1
|
Lissek T. The universal role of adaptive transcription in health and disease. FEBS J 2025; 292:2479-2505. [PMID: 39609264 PMCID: PMC12103072 DOI: 10.1111/febs.17324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 07/25/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024]
Abstract
In animals, adaptive transcription is a crucial mechanism to connect environmental stimulation to changes in gene expression and subsequent organism remodeling. Adaptive transcriptional programs involving molecules such as CREB, SRF, MEF2, FOS, and EGR1 are central to a wide variety of organism functions, including learning and memory, immune system plasticity, and muscle hypertrophy, and their activation increases cellular resilience and prevents various diseases. Yet, they also form the basis for many maladaptive processes and are involved in the progression of addiction, depression, cancer, cardiovascular disorders, autoimmune conditions, and metabolic dysfunction among others and are thus prime examples for mediating the adaptation-maladaptation dilemma. They are implicated in the therapeutic effects of major treatment modalities such as antidepressants and can have negative effects on treatment, for example, contributing to therapy resistance in cancer. This review examines the universal role of adaptive transcription as a mechanism for the induction of adaptive cell state transitions in health and disease and explores how many medical disorders can be conceptualized as caused by errors in cellular adaptation goals. It also considers the underlying principles in the basic structure of adaptive gene programs such as their division into a core and a directional program. Finally, it analyses how one might best reprogram cells via targeting of adaptive transcription in combination with complex stimulation patterns to leverage endogenous cellular reprogramming dynamics and achieve optimal health of the whole organism.
Collapse
Affiliation(s)
- Thomas Lissek
- Interdisciplinary Center for NeurosciencesHeidelberg UniversityGermany
| |
Collapse
|
2
|
Mao Q, Wang J, Yang Z, Ding R, Lv S, Ji X. The Pathologic Roles and Therapeutic Implications of Ghrelin/GHSR System in Mental Disorders. Depress Anxiety 2024; 2024:5537319. [PMID: 40226675 PMCID: PMC11919235 DOI: 10.1155/2024/5537319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 04/15/2025] Open
Abstract
Ghrelin is a hormone consisting of 28 amino acids. Growth hormone secretagogue receptor (GHSR) is a receptor for ghrelin, which is expressed in the brain, pituitary gland, and adrenal glands, especially in the hypothalamus. The binding of ghrelin to the receptor 1a subtype mediates most of the biological effects of ghrelin. Ghrelin has a close relationship with the onset of psychosis. Ghrelin can affect the onset of psychosis by regulating neurotransmitters such as dopamine, γ-aminobutyric acid (GABA), and 5-hydroxytryptamine (5-HT) through the hypothalamus-pituitary-adrenal (HPA) axis, brain-gut axis, the mesolimbic dopamine system, and other ways. Ghrelin activates neuropeptide Y (NPY) in the hypothalamic arcuate nucleus (ARC) through the GHSR. Ghrelin binds to neurons in the ventral tegmental area (VTA), where it promotes the activity of dopamine neurons in the nucleus accumbens (NAcs) in a GHSR-dependent way, increasing dopamine levels and the reward system. This article summarized the recent research progress of ghrelin in depression, anxiety, schizophrenia, anorexia nervosa (AN), and bulimia nervosa (BN), and emphasized its potential application for psychiatric disorders treatment.
Collapse
Affiliation(s)
- Qianshuo Mao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Jinjia Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Zihan Yang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Ruidong Ding
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Shuangyu Lv
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan, China
- Department of Neurosurgery, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475001, Henan, China
| | - Xinying Ji
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, 6 Gong-Ming Road, Mazhai Town, Erqi District, Zhengzhou 450064, Henan, China
- Department of Medicine, Huaxian County People's Hospital, Huaxian 456400, Henan, China
| |
Collapse
|
3
|
Chen S, Li M, Tong C, Wang Y, He J, Shao Q, Liu Y, Wu Y, Song Y. Regulation of miRNA expression in the prefrontal cortex by fecal microbiota transplantation in anxiety-like mice. Front Psychiatry 2024; 15:1323801. [PMID: 38410679 PMCID: PMC10894985 DOI: 10.3389/fpsyt.2024.1323801] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Background The gut-brain axis and gut microbiota have emerged as key players in emotional disorders. Recent studies suggest that alterations in gut microbiota may impact psychiatric symptoms through brain miRNA along the gut-brain axis. However, direct evidence linking gut microbiota to the pathophysiology of generalized anxiety disorder (GAD) via brain miRNA is limited. In this study, we explored the effects of fecal microbiota transplantation (FMT) from GAD donors on gut microbiota and prefrontal cortex miRNA in recipient mice, aiming to understand the relationship between these two factors. Methods Anxiety scores and gut microbiota composition were assessed in GAD patients, and their fecal samples were utilized for FMT in C57BL/6J mice. Anxiety-like behavior in mice was evaluated using open field and elevated plus maze tests. High-throughput sequencing of gut microbiota 16S rRNA and prefrontal cortex miRNA was performed. Results The fecal microbiota of GAD patients exhibited a distinct microbial structure compared to the healthy group, characterized by a significant decrease in Verrucomicrobia and Akkermansia, and a significant increase in Actinobacteria and Bacteroides. Subsequent FMT from GAD patients to mice induced anxiety-like behavior in recipients. Detailed analysis of gut microbiota composition revealed lower abundances of Verrucomicrobia, Akkermansia, Bifidobacterium, and Butyricimonas, and higher abundances of Deferribacteres, Allobaculum, Bacteroides, and Clostridium in mice that received FMT from GAD patients. MiRNA analysis identified five key miRNAs affecting GAD pathogenesis, including mmu-miR-10a-5p, mmu-miR-1224-5p, mmu-miR-218-5p, mmu-miR-10b-5p, and mmu-miR-488-3p. Notably, mmu-miR-488-3p showed a strong negative correlation with Verrucomicrobia and Akkermansia. Conclusion This study demonstrates that anxiety-like behavior induced by human FMT can be transmitted through gut microbiota and is associated with miRNA expression in the prefrontal cortex. It is inferred that the reduction of Akkermansia caused by FMT from GAD patients leads to the upregulation of mmu-miR-488-3p expression, resulting in the downregulation of its downstream target gene Creb1 and interference with its related signaling pathway. These findings highlight the gut microbiota's crucial role in the GAD pathophysiology.
Collapse
Affiliation(s)
- Simin Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mengjia Li
- College of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Changqing Tong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yanan Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiahui He
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Shao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Wu
- Liuzhou Key laboratory of infection disease and immunology, Research Center of Medical Sciences, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Yuehan Song
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Wong W, Sari Y. Effects of Chronic Hydrocodone Exposure and Ceftriaxone on the Expression of Astrocytic Glutamate Transporters in Mesocorticolimbic Brain Regions of C57/BL Mice. TOXICS 2023; 11:870. [PMID: 37888720 PMCID: PMC10611114 DOI: 10.3390/toxics11100870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/26/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Exposure to opioids can lead to the alteration of several neurotransmitters. Among these neurotransmitters, glutamate is thought to be involved in opioid dependence. Glutamate neurotransmission is mainly regulated by astrocytic glutamate transporters such as glutamate transporter 1 (GLT-1) and cystine/glutamate antiporter (xCT). Our laboratory has shown that exposure to lower doses of hydrocodone reduced the expression of xCT in the nucleus accumbens (NAc) and the hippocampus. In the present study, we investigated the effects of chronic exposure to hydrocodone, and tested ceftriaxone as a GLT-1 upregulator in mesocorticolimbic brain regions such as the NAc, the amygdala (AMY), and the dorsomedial prefrontal cortex (dmPFC). Eight-week-old male mice were divided into three groups: (1) the saline vehicle control group; (2) the hydrocodone group; and (3) the hydrocodone + ceftriaxone group. Mice were injected with hydrocodone (10 mg/kg, i.p.) or saline for 14 days. On day seven, the hydrocodone/ceftriaxone group was injected with ceftriaxone (200 mg/kg, i.p.) for last seven days. Chronic exposure to hydrocodone reduced the expression of GLT-1, xCT, protein kinase B (AKT), extracellular signal-regulated kinases (ERK), and c-Jun N-terminal Kinase (JNK) in NAc, AMY, and dmPFC. However, hydrocodone exposure increased the expression of G-protein-coupled metabotropic glutamate receptors (mGluR5) in the NAc, AMY, and dmPFC. Importantly, ceftriaxone treatment normalized the expression of mGluR5, GLT-1, and xCT in all these brain regions, except for xCT in the AMY. Importantly, ceftriaxone treatment attenuated hydrocodone-induced downregulation of signaling pathways such as AKT, ERK, and JNK expression in the NAc, AMY, and dmPFC. These findings demonstrate that ceftriaxone has potential therapeutic effects in reversing hydrocodone-induced downregulation of GLT-1 and xCT in selected reward brain regions, and this might be mediated through the downstream kinase signaling pathways such as AKT, ERK, and JNK.
Collapse
Affiliation(s)
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA;
| |
Collapse
|
5
|
Wang ZJ, Shwani T, Liu J, Zhong P, Yang F, Schatz K, Zhang F, Pralle A, Yan Z. Molecular and cellular mechanisms for differential effects of chronic social isolation stress in males and females. Mol Psychiatry 2022; 27:3056-3068. [PMID: 35449296 PMCID: PMC9615910 DOI: 10.1038/s41380-022-01574-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/21/2022]
Abstract
Chronic social isolation stress during adolescence induces susceptibility for neuropsychiatric disorders. Here we show that 5-week post-weaning isolation stress induces sex-specific behavioral abnormalities and neuronal activity changes in the prefrontal cortex (PFC), basal lateral amygdala (BLA), and ventral tegmental area (VTA). Chemogenetic manipulation, optogenetic recording, and in vivo calcium imaging identify that the PFC to BLA pathway is causally linked to heightened aggression in stressed males, and the PFC to VTA pathway is causally linked to social withdrawal in stressed females. Isolation stress induces genome-wide transcriptional alterations in a region-specific manner. Particularly, the upregulated genes in BLA of stressed males are under the control of activated transcription factor CREB, and CREB inhibition in BLA normalizes gene expression and reverses aggressive behaviors. On the other hand, neuropeptide Hcrt (Hypocretin/Orexin) is among the top-ranking downregulated genes in VTA of stressed females, and Orexin-A treatment rescues social withdrawal. These results have revealed molecular mechanisms and potential therapeutic targets for stress-related mental illness.
Collapse
Affiliation(s)
- Zi-Jun Wang
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Treefa Shwani
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Junting Liu
- Department of Physics, College of Arts and Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Ping Zhong
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Fengwei Yang
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Kelcie Schatz
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Freddy Zhang
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Arnd Pralle
- Department of Physics, College of Arts and Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
6
|
Campbell A, Morris G, Sanfeliu A, Augusto J, Langa E, Kesavan JC, Nguyen NT, Conroy RM, Worm J, Kielpinski L, Jensen MA, Miller MT, Kremer T, Reschke CR, Henshall DC. AntimiR targeting of microRNA-134 reduces seizures in a mouse model of Angelman syndrome. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:514-529. [PMID: 35592499 PMCID: PMC9092865 DOI: 10.1016/j.omtn.2022.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/15/2022] [Indexed: 10/26/2022]
Abstract
Angelman syndrome (AS) is a severe neurodevelopmental disorder featuring ataxia, cognitive impairment, and drug-resistant epilepsy. AS is caused by mutations or deletion of the maternal copy of the paternally imprinted UBE3A gene, with current precision therapy approaches focusing on re-expression of UBE3A. Certain phenotypes, however, are difficult to rescue beyond early development. Notably, a cluster of microRNA binding sites was reported in the untranslated Ube3a1 transcript, including for miR-134, suggesting that AS may be associated with microRNA dysregulation. Here, we report levels of miR-134 and key targets are normal in the hippocampus of mice carrying a maternal deletion of Ube3a (Ube3a m-/p+ ). Nevertheless, intracerebroventricular injection of an antimiR oligonucleotide inhibitor of miR-134 (Ant-134) reduced audiogenic seizure severity over multiple trials in 21- and 42-day-old AS mice. Interestingly, Ant-134 also improved distance traveled and center crossings of AS mice in the open-field test. Finally, we show that silencing miR-134 can upregulate targets of miR-134 in neurons differentiated from Angelman patient-derived induced pluripotent stem cells. These findings indicate that silencing miR-134 and possibly other microRNAs could be useful to treat clinically relevant phenotypes with a later developmental window in AS.
Collapse
Affiliation(s)
- Aoife Campbell
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Gareth Morris
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Albert Sanfeliu
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Joana Augusto
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Elena Langa
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Jaideep C Kesavan
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Ngoc T Nguyen
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Ronan M Conroy
- Department of Public Health and Epidemiology, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Jesper Worm
- Therapeutic Modalities, Roche Innovation Center Copenhagen A/S, F. Hoffmann-La Roche Ltd, DK-2970 Hørsholm, Denmark
| | - Lukasz Kielpinski
- Therapeutic Modalities, Roche Innovation Center Copenhagen A/S, F. Hoffmann-La Roche Ltd, DK-2970 Hørsholm, Denmark
| | - Mads Aaboe Jensen
- Therapeutic Modalities, Roche Innovation Center Copenhagen A/S, F. Hoffmann-La Roche Ltd, DK-2970 Hørsholm, Denmark
| | - Meghan T Miller
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Thomas Kremer
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Cristina R Reschke
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.,School of Pharmacy and Biomedical Sciences, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - David C Henshall
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| |
Collapse
|
7
|
Paul AK, Smith CM, Rahmatullah M, Nissapatorn V, Wilairatana P, Spetea M, Gueven N, Dietis N. Opioid Analgesia and Opioid-Induced Adverse Effects: A Review. Pharmaceuticals (Basel) 2021; 14:1091. [PMID: 34832873 PMCID: PMC8620360 DOI: 10.3390/ph14111091] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023] Open
Abstract
Opioids are widely used as therapeutic agents against moderate to severe acute and chronic pain. Still, these classes of analgesic drugs have many potential limitations as they induce analgesic tolerance, addiction and numerous behavioural adverse effects that often result in patient non-compliance. As opium and opioids have been traditionally used as painkillers, the exact mechanisms of their adverse reactions over repeated use are multifactorial and not fully understood. Older adults suffer from cancer and non-cancer chronic pain more than younger adults, due to the physiological changes related to ageing and their reduced metabolic capabilities and thus show an increased number of adverse reactions to opioid drugs. All clinically used opioids are μ-opioid receptor agonists, and the major adverse effects are directly or potentially connected to this receptor. Multifunctional opioid ligands or peripherally restricted opioids may elicit fewer adverse effects, as shown in preclinical studies, but these results need reproducibility from further extensive clinical trials. The current review aims to overview various mechanisms involved in the adverse effects induced by opioids, to provide a better understanding of the underlying pathophysiology and, ultimately, to help develop an effective therapeutic strategy to better manage pain.
Collapse
Affiliation(s)
- Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Craig M. Smith
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia;
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhanmondi, Dhaka 1207, Bangladesh;
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD) and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80–82, 6020 Innsbruck, Austria;
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Nikolas Dietis
- Medical School, University of Cyprus, Nicosia 1678, Cyprus;
| |
Collapse
|
8
|
Wang Q, Qin F, Wang H, Yang H, Liu Q, Li Z, Jiang Y, Lu S, Wang Q, Lu Z. Effect of Electro-Acupuncture at ST36 and SP6 on the cAMP -CREB Pathway and mRNA Expression Profile in the Brainstem of Morphine Tolerant Mice. Front Neurosci 2021; 15:698967. [PMID: 34512242 PMCID: PMC8431970 DOI: 10.3389/fnins.2021.698967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Undoubtedly, opioid drugs have been the most popular treatment for refractory pain since found, such as morphine. However, tolerance to the analgesic effects caused by repeated use is inevitable, which greatly limits the clinical application of these drugs. Nowadays, it has become the focus of the world that further development of non-opioid-based treatment along with efficient strategies to circumvent opioid tolerance are urgently needed clinically. Fortunately, electro-acupuncture (EA) provides an alternative to pharmaceutic treatment, remaining its potential mechanisms unclear although. This study was aimed to observe the effects of EA on morphine-induced tolerance in mice and discover its underlying mechanism. Tail-flick assay and hot-plate test were conducted to assess the development of tolerance to morphine-induced analgesia effect. As a result of repeated administration scheme (10 mg/kg, twice per day, for 7 days), approximately a two-fold increase was observed in the effective dose of 50% (ED50) of morphine-induced antinociceptive effect. Interestingly, by EA treatment (2/100Hz, 0.5, 1.0, and 1.5 mA, 30 min/day for 7 days) at the acupoints Zusanli (ST36) and Sanyinjiao (SP6), morphine ED50 curves was remarkably leftward shifted on day 8. In addition, the RNA sequencing strategy was used to reveal the potential mechanisms. Due to the well described relevance of cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), extracellular regulated protein kinases (ERK), and cAMP response element-binding (CREB) in brainstem (BS) to analgesia tolerance, the cAMP-PKA/ERK-CREB signaling was deeply concerned in this study. Based upon Enzyme-Linked Immunosorbent Assay, the up-regulation of the cAMP level was observed, whereas reversed with EA treatment. Similarly, western blot revealed the phosphorylation levels of PKA, ERK, and CREB were up-regulated in morphine tolerant mice, whereas the EA group showed a significantly reduced expression level instead. This study observed an attenuating effect of the EA at ST36 and SP6 on morphine tolerance in mice, and suggested several potential biological targets by RNA-seq, which include the cAMP-PKA/ERK-CREB signaling pathway, strongly supporting a useful treatment for combatting the opioid epidemic, and opioid-tolerant patients.
Collapse
Affiliation(s)
- Qisheng Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fenfen Qin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huanya Yang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qingyang Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhonghao Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yongwei Jiang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shengfeng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Wang
- College of International Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhigang Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
Xhakaza SP, Khoza LJ, Haripershad AM, Ghazi T, Dhani S, Mutsimhu C, Molopa MJ, Madurai NP, Madurai L, Singh SD, Gopal ND, Kruger HG, Govender T, Chuturgoon A, Naicker T, Baijnath S. Alterations in neurotransmitter levels and transcription factor expression following intranasal buprenorphine administration. Biomed Pharmacother 2021; 138:111515. [PMID: 33752062 DOI: 10.1016/j.biopha.2021.111515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 11/28/2022] Open
Abstract
Buprenorphine is an opioid drug used in the management of pain and the treatment opioid addiction. Like other opioids, it is believed that it achieves these effects by altering functional neurotransmitter pathways and the expression of important transcription factors; cyclic AMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) in the brain. However, there is a lack of scientific evidence to support these theories. This study investigated the pharmacodynamic effects of BUP administration by assessing neurotransmitter and molecular changes in the healthy rodent brain. Sprague-Dawley rats (150-200 g) were intranasally administered buprenorphine (0.3 mg/mL) and sacrificed at different time points: 0.25, 0.5, 1, 2, 4, 6, 8 and 24 h post drug administration. LC-MS was used to quantify BUP and neurotransmitters (GABA, GLUT, DA, NE and 5-HT) in the brain, while CREB and BDNF gene expression was determined using qPCR. Results showed that BUP reached a Cmax of 1.21 ± 0.0523 ng/mL after 2 h, with all neurotransmitters showing an increase in their concentration over time, with GABA, GLUT and NE reaching their maximum concentration after 8 h. DA and 5-HT reached their maximum concentrations at 1 h and 24 h, respectively post drug administration. Treatment with BUP resulted in significant upregulation in BDNF expression throughout the treatment period while CREB showed patterns of significant upregulation at 2 and 8 h, and downregulation at 1 and 6 h. This study contributes to the understanding of the pharmacodynamic effects of BUP in opioid addiction by proving that the drug significantly influences NT pathways that are implicated in opioid addiction.
Collapse
Affiliation(s)
- Sanelisiwe P Xhakaza
- Catalysis and Peptide Research Unit, Department of Pharmaceutical Sciences, College of Health Science, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Leon J Khoza
- Catalysis and Peptide Research Unit, Department of Pharmaceutical Sciences, College of Health Science, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Advaitaa M Haripershad
- Catalysis and Peptide Research Unit, Department of Pharmaceutical Sciences, College of Health Science, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Shanel Dhani
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Cosmas Mutsimhu
- Viro Care (SA) Pty Ltd, 12 The Avenue East, Prospecton, Durban 4113, South Africa
| | - Molopa J Molopa
- Viro Care (SA) Pty Ltd, 12 The Avenue East, Prospecton, Durban 4113, South Africa
| | - Nithia P Madurai
- Viro Care (SA) Pty Ltd, 12 The Avenue East, Prospecton, Durban 4113, South Africa
| | - Lorna Madurai
- Viro Care (SA) Pty Ltd, 12 The Avenue East, Prospecton, Durban 4113, South Africa
| | - Sanil D Singh
- Catalysis and Peptide Research Unit, Department of Pharmaceutical Sciences, College of Health Science, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Nirmala D Gopal
- Department of Criminology, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, Department of Pharmaceutical Sciences, College of Health Science, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Thavendran Govender
- Department of Chemistry, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Tricia Naicker
- Catalysis and Peptide Research Unit, Department of Pharmaceutical Sciences, College of Health Science, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Sooraj Baijnath
- Catalysis and Peptide Research Unit, Department of Pharmaceutical Sciences, College of Health Science, University of KwaZulu-Natal, Durban, 4001, South Africa.
| |
Collapse
|
10
|
Diel rhythm of urotensin I mRNA expression and its involvement in the locomotor activity and appetite regulation in olive flounder Paralichthys olivaceus. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110627. [PMID: 34058375 DOI: 10.1016/j.cbpb.2021.110627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 11/21/2022]
Abstract
Urotensin I (UI), a member of the corticotropin-releasing hormone family of peptides, regulates a diverse array of physiological functions, including appetite regulation, defensive behavior and stress response. In this study, firstly, the tissue-specific distribution of UI mRNA in olive flounder (Paralichthys olivaceus) was characterized and we found that UI mRNA was highly expressed in caudal neurosecretory system (CNSS) tissue. Secondly, alignment analysis found that a conserved cAMP response binding (CREB) site and a TATA element were located in the proximal promoter of UI gene. In addition, treatment of forskolin activatated cAMP-CREB pathway and induced the up-regulation of UI mRNA in cultured CNSS, suggesting the role of CREB in regulating the UI mRNA expression. Furthermore, plasma UI concentration and UI mRNA in CNSS showed obvious daily rhythm, with higher values in the daytime while lower values in the nighttime. Thirdly, using bold personality (BP) and shy personality (SP) flounder as an animal model, we found that flounder exhibited significantly higher locomotor activity in the nighttime than in the daytime (P < 0.001), and BP flounder showed significantly higher locomotor activity (P < 0.001) compared with SP flounder both in the daytime and nighttime. Analysis of feeding behavior revealed that BP flounder showed a shorter latency to feed and more attacks to prey. Furthermore, the qPCR and immunohistochemistry results showed that BP flounder expressed significantly lower level of UI mRNA and protein in CNSS tissue. Collectively, our study suggested that the UI plays an important role in locomotor activity and appetite regulation, which provides a basis for understanding the mechanism of defensive behavior and animal personality in flounder.
Collapse
|
11
|
Yin CY, Li LD, Xu C, Du ZW, Wu JM, Chen X, Xia T, Huang SY, Meng F, Zhang J, Xu PJ, Hua FZ, Muhammad N, Han F, Zhou QG. A novel method for automatic pharmacological evaluation of sucrose preference change in depression mice. Pharmacol Res 2021; 168:105601. [PMID: 33838294 DOI: 10.1016/j.phrs.2021.105601] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/28/2021] [Accepted: 04/01/2021] [Indexed: 01/22/2023]
Abstract
Sucrose preference test (SPT) is a most frequently applied method for measuring anhedonia, a core symptom of depression, in rodents. However, the method of SPT still remains problematic mainly due to the primitive, irregular, and inaccurate various types of home-made equipment in laboratories, causing imprecise, inconsistent, and variable results. To overcome this issue, we devised a novel method for automatic detection of anhedonia in mice using an electronic apparatus with its program for automated detecting the behavior of drinking of mice instead of manual weighing the water bottles. In this system, the liquid surface of the bottles was monitored electronically by infrared monitoring elements which were assembled beside the plane of the water surface and the information of times and duration of each drinking was collected to the principal machine. A corresponding computer program was written and installed in a computer connected to the principal machine for outputting and analyzing the data. This new method, based on the automated system, was sensitive, reliable, and adaptable for evaluation of stress- or drug-induced anhedonia, as well as taste preference and effects of addictive drugs. Extensive application of this automated apparatus for SPT would greatly improve and standardize the behavioral assessment method of anhedonia, being instrumental in novel antidepressant screening and depression researching.
Collapse
Affiliation(s)
- Chun-Yu Yin
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Department of Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Lian-Di Li
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chu Xu
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Zi-Wei Du
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jia-Min Wu
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiang Chen
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Tian Xia
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Shu-Ying Huang
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Fan Meng
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jing Zhang
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Pei-Jin Xu
- Wanxiang Biotechnology company, Nanyang 473061, China
| | - Fu-Zhou Hua
- The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330006, China
| | - Naveed Muhammad
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine of Jiangsu Province, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Feng Han
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine of Jiangsu Province, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Qi-Gang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Cardiovascular and Cerebrovascular Medicine of Jiangsu Province, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
12
|
Interruption of continuous opioid exposure exacerbates drug-evoked adaptations in the mesolimbic dopamine system. Neuropsychopharmacology 2020; 45:1781-1792. [PMID: 32079024 PMCID: PMC7608117 DOI: 10.1038/s41386-020-0643-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Drug-evoked adaptations in the mesolimbic dopamine system are postulated to drive opioid abuse and addiction. These adaptations vary in magnitude and direction following different patterns of opioid exposure, but few studies have systematically manipulated the pattern of opioid administration while measuring neurobiological and behavioral impact. We exposed male and female mice to morphine for one week, with administration patterns that were either intermittent (daily injections) or continuous (osmotic minipump infusion). We then interrupted continuous morphine exposure with either naloxone-precipitated or spontaneous withdrawal. Continuous morphine exposure caused tolerance to the psychomotor-activating effects of morphine, whereas both intermittent and interrupted morphine exposure caused long-lasting psychomotor sensitization. Given links between locomotor sensitization and mesolimbic dopamine signaling, we used fiber photometry and a genetically encoded dopamine sensor to conduct longitudinal measurements of dopamine dynamics in the nucleus accumbens. Locomotor sensitization caused by interrupted morphine exposure was accompanied by enhanced dopamine signaling in the nucleus accumbens. To further assess downstream consequences on striatal gene expression, we used next-generation RNA sequencing to perform genome-wide transcriptional profiling in the nucleus accumbens and dorsal striatum. The interruption of continuous morphine exposure exacerbated drug-evoked transcriptional changes in both nucleus accumbens and dorsal striatum, dramatically increasing differential gene expression and engaging unique signaling pathways. Our study indicates that opioid-evoked adaptations in brain function and behavior are critically dependent on the pattern of drug administration, and exacerbated by interruption of continuous exposure. Maintaining continuity of chronic opioid administration may, therefore, represent a strategy to minimize iatrogenic effects on brain reward circuits.
Collapse
|
13
|
Moriguchi S, Inagaki R, Yi L, Shibata M, Sakagami H, Fukunaga K. Nicotine Rescues Depressive-like Behaviors via α7-type Nicotinic Acetylcholine Receptor Activation in CaMKIV Null Mice. Mol Neurobiol 2020; 57:4929-4940. [PMID: 32815115 DOI: 10.1007/s12035-020-02077-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/14/2020] [Indexed: 01/23/2023]
Abstract
The nicotinic acetylcholine receptors (nAChRs) are essential for acetylcholine-mediated signaling. Two major functional subtypes of nAChR in the brain, α7-type and α4β2-type, have a high affinity for nicotine. Here, we demonstrated that chronic exposure to nicotine at 0.03-0.3 mg/kg for 14 days rescued depressive-like behavior in calcium/calmodulin-dependent protein kinase IV (CaMKIV) null mice. Chronic exposure to nicotine together with methyllycaconitine, an α7-type nAChR antagonist, but not with dihydro-β-erythroidine, an α4β2-type nAChR antagonist, failed to rescue the depressive-like behavior and restore the reduced number of BrdU-positive cells in the dentate gyrus (DG) of CaMKIV null mice. Furthermore, chronic exposure to nicotine enhanced the PI3K/Akt and ERK/CREB pathways and increased BDNF expression in the DG of CaMKIV null mice. Similar to chronic exposure to nicotine, both PNU-282987 and GTS-21, α7-type nAChR agonists, significantly rescued depressive-like behavior, with a reduction in the number of BrdU-positive cells in the DG of CaMKIV null mice. Both PNU-282987 and GTS-21 also enhanced the PI3K/Akt and ERK/CREB pathways and increased brain-derived neurotrophic factor (BDNF) expression in the DG of CaMKIV null mice. Taken together, we demonstrated that chronic exposure to nicotine rescues depressive-like behavior via α7-type nAChR through the activation of both PI3K/Akt and ERK/CREB pathways in CaMKIV null mice.
Collapse
Affiliation(s)
- Shigeki Moriguchi
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan. .,Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | - Ryo Inagaki
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.,Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Lusha Yi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Mikako Shibata
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
14
|
Injection of minocycline into the periaqueductal gray attenuates morphine withdrawal signs. Neurosci Lett 2020; 736:135283. [PMID: 32739271 DOI: 10.1016/j.neulet.2020.135283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 11/22/2022]
Abstract
This study investigated the effects of minocycline microinjections, into the midbrain periaqueductal gray (PAG), on morphine withdrawal and the expression of pannexin-1 (panx1), phosphorylated mammalian target of rapamycin (p-mTOR), protein kinase A (PKA), and cAMP response element-binding protein (CREB). Rats were injected with morphine, intraperitoneally, at increasing doses, twice per day, to establish animal models of morphine exposure. Minocycline was administered into the PAG before the first intraperitoneal (i.p.) injection of morphine each day, on days 1-4. On the last day of the experiment, all rats were injected with naloxone, and morphine withdrawal was observed, and then changes in the expression levels of ionized calcium-binding adaptor molecule 1 (Iba1) and its downstream factors, panx1, p-mTOR, PKA, and CREB were evaluated by western blot and immunohistochemistry analyses. Morphine withdrawal increased microglial activation, whereas minocycline could inhibit microglial activation and withdrawal and the downregulation of panx1, p-mTOR, PKA, and CREB expression, reducing the effects of morphine withdrawal.
Collapse
|
15
|
Cantacorps L, Montagud-Romero S, Luján MÁ, Valverde O. Prenatal and postnatal alcohol exposure increases vulnerability to cocaine addiction in adult mice. Br J Pharmacol 2020; 177:1090-1105. [PMID: 31705540 DOI: 10.1111/bph.14901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/13/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Alcohol exposure in utero may lead to a wide range of long-lasting morphological and behavioural deficiencies known as fetal alcohol spectrum disorders (FASD), associated with a higher risk of later developing neuropsychiatric disorders. However, little is known about the long-term consequences of cocaine use and abuse in individuals with FASD. This study aimed to investigate the effects of maternal binge alcohol drinking during prenatal and postnatal periods on cocaine reward-related behaviours in adult offspring. EXPERIMENTAL APPROACH Pregnant C57BL/6 female mice were exposed to an experimental protocol of binge alcohol consumption (drinking-in-the-dark test) from gestation to weaning. Male offspring were subsequently left undisturbed until reaching adulthood and were tested for cocaine-induced motivational responses (conditioned place preference, behavioural sensitization and operant self-administration). Protein expression of dopamine- and glutamate-related molecules was assessed following cocaine-induced reinstatement. KEY RESULTS The results show that prenatal and postnatal alcohol exposure enhanced the preference for the cocaine-paired chamber in the conditioned place preference test. Furthermore, early alcohol-exposed mice displayed attenuated cocaine-induced behavioural sensitization but also higher cocaine self-administration. Furthermore, alterations in glutamatergic excitability (GluA1/GluA2 ratio) and ΔFosB expression were found in the prefrontal cortex and the striatum of alcohol-exposed mice after cocaine-primed reinstatement. CONCLUSION AND IMPLICATIONS Our findings demonstrate that maternal binge-like alcohol consumption during gestation and lactation alters sensitivity to the reinforcing effects of cocaine in adult offspring mice. Together, such data suggest that prenatal and postnatal alcohol exposure may underlie an enhanced susceptibility of alcohol-exposed offspring to develop drug addiction later in adulthood.
Collapse
Affiliation(s)
- Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sandra Montagud-Romero
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Miguel Ángel Luján
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
16
|
Zhang N, Yao L. Anxiolytic Effect of Essential Oils and Their Constituents: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13790-13808. [PMID: 31148444 DOI: 10.1021/acs.jafc.9b00433] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Essential oils are usually used in aromatherapy to alleviate anxiety symptoms. In comparison to traditional drugs, essential oils have fewer side effects and more diversified application ways, including inhalation. This review provides a comprehensive overview of studies on anxiolytic effects of essential oils in preclinical and clinical trials. Most of the essential oils used in clinical studies have been proven to be anxiolytic in animal models. Inhalation and oral administration were two common methods for essential oil administration in preclinical and clinical trials. Massage was only used in the clinical trials, while intraperitoneal injection was only used in the preclinical trails. In addition to essential oils that are commonly used in aromatherapy, essential oils from many folk medicinal plants have also been reported to be anxiolytic. More than 20 compounds derived from essential oils have shown an anxiolytic effect in rodents, while two-thirds of them are alcohols and terpenes. Monoamine neurotransmitters, amino acid neurotransmitters, and the hypothalamic-pituitary-adrenal axis are thought to play important roles in the anxiolytic effects of essential oils.
Collapse
|
17
|
Ahmadian-Moghadam H, Sadat-Shirazi MS, Seifi F, Niknamfar S, Akbarabadi A, Toolee H, Zarrindast MR. Transgenerational influence of parental morphine exposure on pain perception, anxiety-like behavior and passive avoidance memory among male and female offspring of Wistar rats. EXCLI JOURNAL 2019; 18:1019-1036. [PMID: 31762726 PMCID: PMC6868917 DOI: 10.17179/excli2019-1845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Accumulating evidence suggests that epigenetic mechanisms play an important role in the formation and maintenance of memory within the brain. Moreover, the effect of parental drug-exposure before gestation on behavioral state of offspring has been little studied. The main objective of the current study is to evaluate the effect of parental morphine exposure on avoidance memory, morphine preference and anxiety-like behavior of offspring. The total of 32 males and 32 females were used for mating. The animals were treated with morphine. The offspring according to their parental morphine treatment was divided into four groups (n=16) including paternally treated, maternally treated, both of parents treated and naïve animals. The pain perception, anxiety-like behavior, and avoidance memory were evaluated in the offspring. In the current study, the total of 256 offspring was used for the experiments (4 tasks × 4 groups of offspring × 8 female offspring × 8 male offspring). The finding revealed that the avoidance memory and visceral pain were reduced significantly in male and female offspring with at least one morphine-treated parent. Moreover, anxiety-like behavior was reduced significantly in the male offspring with at least one morphine-treated parent. While anxiety-like behavior was increased significantly in female offspring that were treated by morphine either maternally or both of parents. The data revealed that the endogenous opioid system may be altered in the offspring of morphine-treated parent(s), and epigenetic role could be important. However, analysis of variance signified the important role of maternal inheritance.
Collapse
Affiliation(s)
- Hamid Ahmadian-Moghadam
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fereshteh Seifi
- Biology Department, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Saba Niknamfar
- Biology Department, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Ardeshir Akbarabadi
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
- Department of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| | - Heidar Toolee
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
18
|
Martínez-Navarro M, Lara-Mayorga I, Negrete R, Bilecki W, Wawrzczak-Bargieła A, Gonçalves L, Dickenson A, Przewłocki R, Baños J, Maldonado R. Influence of behavioral traits in the inter-individual variability of nociceptive, emotional and cognitive manifestations of neuropathic pain. Neuropharmacology 2019; 148:291-304. [DOI: 10.1016/j.neuropharm.2019.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/20/2022]
|
19
|
Aten S, Page CE, Kalidindi A, Wheaton K, Niraula A, Godbout JP, Hoyt KR, Obrietan K. miR-132/212 is induced by stress and its dysregulation triggers anxiety-related behavior. Neuropharmacology 2019; 144:256-270. [PMID: 30342060 PMCID: PMC6823933 DOI: 10.1016/j.neuropharm.2018.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/25/2018] [Accepted: 10/14/2018] [Indexed: 02/08/2023]
Abstract
miR-132 and miR-212 are structurally-related microRNAs that are expressed from the same non-coding transcript. Accumulating evidence has shown that the dysregulation of these microRNAs contributes to aberrant neuronal plasticity and gene expression in the mammalian brain. Consistent with this, altered expression of miR-132 is associated with a number of affect-related psychiatric disorders. Here, we tested the functional contribution of the miR-132/212 locus to the development of stress-related and anxiety-like behaviors. Initially, we tested whether expression from the miR-132/212 locus is altered by stress-inducing paradigms. Using a 5-h acute-stress model, we show that both miR-132 and miR-212 are increased more than two-fold in the WT murine hippocampus and amygdala, whereas after a 15 day chronic-stress paradigm, expression of both miR-132 and miR-212 are upregulated more than two-fold within the amygdala but not in the hippocampus. Next, we used a tetracycline-inducible miR-132 overexpression mouse model and a miR-132/212 conditional knockout (cKO) mouse model to examine whether dysregulation of miR-132/212 expression alters basal anxiety-like behaviors. Interestingly, in both the miR-132 overexpression and cKO lines, significant increases in anxiety-like behaviors were detected. Importantly, suppression of transgenic miR-132 expression (via doxycycline administration) mitigated the anxiety-related behaviors. Further, expression of Sirt1 and Pten-two miR-132 target genes that have been implicated in the regulation of anxiety-were differentially regulated in the hippocampus and amygdala of miR-132/212 conditional knockout and miR-132 transgenic mice. Collectively, these data raise the prospect that miR-132 and miR-212 may play a key role in the modulation of stress responsivity and anxiety.
Collapse
Affiliation(s)
- Sydney Aten
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Chloe E Page
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Anisha Kalidindi
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Kelin Wheaton
- Division of Pharmaceutics and Pharmaceutical Chemistry, Ohio State University, Columbus, OH, USA
| | - Anzela Niraula
- Department of Neuroscience, Ohio State University, Columbus, OH, USA; Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Jon P Godbout
- Department of Neuroscience, Ohio State University, Columbus, OH, USA; Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA; Center for Brain and Spinal Cord Repair, Ohio State University, Columbus, OH, USA
| | - Kari R Hoyt
- Division of Pharmaceutics and Pharmaceutical Chemistry, Ohio State University, Columbus, OH, USA
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
20
|
Abstract
Acupuncture is an ancient therapy with a variety of different explanatory models. A cascade of physiological effects has been reported, both in the peripheral and the central nervous system, following the insertion of a needle or light tapping of the skin. Clinical trials testing the specific claims of acupuncture have generally tried to focus on testing the efficacy of applying specific techniques and/or specified points. However, different conditions may respond differently to different modes of stimulation. Recently, it was demonstrated that both superficial and deep needling (with de qi/Hibiki) resulted in amelioration of patellofemoral pain and unpleasantness. The pleasurable aspect of the acupuncture experience has largely been ignored as it has been considered secondary to its pain alleviating effects. This aspect of acupuncture treatment is likely to be related to activation of self-appraisal and the reward system. When a patient seeks a therapist there are expectations of a specific effect. These expectations are partly based on self-relevant phenomena and self-referentia introspection and constitute the preference. Also, when asked about the effect of the treatment, processes that orientate pre-attentive anticipatory or mnemonic information and processes that mediate self-reflection and recollection are integrated together with sensory detection to enable a decision about the patient's perception of the effect of acupuncture treatment. These ‘self-appraisal’ processes are dependent on two integrated networks: a ventral medial prefrontal cortex paralimbic limbic ‘affective’ pathway and a dorsal medial prefrontal cortex cortical hippocampal ‘cognitive’ pathway. The limbic structures are implicated in the reward system and play a key role in most diseases and illness responses including chronic pain and depression, regulating mood and neuromodulatory responses (eg sensory, autonomic, and endocrine). The pleasurable and neuromodulatory aspects of acupuncture as well as ‘placebo needling’ may partly be explained by the activation or deactivation of limbic structures including the hippocampus, amygdala, and their connections with the hypothalamus. In patients with patellofemoral pain, the effects of superficial and deep needling remained for six months. These long term pain-alleviating effects have been attributed to activation of pain inhibiting systems in cortical and subcortical pathways. When considering long term effects the cortical cerebellar system needs to be taken into account. The cortical cerebellar system is probably central to the development of neural models that learn and eventually stimulate routinely executed (eg motor skills) and long term (eg pain alleviation) cognitive processes. These higher order cognitive processes are initially mediated in prefrontal cortical loci but later shift control iteratively to internal cerebellar representations of these processes. Possibly part of the long term healing effects of acupuncture may be attributed to changes in the cerebellar system thereby sparing processing load in cortical and subcortical areas. As cortical and subcortical structures are activated and/or de-activated following stimulation of receptors in the skin, disregarding site, ‘placebo or sham needling’ does not exist and conclusions drawn on the basis that it is an inert control are invalid. ‘Self’ may be seen as a shifting illusion, ceaselessly constructed and deconstructed, and the effect of acupuncture may reflect its status (as well as that of the therapist).
Collapse
Affiliation(s)
- Thomas Lundeberg
- Rehabilitation Medicine, UniversityClinic, Danderyds Hospital, Stockholm, Sweden.
| | | | | |
Collapse
|
21
|
Zhou QG, Zhu XH, Nemes AD, Zhu DY. Neuronal nitric oxide synthase and affective disorders. IBRO Rep 2018; 5:116-132. [PMID: 30591953 PMCID: PMC6303682 DOI: 10.1016/j.ibror.2018.11.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023] Open
Abstract
Affective disorders including major depressive disorder (MDD), bipolar disorder (BPD), and general anxiety affect more than 10% of population in the world. Notably, neuronal nitric oxide synthase (nNOS), a downstream signal molecule of N-methyl-D-aspartate receptors (NMDARs) activation, is abundant in many regions of the brain such as the prefrontal cortex (PFC), hippocampus, amygdala, dorsal raphe nucleus (DRN), locus coeruleus (LC), and hypothalamus, which are closely associated with the pathophysiology of affective disorders. Decreased levels of the neurotransmitters including 5-hydroxytryptamine or serotonin (5-HT), noradrenalin (NA), and dopamine (DA) as well as hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis are common pathological changes of MDD, BPD, and anxiety. Increasing data suggests that nNOS in the hippocampus play a crucial role in the etiology of MDD whereas nNOS-related dysregulation of the nitrergic system in the LC is closely associated with the pathogenesis of BPD. Moreover, hippocampal nNOS is implicated in the role of serotonin receptor 1 A (5-HTR1 A) in modulating anxiety behaviors. Augment of nNOS and its carboxy-terminal PDZ ligand (CAPON) complex mediate stress-induced anxiety and disrupting the nNOS-CAPON interaction by small molecular drug generates anxiolytic effect. To date, however, the function of nNOS in affective disorders is not well reviewed. Here, we summarize works about nNOS and its signal mechanisms implicated in the pathophysiology of affective disorders. On the basis of this review, it is suggested that future research should more fully focus on the role of nNOS in the pathomechanism and treatment of affective disorders.
Collapse
Affiliation(s)
- Qi-Gang Zhou
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| | - Xian-Hui Zhu
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| | - Ashley D Nemes
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, USA
| | - Dong-Ya Zhu
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| |
Collapse
|
22
|
|
23
|
Kim J, Lee S, Kang S, Jeon TI, Kang MJ, Lee TH, Kim YS, Kim KS, Im HI, Moon C. Regulator of G-Protein Signaling 4 (RGS4) Controls Morphine Reward by Glutamate Receptor Activation in the Nucleus Accumbens of Mouse Brain. Mol Cells 2018; 41:454-464. [PMID: 29754475 PMCID: PMC5974622 DOI: 10.14348/molcells.2018.0023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/02/2018] [Accepted: 03/08/2018] [Indexed: 11/27/2022] Open
Abstract
Crosstalk between G-protein signaling and glutamatergic transmission within the brain reward circuits is critical for long-term emotional effects (depression and anxiety), cravings, and negative withdrawal symptoms associated with opioid addiction. A previous study showed that Regulator of G-protein signaling 4 (RGS4) may be implicated in opiate action in the nucleus accumbens (NAc). However, the mechanism of the NAc-specific RGS4 actions that induce the behavioral responses to opiates remains largely unknown. The present study used a short hairpin RNA (shRNA)-mediated knock-down of RGS4 in the NAc of the mouse brain to investigate the relationship between the activation of ionotropic glutamate receptors and RGS4 in the NAc during morphine reward. Additionally, the shRNA-mediated RGS4 knock-down was implemented in NAc/striatal primary-cultured neurons to investigate the role that striatal neurons have in the morphine-induced activation of ionotropic glutamate receptors. The results of this study show that the NAc-specific knockdown of RGS4 significantly increased the behaviors associated with morphine and did so by phosphorylation of the GluR1 (Ser831) and NR2A (Tyr1325) glutamate receptors in the NAc. Furthermore, the knock-down of RGS4 enhanced the phosphorylation of the GluR1 and NR2A glutamate receptors in the primary NAc/striatal neurons during spontaneous morphine withdrawal. These findings show a novel molecular mechanism of RGS4 in glutamatergic transmission that underlies the negative symptoms associated with morphine administration.
Collapse
Affiliation(s)
- Juhwan Kim
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186,
Korea
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
- Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju 61186,
Korea
| | - Sueun Lee
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186,
Korea
| | - Sohi Kang
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186,
Korea
| | - Tae-Il Jeon
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186,
Korea
| | - Man-Jong Kang
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186,
Korea
| | - Tae-Hoon Lee
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186,
Korea
- Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju 61186,
Korea
| | - Yong Sik Kim
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 08826,
Korea
| | - Key-Sun Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
| | - Heh-In Im
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792,
Korea
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186,
Korea
| |
Collapse
|
24
|
Wu XP, She RX, Yang YP, Xing ZM, Chen HW, Zhang YW. MicroRNA-365 alleviates morphine analgesic tolerance via the inactivation of the ERK/CREB signaling pathway by negatively targeting β-arrestin2. J Biomed Sci 2018; 25:10. [PMID: 29415719 PMCID: PMC5802062 DOI: 10.1186/s12929-018-0405-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/08/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Morphine is widely used in clinical practice for a class of analgesic drugs, long-term use of morphine will cause the action of tolerance. MicroRNAs have been reported to be involved in morphine analgesic tolerance.. METHODS Forty male SD rats were selected and randomly divided into 5 groups: the control group, morphine tolerance group, miR-365 mimic + morphine (miR-365 mimic) group, miR-365 inhibitor + morphine (miR-365 inhibitor) group and miR-365 negative control (NC) + morphine (miR-365 NC) group. After the administration of morphine at 0 d, 1 d, 3 d, 5 d and 7 d, behavioral testing was performed. A dual luciferase reporter gene assay was performed to confirm the relationship between miR-365 and β-arrestin2, RT-qPCR was used to detect miR-365, β-arrestin2, ERK and CREB mRNA expressions, western blotting was used to evaluate the protein expressions of β-arrestin2, ERK, p-ERK, CREB and p-CREB, ELISA was used to detect the contents of IL-1β, TNF-α and IL-18, while immunofluorescence staining was used to measure the GFAP expression. Intrathecal injection of mir365 significantly increased the maximal possible analgesic effect (%MPE) in morphine tolerant rats. β-arrestin2 was the target gene of miR-365. RESULTS The results obtained showed that when compared with the morphine tolerance group, there was an increase in miR-365 expression and a decrease in the β-arrestin2, ERK, CREB protein expressions, contents of IL-1β, TNF-α, IL-18 and GFAP expression in the miR-365 mimic group, while the miR-365 inhibitor group displayed an opposite trend. CONCLUSIONS The results of this experiment suggest that by targeting β-arrestin2 to reduce the contents of IL-1β, TNF-α and IL-18 and by inhibiting the activation of ERK/CREB signaling pathway, miR-365 could lower morphine analgesic tolerance.
Collapse
Affiliation(s)
- Xian-Ping Wu
- Department of Anesthesiology, Shunde Hospital of Guangzhou University of Traditional Chinese Medicine, Peoples, Foshan, 528333, People's Republic of China
| | - Rui-Xuan She
- Department of Anesthesiology, Shunde Hospital of Guangzhou University of Traditional Chinese Medicine, Peoples, Foshan, 528333, People's Republic of China
| | - Yan-Ping Yang
- Department of Anesthesiology, Shunde Hospital of Guangzhou University of Traditional Chinese Medicine, Peoples, Foshan, 528333, People's Republic of China
| | - Zu-Min Xing
- Department of Anesthesiology, Shunde Hospital of Southern Medical University, Foshan, 528300, People's Republic of China
| | - Han-Wen Chen
- Department of Anesthesiology, Shunde Hospital of Southern Medical University, Foshan, 528300, People's Republic of China
| | - Yi-Wen Zhang
- Department of Anesthesiology, Shunde Hospital of Southern Medical University, Foshan, 528300, People's Republic of China.
| |
Collapse
|
25
|
Ji LL, Peng JB, Fu CH, Tong L, Wang ZY. Sigma-1 receptor activation ameliorates anxiety-like behavior through NR2A-CREB-BDNF signaling pathway in a rat model submitted to single-prolonged stress. Mol Med Rep 2017; 16:4987-4993. [PMID: 28791385 DOI: 10.3892/mmr.2017.7185] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/11/2017] [Indexed: 11/05/2022] Open
Abstract
Accumulating evidence has demonstrated that the σ-1 receptor (σ‑1R) possesses neuroprotective effects and is a potential novel therapeutic target for certain psychiatric diseases, including post‑traumatic stress disorder (PTSD) accompanied with anxiety disorder. It has been reported that σ‑1R agonist treatment could be modulated by the brain‑derived neurotrophic factor (BDNF) signaling pathway. However, it remains unclear whether BDNF and its upstream regulator are mechanistically involved in the therapeutic effect of σ‑1R in PTSD. To address this question, rats were subjected to a single‑prolonged stress (SPS) paradigm and σ‑1R agonist administration. Open‑field and elevated plus maze tests were implemented to evaluate the effect of σ‑1R activation on the improvement of anxiety‑like behaviors. Furthermore, the expression levels of BDNF, phosphorylated cAMP responsive element‑binding protein (CREB) and glutamate receptor ionotropic N‑methyl D‑aspartate 2A (NMDAR2A) were investigated in the hippocampi of rats. It was revealed that the downregulation of BDNF, phosphorylated CREB and NMDAR2A induced by SPS were reversed by σ‑1R activation. Collectively, the results of the present study suggest that the NMDAR2A/CREB/BDNF signaling pathway is involved in the activation of σ‑1R resulting in therapeutic effects for PTSD.
Collapse
Affiliation(s)
- Li-Li Ji
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Jun-Bo Peng
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Chang-Hai Fu
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Lei Tong
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Zhen-Yu Wang
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
26
|
Li C, Li M, Yu H, Shen X, Wang J, Sun X, Wang Q, Wang C. Neuropeptide VGF C-Terminal Peptide TLQP-62 Alleviates Lipopolysaccharide-Induced Memory Deficits and Anxiety-like and Depression-like Behaviors in Mice: The Role of BDNF/TrkB Signaling. ACS Chem Neurosci 2017; 8:2005-2018. [PMID: 28594546 DOI: 10.1021/acschemneuro.7b00154] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Peripheral inflammatory responses affect central nervous system (CNS) function, manifesting in symptoms of memory deficits, depression, and anxiety. Previous studies have revealed that neuropeptide VGF (nonacronymic) C-terminal peptide TLQP-62 rapidly reinforces brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) signaling, regulating memory consolidation and antidepressant-like action. However, whether it is beneficial for lipopolysaccharide (LPS)-induced neuropsychiatric dysfunction in mice is unknown. Herein, we explored the involvement of BDNF/TrkB signaling and biochemical alterations in inflammatory or oxidative stress markers in the alleviating effects of TLQP-62 on LPS-induced neuropsychiatric dysfunction. The mice were treated with TLQP-62 (2 μg/side) via intracerebroventricular (i.c.v.) injection 1 h before LPS (0.5 mg/kg, i.p.) administration. Our results showed that a single treatment with LPS (0.5 mg/kg, i.p) is sufficient to produce recognition memory deficits (in the novel object recognition test), depression-like behavior (in the forced swim test and sucrose preference test), and anxiety-like behavior (in the elevated zero maze). However, pretreatment with TLQP-62 prevented LPS-induced behavioral dysfunction, neuroinflammatory, and oxidative responses. In addition, our results further demonstrated that a reduction in BDNF expression mediated by BDNF-shRNA lentivirus significantly blocked the effects of TLQP-62, suggesting the critical role of BDNF/TrkB signaling in the neuroprotective effects of TLQP-62 in the mice. In conclusion, TLQP-62 could be a therapeutic approach for neuropsychiatric disorders, which are closely associated with neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chuang Wang
- Li
Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research
Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
27
|
Fukunaga K, Moriguchi S. Stimulation of the Sigma-1 Receptor and the Effects on Neurogenesis and Depressive Behaviors in Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 964:201-211. [PMID: 28315273 DOI: 10.1007/978-3-319-50174-1_14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sigma-1 receptor (Sig-1R) is molecular chaperone regulating calcium efflux from the neuronal endoplasmic reticulum to mitochondria. Recent studies show that Sig-1R stimulation antagonizes depressive-like behaviors in animal models, but molecular mechanisms underlying this effect remain unclear. Here, we focus on the effects of Sig-1R ligands on hippocampal neurogenesis and depressive-like behaviors. Sig-1R stimulation also enhances CaMKII /CaMKIV and protein kinase B (Akt) activities in hippocampus. Therefore, we discuss the fundamental roles of Sig-1R, CaMKII /CaMKIV and protein kinase B (Akt) signaling in amelioration of depressive-like behaviors following Sig-1R stimulation.
Collapse
Affiliation(s)
- Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
| | - Shigeki Moriguchi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| |
Collapse
|
28
|
Motaghinejad M, Fatima S, Banifazl S, Bangash MY, Karimian M. Study of the effects of controlled morphine administration for treatment of anxiety, depression and cognition impairment in morphine-addicted rats. Adv Biomed Res 2016; 5:178. [PMID: 28028518 PMCID: PMC5156972 DOI: 10.4103/2277-9175.188491] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 05/04/2016] [Indexed: 12/29/2022] Open
Abstract
Background: Morphine dependency usually results in undesired outcomes such as anxiety, depression, and cognitive alterations. In this study, morphine was used to manage morphine dependence-induced anxiety, depression, and learning and memory disturbances. Materials and Methods: Forty rats were divided equally into five groups. Group 1 received saline for 21 days. Groups 2–5 were dependent by increasing administration of morphine (15–45 mg/kg) for 7 days. For the next 14 days, morphine was administered as the following regimen: Group 2: once daily; 45 mg/kg (positive controls), Group 3: the same dose with an increasing interval (6 h longer than the previous intervals each time), Group 4: the same dose with an irregular intervals (12, 24, 36 h intervals interchangeably), and Group 5: decreasing doses once daily (every time 2.5 mg/kg less than the former dosage). On days 22–26, elevated plus maze (EPM), open field test (OFT), forced swim test (FST), and tail suspension test (TST) were performed to investigate anxiety level and depression in animals. Between 17th and 21st days, Morris water maze (MWM) was used to evaluate the spatial learning and memory. Results: Chronic morphine administration caused depression and anxiety as observed by FST, EPM, and TST and decreased motor activity in OFT and caused impairment in learning and memory performance in MWM. Treatment with our protocol as increasing interval, irregular interval, and decreasing dosage of morphine caused marked reduction in depression, anxiety, and improved cognition performance compared with positive control group; and attenuated motor deficits in morphine-dependent rats, remarkably. Conclusions: Change in dosage regimens of morphine can reduce morphine-induced anxiety, depression, and cognitive impairments.
Collapse
Affiliation(s)
- Majid Motaghinejad
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sulail Fatima
- Department of Physiology, Tehran University of Medical Sciences, International Campus, Tehran, Iran
| | - Sanaz Banifazl
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Yasan Bangash
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Morteza Karimian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Zhang J, Cai CY, Wu HY, Zhu LJ, Luo CX, Zhu DY. CREB-mediated synaptogenesis and neurogenesis is crucial for the role of 5-HT1a receptors in modulating anxiety behaviors. Sci Rep 2016; 6:29551. [PMID: 27404655 PMCID: PMC4941576 DOI: 10.1038/srep29551] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/17/2016] [Indexed: 02/03/2023] Open
Abstract
Serotonin 1a-receptor (5-HT1aR) has been specifically implicated in the pathogenesis of anxiety. However, the mechanism underlying the role of 5-HT1aR in anxiety remains poorly understood. Here we show in mice that the transcription factor cAMP response element binding protein (CREB) in the hippocampus functions as an effector of 5-HT1aR in modulating anxiety-related behaviors. We generated recombinant lentivirus LV-CREB133-GFP expressing a dominant negative CREB which could not be phosphorylated at Ser133 to specifically reduce CREB activity, and LV-VP16-CREB-GFP expressing a constitutively active fusion protein VP16-CREB which could be phosphorylated by itself to specifically enhance CREB activity. LV-CREB133-GFP neutralized 5-HT1aR agonist-induced up-regulation of synapse density, spine density, dendrite complexity, neurogenesis, and the expression of synapsin and spinophilin, two well-characterized synaptic proteins, and abolished the anxiolytic effect of 5-HT1aR agonist; whereas LV-VP16-CREB-GFP rescued the 5-HT1aR antagonist-induced down-regulation of synapse density, spine density, dendrite complexity, neurogenesis and synapsin and spinophilin expression, and reversed the anxiogenic effect of 5-HT1aR antagonist. The deletion of neurogenesis by irradiation or the diminution of synaptogenesis by knockdown of synapsin expression abolished the anxiolytic effects of both CREB and 5-HT1aR activation. These findings suggest that CREB-mediated hippoacampus structural plasticity is crucial for the role of 5-HT1aR in modulating anxiety-related behaviors.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China.,Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing 210029, China
| | - Cheng-Yun Cai
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China
| | - Hai-Yin Wu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China.,Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing 210029, China
| | - Li-Juan Zhu
- Institute of Neuroscience, Soochow University, Su zhou, China
| | - Chun-Xia Luo
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China.,Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing 210029, China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China.,Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing 210029, China.,The key laboratory of human functional genomics of Jiangsu Province, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
30
|
Different effects of prenatal stress on ERK2/CREB/Bcl-2 expression in the hippocampus and the prefrontal cortex of adult offspring rats. Neuroreport 2016; 27:600-4. [DOI: 10.1097/wnr.0000000000000581] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
31
|
Baum P, Vogt MA, Gass P, Unsicker K, von Bohlen und Halbach O. FGF-2 deficiency causes dysregulation of Arhgef6 and downstream targets in the cerebral cortex accompanied by altered neurite outgrowth and dendritic spine morphology. Int J Dev Neurosci 2016; 50:55-64. [PMID: 26970009 DOI: 10.1016/j.ijdevneu.2016.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 01/13/2023] Open
Abstract
Fibroblast growth factor 2 (FGF-2) is an abundant growth factor in the brain and exerts multiple functions on neural cells ranging from cell division, cell fate determination to differentiation. However, many details of the molecular mechanisms underlying the diverse functions of FGF-2 are poorly understood. In a comparative microarray analysis of motor sensory cortex (MSC) tissue of adult knockout (FGF-2(-/-)) and control (FGF-2(+/+)) mice, we found a substantial number of regulated genes, which are implicated in cytoskeletal machinery dynamics. Specifically, we found a prominent downregulation of Arhgef6. Arhgef6 mRNA was significantly reduced in the FGF-2(-/-) cortex, and Arhgef6 protein virtually absent, while RhoA protein levels were massively increased and Cdc42 protein levels were reduced. Since Arhgef6 is localized to dendritic spines, we next analyzed dendritic spines of adult FGF2(-/-) and control mouse cortices. Spine densities were significantly increased, whereas mean length of spines on dendrites of layer V of MSC neurons in adult FGF-2(-/-) mice was significantly decreased as compared to respective controls. Furthermore, neurite length in dissociated cortical cultures from E18 FGF-2(-/-) mice was significantly reduced at DIV7 as compared to wildtype neurons. Despite the fact that altered neuronal morphology and alterations in dendritic spines were observed, FGF-2(-/-) mice behave relatively unsuspicious in several behavioral tasks. However, FGF-2(-/-) mice exhibited decreased thermal pain sensitivity in the hotplate-test.
Collapse
Affiliation(s)
- Philip Baum
- Institut für Anatomie und Zellbiologie, Universitätsmedizin Greifswald, Germany; Anatomy & Cell Biology, Department of Molecular Embryology, University of Freiburg, Germany
| | - Miriam A Vogt
- AG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Germany; RG Molecular Physiology of Hearing, Head and Neck Surgery Tübingen Hearing, Research Center (THRC),Department of Otolaryngology, University Hospital Tübingen, Germany
| | - Peter Gass
- AG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Germany
| | - Klaus Unsicker
- Anatomy & Cell Biology, Department of Molecular Embryology, University of Freiburg, Germany
| | | |
Collapse
|
32
|
Minocycline does not evoke anxiolytic and antidepressant-like effects in C57BL/6 mice. Behav Brain Res 2016; 301:96-101. [DOI: 10.1016/j.bbr.2015.12.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/02/2015] [Accepted: 12/11/2015] [Indexed: 12/15/2022]
|
33
|
Keil MF, Briassoulis G, Stratakis CA. The Role of Protein Kinase A in Anxiety Behaviors. Neuroendocrinology 2016; 103:625-39. [PMID: 26939049 DOI: 10.1159/000444880] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/19/2016] [Indexed: 11/19/2022]
Abstract
This review focuses on the genetic and other evidence supporting the notion that the cyclic AMP (cAMP) signaling pathway and its mediator, the protein kinase A (PKA) enzyme, which respond to environmental stressors and regulate stress responses, are central to the pathogenesis of disorders related to anxiety. We describe the PKA pathway and review in vitro animal studies (mouse) and other evidence that support the importance of PKA in regulating behaviors that lead to anxiety. Since cAMP signaling and PKA have been pharmacologically exploited since the 1940s (even before the identification of cAMP as a second messenger with PKA as its mediator) for a number of disorders from asthma to cardiovascular diseases, there is ample opportunity to develop therapies using this new knowledge about cAMP, PKA, and anxiety disorders.
Collapse
Affiliation(s)
- Margaret F Keil
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Md., USA
| | | | | |
Collapse
|
34
|
Moriguchi S, Sakagami H, Yabuki Y, Sasaki Y, Izumi H, Zhang C, Han F, Fukunaga K. Stimulation of Sigma-1 Receptor Ameliorates Depressive-like Behaviors in CaMKIV Null Mice. Mol Neurobiol 2015; 52:1210-1222. [PMID: 25316382 DOI: 10.1007/s12035-014-8923-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/06/2014] [Indexed: 01/22/2023]
Abstract
Sigma-1 receptor (Sig-1R) is a molecular chaperone regulating calcium efflux from the neuronal endoplasmic reticulum to the mitochondria. Calcium/calmodulin-dependent protein kinase IV (CaMKIV) null mice exhibit depressive-like behaviors and impaired neurogenesis as assessed by bromodeoxyuridine (BrdU) incorporation into newborn cells of the hippocampal dentate gyrus (DG). Here, we demonstrate that chronic stimulation of Sig-1R by treatment with the agonist SA4503 or the SSRI fluvoxamine for 14 days improves depressive-like behaviors in CaMKIV null mice. By contrast, treatment with paroxetine, which lacks affinity for Sig-1R, did not alter these behaviors. Reduced numbers of BrdU-positive cells and decreased brain-derived neurotrophic factor (BDNF) mRNA expression and protein kinase B (Akt; Ser-473) phosphorylation seen in the DG of CaMKIV null mice were significantly rescued by chronic Sig-1R stimulation. Interestingly, reduced ATP production observed in the DG of CaMKIV null mice was improved by chronic Sig-1R stimulation. Such stimulation also improved hippocampal long-term potentiation (LTP) induction and maintenance, which are impaired in the DG of CaMKIV null mice. LTP rescue was closely associated with both increases in calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation and GluA1 (Ser-831) phosphorylation. Taken together, Sig-1R stimulation by SA4503 or fluvoxamine treatment increased hippocampal neurogenesis, which is closely associated with amelioration of depressive-like behaviors in CaMKIV null mice.
Collapse
Affiliation(s)
- Shigeki Moriguchi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Yuzuru Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Hisanao Izumi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Chen Zhang
- Department of Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Feng Han
- Department of Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
| |
Collapse
|
35
|
Role of the Brain's Reward Circuitry in Depression: Transcriptional Mechanisms. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 124:151-70. [PMID: 26472529 DOI: 10.1016/bs.irn.2015.07.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Increasing evidence supports an important role for the brain's reward circuitry in controlling mood under normal conditions and contributing importantly to the pathophysiology and symptomatology of a range of mood disorders, such as depression. Here we focus on the nucleus accumbens (NAc), a critical component of the brain's reward circuitry, in depression and other stress-related disorders. The prominence of anhedonia, reduced motivation, and decreased energy level in most individuals with depression supports the involvement of the NAc in these conditions. We concentrate on several transcription factors (CREB, ΔFosB, SRF, NFκB, and β-catenin), which are altered in the NAc in rodent depression models--and in some cases in the NAc of depressed humans, and which produce robust depression- or antidepressant-like effects when manipulated in the NAc in animal models. These studies of the NAc have established novel approaches toward modeling key symptoms of depression in animals and could enable the development of antidepressant medications with fundamentally new mechanisms of action.
Collapse
|
36
|
Medrano MC, Mendiguren A, Pineda J. Effect of ceftriaxone and topiramate treatments on naltrexone-precipitated morphine withdrawal and glutamate receptor desensitization in the rat locus coeruleus. Psychopharmacology (Berl) 2015; 232:2795-809. [PMID: 25787747 DOI: 10.1007/s00213-015-3913-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 03/08/2015] [Indexed: 12/22/2022]
Abstract
RATIONALE Morphine withdrawal is associated with a hyperactivity of locus coeruleus (LC) neurons by an elevated glutamate neurotransmission in this nucleus. We postulate that reductions in the amount of glutamate in the LC by enhancing its reuptake or inhibiting its release could attenuate the behavioral and cellular consequences of morphine withdrawal. OBJECTIVES We investigated the effect of chronic treatment with ceftriaxone (CFT), an excitatory amino acid transporter (EAAT2) enhancer, and acute administration of topiramate (TPM), a glutamate release inhibitor, on morphine withdrawal syndrome and withdrawal-induced glutamate receptor (GluR) desensitization in LC neurons from morphine-dependent rats. METHODS Morphine withdrawal behavior was measured after naltrexone administration in rats implanted with a morphine (200 mg kg(-1)) emulsion for 3 days. GluR desensitization in the LC was assessed by performing concentration-effect curves for glutamate by extracellular electrophysiological recordings in vitro. RESULTS Treatments with CFT or TPM reduced, in a dose-related manner, the total behavioral score of naltrexone-precipitated morphine withdrawal. CFT and TPM, at doses that were effective in behavioral tests, also reduced the induction of GluR desensitization normally occurring in LC neurons from morphine-dependent rats. Acute treatment with the specific EAAT2 inhibitor dihydrokainic acid (DHK) prevented the effect of CFT on withdrawal syndrome and GluR desensitization. Perfusion with TPM inhibited KCl-evoked but not glutamate-induced activation of LC neurons in vitro. CONCLUSIONS Our results suggest that a reduction of synaptic concentrations of glutamate by enhancing EAAT2-mediated uptake or inhibiting glutamate release alleviates the behavioral response and the cellular changes in the LC during opiate withdrawal.
Collapse
Affiliation(s)
- María Carmen Medrano
- Department of Pharmacology, Faculty of Medicine and Odontology, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940, Leioa, Bizkaia, Spain
| | | | | |
Collapse
|
37
|
Subchronic Arsenic Exposure Induces Anxiety-Like Behaviors in Normal Mice and Enhances Depression-Like Behaviors in the Chemically Induced Mouse Model of Depression. BIOMED RESEARCH INTERNATIONAL 2015; 2015:159015. [PMID: 26114099 PMCID: PMC4465655 DOI: 10.1155/2015/159015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/05/2015] [Accepted: 04/21/2015] [Indexed: 11/17/2022]
Abstract
Accumulating evidence implicates that subchronic arsenic exposure causes cerebral neurodegeneration leading to behavioral disturbances relevant to psychiatric disorders. However, there is still little information regarding the influence of subchronic exposure to arsenic-contaminated drinking water on mood disorders and its underlying mechanisms in the cerebral prefrontal cortex. The aim of this study is to assess the effects of subchronic arsenic exposure (10 mg/LAs2O3 in drinking water) on the anxiety- and depression-like behaviors in normal mice and in the chemically induced mouse model of depression by reserpine pretreatment. Our findings demonstrated that 4 weeks of arsenic exposure enhance anxiety-like behaviors on elevated plus maze (EPM) and open field test (OFT) in normal mice, and 8 weeks of arsenic exposure augment depression-like behaviors on tail suspension test (TST) and forced swimming test (FST) in the reserpine pretreated mice. In summary, in this present study, we demonstrated that subchronic arsenic exposure induces only the anxiety-like behaviors in normal mice and enhances the depression-like behaviors in the reserpine induced mouse model of depression, in which the cerebral prefrontal cortex BDNF-TrkB signaling pathway is involved. We also found that eight weeks of subchronic arsenic exposure are needed to enhance the depression-like behaviors in the mouse model of depression. These findings imply that arsenic could be an enhancer of depressive symptoms for those patients who already had the attribute of depression.
Collapse
|
38
|
Vogt MA, Inta D, Luoni A, Elkin H, Pfeiffer N, Riva MA, Gass P. Inducible forebrain-specific ablation of the transcription factor Creb during adulthood induces anxiety but no spatial/contextual learning deficits. Front Behav Neurosci 2014; 8:407. [PMID: 25505876 PMCID: PMC4245921 DOI: 10.3389/fnbeh.2014.00407] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/10/2014] [Indexed: 12/13/2022] Open
Abstract
The cyclic AMP (cAMP)-response element binding protein (CREB) is an activity-dependent transcription factor playing a role in synaptic plasticity, learning and memory, and emotional behavior. However, the impact of Creb ablation on rodent behavior is vague as e.g., memory performance of different Creb mutant mice depends on the specific type of mutation per se but additionally on the background and learning protocol differences. Here we present the first targeted ablation of CREB induced during adulthood selectively in principal forebrain neurons in a pure background strain of C57BL/6 mice. All hippocampal principal neurons exhibited lack of CREB expression. Mutant mice showed a severe anxiety phenotype in the openfield and novel object exploration test as well as in the Dark-Light Box Test, but unaltered hippocampus-dependent long-term memory in the Morris water maze and in context dependent fear conditioning. On the molecular level, CREB ablation led to CREM up regulation in the hippocampus and frontal cortex which may at least in part compensate for the loss of CREB. BDNF, a postulated CREB target gene, was down regulated in the frontal lobe but not in the hippocampus; neurogenesis remained unaltered. Our data indicate that in the adult mouse forebrain the late onset of CREB ablation can, in case of memory functionality, be compensated for and is not essential for memory consolidation and retrieval during adulthood. In contrast, the presence of CREB protein during adulthood seems to be pivotal for the regulation of emotional behavior.
Collapse
Affiliation(s)
- Miriam A Vogt
- Department of Psychiatry and Psychotherapy, RG Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University Mannheim, Germany
| | - Dragos Inta
- Department of Psychiatry and Psychotherapy, RG Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University Mannheim, Germany
| | - Alessia Luoni
- Department of Pharmacological and Biomolecular Sciences University of Milan, Milan, Italy
| | - Hasan Elkin
- Department of Psychiatry and Psychotherapy, RG Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University Mannheim, Germany
| | - Natascha Pfeiffer
- Department of Psychiatry and Psychotherapy, RG Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University Mannheim, Germany
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences University of Milan, Milan, Italy
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, RG Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University Mannheim, Germany
| |
Collapse
|
39
|
Shin S, Le Lay J, Everett LJ, Gupta R, Rafiq K, Kaestner KH. CREB mediates the insulinotropic and anti-apoptotic effects of GLP-1 signaling in adult mouse β-cells. Mol Metab 2014; 3:803-12. [PMID: 25379405 PMCID: PMC4216406 DOI: 10.1016/j.molmet.2014.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 08/12/2014] [Accepted: 08/15/2014] [Indexed: 12/27/2022] Open
Abstract
Objective Glucagon-like peptide-1 (GLP-1) plays a major role in pancreatic β-cell function and survival by increasing cytoplasmic cAMP levels, which are thought to affect transcription through activation of the basic leucine zipper (bZIP) transcription factor CREB. Here, we test CREB function in the adult β-cell through inducible gene deletion. Methods We employed cell type-specific and inducible gene ablation to determine CREB function in pancreatic β-cells in mice. Results By ablating CREB acutely in mature β-cells in tamoxifen-treated CrebloxP/loxP;Pdx1-CreERT2 mice, we show that CREB has little impact on β-cell turnover, in contrast to what had been postulated previously. Rather, CREB is required for GLP-1 to elicit its full effects on stimulating glucose-induced insulin secretion and protection from cytokine-induced apoptosis. Mechanistically, we find that CREB regulates expression of the pro-apoptotic gene p21 (Cdkn1a) in β-cells, thus demonstrating that CREB is essential to mediating this critical aspect of GLP-1 receptor signaling. Conclusions In sum, our studies using conditional gene deletion put into question current notions about the importance of CREB in regulating β-cell function and mass. However, we reveal an important role for CREB in the β-cell response to GLP-1 receptor signaling, further validating CREB as a therapeutic target for diabetes.
Collapse
Affiliation(s)
- Soona Shin
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - John Le Lay
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Logan J Everett
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Rana Gupta
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Kiran Rafiq
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
40
|
Bilbao A, Rieker C, Cannella N, Parlato R, Golda S, Piechota M, Korostynski M, Engblom D, Przewlocki R, Schütz G, Spanagel R, Parkitna JR. CREB activity in dopamine D1 receptor expressing neurons regulates cocaine-induced behavioral effects. Front Behav Neurosci 2014; 8:212. [PMID: 24966820 PMCID: PMC4052973 DOI: 10.3389/fnbeh.2014.00212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/26/2014] [Indexed: 12/19/2022] Open
Abstract
It is suggested that striatal cAMP responsive element binding protein (CREB) regulates sensitivity to psychostimulants. To test the cell-specificity of this hypothesis we examined the effects of a dominant-negative CREB protein variant expressed in dopamine receptor D1 (D1R) neurons on cocaine-induced behaviors. A transgenic mouse strain was generated by pronuclear injection of a BAC-derived transgene harboring the A-CREB sequence under the control of the D1R gene promoter. Compared to wild-type, drug-naïve mutants showed moderate alterations in gene expression, especially a reduction in basal levels of activity-regulated transcripts such as Arc and Egr2. The behavioral responses to cocaine were elevated in mutant mice. Locomotor activity after acute treatment, psychomotor sensitization after intermittent drug injections and the conditioned locomotion after saline treatment were increased compared to wild-type littermates. Transgenic mice had significantly higher cocaine conditioned place preference, displayed normal extinction of the conditioned preference, but showed an augmented cocaine-seeking response following priming-induced reinstatement. This enhanced cocaine-seeking response was associated with increased levels of activity-regulated transcripts and prodynorphin. The primary reinforcing effects of cocaine were not altered in the mutant mice as they did not differ from wild-type in cocaine self-administration under a fixed ratio schedule at the training dose. Collectively, our data indicate that expression of a dominant-negative CREB variant exclusively in neurons expressing D1R is sufficient to recapitulate the previously reported behavioral phenotypes associated with virally expressed dominant-negative CREB.
Collapse
Affiliation(s)
- Ainhoa Bilbao
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg Heidelberg, Germany
| | - Claus Rieker
- Department of Molecular Biology of the Cell I, DKFZ-ZMBH Alliance, German Cancer Research Center Heidelberg, Germany
| | - Nazzareno Cannella
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg Heidelberg, Germany
| | - Rosanna Parlato
- Department of Molecular Biology of the Cell I, DKFZ-ZMBH Alliance, German Cancer Research Center Heidelberg, Germany ; Institute of Applied Physiology, University of Ulm Ulm, Germany ; Department of Medical Biology, Institute of Anatomy and Cell Biology, University of Heidelberg Heidelberg, Germany
| | - Slawomir Golda
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences Krakow, Poland
| | - Marcin Piechota
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences Krakow, Poland
| | - Michal Korostynski
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences Krakow, Poland
| | - David Engblom
- Department of Molecular Biology of the Cell I, DKFZ-ZMBH Alliance, German Cancer Research Center Heidelberg, Germany
| | - Ryszard Przewlocki
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences Krakow, Poland
| | - Günther Schütz
- Department of Molecular Biology of the Cell I, DKFZ-ZMBH Alliance, German Cancer Research Center Heidelberg, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg Heidelberg, Germany
| | - Jan R Parkitna
- Department of Molecular Biology of the Cell I, DKFZ-ZMBH Alliance, German Cancer Research Center Heidelberg, Germany ; Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences Krakow, Poland
| |
Collapse
|
41
|
Xia T, Zhang Q, Xiao Y, Wang C, Yu J, Liu H, Liu B, Zhang Y, Chen S, Liu Y, Chen Y, Guo F. CREB/TRH pathway in the central nervous system regulates energy expenditure in response to deprivation of an essential amino acid. Int J Obes (Lond) 2014; 39:105-13. [PMID: 24732144 DOI: 10.1038/ijo.2014.65] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/18/2014] [Accepted: 04/06/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND In the central nervous system (CNS), thyrotropin-releasing hormone (TRH) has an important role in regulating energy balance. We previously showed that dietary deprivation of leucine in mice increases energy expenditure through CNS-dependent regulation. However, the involvement of central TRH in this regulation has not been reported. METHODS Male C57J/B6 mice were maintained on a control or leucine-deficient diet for 7 days. Leucine-deprived mice were either third intracerebroventricular (i.c.v.) injected with a TRH antibody followed by intraperitoneal (i.p.) injection of triiodothyronine (T3) or i.c.v. administrated with an adenovirus of shCREB (cAMP-response element binding protein) followed by i.c.v. injection of TRH. Food intake and body weight were monitored daily. Oxygen consumption, physical activity and rectal temperature were assessed after the treatment. After being killed, the hypothalamus and the brown adipose tissue were collected and the expression of related genes and proteins related was analyzed. In other experiments, control or leucine-deficient medium incubated primary cultured neurons were either infected with adenovirus-mediated short hairpin RNA targeting extracellular signal-regulated kinases 1 and 2 (Ad-shERK1/2) or transfected with plasmid-overexpressing protein phosphatase 1 regulatory subunit 3C (PPP1R3C). RESULTS I.c.v. administration of anti-TRH antibodies significantly reduced leucine deprivation-stimulated energy expenditure. Furthermore, the effects of i.c.v. TRH antibodies were reversed by i.p. injection of T3 during leucine deprivation. Moreover, i.c.v. injection of Ad-shCREB (adenovirus-mediated short hairpin RNA targeting CREB) significantly suppressed leucine deprivation-stimulated energy expenditure via modulation of TRH expression. Lastly, TRH expression was regulated by CREB, which was phosphorylated by ERK1/2 and dephosphorylated by PPP1R3C-containing protein Ser/Thr phosphatase type 1 (PP1) under leucine deprivation in vitro. CONCLUSIONS Our data indicate a novel role for TRH in regulating energy expenditure via T3 during leucine deprivation. Furthermore, our findings reveal that TRH expression is activated by CREB, which is phosphorylated by ERK1/2 and dephosphorylated by PPP1R3C-containing PP1. Collectively, our studies provide novel insights into the regulation of energy homeostasis by the CNS in response to an essential amino-acid deprivation.
Collapse
Affiliation(s)
- T Xia
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Q Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Y Xiao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - C Wang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - J Yu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - H Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - B Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Y Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - S Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Y Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Y Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - F Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
42
|
Sargin D, Mercaldo V, Yiu AP, Higgs G, Han JH, Frankland PW, Josselyn SA. CREB regulates spine density of lateral amygdala neurons: implications for memory allocation. Front Behav Neurosci 2013; 7:209. [PMID: 24391565 PMCID: PMC3868910 DOI: 10.3389/fnbeh.2013.00209] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/05/2013] [Indexed: 11/29/2022] Open
Abstract
Neurons may compete against one another for integration into a memory trace. Specifically, neurons in the lateral nucleus of the amygdala with relatively higher levels of cAMP Responsive Element Binding Protein (CREB) seem to be preferentially allocated to a fear memory trace, while neurons with relatively decreased CREB function seem to be excluded from a fear memory trace. CREB is a ubiquitous transcription factor that modulates many diverse cellular processes, raising the question as to which of these CREB-mediated processes underlie memory allocation. CREB is implicated in modulating dendritic spine number and morphology. As dendritic spines are intimately involved in memory formation, we investigated whether manipulations of CREB function alter spine number or morphology of neurons at the time of fear conditioning. We used viral vectors to manipulate CREB function in the lateral amygdala (LA) principal neurons in mice maintained in their homecages. At the time that fear conditioning normally occurs, we observed that neurons with high levels of CREB had more dendritic spines, while neurons with low CREB function had relatively fewer spines compared to control neurons. These results suggest that the modulation of spine density provides a potential mechanism for preferential allocation of a subset of neurons to the memory trace.
Collapse
Affiliation(s)
- Derya Sargin
- Program in Neurosciences and Mental Health, Hospital for Sick Children Toronto, ON, Canada ; Department of Psychology, University of Toronto Toronto, ON, Canada ; Department of Physiology, University of Toronto Toronto, ON, Canada ; Institute of Medical Science, University of Toronto Toronto, ON, Canada
| | - Valentina Mercaldo
- Program in Neurosciences and Mental Health, Hospital for Sick Children Toronto, ON, Canada ; Department of Psychology, University of Toronto Toronto, ON, Canada ; Department of Physiology, University of Toronto Toronto, ON, Canada ; Institute of Medical Science, University of Toronto Toronto, ON, Canada
| | - Adelaide P Yiu
- Program in Neurosciences and Mental Health, Hospital for Sick Children Toronto, ON, Canada ; Department of Psychology, University of Toronto Toronto, ON, Canada ; Department of Physiology, University of Toronto Toronto, ON, Canada ; Institute of Medical Science, University of Toronto Toronto, ON, Canada
| | - Gemma Higgs
- Program in Neurosciences and Mental Health, Hospital for Sick Children Toronto, ON, Canada ; Department of Psychology, University of Toronto Toronto, ON, Canada ; Department of Physiology, University of Toronto Toronto, ON, Canada ; Institute of Medical Science, University of Toronto Toronto, ON, Canada
| | - Jin-Hee Han
- Program in Neurosciences and Mental Health, Hospital for Sick Children Toronto, ON, Canada ; Department of Psychology, University of Toronto Toronto, ON, Canada ; Department of Physiology, University of Toronto Toronto, ON, Canada ; Institute of Medical Science, University of Toronto Toronto, ON, Canada ; Laboratory of Neural Circuit and Behavior, Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology Daejeon, Korea
| | - Paul W Frankland
- Program in Neurosciences and Mental Health, Hospital for Sick Children Toronto, ON, Canada ; Department of Psychology, University of Toronto Toronto, ON, Canada ; Department of Physiology, University of Toronto Toronto, ON, Canada ; Institute of Medical Science, University of Toronto Toronto, ON, Canada
| | - Sheena A Josselyn
- Program in Neurosciences and Mental Health, Hospital for Sick Children Toronto, ON, Canada ; Department of Psychology, University of Toronto Toronto, ON, Canada ; Department of Physiology, University of Toronto Toronto, ON, Canada ; Institute of Medical Science, University of Toronto Toronto, ON, Canada
| |
Collapse
|
43
|
Kim S, Park JM, Moon J, Choi HJ. Alpha-synuclein interferes with cAMP/PKA-dependent upregulation of dopamine β-hydroxylase and is associated with abnormal adaptive responses to immobilization stress. Exp Neurol 2013; 252:63-74. [PMID: 24252179 DOI: 10.1016/j.expneurol.2013.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/21/2013] [Accepted: 11/10/2013] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is clinically characterized not only by motor symptoms but also by non-motor symptoms, such as anxiety and mood changes. Based on our previous study showing that overexpression of wild-type or mutant α-synuclein (α-SYN) interferes with cAMP/PKA-dependent transcriptional activation in norepinephrine (NE)-producing cells, the effect of wild-type and mutant α-SYN on cAMP response element (CRE)-mediated regulation of the NE-synthesizing enzyme dopamine β-hydroxylase (DBH) was evaluated in this study. Overexpression of wild-type or mutant α-SYN interfered with CRE-mediated regulation of DBH transcription in NE-producing SK-N-BE(2) cells. Upon entering the nucleus, α-SYN interacted with the DBH promoter region encompassing the CRE, which interfered with forskolin-induced CREB binding to the CRE region. Interestingly, mutant A53T α-SYN showed much higher tendency to nuclear translocation and interaction with the DBH promoter region encompassing the CRE than wild type. In addition, A53T α-SYN expressing transgenic mice exhibited increased anxiety-like behaviors under normal conditions and abnormal regulation of DBH expression in response to immobilization stress with abnormal adaptive responses. These data provide an insight into the physiological function of α-SYN in NErgic neuronal cells, which further indicates that the α-SYN mutation may play a causative role in the generation of non-motor symptoms in PD.
Collapse
Affiliation(s)
- Sasuk Kim
- College of Pharmacy, CHA University, Seongnam, Gyeonggi-do, South Korea; College of Pharmacy, Chonnam National University, Gwangju, South Korea
| | - Ji-Min Park
- Department of Bioengineering, College of Life Science, CHA University, Seoul, South Korea
| | - Jisook Moon
- Department of Bioengineering, College of Life Science, CHA University, Seoul, South Korea.
| | - Hyun Jin Choi
- College of Pharmacy, CHA University, Seongnam, Gyeonggi-do, South Korea.
| |
Collapse
|
44
|
Increased hippocampal neurogenesis and accelerated response to antidepressants in mice with specific deletion of CREB in the hippocampus: role of cAMP response-element modulator τ. J Neurosci 2013; 33:13673-85. [PMID: 23966689 DOI: 10.1523/jneurosci.1669-13.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The transcription factor cAMP response element-binding protein (CREB) has been implicated in the pathophysiology of depression as well as in the efficacy of antidepressant treatment. However, altering CREB levels appears to have differing effects on anxiety- and depression-related behaviors, depending on which brain region is examined. Furthermore, many manipulations of CREB lead to corresponding changes in other CREB family proteins, and the impact of these changes has been largely ignored. To further investigate the region-specific importance of CREB in depression-related behavior and antidepressant response, we used Creb(loxP/loxP) mice to localize CREB deletion to the hippocampus. In an assay sensitive to chronic antidepressant response, the novelty-induced hypophagia procedure, hippocampal CREB deletion, did not alter the response to chronic antidepressant treatment. In contrast, mice with hippocampal CREB deletion responded to acute antidepressant treatment in this task, and this accelerated response was accompanied by an increase in hippocampal neurogenesis. Upregulation of the CREB-family protein cAMP response-element modulator (CREM) was observed after CREB deletion. Viral overexpression of the activator isoform of CREM, CREMτ, in the hippocampus also resulted in an accelerated response to antidepressants as well as increased hippocampal neurogenesis. This is the first demonstration of CREMτ within the brain playing a role in behavior and specifically in behavioral outcomes following antidepressant treatment. The current results suggest that activation of CREMτ may provide a means to accelerate the therapeutic efficacy of current antidepressant treatment.
Collapse
|
45
|
Neural plasticity and proliferation in the generation of antidepressant effects: hippocampal implication. Neural Plast 2013; 2013:537265. [PMID: 23862076 PMCID: PMC3703717 DOI: 10.1155/2013/537265] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/01/2013] [Accepted: 05/08/2013] [Indexed: 12/15/2022] Open
Abstract
It is widely accepted that changes underlying depression and antidepressant-like effects involve not only alterations in the levels of neurotransmitters as monoamines and their receptors in the brain, but also structural and functional changes far beyond. During the last two decades, emerging theories are providing new explanations about the neurobiology of depression and the mechanism of action of antidepressant strategies based on cellular changes at the CNS level. The neurotrophic/plasticity hypothesis of depression, proposed more than a decade ago, is now supported by multiple basic and clinical studies focused on the role of intracellular-signalling cascades that govern neural proliferation and plasticity. Herein, we review the state-of-the-art of the changes in these signalling pathways which appear to underlie both depressive disorders and antidepressant actions. We will especially focus on the hippocampal cellularity and plasticity modulation by serotonin, trophic factors as brain-derived neurotrophic factor (BDNF), and vascular endothelial growth factor (VEGF) through intracellular signalling pathways—cAMP, Wnt/β-catenin, and mTOR. Connecting the classic monoaminergic hypothesis with proliferation/neuroplasticity-related evidence is an appealing and comprehensive attempt for improving our knowledge about the neurobiological events leading to depression and associated to antidepressant therapies.
Collapse
|
46
|
Serum response factor and cAMP response element binding protein are both required for cocaine induction of ΔFosB. J Neurosci 2012; 32:7577-84. [PMID: 22649236 DOI: 10.1523/jneurosci.1381-12.2012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The molecular mechanism underlying induction by cocaine of ΔFosB, a transcription factor important for addiction, remains unknown. Here, we demonstrate a necessary role for two transcription factors, cAMP response element binding protein (CREB) and serum response factor (SRF), in mediating this induction within the mouse nucleus accumbens (NAc), a key brain reward region. CREB and SRF are both activated in NAc by cocaine and bind to the fosB gene promoter. Using viral-mediated Cre recombinase expression in the NAc of single- or double-floxed mice, we show that deletion of both transcription factors from this brain region completely blocks cocaine induction of ΔFosB in NAc, whereas deletion of either factor alone has no effect. Furthermore, deletion of both SRF and CREB from NAc renders animals less sensitive to the rewarding effects of moderate doses of cocaine when tested in the conditioned place preference (CPP) procedure and also blocks locomotor sensitization to higher doses of cocaine. Deletion of CREB alone has the opposite effect and enhances both cocaine CPP and locomotor sensitization. In contrast to ΔFosB induction by cocaine, ΔFosB induction in NAc by chronic social stress, which we have shown previously requires activation of SRF, is unaffected by the deletion of CREB alone. These surprising findings demonstrate the involvement of distinct transcriptional mechanisms in mediating ΔFosB induction within this same brain region by cocaine versus stress. Our results also establish a complex mode of regulation of ΔFosB induction in response to cocaine, which requires the concerted activities of both SRF and CREB.
Collapse
|
47
|
Mervis C, Dida J, Lam E, Crawford-Zelli N, Young E, Henderson D, Onay T, Morris C, Woodruff-Borden J, Yeomans J, Osborne L. Duplication of GTF2I results in separation anxiety in mice and humans. Am J Hum Genet 2012; 90:1064-70. [PMID: 22578324 DOI: 10.1016/j.ajhg.2012.04.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/08/2012] [Accepted: 04/06/2012] [Indexed: 11/27/2022] Open
Abstract
Duplication (dup7q11.23) and deletion (Williams syndrome) of chromosomal region 7q11.23 cause neurodevelopmental disorders with contrasting anxiety phenotypes. We found that 30% of 4- to 12-year-olds with dup7q11.23 but fewer than 5% of children with WS or in the general population met diagnostic criteria for a separation-anxiety disorder. To address the role of one commonly duplicated or deleted gene in separation anxiety, we compared mice that had varying numbers of Gtf2i copies. Relative to mouse pups with one or two Gtf2i copies, pups with additional Gtf2i copies showed significantly increased maternal separation-induced anxiety as measured by ultrasonic vocalizations. This study links the copy number of a single gene from 7q11.23 to separation anxiety in both mice and humans, highlighting the utility of mouse models in dissecting specific gene functions for genomic disorders that span many genes. This study also offers insight into molecular separation-anxiety pathways that might enable the development of targeted therapeutics.
Collapse
|
48
|
Fowler CD, Kenny PJ. Utility of genetically modified mice for understanding the neurobiology of substance use disorders. Hum Genet 2012; 131:941-57. [PMID: 22190154 PMCID: PMC3977433 DOI: 10.1007/s00439-011-1129-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/11/2011] [Indexed: 01/09/2023]
Abstract
Advances in our ability to modify the mouse genome have enhanced our understanding of the genetic and neurobiological mechanisms contributing to addiction-related behaviors underlying substance use and abuse. These experimentally induced manipulations permit greater spatial and temporal specificity for modification of gene expression within specific cellular populations and during select developmental time periods. In this review, we consider the current mouse genetic model systems that have been employed to understand aspects of addiction and highlight significant conceptual advances achieved related to substance use and abuse. The mouse models reviewed herein include conventional knock-out and knock-in, conditional knockout, transgenic, inducible transgenic, mice suitable for optogenetic control of discrete neuronal populations, and phenotype-selected mice. By establishing a reciprocal investigatory relationship between genetic findings in humans and genomic manipulations in mice, a far better understanding of the discrete neuromechanisms underlying addiction can be achieved, which is likely to provide a strong foundation for developing and validating novel therapeutics for the treatment of substance abuse disorders.
Collapse
Affiliation(s)
- Christie D. Fowler
- Laboratory of Behavioral and Molecular Neuroscience, Department of Molecular Therapeutics, The Scripps Research Institute, Scripps, Florida, Jupiter, FL 33458, USA. Laboratory of Behavioral and Molecular Neuroscience, Department of Neuroscience, The Scripps Research Institute, Scripps, Florida, Jupiter, FL 33458, USA
| | - Paul J. Kenny
- Laboratory of Behavioral and Molecular Neuroscience, Department of Molecular Therapeutics, The Scripps Research Institute, Scripps, Florida, Jupiter, FL 33458, USA. Laboratory of Behavioral and Molecular Neuroscience, Department of Neuroscience, The Scripps Research Institute, Scripps, Florida, Jupiter, FL 33458, USA
| |
Collapse
|
49
|
Davis MM, Olausson P, Greengard P, Taylor JR, Nairn AC. Regulator of calmodulin signaling knockout mice display anxiety-like behavior and motivational deficits. Eur J Neurosci 2012; 35:300-8. [PMID: 22250817 DOI: 10.1111/j.1460-9568.2011.07956.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Regulator of calmodulin (CaM) signaling (RCS), when phosphorylated by protein kinase A (PKA) on Ser55, binds to CaM and inhibits CaM-dependent signaling. RCS expression is high in the dorsal striatum, nucleus accumbens and amygdala, suggesting that the protein is involved in limbic-striatal function. To test this hypothesis, we examined RCS knockout (KO) mice in behavioral models dependent on these brain areas. Mice were tested for food-reinforced instrumental conditioning and responding under a progressive ratio (PR) schedule of reinforcement and in models of anxiety (elevated plus maze and open field). While RCS KO mice showed normal acquisition of a food-motivated instrumental response, they exhibited a lower breakpoint value when tested on responding under a PR schedule of reinforcement. RCS KO mice also displayed decreased exploration in both the open arms of an elevated plus maze and in the center region of an open field, suggesting an enhanced anxiety response. Biochemical studies revealed a reduction in the levels of dopamine and cAMP-regulated phosphoprotein (DARPP-32) in the striatum of RCS KO mice. DARPP-32 is important in reward-mediated behavior, suggestive of a possible role for DARPP-32 in mediating some of the effects of RCS. Together these results implicate a novel PKA-regulated phosphoprotein, RCS, in the etiology of motivational deficits and anxiety.
Collapse
Affiliation(s)
- Maya M Davis
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06508, USA
| | | | | | | | | |
Collapse
|
50
|
Madsen HB, Navaratnarajah S, Farrugia J, Djouma E, Ehrlich M, Mantamadiotis T, Van Deursen J, Lawrence AJ. CREB1 and CREB-binding protein in striatal medium spiny neurons regulate behavioural responses to psychostimulants. Psychopharmacology (Berl) 2012; 219:699-713. [PMID: 21766169 DOI: 10.1007/s00213-011-2406-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 06/18/2011] [Indexed: 12/27/2022]
Abstract
RATIONALE The transcription factor cAMP responsive element-binding protein 1 (CREB1) has a complex influence on behavioural responses to drugs of abuse which varies depending on the brain region in which it is expressed. In response to drug exposure, CREB1 is phosphorylated in the striatum, a structure that is critically involved in reward-related learning. OBJECTIVE The present study assessed the role of striatal CREB1 and its coactivator CREB-binding protein (CBP) in behavioural responses to psychostimulants. METHODS Using the 'cre/lox' recombination system, we generated mice with a postnatal deletion of CREB1 or CBP directed to medium spiny neurons of the striatum. qRT-PCR and immunohistochemistry were used to confirm the deletion, and mice were assessed with respect to their locomotor response to acute cocaine (20 mg/kg), cocaine sensitization (10 mg/kg), amphetamine-induced stereotypies (10 mg/kg) and ethanol-induced hypnosis (3.5 g/kg). RESULTS Here we show that CREB1 mutant mice have increased sensitivity to psychostimulants, an effect that does not generalise to ethanol-induced hypnosis. Furthermore, in the absence of CREB1, there is rapid postnatal upregulation of the related transcription factor CREM, indicating possible redundancy amongst this family of transcription factors. Finally striatal deletion of CBP, a coactivator for the CREB1/CREM signalling pathway, results in an even more increased sensitivity to psychostimulants. CONCLUSIONS These data suggest that striatal CREB1 regulates sensitivity to psychostimulants and that CREM acting via CBP is able to partially compensate in the absence of CREB1 signalling.
Collapse
|