1
|
Şair YB, Yılmaz Yıldırım E, Zeybek RE, Şallı Başaran G, Sevinçok L. From garden to madness: herbal products and psychotic experiences. Neurocase 2024; 30:198-203. [PMID: 39611748 DOI: 10.1080/13554794.2024.2436217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Psychotic symptoms, characterized by hallucinations, delusions, and cognitive disturbances, are associated with various psychiatric and neurological disorders. This manuscript explores two cases of acute psychotic episodes triggered by the regular consumption of herbal products. The cases highlight the need for increased awareness of the potential toxic side effects of herbal products. The impact of herbal ingredients like maca and matcha on neurotransmitter activity is explored, shedding light on the underlying mechanisms leading to psychosis. The manuscript highlights the need to report both the benefits and risks of herbal products, challenging the misconception that they are inherently safe.
Collapse
Affiliation(s)
- Yaşan Bilge Şair
- Psychiatry Department, Adnan Menderes University Hospital, Aydın, Turkey
| | | | - Rabia Elif Zeybek
- Psychiatry Department, Adnan Menderes University Hospital, Aydın, Turkey
| | | | - Levent Sevinçok
- Psychiatry Department, Adnan Menderes University Hospital, Aydın, Turkey
| |
Collapse
|
2
|
McGarry A, Hunter K, Gaughan J, Auinger P, Ferraro TN, Pradhan B, Ferrucci L, Egan JM, Moaddel R. An exploratory metabolomic comparison of participants with fast or absent functional progression from 2CARE, a randomized, double-blind clinical trial in Huntington's disease. Sci Rep 2024; 14:1101. [PMID: 38212353 PMCID: PMC10784537 DOI: 10.1038/s41598-023-50553-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024] Open
Abstract
Huntington's disease (HD) is increasingly recognized for diverse pathology outside of the nervous system. To describe the biology of HD in relation to functional progression, we previously analyzed the plasma and CSF metabolome in a cross-sectional study of participants who had various degrees of functional impairment. Here, we carried out an exploratory study in plasma from HD individuals over a 3-year time frame to assess whether differences exist between those with fast or absent clinical progression. There were more differences in circulating metabolite levels for fast progressors compared to absent progressors (111 vs 20, nominal p < 0.05). All metabolite changes in faster progressors were decreases, whereas some metabolite concentrations increased in absent progressors. Many of the metabolite levels that decreased in the fast progressors were higher at Screening compared to absent progressors but ended up lower by Year 3. Changes in faster progression suggest greater oxidative stress and inflammation (kynurenine, diacylglycerides, cysteine), disturbances in nitric oxide and urea metabolism (arginine, citrulline, ornithine, GABR), lower polyamines (putrescine and spermine), elevated glucose, and deficient AMPK signaling. Metabolomic differences between fast and absent progressors suggest the possibility of predicting functional decline in HD, and possibly delaying it with interventions to augment arginine, polyamines, and glucose regulation.
Collapse
Affiliation(s)
- Andrew McGarry
- Department of Neurology, Cooper University Hospital and Cooper Medical School at Rowan University, Camden, NJ, USA.
| | - Krystal Hunter
- Department of Medicine, Cooper Medical School at Rowan University, Camden, NJ, USA
| | - John Gaughan
- Department of Neurology, Cooper University Hospital and Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Peggy Auinger
- Department of Neurology, Center for Health and Technology, University of Rochester, Rochester, NY, USA
| | - Thomas N Ferraro
- Department of Biomedical Sciences, Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Basant Pradhan
- Department of Psychiatry, Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Luigi Ferrucci
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Josephine M Egan
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
3
|
Lauritano A, Cipollone I, Verde R, Kalkan H, Moriello C, Iannotti FA, Di Marzo V, Piscitelli F. The endocannabinoidome mediator N-oleoylglycine is a novel protective agent against 1-methyl-4-phenyl-pyridinium-induced neurotoxicity. Front Aging Neurosci 2022; 14:926634. [PMID: 36313013 PMCID: PMC9614236 DOI: 10.3389/fnagi.2022.926634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
N-oleoylglycine (OlGly) is a lipid mediator that belongs to the expanded version of the endocannabinoid (eCB) system, the endocannabinoidome (eCBome), which has recently gained increasing attention from the scientific community for its protective effects in a mouse model of mild traumatic brain injury. However, the effects of OlGly on cellular models of Parkinson’s disease (PD) have not yet been investigated, whilst other lipoaminoacids have been reported to have beneficial effects. Moreover, the protective effects of OlGly seem to be mediated by direct activation of proliferator-activated receptor alpha (PPARα), which has already been investigated as a therapeutic target for PD. Therefore, this study aims to investigate the possible protective effects of OlGly in an in vitro model obtained by treating the neuroblastoma cell line, SH-SY5Y (both differentiated and not) with 1-methyl-4-phenyl-pyridinium (MPP+), which mimics some cellular aspects of a PD-like phenotype, in the presence or absence of the PPARα antagonist, GW6471. Our data show that MPP+ increases mRNA levels of PPARα in both non differentiated and differentiated cells. Using assays to assess cell metabolic activity, cell proliferation, and pro-inflammatory markers, we observed that OlGly (1 nM), both as treatment (1 h) and pre-treatment (4 h), is able to protect against neuronal damage induced by 24 h MPP+ exposure through PPARα. Moreover, using a targeted lipidomics approach, we demonstrate that OlGly exerts its effects also through the modulation of the eCBome. Finally, treatment with OlGly was able also to reduce increased IL-1β induced by MPP+ in differentiated cells. In conclusion, our results suggest that OlGly could be a promising therapeutic agent for the treatment of MPP+-induced neurotoxicity.
Collapse
Affiliation(s)
- Anna Lauritano
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, NA, Italy
| | - Irene Cipollone
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, NA, Italy
| | - Roberta Verde
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, NA, Italy
| | - Hilal Kalkan
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, NA, Italy
| | - Claudia Moriello
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, NA, Italy
| | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, NA, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, NA, Italy
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, QC, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, Université Laval, Québec City, QC, Canada
- *Correspondence: Vincenzo Di Marzo,
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, NA, Italy
- Fabiana Piscitelli,
| |
Collapse
|
4
|
Espinosa P, Bellone C. The exciting side of unconventional glycine receptors. Neuron 2022; 110:2359-2361. [PMID: 35926450 DOI: 10.1016/j.neuron.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this issue of Neuron, Bossi, Dhanasobhon, and colleagues uncover the functional relevance of GluN1/GluN3A excitatory glycine receptors (eGlyRs) in the neocortex and amygdala. This study provides exciting new insights into the role of unconventional eGlyRs in brain function.
Collapse
Affiliation(s)
- Pedro Espinosa
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Camilla Bellone
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
5
|
Frouni I, Belliveau S, Maddaford S, Nuara SG, Gourdon JC, Huot P. Effect of the glycine transporter 1 inhibitor ALX-5407 on dyskinesia, psychosis-like behaviours and parkinsonism in the MPTP-lesioned marmoset. Eur J Pharmacol 2021; 910:174452. [PMID: 34480885 DOI: 10.1016/j.ejphar.2021.174452] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/26/2022]
Abstract
Dyskinesia and psychosis are complications encountered in advanced Parkinson's disease (PD) following long-term therapy with L-3,4-dihydroxyphenylalanine (L-DOPA). Disturbances in the glutamatergic system have been associated with both dyskinesia and psychosis, making glutamatergic modulation a potential therapeutic approach for these. Treatments thus far have sought to dampen glutamatergic transmission, for example through blockade of N-methyl-D-aspartate (NMDA) receptors or modulation of metabotropic glutamate receptors 5. In contrast, activation of the glycine-binding site on NMDA receptors is required for their physiological response. Here, we investigated whether indirectly enhancing glutamatergic transmission through inhibition of glycine re-uptake would be efficacious in diminishing both dyskinesia and psychosis-like behaviours (PLBs) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned common marmoset. Six marmosets were rendered parkinsonian by MPTP injection. Following repeated administration of L-DOPA to induce dyskinesia and PLBs, they underwent acute challenges of the glycine transporter 1 (GlyT1) inhibitor ALX-5407 (0.01, 0.1 and 1 mg/kg) or vehicle, in combination with L-DOPA, after which the severity of dyskinesia, PLBs and parkinsonian disability was evaluated. In combination with L-DOPA, ALX-5407 0.1 and 1 mg/kg significantly reduced the severity of dyskinesia, by 51% and 41% (both P < 0.001), when compared to vehicle. ALX-5407 0.01, 0.1 and 1 mg/kg also decreased the severity of global PLBs, by 25%, 51% and 38% (all P < 0.001), when compared to vehicle. The benefits on dyskinesia and PLBs were achieved without compromising the therapeutic effect of L-DOPA on parkinsonism. Our results suggest that GlyT1 inhibition may be a novel strategy to attenuate dyskinesia and PLBs in PD, without interfering with L-DOPA anti-parkinsonian action.
Collapse
Affiliation(s)
- Imane Frouni
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Sébastien Belliveau
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | | | - Stephen G Nuara
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Jim C Gourdon
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Philippe Huot
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Movement Disorder Clinic, Division of Neurology, Department of Neuroscience, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
6
|
Ferdinand JM, Peters KZ, Yavas E, Young AMJ. Modulation of stimulated dopamine release in rat nucleus accumbens shell by GABA in vitro: Effect of sub-chronic phencyclidine pretreatment. J Neurosci Res 2021; 99:1885-1901. [PMID: 33848365 DOI: 10.1002/jnr.24843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/25/2021] [Accepted: 03/21/2021] [Indexed: 01/24/2023]
Abstract
Dopamine signaling in nucleus accumbens (NAc) is modulated by γ-aminobutyric acid (GABA), acting through GABA-A and GABA-B receptors: dysregulation of GABAergic control of dopamine function may be important in behavioral deficits in schizophrenia. We investigated the effect of GABA-A (muscimol) and GABA-B (baclofen) receptor agonists on electrically stimulated dopamine release. Furthermore, we explored whether drug-induced changes were disrupted by pretreatment with phencyclidine, which provides a well-validated model of schizophrenia. Using brain slices from female rats, fast-scan cyclic voltammetry was used to measure electrically stimulated dopamine release in NAc shell. Both muscimol and baclofen caused concentration-dependent attenuation of evoked dopamine release: neither effect was changed by dihydro-β-erythroidine, a nicotinic acetylcholine receptor antagonist, or the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), precluding indirect mechanisms using these transmitter systems in the GABAergic actions. In slices taken from rats pretreated with phencyclidine, the attenuation of evoked dopamine release by baclofen was abolished, but the attenuation by muscimol was unaffected. Since phencyclidine pretreatment was followed by drug-free washout period of at least a week, the drug was not present during recording. Therefore, disruption of GABA-B modulation of dopamine is due to long-term functional changes resulting from the treatment, rather than transient changes due to the drug's presence at test. This enduring dysregulation of GABA-B modulation of accumbal dopamine release provides a plausible mechanism through which GABA dysfunction influences accumbal dopamine leading to behavioral changes seen in schizophrenia and may provide a route for novel therapeutic strategies to treat the condition.
Collapse
Affiliation(s)
| | - Kate Z Peters
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, LE1 9HN, UK
| | - Ersin Yavas
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, LE1 9HN, UK
| | - Andrew M J Young
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, LE1 9HN, UK
| |
Collapse
|
7
|
Niello M, Gradisch R, Loland CJ, Stockner T, Sitte HH. Allosteric Modulation of Neurotransmitter Transporters as a Therapeutic Strategy. Trends Pharmacol Sci 2020; 41:446-463. [PMID: 32471654 PMCID: PMC7610661 DOI: 10.1016/j.tips.2020.04.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
Neurotransmitter transporters (NTTs) are involved in the fine-tuning of brain neurotransmitter homeostasis. As such, they are implicated in a plethora of complex behaviors, including reward, movement, and cognition. During recent decades, compounds that modulate NTT functions have been developed. Some of them are in clinical use for the management of different neuropsychiatric conditions. The majority of these compounds have been found to selectively interact with the orthosteric site of NTTs. Recently, diverse allosteric sites have been described in a number of NTTs, modulating their function. A more complex NTT pharmacology may be useful in the development of novel therapeutics. Here, we summarize current knowledge on such modulatory allosteric sites, with specific focus on their pharmacological and therapeutic potential.
Collapse
Affiliation(s)
- Marco Niello
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ralph Gradisch
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Claus Juul Loland
- Laboratory for Membrane Protein Dynamics. Department of Neuroscience. University of Copenhagen, Copenhagen, Denmark
| | - Thomas Stockner
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Harald H Sitte
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria; AddRess, Centre for Addiction Research and Science, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
de Bartolomeis A, Manchia M, Marmo F, Vellucci L, Iasevoli F, Barone A. Glycine Signaling in the Framework of Dopamine-Glutamate Interaction and Postsynaptic Density. Implications for Treatment-Resistant Schizophrenia. Front Psychiatry 2020; 11:369. [PMID: 32477178 PMCID: PMC7240307 DOI: 10.3389/fpsyt.2020.00369] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Treatment-resistant schizophrenia (TRS) or suboptimal response to antipsychotics affects almost 30% of schizophrenia (SCZ) patients, and it is a relevant clinical issue with significant impact on the functional outcome and on the global burden of disease. Among putative novel treatments, glycine-centered therapeutics (i.e. sarcosine, glycine itself, D-Serine, and bitopertin) have been proposed, based on a strong preclinical rationale with, however, mixed clinical results. Therefore, a better appraisal of glycine interaction with the other major players of SCZ pathophysiology and specifically in the framework of dopamine - glutamate interactions is warranted. New methodological approaches at cutting edge of technology and drug discovery have been applied to study the role of glycine in glutamate signaling, both at presynaptic and post-synaptic level and have been instrumental for unveiling the role of glycine in dopamine-glutamate interaction. Glycine is a non-essential amino acid that plays a critical role in both inhibitory and excitatory neurotransmission. In caudal areas of central nervous system (CNS), such as spinal cord and brainstem, glycine acts as a powerful inhibitory neurotransmitter through binding to its receptor, i.e. the Glycine Receptor (GlyR). However, glycine also works as a co-agonist of the N-Methyl-D-Aspartate receptor (NMDAR) in excitatory glutamatergic neurotransmission. Glycine concentration in the synaptic cleft is finely tuned by glycine transporters, i.e. GlyT1 and GlyT2, that regulate the neurotransmitter's reuptake, with the first considered a highly potential target for psychosis therapy. Reciprocal regulation of dopamine and glycine in forebrain, glycine modulation of glutamate, glycine signaling interaction with postsynaptic density proteins at glutamatergic synapse, and human genetics of glycinergic pathways in SCZ are tackled in order to highlight the exploitation of this neurotransmitters and related molecules in SCZ and TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Federica Marmo
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| | - Licia Vellucci
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| | - Felice Iasevoli
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| | - Annarita Barone
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| |
Collapse
|
9
|
Hong KB, Park Y, Suh HJ. Two combined amino acids promote sleep activity in caffeine-induced sleepless model systems. Nutr Res Pract 2018; 12:208-214. [PMID: 29854326 PMCID: PMC5974066 DOI: 10.4162/nrp.2018.12.3.208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/08/2018] [Accepted: 03/13/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND/OBJECTIVES The aim of this study was to evaluate the biological and sleep-promoting effects of combined γ-aminobutyric acid (GABA) and 5-hydroxytryptophan (5-HTP) using caffeine-induced sleepless fruit flies, ICR mice, and Sprague-Dawley rats. MATERIALS/METHODS Video-tracking analysis was applied to investigate behavioral changes of Drosophila melanogaster. Pentobarbital-induced sleep test and electroencephalogram (EEG) patterns were used for analysis of sleep latency, duration, and quantity and quality of sleep in vertebrate models. RESULTS Administration of combined GABA/5-HTP could significantly reverse the caffeine induced total distance of flies (P < 0.001). Also, individually administered and combined GABA/5-HTP significantly increased the total sleeping time in the caffeine-induced sleepless ICR mice (P < 0.001). In the caffeine-induced sleepless SD-rats, combined GABA/5-HTP showed significant differences in sleep quality between individual amino acid administrations (P < 0.05). CONCLUSIONS Taken together, we identified inhibitory effects of combined GABA/5-HTP in locomotor activity, sleep quantity and quality in caffeine-induced sleepless models, indicating that combined GABA/5-HTP may be effective in patients with insomnia by providing sufficient sleep.
Collapse
Affiliation(s)
- Ki-Bae Hong
- Department of Biological Sciences and Environmental Sciences Program, Southern Illinois University-Edwardsville, Edwardsville, IL 62026, United States
| | - Yooheon Park
- Dongguk University Research Institute of Biotechnology and Medical Converged Science, Dongguk University, Gyeonggi 10325, Korea
| | - Hyung Joo Suh
- Department of Public Health Sciences, Korea University, 145 Anam-ro, Sungbuk-gu, Seoul 02841, Korea
| |
Collapse
|
10
|
Kurolap A, Armbruster A, Hershkovitz T, Hauf K, Mory A, Paperna T, Hannappel E, Tal G, Nijem Y, Sella E, Mahajnah M, Ilivitzki A, Hershkovitz D, Ekhilevitch N, Mandel H, Eulenburg V, Baris HN. Loss of Glycine Transporter 1 Causes a Subtype of Glycine Encephalopathy with Arthrogryposis and Mildly Elevated Cerebrospinal Fluid Glycine. Am J Hum Genet 2016; 99:1172-1180. [PMID: 27773429 DOI: 10.1016/j.ajhg.2016.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/07/2016] [Indexed: 01/02/2023] Open
Abstract
Glycine is a major neurotransmitter that activates inhibitory glycine receptors and is a co-agonist for excitatory glutamatergic N-methyl-D-aspartate (NMDA) receptors. Two transporters, GLYT1 and GLYT2, regulate extracellular glycine concentrations within the CNS. Dysregulation of the extracellular glycine has been associated with hyperekplexia and nonketotic hyperglycinemia. Here, we report four individuals from two families who presented at birth with facial dysmorphism, encephalopathy, arthrogryposis, hypotonia progressing to hypertonicity with startle-like clonus, and respiratory failure. Only one individual survived the respiratory failure and was weaned off ventilation but has significant global developmental delay. Mildly elevated cerebrospinal fluid (CSF) glycine and normal serum glycine were observed in two individuals. In both families, we identified truncating mutations in SLC6A9, encoding GLYT1. We demonstrate that pharmacologic or genetic abolishment of GlyT1 activity in mice leads to mildly elevated glycine in the CSF but not in blood. Additionally, previously reported slc6a9-null mice and zebrafish mutants also display phenotypes consistent with the affected individuals we examined. Our data suggest that truncating SLC6A9 mutations lead to a distinct human neurological syndrome hallmarked by mildly elevated CSF glycine and normal serum glycine.
Collapse
|
11
|
Sershen H, Hashim A, Dunlop DS, Suckow RF, Cooper TB, Javitt DC. Modulating NMDA Receptor Function with D-Amino Acid Oxidase Inhibitors: Understanding Functional Activity in PCP-Treated Mouse Model. Neurochem Res 2016; 41:398-408. [PMID: 26857796 DOI: 10.1007/s11064-016-1838-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 01/14/2016] [Accepted: 01/17/2016] [Indexed: 02/07/2023]
Abstract
Deficits in N-methyl-D-aspartate receptor (NMDAR) function are increasingly linked to persistent negative symptoms and cognitive deficits in schizophrenia. Accordingly, clinical studies have been targeting the modulatory site of the NMDA receptor, based on the decreased function of NMDA receptor, to see whether increasing NMDA function can potentially help treat the negative and cognitive deficits seen in the disease. Glycine and D-serine are endogenous ligands to the NMDA modulatory site, but since high doses are needed to affect brain levels, related compounds are being developed, for example glycine transport (GlyT) inhibitors to potentially elevate brain glycine or targeting enzymes, such as D-amino acid oxidase (DAAO) to slow the breakdown and increase the brain level of D-serine. In the present study we further evaluated the effect of DAAO inhibitors 5-chloro-benzo[d]isoxazol-3-ol (CBIO) and sodium benzoate (NaB) in a phencyclidine (PCP) rodent mouse model to see if the inhibitors affect PCP-induced locomotor activity, alter brain D-serine level, and thereby potentially enhance D-serine responses. D-Serine dose-dependently reduced the PCP-induced locomotor activity at doses above 1000 mg/kg. Acute CBIO (30 mg/kg) did not affect PCP-induced locomotor activity, but appeared to reduce locomotor activity when given with D-serine (600 mg/kg); a dose that by itself did not have an effect. However, the effect was also present when the vehicle (Trappsol(®)) was tested with D-serine, suggesting that the reduction in locomotor activity was not related to DAAO inhibition, but possibly reflected enhanced bioavailability of D-serine across the blood brain barrier related to the vehicle. With this acute dose of CBIO, D-serine level in brain and plasma were not increased. Another weaker DAAO inhibitor NaB (400 mg/kg), and NaB plus D-serine also significantly reduced PCP-induced locomotor activity, but without affecting plasma or brain D-serine level, arguing against a DAAO-mediated effect. However, NaB reduced plasma L-serine and based on reports that NaB also elevates various plasma metabolites, for example aminoisobutyric acid (AIB), a potential effect via the System A amino acid carrier may be involved in the regulation of synaptic glycine level to modulate NMDAR function needs to be investigated. Acute ascorbic acid (300 mg/kg) also inhibited PCP-induced locomotor activity, which was further attenuated in the presence of D-serine (600 mg/kg). Ascorbic acid may have an action at the dopamine membrane carrier and/or altering redox mechanisms that modulate NMDARs, but this needs to be further investigated. The findings support an effect of D-serine on PCP-induced hyperactivity. They also offer suggestions on an interaction of NaB via an unknown mechanism, other than DAAO inhibition, perhaps through metabolomic changes, and find unexpected synergy between D-serine and ascorbic acid that supports combined NMDA glycine- and redox-site intervention. Although mechanisms of these specific agents need to be determined, overall it supports continued glutamatergic drug development.
Collapse
Affiliation(s)
- Henry Sershen
- Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA. .,NYU Langone Medical Center, Department of Psychiatry, New York, NY, 10016, USA.
| | - Audrey Hashim
- Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA
| | - David S Dunlop
- Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA
| | - Raymond F Suckow
- Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA.,New York State Psychiatric Institute, 1051 Riverside Dr., New York, NY, 10032, USA
| | - Tom B Cooper
- Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA.,New York State Psychiatric Institute, 1051 Riverside Dr., New York, NY, 10032, USA
| | - Daniel C Javitt
- Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA. .,Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA.
| |
Collapse
|
12
|
Role of GABA(B) receptors in learning and memory and neurological disorders. Neurosci Biobehav Rev 2016; 63:1-28. [PMID: 26814961 DOI: 10.1016/j.neubiorev.2016.01.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/31/2015] [Accepted: 01/21/2016] [Indexed: 01/13/2023]
Abstract
Although it is evident from the literature that altered GABAB receptor function does affect behavior, these results often do not correspond well. These differences could be due to the task protocol, animal strain, ligand concentration, or timing of administration utilized. Because several clinical populations exhibit learning and memory deficits in addition to altered markers of GABA and the GABAB receptor, it is important to determine whether altered GABAB receptor function is capable of contributing to the deficits. The aim of this review is to examine the effect of altered GABAB receptor function on synaptic plasticity as demonstrated by in vitro data, as well as the effects on performance in learning and memory tasks. Finally, data regarding altered GABA and GABAB receptor markers within clinical populations will be reviewed. Together, the data agree that proper functioning of GABAB receptors is crucial for numerous learning and memory tasks and that targeting this system via pharmaceuticals may benefit several clinical populations.
Collapse
|
13
|
Chen Z, Hu B, Wang F, Du L, Huang B, Li L, Qi J, Wang X. Glycine bidirectionally regulates ischemic tolerance via different mechanisms including NR2A-dependent CREB phosphorylation. J Neurochem 2015; 133:397-408. [PMID: 25418841 DOI: 10.1111/jnc.12994] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 11/07/2014] [Accepted: 11/12/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Zheng Chen
- Division of Vascular Surgery, East Hospital; Tongji University School of Medicine; Shanghai China
- Department of Neurosurgery; First Affiliated Hospital of Nanjing Medical University; Nanjing China
- Laboratory of Brain Diseases; College of Basic Medicine; Nanjing University of Chinese Medicine; Nanjing China
| | - Bin Hu
- Jiangsu Key Laboratory of Brain Disease Bioinformation; Research Center for Biochemistry and Molecular Biology; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Fuzhou Wang
- Department of Anesthesiology; Affiliated Nanjing Maternity and Child Health Care Hospital; Nanjing Medical University; Nanjing China
| | - Linlin Du
- Laboratory of Brain Diseases; College of Basic Medicine; Nanjing University of Chinese Medicine; Nanjing China
| | - Baosheng Huang
- Department of Neurosurgery; First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - Lixin Li
- Department of Neurosurgery; First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - Jia Qi
- Department of Pharmacy; Xinhua Hospital Affiliated to Shanghai Jiaotong University; Shanghai China
| | - Xiang Wang
- Division of Vascular Surgery, East Hospital; Tongji University School of Medicine; Shanghai China
| |
Collapse
|
14
|
Liem-Moolenaar M, Peeters P, Kamerling IMC, Hogg C, Holder G, Kleijn HJ, Spaans E, Udo De Haes J, de Kam ML, Franson KL, Cohen AF, van Gerven JMA. Early stage development of the glycine-1 re-uptake inhibitor SCH 900435: central nervous system effects compared with placebo in healthy men. Br J Clin Pharmacol 2014; 75:1455-67. [PMID: 23116363 DOI: 10.1111/bcp.12015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 10/07/2012] [Indexed: 01/05/2023] Open
Abstract
AIMS To report the first three studies with SCH 900435, a selective glycine-1 re-uptake inhibitor in development for treating schizophrenia, using systematic evaluations of pharmacodynamics to understand the observed effects. METHODS Three double-blind, placebo-controlled studies (single, visual effect and multiple dose) were performed. In the single and multiple dose study SCH 900435 (0.5-30 mg) was given to healthy males and frequent pharmacokinetic and pharmacodynamic measurements were performed. The visual effects study incorporated visual electrophysiological measures of macular, retinal and intracranial visual pathway function. RESULTS In the single dose study (highest difference, 95% CI, P) increases in smooth pursuit eye movements (8, 12 mg (-6.09, 10.14, -2.04, 0.013), 30 mg), pupil : iris ratio (20 and 30 mg (-0.065, 0.09, -0.04, <0.0001)), VAS colour perception (30 mg (-9.48, 13.05, -5.91, <0.0001)) and changes in spontaneous reports of visual disturbance were found, while FSH (8 mg (0.42, 0.18, 0.66, 0.0015), 12, 20 mg), LH (8-30 mg (1.35, 0.65, 2.05, 0.0003)) and EEG alpha2 activity decreased (12, 20, 30 mg (0.27, 0.14, 0.41, 0.0002)). A subsequent dedicated visual effects study demonstrated that visual effects were transient without underlying electrophysiological changes. This provided enough safety information for starting a multiple ascending dose study, showing less visual symptoms after twice daily dosing and titration, possibly due to tolerance. CONCLUSIONS Several central nervous system (CNS) effects and gonadotropic changes resulted from administration of 8 mg and higher, providing evidence for CNS penetration and pharmacological activity of SCH 900435. Antipsychotic activity in patients, specificity of the reported effects for this drug class and possible tolerance to visual symptoms remain to be established.
Collapse
|
15
|
Poels EMP, Kegeles LS, Kantrowitz JT, Slifstein M, Javitt DC, Lieberman JA, Abi-Dargham A, Girgis RR. Imaging glutamate in schizophrenia: review of findings and implications for drug discovery. Mol Psychiatry 2014; 19:20-9. [PMID: 24166406 DOI: 10.1038/mp.2013.136] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 08/25/2013] [Accepted: 09/09/2013] [Indexed: 12/11/2022]
Abstract
Currently, all treatments for schizophrenia (SCZ) function primarily by blocking D(2)-type dopamine receptors. Given the limitations of these medications, substantial efforts have been made to identify alternative neurochemical targets for treatment development in SCZ. One such target is brain glutamate. The objective of this article is to review and synthesize the proton magnetic resonance spectroscopy ((1)H MRS) and positron emission tomography (PET)/single-photon emission computed tomography (SPECT) investigations that have examined glutamatergic indices in SCZ, including those of modulatory compounds such as glutathione (GSH) and glycine, as well as data from ketamine challenge studies. The reviewed (1)H MRS and PET/SPECT studies support the theory of hypofunction of the N-methyl-D-aspartate receptor (NMDAR) in SCZ, as well as the convergence between the dopamine and glutamate models of SCZ. We also review several advances in MRS and PET technologies that have opened the door for new opportunities to investigate the glutamate system in SCZ and discuss some ways in which these imaging tools can be used to facilitate a greater understanding of the glutamate system in SCZ and the successful and efficient development of new glutamate-based treatments for SCZ.
Collapse
Affiliation(s)
- E M P Poels
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA
| | - L S Kegeles
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA
| | - J T Kantrowitz
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA
| | - M Slifstein
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA
| | - D C Javitt
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA
| | - J A Lieberman
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA
| | - A Abi-Dargham
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA [3] Department of Radiology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - R R Girgis
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
16
|
Abstract
Schizophrenia is a severe neuropsychiatric disorder without adequate current treatment. Recent theories of schizophrenia focus on disturbances of glutamatergic neurotransmission particularly at N-methyl-D-aspartate (NMDA)-type glutamate receptors. NMDA receptors are regulated in vivo by the amino acids glycine and D-serine. Glycine levels, in turn, are regulated by glycine type I (GlyT1) transporters, which serve to maintain low subsaturating glycine levels in the vicinity of the NMDA receptor. A proposed approach to treatment of schizophrenia, therefore, is inhibition of GlyT1-mediated transport. Over the past decade, several well tolerated, high affinity GlyT1 inhibitors have been developed and shown to potentiate NMDA receptor-mediated neurotransmission in animal models relevant to schizophrenia. In addition, clinical trials have been conducted with sarcosine (N-methylglycine), a naturally occurring GlyT1 inhibitor, and with the high affinity compound RG1678. Although definitive trials remain ongoing, encouraging results to date have been reported.
Collapse
Affiliation(s)
- Daniel C Javitt
- Nathan S Kline Institute for Psychiatric Research, Columbia University, Orangeburg, NY 10962, USA.
| |
Collapse
|
17
|
Mechanisms of glycine release, which build up synaptic and extrasynaptic glycine levels: the role of synaptic and non-synaptic glycine transporters. Brain Res Bull 2012; 93:110-9. [PMID: 23266673 DOI: 10.1016/j.brainresbull.2012.12.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 12/17/2012] [Indexed: 11/21/2022]
Abstract
Glycine is an amino acid neurotransmitter that is involved in both inhibitory and excitatory neurochemical transmission in the central nervous system. The role of glycine in excitatory neurotransmission is related to its coagonist action at glutamatergic N-methyl-D-aspartate receptors. The glycine levels in the synaptic cleft rise many times higher during synaptic activation assuring that glycine spills over into the extrasynaptic space. Another possible origin of extrasynaptic glycine is the efflux of glycine occurring from astrocytes associated with glutamatergic synapses. The release of glycine from neuronal or glial origins exhibits several differences compared to that of biogenic amines or other amino acid neurotransmitters. These differences appear in an external Ca(2+)- and temperature-dependent manner, conferring unique characteristics on glycine as a neurotransmitter. Glycine transporter type-1 at synapses may exhibit neural and glial forms and plays a role in controlling synaptic glycine levels and the spill over rate of glycine from the synaptic cleft into the extrasynaptic biophase. Non-synaptic glycine transporter type-1 regulates extrasynaptic glycine concentrations, either increasing or decreasing them depending on the reverse or normal mode operation of the carrier molecule. While we can, at best, only estimate synaptic glycine levels at rest and during synaptic activation, glycine concentrations are readily measurable via brain microdialysis technique applied in the extrasynaptic space. The non-synaptic N-methyl-D-aspartate receptor may obtain glycine for activation following its spill over from highly active synapses or from its release mediated by the reverse operation of non-synaptic glycine transporter-1. The sensitivity of non-synaptic N-methyl-D-aspartate receptors to glutamate and glycine is many times higher than that of synaptic N-methyl-D-aspartate receptors making the former type of receptor the primary target for drug action. Synaptic and non-synaptic N-methyl-D-aspartate receptors mediate different neural functions, many of which are not clearly defined at present. Non-synaptic glycine transporter-1 and its blockade by inhibitory drugs may be important in drug therapy interventions, such as for reducing negative symptoms of schizophrenia.
Collapse
|
18
|
Han W, Wang F, Qi J, Wang F, Zhang L, Zhao S, Song M, Wu C, Yang J. NMDA receptors in the medial prefrontal cortex and the dorsal hippocampus regulate methamphetamine-induced hyperactivity and extracellular amino acid release in mice. Behav Brain Res 2012; 232:44-52. [PMID: 22808522 DOI: 10.1016/j.bbr.2012.03.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The medial prefrontal cortex (mPFC) and the dorsal hippocampus (DHC) play significant roles in stimulant-induced neurobehavioral effects. Methamphetamine (MAP)-induced hyperactivity has been reported to be involved in the regulation of the glutamatergic system. The present study examined whether the glutamatergic and GABAergic systems in the mPFC and DHC were involved in MAP-induced hyperactivity in mice. A combined kainic acid (KA) or N-methyl-d-aspartate (NMDA) lesion and microdialysis technique targeting both the mPFC and DHC were used. The results showed that both KA- and NMDA-induced lesions of the mPFC facilitated MAP-induced hyperactivity, while neither KA- nor NMDA-induced lesions of the DHC had a similar effect. MAP increased the extracellular glutamate (Glu) levels in the mPFC and reduced Glu levels in the DHC. GABA levels in both of these regions were reduced. A KA or NMDA lesion of the mPFC inhibited the Glu reduction in the DHC, and the same lesion of the DHC inhibited the Glu increase in the mPFC induced by MAP. A NMDA lesion of the mPFC blocked GABA reduction in the DHC, but a lesion of DHC enhanced the GABA decrease in the mPFC induced by MAP. Furthermore, a NMDA lesion of DHC increased the vesicular glutamate transporter-2 (VGLUT2) expression in the mPFC following MAP-administration. These findings indicate that glutamatergic as well as GABAergic systems in these two regions are involved in MAP-induced hyperactivity. Moreover, there may be an inhibitory role in these two regions, especially mediated by NMDA receptors, in MAP-induced abnormal behavior and neurotransmission responses.
Collapse
Affiliation(s)
- Wenyan Han
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wierońska JM, Kusek M, Tokarski K, Wabno J, Froestl W, Pilc A. The GABA B receptor agonist CGP44532 and the positive modulator GS39783 reverse some behavioural changes related to positive syndromes of psychosis in mice. Br J Pharmacol 2011; 163:1034-47. [PMID: 21371011 DOI: 10.1111/j.1476-5381.2011.01301.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE An important role of GABAergic neurotransmission in schizophrenia was proposed a long time ago, but there is limited data to support this hypothesis. In the present study we decided to investigate GABA(B) receptor ligands in animal models predictive for the antipsychotic activity of drugs. The GABA(B) receptor antagonists CGP51176 and CGP36742, agonist CGP44532 and positive allosteric modulator GS39783 were studied. EXPERIMENTAL APPROACH The effects of all ligands were investigated in MK-801- and amphetamine-induced hyperactivity tests. The anti-hallucinogenic-like effect of the compounds was screened in the model of head twitches induced by (±)1-(2.5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI). Furthermore, the effect of GS39783 and CGP44532 on DOI-induced frequency of spontaneous excitatory postsynaptic currents (EPSCs) in slices from mouse brain frontal cortices was investigated. The anti-cataleptic properties of the compounds were also assessed. KEY RESULTS The GABA(B) receptor activators CGP44532 and GS39783 exhibited antipsychotic-like effects both in the MK-801- and amphetamine-induced hyperactivity tests, as well as in the head-twitch model in mice. Such effects were not observed for the GABA(B) receptor antagonists. DOI-induced increased frequency of spontaneous EPSCs was also decreased by the compounds. Moreover, CGP44532 and GS39783 inhibited haloperidol-induced catalepsy and EPSCs. CONCLUSION AND IMPLICATIONS These data suggest that selective GABA(B) receptor activators may be useful in the treatment of psychosis.
Collapse
Affiliation(s)
- J M Wierońska
- Department of Neurobiology, Institute of Pharmacology PAS, 31-343 Kraków, Poland
| | | | | | | | | | | |
Collapse
|
20
|
Ginsberg SD, Che S, Hashim A, Zavadil J, Cancro R, Lee SH, Petkova E, Sershen HW, Volavka J. Differential regulation of catechol-O-methyltransferase expression in a mouse model of aggression. Brain Struct Funct 2011; 216:347-56. [PMID: 21512897 PMCID: PMC3199365 DOI: 10.1007/s00429-011-0315-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 03/24/2011] [Indexed: 12/22/2022]
Abstract
This study was designed to understand molecular and cellular mechanisms underlying aggressive behaviors in mice exposed to repeated interactions in their homecage with conspecifics. A resident-intruder procedure was employed whereby two males were allowed to interact for 10 min trials, and aggressive and/or submissive behaviors (e.g., degree of attacking, biting, chasing, grooming, rearing, or upright posture) were assessed. Following 10 days of behavioral trials, brains were removed and dissected into specific regions including the cerebellum, frontal cortex, hippocampus, midbrain, pons, and striatum. Gene expression analysis was performed using real-time quantitative polymerase-chain reaction (qPCR) for catechol-O-methyltransferase (COMT) and tyrosine hydroxylase (TH). Compared to naive control mice, significant up regulation of COMT expression of residents was observed in the cerebellum, frontal cortex, hippocampus, midbrain, and striatum; in all of these brain regions the COMT expression of residents was also significantly higher than that of intruders. The intruders also had a significant down regulation (compared to naive control mice) within the hippocampus, indicating a selective decrease in COMT expression in the hippocampus of submissive subjects. Immunoblot analysis confirmed COMT up regulation in the midbrain and hippocampus of residents and down regulation in intruders. qPCR analysis of TH expression indicated significant up regulation in the midbrain of residents and concomitant down regulation in intruders. These findings implicate regionally- and behaviorally-specific regulation of COMT and TH expression in aggressive and submissive behaviors. Additional molecular and cellular characterization of COMT, TH, and other potential targets is warranted within this animal model of aggression.
Collapse
Affiliation(s)
- Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, New York University Langone Medical Center, New York, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kantrowitz JT, Javitt DC. Thinking glutamatergically: changing concepts of schizophrenia based upon changing neurochemical models. ACTA ACUST UNITED AC 2010; 4:189-200. [PMID: 20880830 DOI: 10.3371/csrp.4.3.6] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Clinical concepts of mental illness have always been modulated by underlying theoretical considerations. For the past fifty years, schizophrenia has been considered primarily a disease of dopaminergic neurotransmission. Although this conceptualization has helped greatly in explaining the clinical effects of psychostimulants and guiding the clinical use of both typical and atypical antipsychotics, it has nevertheless shaded how we look at the disorder from both a pathophysiological and therapeutic perspective. For example, most explanatory research in schizophrenia has focused on dopamine-rich regions of the brain, with little investigation of regions of the brain that are relatively dopamine poor. Starting approximately twenty years ago, an alternative formulation of schizophrenia was proposed based upon actions of the "dissociative anesthetic" class of psychotomimetic agents, including phencyclidine (PCP), ketamine and various designer drugs. These compounds induce psychosis by blocking neurotransmission at N-methyl-D-aspartate (NMDA)-type glutamate receptors, suggesting an alternative model for pathogenesis in schizophrenia. As opposed to dopamine, the glutamatergic system is widely distributed throughout the brain and plays a prominent role in sensory processing as well as in subsequent stages of cortical analysis. Glutamatergic theories of schizophrenia, thus, predict that cortical dysfunction will be regionally diffuse but process specific. In addition, NMDA receptors incorporate binding sites for specific endogenous brain compounds, including the amino acids glycine and D-serine and the redox modulator glutathione, and interact closely with dopaminergic, cholinergic and γ-aminobutyric acid (GABA)-ergic systems. Glutamatergic theories, thus, open new potential approaches for treatment of schizophrenia, most of which are only now entering clinical evaluation.
Collapse
Affiliation(s)
- Joshua T Kantrowitz
- Schizophrenia Research Center, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | | |
Collapse
|
22
|
Kantrowitz JT, Javitt DC. N-methyl-d-aspartate (NMDA) receptor dysfunction or dysregulation: the final common pathway on the road to schizophrenia? Brain Res Bull 2010; 83:108-21. [PMID: 20417696 PMCID: PMC2941541 DOI: 10.1016/j.brainresbull.2010.04.006] [Citation(s) in RCA: 312] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 03/12/2010] [Accepted: 04/18/2010] [Indexed: 11/19/2022]
Abstract
Schizophrenia is a severe mental disorder associated with a characteristic constellation of symptoms and neurocognitive deficits. At present, etiological mechanisms remain relatively unknown, although multiple points of convergence have been identified over recent years. One of the primary convergence points is dysfunction of N-methyl-d-aspartate (NMDAR)-type glutamate receptors. Antagonists of NMDAR produce a clinical syndrome that closely resembles, and uniquely incorporates negative and cognitive symptoms of schizophrenia, along with the specific pattern of neurocognitive dysfunction seen in schizophrenia. Genetic polymorphisms involving NMDAR subunits, particularly the GRIN2B subunit have been described. In addition, polymorphisms have been described in modulatory systems involving the NMDAR, including the enzymes serine racemase and d-amino acid oxidase/G72 that regulate brain d-serine synthesis. Reductions in plasma and brain glycine, d-serine and glutathione levels have been described as well, providing potential mechanisms underlying NMDAR dysfunction. Unique characteristics of the NMDAR are described that may explain the characteristic pattern of symptoms and neurocognitive deficits observed in schizophrenia. Finally, the NMDAR complex represents a convergence point for potential new treatment approaches in schizophrenia aimed at correcting underlying abnormalities in synthesis and regulation of allosteric modulators, as well as more general potentiation of pre- and post-synaptic glutamatergic and NMDAR function.
Collapse
Affiliation(s)
- Joshua T Kantrowitz
- Schizophrenia Research Center, Nathan Kline Institute for Psychiatric Research/New York University School of Medicine, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States
| | | |
Collapse
|
23
|
Passchier J, Gentile G, Porter R, Herdon H, Salinas C, Jakobsen S, Audrain H, Laruelle M, Gunn RN. Identification and evaluation of [11C]GSK931145 as a novel ligand for imaging the type 1 glycine transporter with positron emission tomography. Synapse 2010; 64:542-9. [PMID: 20196141 DOI: 10.1002/syn.20760] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The type-1 glycine transporter (GlyT1) is an important target for the development of new medications for schizophrenia. A specific and selective positron emission tomography (PET) GlyT1 ligand would facilitate drug development studies to determine whether a drug reaches this target and help establish suitable doses for clinical trials. This article describes the evaluation of three candidate GlyT1 PET radioligands (GSK931145, GSK565710, and GSK991022) selected from a library of compounds based on favorable physicochemical and pharmacological properties. Each candidate was successfully labeled using [(11)C]methyl iodide or [(11)C]methyl triflate and administered to a pig pre- and postadministration with a pharmacological dose of a GlyT1 inhibitor to determine their suitability as PET ligands in the porcine brain in vivo. All three candidate ligands were analyzed quantitatively with compartment analyses employing a plasma input function. [(11)C]GSK931145 showed good brain penetration and a heterogeneous distribution in agreement with reported GlyT1 localization. Following pretreatment with GSK565710, uptake of [(11)C]GSK931145 was reduced to homogeneous levels. Although [(11)C]GSK565710 also showed good brain penetration and a heterogeneous distribution, the apparent level of specific binding was reduced compared to [(11)C]GSK931145. In contrast, [(11)C]GSK991022 showed a much lower brain penetration and resultant signal following pretreatment with GSK565710. Based on these findings [(11)C]GSK931145 was identified as the most promising ligand for imaging GlyT1 in the porcine brain, possessing good brain penetration, specific signal, and reversible kinetics. [(11)C]GSK931145 is now being progressed into higher species.
Collapse
Affiliation(s)
- J Passchier
- GlaxoSmithKline, Clinical Imaging Centre, Hammersmith Hospital, London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Nagy K, Marko B, Zsilla G, Matyus P, Pallagi K, Szabo G, Juranyi Z, Barkoczy J, Levay G, Harsing LG. Alterations in brain extracellular dopamine and glycine levels following combined administration of the glycine transporter type-1 inhibitor Org-24461 and risperidone. Neurochem Res 2010; 35:2096-106. [PMID: 20725779 DOI: 10.1007/s11064-010-0241-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2010] [Indexed: 11/26/2022]
Abstract
The most dominant hypotheses for the pathogenesis of schizophrenia have focused primarily upon hyperfunctional dopaminergic and hypofunctional glutamatergic neurotransmission in the central nervous system. The therapeutic efficacy of all atypical antipsychotics is explained in part by antagonism of the dopaminergic neurotransmission, mainly by blockade of D(2) dopamine receptors. N-methyl-D-aspartate (NMDA) receptor hypofunction in schizophrenia can be reversed by glycine transporter type-1 (GlyT-1) inhibitors, which regulate glycine concentrations at the vicinity of NMDA receptors. Combined drug administration with D(2) dopamine receptor blockade and activation of hypofunctional NMDA receptors may be needed for a more effective treatment of positive and negative symptoms and the accompanied cognitive deficit in schizophrenia. To investigate this type of combined drug administration, rats were treated with the atypical antipsychotic risperidone together with the GlyT-1 inhibitor Org-24461. Brain microdialysis was applied in the striatum of conscious rats and determinations of extracellular dopamine, DOPAC, HVA, glycine, glutamate, and serine concentrations were carried out using HPLC/electrochemistry. Risperidone increased extracellular concentrations of dopamine but failed to influence those of glycine or glutamate measured in microdialysis samples. Org-24461 injection reduced extracellular dopamine concentrations and elevated extracellular glycine levels but the concentrations of serine and glutamate were not changed. When risperidone and Org-24461 were added in combination, a decrease in extracellular dopamine concentrations was accompanied with sustained elevation of extracellular glycine levels. Interestingly, the extracellular concentrations of glutamate were also enhanced. Our data indicate that coadministration of an antipsychotic with a GlyT-1 inhibitor may normalize hypofunctional NMDA receptor-mediated glutamatergic neurotransmission with reduced dopaminergic side effects characteristic for antipsychotic medication.
Collapse
Affiliation(s)
- Katalin Nagy
- Division of Preclinical Research, EGIS Pharmaceuticals Plc, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Scheidweiler KB, Ladenheim B, Cadet JL, Huestis MA. Mice lacking multidrug resistance protein 1a show altered dopaminergic responses to methylenedioxymethamphetamine (MDMA) in striatum. Neurotox Res 2009; 18:200-9. [PMID: 19851718 DOI: 10.1007/s12640-009-9124-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 08/04/2009] [Accepted: 10/07/2009] [Indexed: 01/16/2023]
Abstract
Multidrug resistance protein 1a (MDR1a) potentiated methylenedioxymethamphetamine (MDMA)-induced decreases of dopamine (DA) and dopamine transport protein in mouse brain one week after MDMA administration. In the present study, we examined if mdr1a wild-type (mdr1a +/+) and knock-out (mdr1a -/-) mice differentially handle the acute effects of MDMA on the nigrostriatal DA system 0-24 h following a single drug injection. 3-way ANOVA revealed significant 2-way interactions of strain x time (F (5,152) = 32.4, P < 0.001) and strain x dose (F (3,152) = 25.8, P < 0.001) on 3,4-dihydroxyphenylacetic acid (DOPAC)/DA ratios in mdr1a +/+ and -/- mice. 0.3-3 h after 10 mg/kg MDMA, DOPAC/DA ratios were increased in mdr1a +/+ mice, but decreased 0.3-1 h after MDMA in mdr1a -/- mice. Twenty-four hours after 10 mg/kg MDMA, DOPAC/DA ratios were increased 600% in mdr1a +/+ mice compared to saline-treated control mice, while in mdr1a -/- mice DOPAC/DA ratios were unchanged. Striatal MDMA and its metabolite, methylenedioxyamphetamine, concentrations by gas chromatography-mass spectrometry were similar in both strains 0.3-4 h after MDMA, discounting the role of MDR1a-facilitated MDMA transport in observed inter-strain differences. Increased DOPAC/DA turnover in mdr1a +/+ mice following MDMA is consistent with the previous report that MDMA neurotoxicity is increased in mdr1a +/+ mice. Increased DA turnover via monoamine oxidase in mdr1a +/+ vs -/- mice might increase exposure to neurotoxic reactive oxygen species.
Collapse
Affiliation(s)
- Karl B Scheidweiler
- Chemistry and Drug Metabolism, Intramural Research Program, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard Suite 200, Room 05A-721, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
26
|
Kantrowitz J, Citrome L, Javitt D. GABA(B) receptors, schizophrenia and sleep dysfunction: a review of the relationship and its potential clinical and therapeutic implications. CNS Drugs 2009; 23:681-91. [PMID: 19594197 PMCID: PMC4988234 DOI: 10.2165/00023210-200923080-00005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Evidence for an intrinsic relationship between sleep, cognition and the symptomatic manifestations of schizophrenia is accumulating. This review presents evidence for the possible utility of GABA(B) receptor agonists for the treatment of subjective and objective sleep abnormalities related to schizophrenia. At the phenotypic level, sleep disturbance occurs in 16-30% of patients with schizophrenia and is related to reduced quality of life and poor coping skills. On the neurophysiological level, studies suggest that sleep deficits reflect a core component of schizophrenia. Specifically, slow-wave sleep deficits, which are inversely correlated with cognition scores, are seen. Moreover, sleep plays an increasingly well documented role in memory consolidation in schizophrenia. Correlations of slow-wave sleep deficits with impaired reaction time and declarative memory have also been reported. Thus, both behavioural insomnia and sleep architecture are critical therapeutic targets in patients with schizophrenia. However, long-term treatment with antipsychotics often results in residual sleep dysfunction and does not improve slow-wave sleep, and adjunctive GABA(A) receptor modulators, such as benzodiazepines and zolpidem, can impair sleep architecture and cognition in schizophrenia. GABA(B) receptor agonists have therapeutic potential in schizophrenia. These agents have minimal effect on rapid eye movement sleep while increasing slow-wave sleep. Preclinical associations with increased expression of genes related to slow-wave sleep production and circadian rhythm function have also been reported. GABA(B) receptor deficits result in a sustained hyperdopaminergic state and can be reversed by a GABA(B) receptor agonist. Genetic, postmortem and electrophysiological studies also associate GABA(B) receptors with schizophrenia. While studies thus far have not shown significant effects, prior focus on the use of GABA(B) receptor agonists has been on the positive symptoms of schizophrenia, with minimal investigation of GABA(B) receptor agonists such as baclofen or gamma-hydroxybutyric acid and their effects on sleep architecture, cognition and negative symptoms in patients with schizophrenia. Further study is needed.
Collapse
Affiliation(s)
- Joshua Kantrowitz
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Leslie Citrome
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA,Department of Psychiatry, New York University School of Medicine, New York, New York, USA
| | - Daniel Javitt
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA,Department of Psychiatry, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
27
|
Singer P, Yee BK, Feldon J, Iwasato T, Itohara S, Grampp T, Prenosil G, Benke D, Möhler H, Boison D. Altered mnemonic functions and resistance to N-METHYL-d-Aspartate receptor antagonism by forebrain conditional knockout of glycine transporter 1. Neuroscience 2009; 161:635-54. [PMID: 19332109 PMCID: PMC2692764 DOI: 10.1016/j.neuroscience.2009.03.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 03/17/2009] [Accepted: 03/22/2009] [Indexed: 01/15/2023]
Abstract
Converging evidence from pharmacological and molecular studies has led to the suggestion that inhibition of glycine transporter 1 (GlyT1) constitutes an effective means to boost N-methyl-d-aspartate receptor (NMDAR) activity by increasing the extra-cellular concentration of glycine in the vicinity of glutamatergic synapses. However, the precise extent and limitation of this approach to alter cognitive function, and therefore its potential as a treatment strategy against psychiatric conditions marked by cognitive impairments, remain to be fully examined. Here, we generated mutant mice lacking GlyT1 in the entire forebrain including neurons and glia. This conditional knockout system allows a more precise examination of GlyT1 downregulation in the brain on behavior and cognition. The mutation was highly effective in attenuating the motor-stimulating effect of acute NMDAR blockade by phencyclidine, although no appreciable elevation in NMDAR-mediated excitatory postsynaptic currents (EPSC) was observed in the hippocampus. Enhanced cognitive performance was observed in spatial working memory and object recognition memory while spatial reference memory and associative learning remained unaltered. These findings provide further credence for the potential cognitive enhancing effects of brain GlyT1 inhibition. At the same time, they indicated potential phenotypic differences when compared with other constitutive and conditional GlyT1 knockout lines, and highlighted the possibility of a functional divergence between the neuronal and glia subpopulations of GlyT1 in the regulation of learning and memory processes. The relevance of this distinction to the design of future GlyT1 blockers as therapeutic tools in the treatment of cognitive disorders remains to be further investigated.
Collapse
Affiliation(s)
- P Singer
- Laboratory of Behavioral Neurobiology, Federal Institute of Technology (ETH) Zurich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bickel S, Javitt DC. Neurophysiological and neurochemical animal models of schizophrenia: focus on glutamate. Behav Brain Res 2009; 204:352-62. [PMID: 19433116 DOI: 10.1016/j.bbr.2009.05.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 04/29/2009] [Accepted: 05/01/2009] [Indexed: 10/20/2022]
Abstract
Deficits in N-methyl-d-aspartate receptor (NMDAR) function play a critical role in the pathophysiology of schizophrenia. Animal models are needed to investigate possible mechanisms underlying NMDA dysfunction in schizophrenia as well as development of new therapeutic approaches. A major difficulty in developing animal models for schizophrenia is the identification of quantifiable measures that can be tested in a similar fashion in both humans and animals. The majority of animal models utilize analogous measures, wherein species-specific behaviors are used as presumed parallel manifestations of a common underlying construct. In vivo microdialysis and electrophysiology represent two methodologies in which homologous measures can instead be obtained in both animals and humans. In both techniques, well-validated, NMDA-sensitive measures are analyzed in rodents using probes implanted directly into cortex or subcortical structures. We discuss the currently available data from studies that used these methods in non-human primate and rodent glutamate models. In addition, we emphasize the possible relevance of the amphetamine-challenge studies to positive symptoms and of EEG measures to cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Stephan Bickel
- Schizophrenia Research Center, Nathan Kline Institute for Psychiatric Research/New York University School of Medicine, 140 Old Orangeburg Rd, Orangeburg, NY 10962, USA
| | | |
Collapse
|
29
|
Balla A, Nattini ME, Sershen H, Lajtha A, Dunlop DS, Javitt DC. GABAB/NMDA receptor interaction in the regulation of extracellular dopamine levels in rodent prefrontal cortex and striatum. Neuropharmacology 2009; 56:915-21. [PMID: 19371582 DOI: 10.1016/j.neuropharm.2009.01.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 12/16/2008] [Accepted: 01/28/2009] [Indexed: 02/02/2023]
Abstract
Deficits in N-methyl-D-aspartate receptor (NMDAR)-mediated neurotransmission may underlie dopaminergic hyperactivity in schizophrenia. Dysregulation of the GABAergic system has also been implicated. In this study we investigated a role for GABA(B) receptors as an intermediate step in the pathway leading from NMDAR stimulation to DA regulation. Since glycine (GLY) has been found to ameliorate treatment resistant negative symptoms in schizophrenia, we treated a group of rats with 16% GLY food for 2 weeks. DA levels in prefrontal cortex (PFC) and striatum (STR) were assessed by dual-probe microdialysis and HPLC-EC in freely moving rats. Infusion of the GABA(B) receptor agonists SKF97541 and baclofen into PFC and STR significantly reduced basal DA, an effect that was reversed by the antagonist, CGP52432. In PFC, GABA(B) agonists also reduced AMPH-induced DA release following treatment with either 1 or 5 mg/kg AMPH. Similar effects were seen following subchronic glycine treatment in the absence, but not presence of CGP52432 during 5 mg/kg AMPH treatment. In STR SKF97541 decreased only the 1 mg/kg AMPH-induced DA release. Subchronic GLY treatment in STR leads to a significant reduction in basal DA levels, but did not affect AMPH (5 mg/kg)-induced release. Our findings support a model in which NMDA/glycine-site agonists modulate DA release in part through presynaptic GABA(B) receptors on DA terminals, with both GABA(B) ligands and GLY significantly modulating AMPH-induced DA release. Both sites, therefore, may represent appropriate targets for drug development in schizophrenia and substance abuse disorders.
Collapse
Affiliation(s)
- Andrea Balla
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | | | | | | | | | | |
Collapse
|
30
|
Black MD, Varty GB, Arad M, Barak S, De Levie A, Boulay D, Pichat P, Griebel G, Weiner I. Procognitive and antipsychotic efficacy of glycine transport 1 inhibitors (GlyT1) in acute and neurodevelopmental models of schizophrenia: latent inhibition studies in the rat. Psychopharmacology (Berl) 2009; 202:385-96. [PMID: 18709358 DOI: 10.1007/s00213-008-1289-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 07/29/2008] [Indexed: 02/03/2023]
Abstract
RATIONALE SSR103800 and SSR504734 are novel glycine transport 1 (GlyT1) inhibitors with therapeutic potential for the treatment of schizophrenia. OBJECTIVE The present studies investigated the effects of GlyT1 inhibitors in acute pharmacological and neurodevelopmental models of schizophrenia using latent inhibition in the rat; these latent inhibition (LI) models are believed to be predictive for treatments of positive, negative, and cognitive aspects of schizophrenia. MATERIALS AND METHODS LI, the poorer conditioning to a previously irrelevant stimulus, was measured in a conditioned emotional response procedure in male rats. The effects of SSR103800 or SSR504734 (both at 1, 3, and 10 mg/kg, i.p.) were determined on amphetamine-induced disrupted LI, MK-801-induced abnormally persistent LI, and neurodevelopmentally induced abnormally persistent LI in adult animals that had been neonatally treated with a nitric oxide synthase inhibitor. RESULTS SSR103800 (1 and 3 mg/kg) and SSR504734 (1 and 10 mg/kg) potentiated LI under conditions where LI was not present in nontreated controls and SSR103800 (1 mg/kg) reversed amphetamine-induced disrupted LI while not affecting LI on its own. Additionally, SSR103800 (1 and 3 mg/kg) and SSR504734 (3 and 10 mg/kg) reversed abnormally persistent LI induced by MK-801. In the neurodevelopmental model, SSR504734 (3 and 10 mg/kg) reverted the LI back to control (normal) levels. CONCLUSIONS These preclinical data, from acute and neurodevelopmental models, suggest that GlyT1 inhibition may exhibit activity in the positive, negative, and cognitive symptom domains of schizophrenia.
Collapse
Affiliation(s)
- Mark D Black
- CNS Department, Sanofi-Aventis, 1041 Route 202/206, Bridgewater, NJ 08807, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
O'Neill BV, Croft RJ, Nathan PJ. The loudness dependence of the auditory evoked potential (LDAEP) as an in vivo biomarker of central serotonergic function in humans: rationale, evaluation and review of findings. Hum Psychopharmacol 2008; 23:355-70. [PMID: 18421800 DOI: 10.1002/hup.940] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES The loudness dependence of the auditory evoked potential (LDAEP) has been proposed as a valid means of non-invasively assessing in vivo central serotonin (5-hydroxytryptamine, 5-HT) function in humans. The specificity and sensitivity of the LDAEP to changes in 5-HT neurotransmission have recently been explored directly in a number of pharmacological and genetic studies. Subsequently, this review was undertaken in an attempt to critically evaluate the potential role of the LDAEP as a marker of the central 5-HT function. DESIGN Findings from clinical, experimental animal and human studies examining the relationship between the LDAEP and the 5-HT system as well as other neurochemical systems including dopaminergic, glutamatergic and the cholinergic systems were reviewed. RESULTS The majority of evidence for an association between the LDAEP and 5-HT has come from animal studies. Indirect studies in clinical disorders of presumed serotonergic dysfunction have been circumstantial and inconsistent with more recent investigations utilising direct genetic association studies also providing conflicting reports. Pharmacological studies in humans provide overwhelming evidence that the LDAEP is insensitive to acute changes in 5-HT function, with additional evidence outlining sensitivity to other neurotransmitter systems including the glutamatergic system. CONCLUSIONS The available evidence suggests that the LDAEP lacks sensitivity and specificity to acute changes in serotonergic neurotransmission. Overall the findings do not provide strong support for its utility as a marker of central 5-HT function. However the LDAEP shows more promise as a potential predictor of antidepressant treatment response and this predictive ability may provide the basis for future research involving the LDAEP.
Collapse
Affiliation(s)
- Barry V O'Neill
- Biological Psychiatry Research Unit, Brain Sciences Institute, Swinburne University of Technology, Melbourne, Australia.
| | | | | |
Collapse
|
32
|
Acute high-dose glycine attenuates mismatch negativity (MMN) in healthy human controls. Psychopharmacology (Berl) 2008; 196:451-60. [PMID: 17952411 DOI: 10.1007/s00213-007-0976-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 10/03/2007] [Indexed: 10/22/2022]
Abstract
RATIONALE Schizophrenia is commonly associated with impairments in pre-attentive change detection as represented by reduced mismatch negativity (MMN). The neurochemical basis of MMN has been linked to N-methyl-D: -aspartate (NMDA) receptor function. Glycine augments NMDA receptor function via stimulation of the glycine modulatory site of the NMDA receptor and has been shown to effectively reduce negative symptoms in schizophrenia. However, no study has investigated the possible effects of high-dose glycine on MMN. Further, the physiological consequences of administering high-dose glycine in subjects with normal NMDA receptor function are unknown. OBJECTIVES The aim of the present project was to investigate the acute effects of a single large dose of glycine on the human MMN in healthy subjects. MATERIALS AND METHODS Sixteen healthy male subjects participated in a double blind, placebo-controlled, crossover design in which each subject was tested under two acute treatment conditions separated by a 1-week washout period; placebo and 0.8 g/kg glycine. The subjects were exposed to a duration-MMN paradigm with 50-ms standard tones (91%) and 100-ms deviant tones (9%). RESULTS The results showed that glycine significantly attenuated duration MMN amplitude at frontal electrodes. There was no effect of glycine on MMN latencies or on amplitudes or latencies of N1, N2 and P3a. CONCLUSIONS These findings suggest that an acute high dosage of glycine attenuates MMN in healthy controls, raising the possibility that optimal effects of glycine and other glycine agonists may depend on the integrity of the NMDA receptor system.
Collapse
|
33
|
Sershen H, Balla A, Aspromonte JM, Xie S, Cooper TB, Javitt DC. Characterization of interactions between phencyclidine and amphetamine in rodent prefrontal cortex and striatum: Implications in NMDA/glycine-site-mediated dopaminergic dysregulation and dopamine transporter function. Neurochem Int 2008; 52:119-29. [PMID: 17716783 DOI: 10.1016/j.neuint.2007.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 07/12/2007] [Accepted: 07/13/2007] [Indexed: 11/25/2022]
Abstract
N-Methyl-D-aspartate (NMDA) antagonists induced behavioral and neurochemical changes in rodents that serve as animal models of schizophrenia. Chronic phencyclidine (PCP, 15 mg/(kg day) for 3 weeks via Alzet osmotic pump) administration enhances the amphetamine (AMPH)-induced dopamine (DA) efflux in prefrontal cortex (PFC), similar to that observed in schizophrenia. NMDA/glycine-site agonists, such as glycine (GLY), administered via dietary supplementation, reverse the enhanced effect. The present study investigated mechanisms of glycine-induced reversal of PCP-induced stimulation of AMPH-induced DA release, using simultaneous measurement of DA and AMPH in brain microdialysate, as well as peripheral and tissue AMPH levels. PCP treatment, by itself, increased peripheral and central AMPH levels, presumably via interaction with hepatic enzymes (e.g. cytochrome P450 CYP2C11). GLY (16% diet) had no effect on peripheral AMPH levels in the presence of PCP. Nevertheless, GLY significantly reduced extracellular/tissue AMPH ratios in both PFC and striatum (STR), especially following PCP administration, suggesting a feedback mediated effect on the dopamine transporter. GLY also inhibited acute AMPH (5 mg/kg)-induced DA release in PFC, but not STR. These findings suggest that GLY may modulate DA release in brain by producing feedback regulation of dopamine transporter function, possibly via potentiation of NMDA-stimulated GABA release and presynaptic GABAB receptor activation. The present studies also demonstrate pharmacokinetic interaction between AMPH and PCP, which may be of both clinical and research relevance.
Collapse
Affiliation(s)
- Henry Sershen
- Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, United States
| | | | | | | | | | | |
Collapse
|
34
|
O'Neill BV, Croft RJ, Leung S, Oliver C, Phan KL, Nathan PJ. High-dose glycine inhibits the loudness dependence of the auditory evoked potential (LDAEP) in healthy humans. Psychopharmacology (Berl) 2007; 195:85-93. [PMID: 17646968 DOI: 10.1007/s00213-007-0870-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2007] [Accepted: 06/21/2007] [Indexed: 10/23/2022]
Abstract
RATIONALE The loudness dependence of the auditory evoked Potential (LDAEP) has been suggested to be a putative marker of central serotonin function, with reported abnormalities in clinical disorders presumed to reflect serotonin dysfunction. Despite considerable research, very little is known about the LDAEP's sensitivity to other neurotransmitter systems. OBJECTIVES Given the role of N-methyl-D-aspartate (NMDA) receptors in modulating pyramidal cell activity in cortico-cortico and thalamo-cortical loops, we examined the effect of targeting the glycine modulatory site of the NMDA receptor with high-dose glycine on the LDAEP in healthy subjects. MATERIALS AND METHODS The study was a double-blind, placebo-controlled repeated-measures design in which 14 healthy participants were tested under two acute treatment conditions, placebo and oral glycine (0.8 g/kg). Changes in the amplitude of the N1/P2 at varying intensities (60, 70, 80, 90, 100 dB) were examined at C(Z). RESULTS Compared to placebo, high-dose glycine induced a weaker LDAEP (a pronounced decrease in the slope of the N1/P2 with increasing tone loudness; p < 0.02). CONCLUSION While the exact mechanism responsible for the effects of glycine on the LDAEP are not known, the findings suggest an inhibitory effect in the cortex, possibly via activation of NMDA receptors on GABA interneurons or inhibitory glycine receptors. The findings add to the growing literature exhibiting modulation of the LDAEP by multiple neurochemical systems in addition to the serotonergic system.
Collapse
Affiliation(s)
- Barry V O'Neill
- Biological Psychiatry Research Unit, Brain Sciences Institute, Swinburne University of Technology, Melbourne, Australia.
| | | | | | | | | | | |
Collapse
|
35
|
Javitt DC. Glutamate and schizophrenia: phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 78:69-108. [PMID: 17349858 DOI: 10.1016/s0074-7742(06)78003-5] [Citation(s) in RCA: 405] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Schizophrenia is a serious mental disorder that affects up to 1% of the population worldwide. As of yet, neurochemical mechanisms underlying schizophrenia remain unknown. To date, the most widely considered neurochemical hypothesis of schizophrenia is the dopamine hypothesis, which postulates that symptoms of schizophrenia may result from excess dopaminergic neurotransmission particularly in striatal brain regions, along with dopaminergic deficits in prefrontal brain regions. Alternative neurochemical models of schizophrenia, however, have been proposed involving glutamatergic mechanisms in general and N-methyl-D-aspartate (NMDA) receptors in particular. A potential role for glutamatergic mechanisms in schizophrenia was first proposed approximately 15 years ago based on the observation that the psychotomimetic agents phencyclidine (PCP) and ketamine induce psychotic symptoms and neurocognitive disturbances similar to those of schizophrenia by blocking neurotransmission at NMDA-type glutamate receptors. Since that time, significant additional evidence has accumulated supporting a role for NMDA hypofunction in the pathophysiology of schizophrenia. Clinical challenge studies with PCP and ketamine have confirmed the close resemblance between NMDA antagonist-induced symptoms and neurocognitive deficits and those observed in schizophrenia, and suggest that NMDA dysfunction may lead to secondary dopaminergic dysregulation in striatal and prefrontal brain regions. As compared to dopaminergic agents, NMDA antagonists induce negative and cognitive symptoms of schizophrenia, as well as positive symptoms. Treatment studies with NMDA modulators, such as glycine, d-serine, and glycine transport inhibitors (GTIs), have yielded encouraging findings, although results remain controversial. Finally, genetic linkage and in vivo neurochemical studies in schizophrenia highlight potential etiological mechanisms giving rise to glutamatergic/NMDA dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Daniel C Javitt
- Program in Cognitive Neuroscience and Schizophrenia, Nathan Kline Institute for Psychiatric, Research, New York University School of Medicine, Orangeburg, New York 10962, USA
| |
Collapse
|
36
|
Hallmayer JF. The glycine site of NMDA receptors--a target for treatment of schizophrenia. Curr Psychiatry Rep 2006; 8:171-3. [PMID: 19817065 DOI: 10.1007/s11920-006-0019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Bennett S, Gronier B. Modulation of striatal dopamine release in vitro by agonists of the glycineB site of NMDA receptors; interaction with antipsychotics. Eur J Pharmacol 2005; 527:52-9. [PMID: 16307739 DOI: 10.1016/j.ejphar.2005.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 09/23/2005] [Accepted: 10/05/2005] [Indexed: 11/19/2022]
Abstract
The N-methyl-D-aspartate (NMDA) glutamate receptor possesses an obligatory co-agonist site for D-serine and glycine, named the glycineB site. Several clinical trials indicate that glycineB agonists can improve negative and cognitive symptoms of schizophrenia when co-administered with antipsychotics. In the present study we have investigated the effects of glycineB agonists on the endogenous release of dopamine from preparations of rat striatal tissue prisms in static conditions. The glycineB agonists glycine (1 mM) and D-serine (10 microM), but not D-cycloserine (10 microM), substantially increased the spontaneous release of dopamine, but significantly reduced the release of dopamine evoked by NMDA. The effect of glycine on spontaneous release was abolished by the non-competitive NMDA antagonists 5R,10S-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine (MK-801, 10 microM) and ifenprodil (5 microM), but was only partially suppressed by the competitive antagonist 4-(3-phosphonopropyl)-piperazine-2-carboxylic acid (CPP, 10 microM). The selective inhibitor of the glial glycine transporter GlyT1 N[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine (NFPS, 10 microM) significantly increased the release of dopamine in an MK-801-sensitive manner. Interestingly, haloperidol (1 microM), but not clozapine (10 microM), prevented the effects of glycine. This study shows that glycineB modulators can control dopamine release by interacting with a distinctive NMDA receptor subtype with which some typical antipsychotics can interfere.
Collapse
Affiliation(s)
- Stephen Bennett
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, United Kingdom
| | | |
Collapse
|