Wechsler Memory Scale showed no clear differences between treatment groups (MD 0.40, 95% CI -4.16 to 4.96; 1 study, 20 participants; very low-certainty evidence). Analysis of delayed memory performance measured by the Wechsler Memory Scale also showed no clear differences between treatment groups (MD 2.57, 95% CI -2.39 to 7.53; 1 study, 20 participants; very low-certainty evidence). Only one study reported quality of life, but the data were skewed and baseline data were unbalanced across groups. Analysis of quality of life showed no clear differences between treatment groups (MD 14.86, 95% CI -42.26 to 71.98; 1 study, 20 participants; very low-certainty evidence). Only one study reported dropout and adverse events that led to discontinuation of treatment. Analysis of reported data showed no clear differences between treatment groups for this outcome (RR 1.38, 95% CI 0.28 to 6.91; 1 study, 25 participants; very low-certainty evidence). Adverse events occurred in only two participants who received ECT (worsening of preexisting coronary heart disease and a cognitive adverse effect). None of the included studies reported outcomes on suicide and social functioning. No RCTs comparing MST with other treatments were identified. AUTHORS' CONCLUSIONS Evidence regarding effects of MST on patients with TRD is currently insufficient. Our analyses of available data did not reveal clearly different effects between MST and ECT. We are uncertain about these findings because of risk of bias and imprecision of estimates. Large, long, well-designed, and well-reported trials are needed to further examine the effects of MST.
Collapse
Affiliation(s)
- Jiangling Jiang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caidi Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhimin Chen
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Cao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyan Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jijun Wang
- Department of EEG Source Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Hill AT, Zomorrodi R, Hadas I, Farzan F, Voineskos D, Throop A, Fitzgerald PB, Blumberger DM, Daskalakis ZJ. Resting-state electroencephalographic functional network alterations in major depressive disorder following magnetic seizure therapy. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110082. [PMID: 32853716 DOI: 10.1016/j.pnpbp.2020.110082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/28/2020] [Accepted: 08/18/2020] [Indexed: 12/28/2022]
Abstract
Magnetic seizure therapy (MST) is emerging as a safe and well-tolerated experimental intervention for major depressive disorder (MDD), with very minimal cognitive side-effects. However, the underlying mechanism of action of MST remains uncertain. Here, we used resting-state electroencephalography (RS-EEG) to characterise the physiological effects of MST for treatment resistant MDD. We recorded RS-EEG in 21 patients before and after an open label trial of MST applied over the prefrontal cortex using a bilateral twin coil. RS-EEG was analysed for changes in functional connectivity, network topology, and spectral power. We also ran further baseline comparisons between the MDD patients and a cohort of healthy controls (n = 22). Network-based connectivity analysis revealed a functional subnetwork of significantly increased theta connectivity spanning frontal and parieto-occipital channels following MST. The change in theta connectivity was further found to predict clinical response to treatment. An additional widespread subnetwork of reduced beta connectivity was also elucidated. Graph-based topological analyses showed an increase in functional network segregation and reduction in integration in the theta band, with a decline in segregation in the beta band. Finally, delta and theta power were significantly elevated following treatment, while gamma power declined. No baseline differences between MDD patients and healthy subjects were observed. These results highlight widespread changes in resting-state brain dynamics following a course of MST in MDD patients, with changes in theta connectivity providing a potential physiological marker of treatment response. Future prospective studies are required to confirm these initial findings.
Collapse
Affiliation(s)
- Aron T Hill
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Itay Hadas
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Faranak Farzan
- Centre for Engineering-led Brain Research, School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, BC, Canada
| | - Daphne Voineskos
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Alanah Throop
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Paul B Fitzgerald
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash Alfred Psychiatry Research Centre, The Alfred and Monash University Central Clinical School, Commercial Rd, Melbourne, Victoria, Australia
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
31
|
Characterizing Cortical Oscillatory Responses in Major Depressive Disorder Before and After Convulsive Therapy: A TMS-EEG Study. J Affect Disord 2021; 287:78-88. [PMID: 33774319 DOI: 10.1016/j.jad.2021.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) is emerging as a powerful technique for interrogating neural circuit dysfunction in psychiatric disorders. Here, we utilized time-frequency analyses to characterize differences in neural oscillatory dynamics between subjects with major depressive disorder (MDD) and healthy controls (HC). We further examined changes in TMS-related oscillatory power following convulsive therapy. METHODS Oscillatory power was examined following TMS over the dorsolateral prefrontal and motor cortices (DLPFC and M1) in 38 MDD subjects, and 22 HCs. We further investigated how these responses changed in the MDD group following an acute course of convulsive therapy (either magnetic seizure therapy [MST, n = 24] or electroconvulsive therapy [ECT, n = 14]). RESULTS Prior to treatment, MDD subjects exhibited increased oscillatory power within delta, theta, and alpha frequency bands with TMS-EEG over the DLPFC, but showed no differences to HCs with stimulation over M1. Following MST, DLPFC stimulation revealed attenuated baseline-normalized power in the delta and theta bands, with reductions in the delta, theta, and alpha power following ECT. TMS over M1 revealed reduced delta and theta power following ECT, with no changes observed following MST. An association was also observed between the treatment- induced change in alpha power and depression severity score. LIMITATIONS Limitations include the modest sample size, open-label MST and ECT treatment designs, and lack of a placebo condition. CONCLUSIONS These results provide evidence of alterations in TMS-related oscillatory activity in MDD, and further suggest modulation of oscillatory power following ECT and MST.
Collapse
|
32
|
Ge R, Gregory E, Wang J, Ainsworth N, Jian W, Yang C, Wang G, Vila-Rodriguez F. Magnetic seizure therapy is associated with functional and structural brain changes in MDD: Therapeutic versus side effect correlates. J Affect Disord 2021; 286:40-48. [PMID: 33676262 DOI: 10.1016/j.jad.2021.02.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/27/2020] [Accepted: 02/18/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Magnetic Seizure therapy (MST) is an effective treatment for major depressive disorder (MDD) but its mechanism of action is not fully understood. The present study sought to characterize neuroimaging correlates of response and side effects of MST in a MDD cohort. METHODS Fifteen severe MDD patients underwent a six-day course of MST treatment to the vertex. Before and after treatment, participants received rs-fMRI and structural MRI scans as well as assessments of depressive symptoms and neuropsychological functioning. 10 healthy volunteers received functional and structural MRI scans at similar time intervals. RESULTS MST treatment was associated with increased functional connectivity between the subgenual anterior cingulate cortex (sgACC) and the parietal cortex, which positively correlated with clinical improvement. In contrast, greater decrease in functional connectivity between the right anterior hippocampus and the prefrontal cortex was correlated with lesser clinical and cognitive improvements. Changes in gray matter volume were evident in the bilateral parietal cortex, but were not associated with treatment outcomes. LIMITATIONS The sample size was small and results warrant replication. CONCLUSIONS This is the first quantitative fMRI study to investigate the neural correlates of MST treatment for MDD patients. While preliminary, these findings suggest that the modulation of sgACC activity is integral to the antidepressant mechanisms of MST. In contrast, changes in the hippocampus were not associated with symptom improvement, and appeared to contribute instead to side effects. Future studies in larger samples are warranted and explore the effect of e-electric field and correlates of response.
Collapse
Affiliation(s)
- Ruiyang Ge
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Elizabeth Gregory
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Jian Wang
- Department of psychiatry, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Nicholas Ainsworth
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Wei Jian
- The National Clinical Research Centre for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, School of Mental Health, Beijing 100088, China
| | - Chunlin Yang
- The National Clinical Research Centre for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, School of Mental Health, Beijing 100088, China
| | - Gang Wang
- The National Clinical Research Centre for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, School of Mental Health, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada.
| |
Collapse
|
33
|
Cosmo C, Zandvakili A, Petrosino NJ, Berlow YA, Philip NS. Repetitive Transcranial Magnetic Stimulation for Treatment-Resistant Depression: Recent Critical Advances in Patient Care. CURRENT TREATMENT OPTIONS IN PSYCHIATRY 2021; 8:47-63. [PMID: 33723500 PMCID: PMC7946620 DOI: 10.1007/s40501-021-00238-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 02/26/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE Transcranial magnetic stimulation (TMS) is an evidence-based treatment for pharmacoresistant major depressive disorder (MDD). In the last decade, the field has seen significant advances in the understanding and use of this new technology. This review aims to describe the large, randomized controlled studies leading to the modern use of rTMS for MDD. It also includes a special section briefly discussing the use of these technologies during the COVID-19 pandemic. RECENT FINDINGS Several new approaches and technologies are emerging in this field, including novel approaches to reduce treatment time and potentially yield new approaches to optimize and maximize clinical outcomes. Of these, theta burst TMS now has evidence indicating it is non-inferior to standard TMS and provides significant advantages in administration. Recent studies also indicate that neuroimaging and related approaches may be able to improve TMS targeting methods and potentially identify those patients most likely to respond to stimulation. SUMMARY While new data is promising, significant research remains to be done to individualize and optimize TMS procedures. Emerging new approaches, such as accelerated TMS and advanced targeting methods, require additional replication and demonstration of real-world clinical utility. Cautious administration of TMS during the pandemic is possible with careful attention to safety procedures.
Collapse
Affiliation(s)
- Camila Cosmo
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Healthcare System, 830 Chalkstone Ave, Providence, 02908 USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI USA
| | - Amin Zandvakili
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Healthcare System, 830 Chalkstone Ave, Providence, 02908 USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI USA
| | - Nicholas J. Petrosino
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Healthcare System, 830 Chalkstone Ave, Providence, 02908 USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI USA
| | - Yosef A. Berlow
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Healthcare System, 830 Chalkstone Ave, Providence, 02908 USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI USA
| | - Noah S. Philip
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Healthcare System, 830 Chalkstone Ave, Providence, 02908 USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI USA
| |
Collapse
|
34
|
Seymour J. Commentary and Update on the Contribution of the GABA Hypothesis to Understanding the Mechanism of Action of Electroconvulsive Therapy. J ECT 2021; 37:4-9. [PMID: 32826706 DOI: 10.1097/yct.0000000000000711] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jeremy Seymour
- From the Cherry Tree Court, Tickhill Road Site, Balby Doncaster DN4 8QN, United Kingdom
| |
Collapse
|
35
|
Zhang XY, Chen HD, Liang WN, Yang XH, Cai DB, Huang X, Huang XB, Liu CY, Zheng W. Adjunctive Magnetic Seizure Therapy for Schizophrenia: A Systematic Review. Front Psychiatry 2021; 12:813590. [PMID: 35082705 PMCID: PMC8785398 DOI: 10.3389/fpsyt.2021.813590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/10/2021] [Indexed: 01/10/2023] Open
Abstract
Objective: The efficacy and safety of adjunctive magnetic seizure therapy (MST) for patients with schizophrenia are unclear. This systematic review was conducted to examine the efficacy and safety of adjunctive MST for schizophrenia. Methods: Chinese (WanFang and Chinese Journal Net) and English (PubMed, EMBASE, PsycINFO, and the Cochrane Library) databases were systematically searched. Results: Two open-label self-controlled studies (n = 16) were included and analyzed in this review. In these studies, the Positive and Negative Syndrome Scale (PANSS) total scores and Brief Psychiatric Rating Scale (BPRS) total scores significantly decreased from baseline to post-MST (all Ps < 0.05), without serious adverse neurocognitive effects. Mixed findings on the neurocognitive effects of adjunctive MST for schizophrenia were reported in the two studies. A discontinuation rate of treatment of up to 50% (4/8) was reported in both studies. The rate of adverse drug reactions (ADRs) was evaluated in only one study, where the most common ADRs were found to be dizziness (25%, 2/8) and subjective memory loss (12.5%, 1/8). Conclusion: There is inconsistent evidence for MST-related adverse neurocognitive effects and preliminary evidence for the alleviation of psychotic symptoms in schizophrenia.
Collapse
Affiliation(s)
- Xin-Yang Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Laboratory of Laser Sports Medicine, School of Sports Science, South China Normal University, Guangzhou, China
| | - Huo-Di Chen
- Guangdong Teachers College of Foreign Language and Arts, Guangzhou, China
| | - Wan-Nian Liang
- Wanke School of Public Health, Tsinghua University, Beijing, China
| | - Xin-Hu Yang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Dong-Bin Cai
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Xiong Huang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Xing-Bing Huang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, School of Sports Science, South China Normal University, Guangzhou, China
| | - Wei Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| |
Collapse
|
36
|
Park MJ, Kim H, Kim EJ, Yook V, Chung IW, Lee SM, Jeon HJ. Recent Updates on Electro-Convulsive Therapy in Patients with Depression. Psychiatry Investig 2021; 18:1-10. [PMID: 33321557 PMCID: PMC7897863 DOI: 10.30773/pi.2020.0350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/03/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Electro-convulsive therapy (ECT) has been established as a treatment modality for patients with treatment-resistant depression and with some specific subtypes of depression. This narrative review intends to provide psychiatrists with the latest findings on the use of ECT in depression, devided into total eight sub-topics. METHODS We searched PubMed for English-language articles using combined keywords and tried to analyze journals published from 1995-2020. RESULTS Pharmacotherapy such as antidepressants or maintenance ECT is more effective than a placebo as prevention of recurrence after ECT. The use of ECT in treatment-resistant depression, depressed patients with suicidal risks, elderly depression, bipolar depression, psychotic depression, and depression during pregnancy or postpartum have therapeutic benefits. As possible mechanisms of ECT, the role of neurotransmitters such as serotonin, dopamine, gamma-aminobutyric acid (GABA), and other findings in the field of neurophysiology, neuro-immunology, and neurogenesis are also supported. CONCLUSION ECT is evolving toward reducing cognitive side effects and maximizing therapeutic effects. If robust evidence for ECT through randomized controlled studies are more established and the mechanism of ECT gets further clarified, the scope of its use in the treatment of depression will be more expanded in the future.
Collapse
Affiliation(s)
- Mi Jin Park
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyewon Kim
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun Ji Kim
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Vidal Yook
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - In Won Chung
- Department of Psychiatry and Electroconvulsive Therapy Center, Dongguk University International Hospital, Goyang, Republic of Korea
| | - Sang Min Lee
- Department of Psychiatry, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hong Jin Jeon
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Health Sciences & Technology, Department of Medical Device Management & Research, and Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
37
|
Rossi S, Antal A, Bestmann S, Bikson M, Brewer C, Brockmöller J, Carpenter LL, Cincotta M, Chen R, Daskalakis JD, Di Lazzaro V, Fox MD, George MS, Gilbert D, Kimiskidis VK, Koch G, Ilmoniemi RJ, Lefaucheur JP, Leocani L, Lisanby SH, Miniussi C, Padberg F, Pascual-Leone A, Paulus W, Peterchev AV, Quartarone A, Rotenberg A, Rothwell J, Rossini PM, Santarnecchi E, Shafi MM, Siebner HR, Ugawa Y, Wassermann EM, Zangen A, Ziemann U, Hallett M. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clin Neurophysiol 2021; 132:269-306. [PMID: 33243615 PMCID: PMC9094636 DOI: 10.1016/j.clinph.2020.10.003] [Citation(s) in RCA: 712] [Impact Index Per Article: 178.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
This article is based on a consensus conference, promoted and supported by the International Federation of Clinical Neurophysiology (IFCN), which took place in Siena (Italy) in October 2018. The meeting intended to update the ten-year-old safety guidelines for the application of transcranial magnetic stimulation (TMS) in research and clinical settings (Rossi et al., 2009). Therefore, only emerging and new issues are covered in detail, leaving still valid the 2009 recommendations regarding the description of conventional or patterned TMS protocols, the screening of subjects/patients, the need of neurophysiological monitoring for new protocols, the utilization of reference thresholds of stimulation, the managing of seizures and the list of minor side effects. New issues discussed in detail from the meeting up to April 2020 are safety issues of recently developed stimulation devices and pulse configurations; duties and responsibility of device makers; novel scenarios of TMS applications such as in the neuroimaging context or imaging-guided and robot-guided TMS; TMS interleaved with transcranial electrical stimulation; safety during paired associative stimulation interventions; and risks of using TMS to induce therapeutic seizures (magnetic seizure therapy). An update on the possible induction of seizures, theoretically the most serious risk of TMS, is provided. It has become apparent that such a risk is low, even in patients taking drugs acting on the central nervous system, at least with the use of traditional stimulation parameters and focal coils for which large data sets are available. Finally, new operational guidelines are provided for safety in planning future trials based on traditional and patterned TMS protocols, as well as a summary of the minimal training requirements for operators, and a note on ethics of neuroenhancement.
Collapse
Affiliation(s)
- Simone Rossi
- Department of Scienze Mediche, Chirurgiche e Neuroscienze, Unit of Neurology and Clinical Neurophysiology, Brain Investigation and Neuromodulation Lab (SI-BIN Lab), University of Siena, Italy.
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University of Goettingen, Germany; Institue of Medical Psychology, Otto-Guericke University Magdeburg, Germany
| | - Sven Bestmann
- Department of Movement and Clinical Neurosciences, UCL Queen Square Institute of Neurology, London, UK and Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Carmen Brewer
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jürgen Brockmöller
- Department of Clinical Pharmacology, University Medical Center, Georg-August University of Goettingen, Germany
| | - Linda L Carpenter
- Butler Hospital, Brown University Department of Psychiatry and Human Behavior, Providence, RI, USA
| | - Massimo Cincotta
- Unit of Neurology of Florence - Central Tuscany Local Health Authority, Florence, Italy
| | - Robert Chen
- Krembil Research Institute and Division of Neurology, Department of Medicine, University of Toronto, Canada
| | - Jeff D Daskalakis
- Center for Addiction and Mental Health (CAMH), University of Toronto, Canada
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico, Roma, Italy
| | - Michael D Fox
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Mark S George
- Medical University of South Carolina, Charleston, SC, USA
| | - Donald Gilbert
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Vasilios K Kimiskidis
- Laboratory of Clinical Neurophysiology, Aristotle University of Thessaloniki, AHEPA University Hospital, Greece
| | | | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering (NBE), Aalto University School of Science, Aalto, Finland
| | - Jean Pascal Lefaucheur
- EA 4391, ENT Team, Faculty of Medicine, Paris Est Creteil University (UPEC), Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, Assistance Publique Hôpitaux de Paris, (APHP), Créteil, France
| | - Letizia Leocani
- Department of Neurology, Institute of Experimental Neurology (INSPE), IRCCS-San Raffaele Hospital, Vita-Salute San Raffaele University, Milano, Italy
| | - Sarah H Lisanby
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, USA; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institut, Institut Guttmann, Universitat Autonoma Barcelona, Spain
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University of Goettingen, Germany
| | - Angel V Peterchev
- Departments of Psychiatry & Behavioral Sciences, Biomedical Engineering, Electrical & Computer Engineering, and Neurosurgery, Duke University, Durham, NC, USA
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alexander Rotenberg
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - John Rothwell
- Department of Movement and Clinical Neurosciences, UCL Queen Square Institute of Neurology, London, UK and Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Paolo M Rossini
- Department of Neuroscience and Rehabilitation, IRCCS San Raffaele-Pisana, Roma, Italy
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yoshikatzu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Eric M Wassermann
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Abraham Zangen
- Zlotowski Center of Neuroscience, Ben Gurion University, Beer Sheva, Israel
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
38
|
Youssef NA, McCall WV, Ravilla D, McCloud L, Rosenquist PB. Double-Blinded Randomized Pilot Clinical Trial Comparing Cognitive Side Effects of Standard Ultra-Brief Right Unilateral ECT to 0.5 A Low Amplitude Seizure Therapy (LAP-ST). Brain Sci 2020; 10:E979. [PMID: 33322138 PMCID: PMC7763063 DOI: 10.3390/brainsci10120979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Concerns over cognitive side effects (CSE) of electroconvulsive therapy (ECT) still limit its broader usage for treatment-resistant depression (TRD). The objectives of this study were to (1) examine the CSE of Low Amplitude Seizure Therapy (LAP-ST) at 0.5 A compared to Ultra-brief Right Unilateral (UB-RUL) ECT using Time to Reorientation (TRO) as the main acute primary outcome, and (2) to compare effects on depressive symptoms between the two treatment groups. METHODS Participants were referred for ECT, consented for the study, and were randomized to a course of LAP-ST or standard UB-RUL ECT. TRO and depression were measured by the Montgomery-Åsberg Depression Rating Scale (MADRS). RESULTS Eleven patients consented. Of these, eight with a current major depressive episode (MDE) of unipolar or bipolar disorders were randomized. TRO was faster for the LAP-ST (mean = 6.8 min; SE = 4.9) than standard RUL ECT (mean = 15.5 min; SE = 6.5). Depression improved similarly in the two arms of the study from baseline (MADRS: LAP-ST = 41.0; SE = 2.0, RUL = 39.0; SE = 3.8) to endpoint (MADRS score: LAP-ST = 8.0; SE7.2, RUL = 9.5; SE = 3.8). CONCLUSIONS This pilot, randomized and blinded clinical trial, suggests that the LAP-ST (at 0.5 A) has faster reorientation and possibly lower CSE compared to standard RUL-UB ECT. Caution is advised in interpreting these results due to the small sample size of this pilot study. Thus, future studies with similar design are warranted for replicating these findings.
Collapse
Affiliation(s)
- Nagy A. Youssef
- Department of Psychiatry and Health Behavior, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (W.V.M.); (D.R.); (L.M.); (P.B.R.)
- Eisenhower Army Medical Center, Department of Behavioral Health, Fort Gordon, GA 30905 USA
| | - William V. McCall
- Department of Psychiatry and Health Behavior, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (W.V.M.); (D.R.); (L.M.); (P.B.R.)
| | - Dheeraj Ravilla
- Department of Psychiatry and Health Behavior, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (W.V.M.); (D.R.); (L.M.); (P.B.R.)
| | - Laryssa McCloud
- Department of Psychiatry and Health Behavior, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (W.V.M.); (D.R.); (L.M.); (P.B.R.)
| | - Peter B. Rosenquist
- Department of Psychiatry and Health Behavior, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (W.V.M.); (D.R.); (L.M.); (P.B.R.)
| |
Collapse
|
39
|
Zhang J, Ren Y, Jiang W, Luo J, Yan F, Tang Y, Ma X. Shorter recovery times and better cognitive function-A comparative pilot study of magnetic seizure therapy and electroconvulsive therapy in patients with depressive episodes. Brain Behav 2020; 10:e01900. [PMID: 33070479 PMCID: PMC7749607 DOI: 10.1002/brb3.1900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Magnetic seizure therapy (MST) is a new convulsive therapy that is as effective as traditional electroconvulsive therapy (ECT) in treating depression but with fewer cognitive side effects. The aim of this study was to compare the efficacy and cognitive effects between MST (100 Hz applied over the vertex) and bifrontal ECT for treating patients with depressive episodes. METHODS Forty-five patients with depressive episodes were enrolled, with 18 receiving MST and 27 receiving ECT. MST was administered over the vertex with 100 Hz frequency. Treatment consisted of six sessions. The 17-item Hamilton Rating Scale for Depression (HAMD-17) was used to assess the severity of depression. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) was used to assess cognition. Assessments were performed at baseline and after the third and sixth treatment sessions. RESULTS Both MST and ECT improved the patients' depressive symptoms significantly, yet no significant difference was found between the two groups (p > .05). The response rates and remission rates of MST and ECT were 72.2% versus 81.5% and 61.1% versus 63.0%, respectively. The MST group showed significant improvements in immediate memory (p < .001), delayed memory (p = .002), and attention (p < .001) than ECT. The recovery times for consciousness (p < .001), spontaneous breathing (p < .001), and orientation (p < .001) were shorter in MST group than ECT group. RBANS improvements were negatively correlated with the recovery time for orientation (r = .561, p < .001). CONCLUSION Magnetic seizure therapy showed similar efficacy to bifrontal ECT for treating depressive episodes. While MST may be an effective alternative to ECT, larger randomized trials are needed.
Collapse
Affiliation(s)
- Junyan Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental DisordersBeijing Anding HospitalCapital Medical UniversityBeijingChina
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| | - Yanping Ren
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental DisordersBeijing Anding HospitalCapital Medical UniversityBeijingChina
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| | - Wei Jiang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental DisordersBeijing Anding HospitalCapital Medical UniversityBeijingChina
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| | - Jiong Luo
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental DisordersBeijing Anding HospitalCapital Medical UniversityBeijingChina
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| | - Fang Yan
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental DisordersBeijing Anding HospitalCapital Medical UniversityBeijingChina
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| | - Yilang Tang
- Department of Psychiatry and Behavioral SciencesEmory University School of MedicineAtlantaGAUSA
- Mental Health Service LineAtlanta VA Medical CenterDecaturGAUSA
| | - Xin Ma
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental DisordersBeijing Anding HospitalCapital Medical UniversityBeijingChina
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| |
Collapse
|
40
|
Deng ZD, Luber B, Balderston NL, Velez Afanador M, Noh MM, Thomas J, Altekruse WC, Exley SL, Awasthi S, Lisanby SH. Device-Based Modulation of Neurocircuits as a Therapeutic for Psychiatric Disorders. Annu Rev Pharmacol Toxicol 2020; 60:591-614. [PMID: 31914895 DOI: 10.1146/annurev-pharmtox-010919-023253] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Device-based neuromodulation of brain circuits is emerging as a promising new approach in the study and treatment of psychiatric disorders. This work presents recent advances in the development of tools for identifying neurocircuits as therapeutic targets and in tools for modulating neurocircuits. We review clinical evidence for the therapeutic efficacy of circuit modulation with a range of brain stimulation approaches, including subthreshold, subconvulsive, convulsive, and neurosurgical techniques. We further discuss strategies for enhancing the precision and efficacy of neuromodulatory techniques. Finally, we survey cutting-edge research in therapeutic circuit modulation using novel paradigms and next-generation devices.
Collapse
Affiliation(s)
- Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA; .,Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Bruce Luber
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Nicholas L Balderston
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Melbaliz Velez Afanador
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Michelle M Noh
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Jeena Thomas
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - William C Altekruse
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Shannon L Exley
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Shriya Awasthi
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA; .,Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
41
|
Hadas I, Zomorrodi R, Hill AT, Sun Y, Fitzgerald PB, Blumberger DM, Daskalakis ZJ. Subgenual cingulate connectivity and hippocampal activation are related to MST therapeutic and adverse effects. Transl Psychiatry 2020; 10:392. [PMID: 33173028 PMCID: PMC7655940 DOI: 10.1038/s41398-020-01042-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 12/28/2022] Open
Abstract
Aberrant connectivity between the dorsolateral prefrontal cortex (DLPFC) and the subgenual cingulate cortex (SGC) has been linked to the pathophysiology of depression. Indirect evidence also links hippocampal activation to the cognitive side effects of seizure treatments. Magnetic seizure therapy (MST) is a novel treatment for patients with treatment resistant depression (TRD). Here we combine transcranial magnetic stimulation with electroencephalography (TMS-EEG) to evaluate the effects of MST on connectivity and activation between the DLPFC, the SGC and hippocampus (Hipp) in patients with TRD. The TMS-EEG was collected from 31 TRD patients prior to and after an MST treatment trial. Through TMS-EEG methodology we evaluated significant current scattering (SCS) as an index of effective connectivity between the SGC and left DLPFC. Significant current density (SCD) was used to assess activity at the level of the Hipp. The SCS between the SGC and DLPFC was reduced after the course of MST (p < 0.036). The DLPFC-SGC effective connectivity reduction correlated with the changes in Hamilton depression score pre-to-post treatment (R = 0.46; p < 0.031). The SCD localized to the Hipp was reduced after the course of MST (p < 0.015), and the SCD change was correlated with montreal cognitive assessment (MOCA) scores pre-post the course of MST (R = -0.59; p < 0.026). Our findings suggest that MST treatment is associated with SGC-DLPFC connectivity reduction and that changes to cognition are associated with Hipp activation reduction. These findings demonstrate two distinct processes which drive efficacy and side effects separately, and might eventually aid in delineating physiological TRD targets in clinical settings.
Collapse
Affiliation(s)
- Itay Hadas
- Department of Psychiatry, Faculty of Health, University of California San Diego, La Jolla, CA, 92093-0603, USA
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, M5T1R8, Canada
| | - Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, VIC, Australia
| | - Yinming Sun
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Paul B Fitzgerald
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, VIC, Australia
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, M5T1R8, Canada
- Department of Psychiatry and Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, Faculty of Health, University of California San Diego, La Jolla, CA, 92093-0603, USA.
| |
Collapse
|
42
|
van Rooij SJH, Riva-Posse P, McDonald WM. The Efficacy and Safety of Neuromodulation Treatments in Late-Life Depression. ACTA ACUST UNITED AC 2020; 7:337-348. [PMID: 33585164 DOI: 10.1007/s40501-020-00216-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose of review In this review, the efficacy and safety of FDA approved neuromodulation devices (electroconvulsive therapy (ECT), transcranial magnetic stimulation (TMS) and vagus nerve stimulation (VNS)), as well as emerging neuromodulation treatments currently under investigation. Recent findings ECT is the "gold standard" somatic therapy for treatment resistant depression (TRD). Although the clinical benefits are outweighed by potential cognitive and cardiovascular side effects in majority of cases, it remains unfairly stigmatized. TMS has few cognitive or somatic side effects but is not as effective the treatment of psychotic depression or more treatment resistant depression in elders. VNS has limited data in older patients but has been shown to be effective in chronic, treatment resistant adults. Several investigative neuromodulation treatments including magnetic seizure therapy (MST), focal electrically administered seizure therapy (FEAST), transcutaneous VNS (tVNS), transcranial direct current stimulation (tDCS), and deep brain simulation (DBS) shown promise in geriatric TRD. Summary ECT, TMS and VNS are effective treatment for late-life depression, and research has continued to refine the techniques. Investigative neuromodulation techniques are promising, but evidence for the safety and efficacy of these devices in the geriatric population is needed.
Collapse
Affiliation(s)
- Sanne J H van Rooij
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Patricio Riva-Posse
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - William M McDonald
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| |
Collapse
|
43
|
Vlaicu A, Bustuchina Vlaicu M. New neuromodulation techniques for treatment resistant depression. Int J Psychiatry Clin Pract 2020; 24:106-115. [PMID: 32069166 DOI: 10.1080/13651501.2020.1728340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In the treatment of depression, when pharmacotherapy, psychotherapy and the oldest brain stimulation techniques are deadlocked, the emergence of new therapies is a necessary development. The field of neuromodulation is very broad and controversial. This article provides an overview of current progress in the technological advances in neuromodulation and neurostimulation treatments for treatment-resistant depression: magnetic seizure therapy; focal electrically administered seizure therapy; low field magnetic stimulation; transcranial pulsed electromagnetic fields; transcranial direct current stimulation; epidural cortical stimulation; trigeminal nerve stimulation; transcutaneous vagus nerve stimulation; transcranial focussed ultrasound; near infra-red transcranial radiation; closed loop stimulation. The role of new interventions is expanding, probably with more efficacy. Nowadays, still under experimentation, neuromodulation will probably revolutionise the field of neuroscience. At present, major efforts are still necessary before that these therapies are likely to become widespread.Key pointsThere is a critical need for new therapies for treatment resistant depression.Newer therapies are expanding. In the future, these therapies, as an evidence-based adjunctive treatments, could offer a good therapeutic choice for the patients with a TRD.The current trend in the new neuromodulation therapies is to apply a personalised treatment.These news therapies can be complementary.That treatment approaches can provide clinically significant benefits.
Collapse
Affiliation(s)
- Andrei Vlaicu
- Psychiatry Department, CHHM, Hospital Andre Breton, Saint-Dizier, France
| | | |
Collapse
|
44
|
Liou JY, Smith EH, Bateman LM, Bruce SL, McKhann GM, Goodman RR, Emerson RG, Schevon CA, Abbott LF. A model for focal seizure onset, propagation, evolution, and progression. eLife 2020; 9:50927. [PMID: 32202494 PMCID: PMC7089769 DOI: 10.7554/elife.50927] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/04/2020] [Indexed: 12/16/2022] Open
Abstract
We developed a neural network model that can account for major elements common to human focal seizures. These include the tonic-clonic transition, slow advance of clinical semiology and corresponding seizure territory expansion, widespread EEG synchronization, and slowing of the ictal rhythm as the seizure approaches termination. These were reproduced by incorporating usage-dependent exhaustion of inhibition in an adaptive neural network that receives global feedback inhibition in addition to local recurrent projections. Our model proposes mechanisms that may underline common EEG seizure onset patterns and status epilepticus, and postulates a role for synaptic plasticity in the emergence of epileptic foci. Complex patterns of seizure activity and bi-stable seizure end-points arise when stochastic noise is included. With the rapid advancement of clinical and experimental tools, we believe that this model can provide a roadmap and potentially an in silico testbed for future explorations of seizure mechanisms and clinical therapies.
Collapse
Affiliation(s)
- Jyun-You Liou
- Department of Physiology and Cellular Biophysics, Columbia University, New York, United States.,Department of Anesthesiology, NewYork-Presbyterian Hospital/Weill Cornell Medicine, New York, United States.,Department of Neurology, Columbia University Medical Center, New York, United States
| | - Elliot H Smith
- Department of Neurological Surgery, Columbia University Medical Center, New York, United States
| | - Lisa M Bateman
- Department of Neurology, Columbia University Medical Center, New York, United States
| | - Samuel L Bruce
- Vagelos College of Physicians & Surgeons, Columbia University, New York, United States
| | - Guy M McKhann
- Department of Neurological Surgery, Columbia University Medical Center, New York, United States
| | - Robert R Goodman
- Department of Neurological Surgery, Columbia University Medical Center, New York, United States
| | - Ronald G Emerson
- Department of Neurology, Columbia University Medical Center, New York, United States
| | - Catherine A Schevon
- Department of Neurology, Columbia University Medical Center, New York, United States
| | - L F Abbott
- Department of Physiology and Cellular Biophysics, Columbia University, New York, United States.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, United States
| |
Collapse
|
45
|
Wang J, Vila-Rodriguez F, Ge R, Gao S, Gregory E, Jiang W, Yang C, Wang G. Accelerated magnetic seizure therapy (aMST) for treatment of major depressive disorder: A pilot study. J Affect Disord 2020; 264:215-220. [PMID: 32056753 DOI: 10.1016/j.jad.2019.12.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Magnetic Seizure therapy (MST) is an emerging treatment for major depressive disorder (MDD) that is associated with fewer cognitive side effects compared to electroconvulsive therapy. The present pilot study sought to investigate whether daily MST treatments were associated to antidepressant effect and assess cognitive side effects associated with an accelerated MST (aMST) treatment schedule. METHODS Fifteen MDD patients underwent a six-day course of MST treatment to the vertex following assessment of symptom severity and neuropsychological testing. The primary outcome was severity on the Hamilton Rating Scale for Depression 17-item (HRSD-17). Patient also underwent neuropsychological assessment with the RBANS and Stroop Colour-Word test. RESULTS There were no instances of delirium or disturbance of consciousness following aMST sessions. Patients showed significant decreases on indices of depression and anxiety symptoms, with 9 (60%) patients showing a clinical response and 7 (47%) patients experiencing remission. Significant improvements were reported in RBANS total score, as well as indices of immediate memory and delayed memory. No changes at follow-up were reported for visuospatial/constructional, language, and attention RBANS indices, nor for Stroop Colour/Word performance. LIMITATIONS The results should be interpreted with caution as they are part of a non-randomized, open-label pilot study. Further, the short duration of the study does not provide longitudinal follow-up to determine whether treatment response lasts a meaningful duration of time. CONCLUSIONS aMST well tolerated without significant evidence of cognitive side effects and rapid improvement in symptoms. Further research is required to fully characterize these changes and replicate them in independent samples.
Collapse
Affiliation(s)
- Jian Wang
- Department of Psychiatry, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Ruiyang Ge
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Sherry Gao
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Elizabeth Gregory
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada.
| | - Wei Jiang
- The National Clinical Research Centre for Mental Disorders &Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, School of Mental Health, Beijing 100088, China
| | - Chunlin Yang
- The National Clinical Research Centre for Mental Disorders &Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, School of Mental Health, Beijing 100088, China
| | - Gang Wang
- The National Clinical Research Centre for Mental Disorders &Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, School of Mental Health, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
46
|
Lisanby SH, McClintock SM, Alexopoulos G, Bailine SH, Bernhardt E, Briggs MC, Cullum CM, Deng ZD, Dooley M, Geduldig ET, Greenberg RM, Husain MM, Kaliora S, Knapp RG, Latoussakis V, Liebman LS, McCall WV, Mueller M, Petrides G, Prudic J, Rosenquist PB, Rudorfer MV, Sampson S, Teklehaimanot AA, Tobias KG, Weiner RD, Young RC, Kellner CH. Neurocognitive Effects of Combined Electroconvulsive Therapy (ECT) and Venlafaxine in Geriatric Depression: Phase 1 of the PRIDE Study. Am J Geriatr Psychiatry 2020; 28:304-316. [PMID: 31706638 PMCID: PMC7050408 DOI: 10.1016/j.jagp.2019.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 11/16/2022]
Abstract
OBJECTIVE There is limited information regarding the tolerability of electroconvulsive therapy (ECT) combined with pharmacotherapy in elderly adults with major depressive disorder (MDD). Addressing this gap, we report acute neurocognitive outcomes from Phase 1 of the Prolonging Remission in Depressed Elderly (PRIDE) study. METHODS Elderly adults (age ≥60) with MDD received an acute course of 6 times seizure threshold right unilateral ultrabrief pulse (RUL-UB) ECT. Venlafaxine was initiated during the first treatment week and continued throughout the study. A comprehensive neurocognitive battery was administered at baseline and 72 hours following the last ECT session. Statistical significance was defined as a two-sided p-value of less than 0.05. RESULTS A total of 240 elderly adults were enrolled. Neurocognitive performance acutely declined post ECT on measures of psychomotor and verbal processing speed, autobiographical memory consistency, short-term verbal recall and recognition of learned words, phonemic fluency, and complex visual scanning/cognitive flexibility. The magnitude of change from baseline to end for most neurocognitive measures was modest. CONCLUSION This is the first study to characterize the neurocognitive effects of combined RUL-UB ECT and venlafaxine in elderly adults with MDD and provides new evidence for the tolerability of RUL-UB ECT in an elderly sample. Of the cognitive domains assessed, only phonemic fluency, complex visual scanning, and cognitive flexibility qualitatively declined from low average to mildly impaired. While some acute changes in neurocognitive performance were statistically significant, the majority of the indices as based on the effect sizes remained relatively stable.
Collapse
Affiliation(s)
- Sarah H. Lisanby
- Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC (Now at the National Institute of Mental Health),Noninvasive Neuromodulation Unit, Experimental Therapeutics Branch, Intramural Research Program, National Institute of Mental Health
| | - Shawn M. McClintock
- Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC (Now at the National Institute of Mental Health),Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX
| | - George Alexopoulos
- Department of Psychiatry and Behavioral Sciences, New York Presbyterian/Weill Cornell Medical Center, White Plains, NY
| | - Samuel H. Bailine
- Department of Psychiatry, Zucker Hillside Hospital/North Shore-LIJ Health System, New York, NY
| | | | - Mimi C. Briggs
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - C. Munro Cullum
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics Branch, Intramural Research Program, National Institute of Mental Health
| | - Mary Dooley
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC
| | - Emma T. Geduldig
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Mustafa M. Husain
- Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC (Now at the National Institute of Mental Health),Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX
| | - Styliani Kaliora
- Department of Psychiatry, Zucker Hillside Hospital/North Shore-LIJ Health System, New York, NY
| | - Rebecca G. Knapp
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC
| | - Vassilios Latoussakis
- Department of Psychiatry and Behavioral Sciences, New York Presbyterian/Weill Cornell Medical Center, White Plains, NY
| | - Lauren S. Liebman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - William V. McCall
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA
| | - Martina Mueller
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC
| | - Georgios Petrides
- Department of Psychiatry, Zucker Hillside Hospital/North Shore-LIJ Health System, New York, NY
| | - Joan Prudic
- Department of Psychiatry, Columbia University/New York State Psychiatric Institute, New York, NY
| | - Peter B. Rosenquist
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA
| | - Matthew V. Rudorfer
- Division of Services and Intervention Research, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Shirlene Sampson
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN
| | - Abeba A. Teklehaimanot
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC
| | - Kristen G. Tobias
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Richard D. Weiner
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC
| | - Robert C. Young
- Department of Psychiatry and Behavioral Sciences, New York Presbyterian/Weill Cornell Medical Center, White Plains, NY
| | - Charles H. Kellner
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | | |
Collapse
|
47
|
Ozcan S, Gica S, Gulec H. Suicidal behavior in treatment resistant major depressive disorder patients treated with transmagnetic stimulation(TMS) and its relationship with cognitive functions. Psychiatry Res 2020; 286:112873. [PMID: 32114209 DOI: 10.1016/j.psychres.2020.112873] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 02/10/2020] [Accepted: 02/18/2020] [Indexed: 12/28/2022]
Abstract
The aim of this study is to investigate the effects of rTMS treatment on suicidal thoughts/behaviors and to determine the cognitive mechanisms underlying the effects of rTMS treatment on suicidal thoughts/behaviors in treatment-resistant depression(TRD). Thirty patients with TRD received rTMS 5 sessions per week for 4-6 weeks. Montgomery-Asberg Depression Rating Scale(MADRS), Columbia Suicide Severity Rating Scale(C-SSRS), Suicidal Ideation Scale(SIS), Beck Hopelessness Scale(BHS) and Cambridge Neuropsychological Test Automated Battery(CANTAB) were administered before and after treatment. After rTMS treatment, there was a significant decrease in depressive complaints and suicidal thoughts and improvement in emotional recognition. However, there was no significant change in cognitive functions such as cognitive flexibility, motor response inhibition and decision making. Pre-treatment decision-making and flexible thinking skills were related to the change in suicidal ideation. In TRD patients, rTMS has a positive effect on depressive symptoms and suicidal thoughts/behaviors and emotion recognition abilities. Although there is no negative effect on other cognitive functions, the positive effect of rTMS on cognitive functions is limited. At this point, we think that the TRD would be treated more effectively with treatments targeting specific symptom clusters such as other cognitive functions and suicidal thoughts.
Collapse
Affiliation(s)
- Selma Ozcan
- University of Health Sciences Antalya Training and Research Hospital, Department of Psychiatry, Antalya, Turkey
| | - Sakir Gica
- Necmettin Erbakan University, Meram Medical Faculty, Department of Psychiatry, Konya, Turkey.
| | - Huseyin Gulec
- University of Health Sciences Istanbul Erenkoy Mental Health and Neurological Disease Education and Research Hospital Psychiatry, Istanbul, Turkey
| |
Collapse
|
48
|
Kayser S, Bewernick BH, Wagner S, Schlaepfer TE. Effects of magnetic seizure therapy on anterograde and retrograde amnesia in treatment-resistant depression. Depress Anxiety 2020; 37:125-133. [PMID: 31682325 DOI: 10.1002/da.22958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/17/2019] [Accepted: 08/20/2019] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is the gold standard for treatment-resistant depression (TRD). However, cognitive side effects, mainly anterograde and retrograde amnesia, frequently occur. Magnetic seizure therapy (MST) is tested using more focal seizure induction. However, the suggestion MST may be more beneficial than ECT because it causes fewer amnesia have not yet been comprehensively investigated using common neuropsychological testing specifically for ECT. We aimed to examine whether MST causes anterograde and retrograde amnesia. METHODS Ten patients with TRD were treated with MST (8.9 [2] treatments) at 100% machine output, a frequency of 100 Hz and 657.4 (62) pulses per train. The short form of the Autobiographical Memory Inventory was administered to test retrograde amnesia. Furthermore, an extended neuropsychological test battery, including verbal and nonverbal recall as well as recognition tasks, was used. RESULTS We observed changes in retrograde amnesia, although they were not clinically relevant (mean: -0.42 ± 0.14). Furthermore, no anterograde amnesia as well as no effects on global cognitive status, attention, language, and executive functions after MST were measured. CONCLUSIONS The cognitive safety and efficacy of MST in patients with TRD were indicated. However, the main limitations of the present study were the small sample and as a consequence, the low statistical power to detect changes after treatment. Therefore, our findings require replication in further studies. In addition, a direct comparison between MST and ECT in a larger sample should be performed before MST can be discussed as an alternative treatment approach to ECT in clinical practice.
Collapse
Affiliation(s)
- Sarah Kayser
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center, Mainz, Germany
| | - Bettina H Bewernick
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany.,Department of Geriatric Psychiatry and Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Stefanie Wagner
- Department of Psychiatry and Psychotherapy, University Medical Center, Mainz, Germany
| | - Thomas E Schlaepfer
- Department of Geriatric Psychiatry and Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany.,Division of Interventional Biological Psychiatry, University Hospital Freiburg, Freiburg, Germany.,Departments of Psychiatry and Mental Health, The Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
49
|
Jiang J, Li C, Chen Z, Cao X, Wang H, Li W, Wang J. Magnetic seizure therapy for treatment-resistant depression. Hippokratia 2020. [DOI: 10.1002/14651858.cd013528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiangling Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Psychotic Disorders; 600 Wan Ping Nan Road Shanghai China 200030
| | - Chunbo Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Psychotic Disorders; 600 Wan Ping Nan Road Shanghai China 200030
| | - Zhimin Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Psychotic Disorders; 600 Wan Ping Nan Road Shanghai China 200030
| | - Xinyi Cao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Psychotic Disorders; 600 Wan Ping Nan Road Shanghai China 200030
| | - Hongyan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Psychotic Disorders; 600 Wan Ping Nan Road Shanghai China 200030
| | - Wei Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Psychotic Disorders; 600 Wan Ping Nan Road Shanghai China 200030
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine; Department of EEG Source Imaging; Shanghai Shanghai China 200030
| |
Collapse
|
50
|
Abstract
INTRODUCTION Major depressive disorder is a prevalent and debilitating condition that afflicts millions of people worldwide. Magnetic seizure therapy (MST) is a promising convulsive neurostimulation treatment for depression with fewer cognitive adverse effects than electroconvulsive therapy. METHODS A small case series of patients recruited as part of an open-label clinical trial is presented. Patients with depression underwent an accelerated MST protocol (aMST) consisting of 1 treatment per day for 6 consecutive weekdays. The primary outcome was severity on the HDRS17 (Hamilton Depression Rating Scale 17-item). In addition, patients underwent neuropsychological assessment with the Repeatable Battery for the Assessment of Neuropsychological Status and Stroop test. RESULTS After completing aMST, all patients experienced improvement. Two patients met response criterion, and the third experienced a 27% decrease on the HDRS17. All 3 patients experienced improvement in cognitive performance with a global 20% mean improvement and strongest improvement in immediate and delayed verbal memory indices (mean improvement of 40% and 27%, respectively). There were no cases of prolonged confusion or delirium after MST treatments. There were no severe adverse effects in any of the 3 patients. CONCLUSIONS Accelerated MST protocol was well tolerated and associated with positive outcomes in this small case series. Accelerated MST protocol was not associated with prolonged confusion or delirium and was associated with improvement in memory indices. Our results merit further research in large RCT to test whether accelerated MST protocol might be an efficacious treatment for major depressive disorder.
Collapse
|