1
|
Ciampa CJ, Morin TM, Murphy A, Joie RL, Landau SM, Berry AS. DAT1 and BDNF polymorphisms interact to predict Aβ and tau pathology. Neurobiol Aging 2024; 133:115-124. [PMID: 37948982 PMCID: PMC10872994 DOI: 10.1016/j.neurobiolaging.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
Previous work has associated polymorphisms in the dopamine transporter gene (rs6347 in DAT1/SLC6A3) and brain derived neurotrophic factor gene (Val66Met in BDNF) with atrophy and memory decline. However, it is unclear whether these polymorphisms relate to atrophy and cognition through associations with Alzheimer's disease pathology. We tested for effects of DAT1 and BDNF polymorphisms on cross-sectional and longitudinal β-amyloid (Aβ) and tau pathology (measured with positron emission tomography (PET)), hippocampal volume, and cognition. We analyzed a sample of cognitively normal older adults (cross-sectional n = 321) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). DAT1 and BDNF interacted to predict Aβ-PET, tau-PET, and hippocampal atrophy. Carriers of both "non-boptimal" DAT1 C and BDNF Met alleles demonstrated greater pathology and atrophy. Our findings provide novel links between dopamine and neurotrophic factor genes and AD pathology, consistent with previous research implicating these variants in greater risk for developing AD.
Collapse
Affiliation(s)
- Claire J Ciampa
- Department of Biology, Brandeis University, Waltham, MA 02453, USA.
| | - Thomas M Morin
- Department of Psychology, Brandeis University, Waltham, MA 02453, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02155, USA
| | - Alice Murphy
- Hellen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Susan M Landau
- Hellen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anne S Berry
- Department of Psychology, Brandeis University, Waltham, MA 02453, USA; Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
2
|
Castellini G, Merola GP, Baccaredda Boy O, Pecoraro V, Bozza B, Cassioli E, Rossi E, Bessi V, Sorbi S, Nacmias B, Ricca V. Emotional dysregulation, alexithymia and neuroticism: a systematic review on the genetic basis of a subset of psychological traits. Psychiatr Genet 2023; 33:79-101. [PMID: 36729042 PMCID: PMC10158611 DOI: 10.1097/ypg.0000000000000335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/24/2022] [Indexed: 02/03/2023]
Abstract
Neuroticism, alexithymia and emotion dysregulation are key traits and known risk factors for several psychiatric conditions. In this systematic review, the aim is to evaluate the genetic contribution to these psychological phenotypes. A systematic review of articles found in PubMed was conducted. Search terms included 'genetic', 'GWAS', 'neuroticism', 'alexithymia' and 'emotion dysregulation'. Risk of bias was assessed utilizing the STREGA checklist. Two hundred two papers were selected from existing literature based on the inclusion and exclusion criteria. Among these, 27 were genome-wide studies and 175 were genetic association studies. Single gene association studies focused on selected groups of genes, mostly involved in neurotransmission, with conflicting results. GWAS studies on neuroticism, on the other hand, found several relevant and replicated intergenic and intronic loci affecting the expression and regulation of crucial and well-known genes (such as DRD2 and CRHR1). Mutations in genes coding for trascriptional factors were also found to be associated with neuroticism (DCC, XKR6, TCF4, RBFOX1), as well as a noncoding regulatory RNA (LINC00461). On the other hand, little GWAS data are available on alexythima and emotional dysregulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Valentina Bessi
- Neurology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - Sandro Sorbi
- Neurology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - Benedetta Nacmias
- Neurology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | | |
Collapse
|
3
|
Bonacina G, Carollo A, Esposito G. The Genetic Side of the Mood: A Scientometric Review of the Genetic Basis of Mood Disorders. Genes (Basel) 2023; 14:genes14020352. [PMID: 36833279 PMCID: PMC9956267 DOI: 10.3390/genes14020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Mood disorders are highly heritable psychiatric disorders. Over the years, many genetic polymorphisms have been identified to pose a higher risk for the development of mood disorders. To overview the literature on the genetics of mood disorders, a scientometric analysis was performed on a sample of 5342 documents downloaded from Scopus. The most active countries and the most impactful documents in the field were identified. Furthermore, a total of 13 main thematic clusters emerged in the literature. From the qualitative inspection of clusters, it emerged that the research interest moved from a monogenic to a polygenic risk framework. Researchers have moved from the study of single genes in the early 1990s to conducting genome-wide association studies around 2015. In this way, genetic overlaps between mood disorders and other psychiatric conditions emerged too. Furthermore, around the 2010s, the interaction between genes and environmental factors emerged as pivotal in understanding the risk for mood disorders. The inspection of thematic clusters provides a valuable insight into the past and recent trends of research in the genetics of mood disorders and sheds light onto future lines of research.
Collapse
|
4
|
Festucci F, Annunzi E, Pepe M, Curcio G, D'Addario C, Adriani W. Dopamine-transporter heterozygous rats carrying maternal wild-type allele are more vulnerable to the development of compulsive behavior. Synapse 2022; 76:31-44. [PMID: 35772468 DOI: 10.1002/syn.22244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 06/07/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022]
Abstract
Compulsivity is defined as an unstoppable tendency towards repetitive and habitual actions, which are reiterated despite negative consequences. Polydipsia is induced preclinically by intermittent reward leading rodents to ingest large amounts of fluids. We focused on the role of dopamine transporter (DAT) and inheritance factors in compulsive behavior. Our sample consisted of DAT heterozygous (HET) rats with different genetic inheritance (MAT-HET, born from WT-dams x KO-fathers; MIX-HET, born from HET-dams x KO-fathers). As controls, we used both wild-type (WT) rats and their socially-isolated (WTi) siblings. We ran the schedule-induced polydipsia (SIP) protocol, to induce compulsive behavior; then the Y-maze and marble-burying tests, to verify its actual development. Only MAT-HET (who inherited the functional DAT allele from the WT mother) is vulnerable to developing compulsive behavior. MAT-HET rats drank increasingly more water during SIP and showed significant perseverance in the Y-maze test and exhibited compulsive actions in the marble-burying test. Interestingly, compulsive behaviors of MAT-HET rats correlate with expression ex-vivo of different genes in different areas. Regarding the prefrontal cortex (PFC), D2R correlates with Y-maze "perseverance" in addition to BDNF; considering the amygdala (AMY), both D3R and OXTR correlate with SIP "licks". Indeed, compulsivity may be linked to D2R and BDNF in PFC, while extreme anxiety in MAT-HET rats may be associated with D3R and OXTR in the amygdala. These results confirm some similarities between MAT-HET and DAT-KO subjects and link the epigenetic context of the DAT gene to the development of compulsive behavior. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fabiana Festucci
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Eugenia Annunzi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d' Annunzio" of Chieti-Pescara, Italy
| | - Martina Pepe
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Curcio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Walter Adriani
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
5
|
Behavioral phenotyping of a rat model of the BDNF Val66Met polymorphism reveals selective impairment of fear memory. Transl Psychiatry 2022; 12:93. [PMID: 35256586 PMCID: PMC8901920 DOI: 10.1038/s41398-022-01858-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 01/02/2023] Open
Abstract
The common brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is associated with reduced activity-dependent BDNF release and increased risk for anxiety disorders and PTSD. Here we behaviorally phenotyped a novel Val66Met rat model with an equivalent valine to methionine substitution in the rat Bdnf gene (Val68Met). In a three-day fear conditioning protocol of fear learning and extinction, adult rats with the Met/Met genotype demonstrated impaired fear memory compared to Val/Met rats and Val/Val controls, with no genotype differences in fear learning or extinction. This deficit in fear memory occurred irrespective of the sex of the animals and was not seen in adolescence (4 weeks of age). There were no changes in open-field locomotor activity or anxiety measured in the elevated plus maze (EPM) nor in other types of memory measured using the novel-object recognition test or Y-maze. BDNF exon VI expression in the dorsal hippocampus was higher and BDNF protein level in the ventral hippocampus was lower in female Val/Met rats than female Val/Val rats, with no other genotype differences, including in total BDNF, BDNF long, or BDNF IV mRNA. These data suggest a specific role for the BDNF Met/Met genotype in fear memory in rats. Further studies are required to investigate gene-environment interactions in this novel animal model.
Collapse
|
6
|
Association Analysis of Polymorphic Variants of the BDNF Gene in Athletes. Genes (Basel) 2021; 12:genes12091340. [PMID: 34573321 PMCID: PMC8470977 DOI: 10.3390/genes12091340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022] Open
Abstract
As BDNF is one of the group of neurotrophins highly influencing the processes happening in the brain, such as the processes of learning and personality creation, we decided to look closer at its genetic variations in association with the personality of a group of athletes and their controls. The study group consisted of 305 volunteers: martial arts athletes (n = 153; mean age = 24.06) and healthy non-athletes as controls (n = 152; mean age = 22.23). Thirty-eight percent of the martial arts group achieved the championship level. Both the martial arts and control subjects were examined using the NEO Five-Factor Personality Inventory (NEO-FFI) and the State-Trait Anxiety Inventory (STAI) scales. The results of the NEO-FFI and STAI inventories were given as sten scores. The conversion of the raw score to the sten scale was performed according to Polish norms for adults. Genomic DNA was extracted from blood leukocytes and then genotyped using a PCR method for the following polymorphisms: BDNF rs10767664 and BDNF rs2030323. We observed statistical significance for both polymorphisms when comparing martial arts athletes with the control group in relation to the conscientiousness and extraversion scales. However, since few extant articles consider this association, our results still require further analysis, probably by considering a larger group.
Collapse
|
7
|
Kim HJ, Bang M, Lee KS, Choi TK, Park CI, Lee SH. Effects of BDNF Val66Met Polymorphism on White Matter Microalterations of the Corpus Callosum in Patients with Panic Disorder in Korean Populations. Psychiatry Investig 2020; 17:967-975. [PMID: 33017888 PMCID: PMC7596279 DOI: 10.30773/pi.2020.0186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/05/2020] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE The brain-derived neurotrophic factor (BDNF) Val66Met (rs6265) polymorphism is suggested to be associated with the pathophysiology of anxiety disorders, including panic disorder (PD). Although the fronto-limbic white matter (WM) microstructures have been investigated, the corpus callosum (CC) has not yet been studied regarding its relationship with BDNF Val66Met polymorphism in PD. METHODS Ninety-five PD patients were enrolled. The Neuroticism, the Anxiety Sensitivity Inventory-Revised, Panic Disorder Severity Scale, and Beck Depression Inventory-II (BDI-II) were administered. Voxel-wise statistical analysis of diffusion tensor imaging data was performed within the CC regions using Tract-Based Spatial Statistics. RESULTS The GG genotype in BDNF Val66Met polymorphism has significantly higher fractional anisotropy (FA) values of the body and splenium of the CC, neuroticism and depressive symptom scale scores than the non-GG genotype in PD. The FA values of the body of the CC in the two groups were significantly different independent of age, sex, neuroticism, and BDI-II. CONCLUSION Our findings demonstrate that the BDNF Val66Met polymorphism is associated with WM connectivity of the body and splenium of the CC, and may be related to neuroticism and depressive symptoms in PD. Additionally, the CC connectivity according to BDNF polymorphism may play a role in the pathophysiology of PD.
Collapse
Affiliation(s)
- Hyun-Ju Kim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Kang Soo Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Tai Kiu Choi
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Chun Il Park
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea.,Department of Clinical Pharmacology and Therapeutics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| |
Collapse
|
8
|
WORLEY GORDON, ERICKSON STEPHENW, GUSTAFSON KATHRYNE, NIKOLOVA YULIYAS, ASHLEY-KOCH ALLISONE, BELSKY DANIELW, GOLDSTEIN RICKIF, LEVY JOSHUAL, MCDONALD SCOTTA, PAGE GRIERP, COTTEN CMICHAEL. Genetic variation in dopamine neurotransmission and motor development of infants born extremely-low-birthweight. Dev Med Child Neurol 2020; 62:750-757. [PMID: 31691959 PMCID: PMC7200269 DOI: 10.1111/dmcn.14383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2019] [Indexed: 12/31/2022]
Abstract
AIM To determine if genetic variation associated with decreased dopamine neurotransmission predicts a decrease in motor development in a convenience cohort study of infants born extremely-low-birthweight (ELBW). METHOD Four hundred and ninety-eight infants born ELBW had genome-wide genotyping and a neurodevelopmental evaluation at 18 to 22 months of age, corrected for preterm birth. A polygenic risk score (PRS) was created to combine into one predictor variable the hypothesized influences on motor development of alleles at seven independent single nucleotide polymorphisms previously associated with relative decreases in both dopamine neurotransmission and motor learning, by summing the number of alleles present in each infant (range=0-14). The motor development outcome was the Psychomotor Development Index (PDI) of the Bayley Scales of Infant Development, Second Edition. The linear regression models were adjusted for seven clinical and four genetic ancestry covariates. The mean PRS of infants with cerebral palsy (CP) was compared to those without CP. RESULTS PRS was inversely related to PDI (p=0.011). Each 1-point increase in PRS resulted in an average decrease in PDI of 1.37 points. Patients with CP did not have a greater mean PRS than those without (p=0.67), both with and without adjustment for covariates. INTERPRETATION Genetic variation that favors a decrease in dopamine neurotransmission predisposes to a decrease in motor development in infants born ELBW, but not to the diagnosis of CP. WHAT THIS PAPER ADDS Genetic variation in dopamine neurotransmission was associated with a decrease in motor development in infants born at an extremely-low-birthweight. It does not predispose to the diagnosis of cerebral palsy.
Collapse
Affiliation(s)
- GORDON WORLEY
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University Medical Center, Durham, N.C. U.SA
| | - STEPHEN W ERICKSON
- Social, Statistical and Environmental Sciences, RTI International, Research Triangle Park, N.C., U.S.A
| | - KATHRYN E GUSTAFSON
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, Durham N.C., U.S.A
| | - YULIYA S NIKOLOVA
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - ALLISON E ASHLEY-KOCH
- Duke Molecular Physiology Institute, Department of Medicine, Duke University Medical Center, Durham N.C., U.S.A
| | - DANIEL W BELSKY
- Department of Population Health Sciences, Duke University, Durham N.C., U.S.A
| | - RICKI F GOLDSTEIN
- Division of Neonatology, Department of Pediatrics, Kentucky Children’s Hospital, University of Kentucky Chandler Medical Center, Lexington, K.Y., U.S.A
| | - JOSHUA L LEVY
- Social, Statistical and Environmental Sciences, RTI International, Research Triangle Park, N.C., U.S.A
| | - SCOTT A MCDONALD
- Social, Statistical and Environmental Sciences, RTI International, Research Triangle Park, N.C., U.S.A
| | - GRIER P PAGE
- Social, Statistical and Environmental Sciences, RTI International, Research Triangle Park, N.C., U.S.A
| | - C MICHAEL COTTEN
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, Durham N.C., U.S.A
| | | |
Collapse
|
9
|
Hogarth SJ, Djouma E, van den Buuse M. 7,8-Dihydroxyflavone Enhances Cue-Conditioned Alcohol Reinstatement in Rats. Brain Sci 2020; 10:brainsci10050270. [PMID: 32369970 PMCID: PMC7287665 DOI: 10.3390/brainsci10050270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/21/2022] Open
Abstract
Alcohol use disorder (AUD) is a detrimental disease that develops through chronic ethanol exposure. Reduced brain-derived neurotrophic factor (BDNF) expression has been associated with AUD and alcohol addiction, however the effects of activation of BDNF signalling in the brain on voluntary alcohol intake reinstatement and relapse are unknown. We therefore trained male and female Sprague Dawley rats in operant chambers to self-administer a 10% ethanol solution. Following baseline acquisition and progressive ratio (PR) analysis, rats were split into drug and vehicle groups during alcohol lever extinction. The animals received two weeks of daily IP injection of either the BDNF receptor, TrkB, agonist, 7,8-dihydroxyflavone (7,8-DHF), or vehicle. During acquisition of alcohol self-administration, males had significantly higher absolute numbers of alcohol-paired lever presses and a higher PR breakpoint. However, after adjusting for body weight, the amount of ethanol was not different between the sexes and the PR breakpoint was higher in females than males. Following extinction, alcohol-primed reinstatement in male rats was not altered by pretreatment with 7,8-DHF when adjusted for body weight. In contrast, in female rats, the weight-adjusted potential amount of ethanol, but not absolute numbers of active lever presses, was significantly enhanced by 7,8-DHF treatment during reinstatement. Analysis of spontaneous locomotor activity in automated photocell cages suggested that the effect of 7,8-DHF was not associated with hyperactivity. These results suggest that stimulation of the TrkB receptor may contribute to reward craving and relapse in AUD, particularly in females.
Collapse
Affiliation(s)
- Samuel J. Hogarth
- School of Psychology and Public Health, Department of Psychology and Counselling, La Trobe University, Melbourne 3086, VIC, Australia;
| | - Elvan Djouma
- School of Life Sciences, Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne 3086, VIC, Australia;
| | - Maarten van den Buuse
- School of Psychology and Public Health, Department of Psychology and Counselling, La Trobe University, Melbourne 3086, VIC, Australia;
- Department of Pharmacology, University of Melbourne, Melbourne 3010, VIC, Australia
- The College of Public Health, Medicinal and Veterinary Sciences, James Cook University Townsville, Townsville 4811, QLD, Australia
- Correspondence: ; Tel.: +61-3-9479-5257
| |
Collapse
|
10
|
Sanna A, Follesa P, Puligheddu M, Cannas A, Serra M, Pisu MG, Dagostino S, Solla P, Tacconi P, Marrosu F. Cerebellar continuous theta burst stimulation reduces levodopa-induced dyskinesias and decreases serum BDNF levels. Neurosci Lett 2020; 716:134653. [DOI: 10.1016/j.neulet.2019.134653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/15/2019] [Accepted: 11/23/2019] [Indexed: 02/06/2023]
|
11
|
Kim JM, Stewart R, Kim SY, Kim JW, Kang HJ, Lee JY, Kim SW, Shin IS, Kim MC, Hong YJ, Ahn Y, Jeong MH, Yoon JS. Interaction between BDNF val66met polymorphism and personality on long-term cardiac outcomes in patients with acute coronary syndrome. PLoS One 2019; 14:e0226802. [PMID: 31887219 PMCID: PMC6936775 DOI: 10.1371/journal.pone.0226802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Background The prognostic role of BDNF val66met polymorphism on long-term cardiac outcomes in acute coronary syndrome (ACS) has been unclear. Environmental factors may modify the association, but these have not been investigated to date. This study aimed to investigate the potential interactive effects of BDNF val66met polymorphism and personality traits, one of the main environmental prognostic factors of ACS, on major adverse cardiac events (MACEs) in patients with ACS. Methods A total of 611 patients with recent ACS were recruited at a university hospital in Korea. Baseline evaluations from 2007 to 2012 assessed BDNF val66met polymorphism and personality using the Big Five Inventory, which yielded two personality clusters (resilient and vulnerable) and five dimensions (extraversion, agreeableness, conscientiousness, neuroticism, and openness). Over a 5~12 year follow-up after the index ACS, times to MACE were investigated using Cox regression models after adjustment for a range of covariates. Results The BDNF val66met polymorphism modified the associations between vulnerable personality type and worse long-term cardiac outcomes in ACS patients with significant interaction terms, in that the associations were statistically significant in the presence met allele. Similar findings were observed for the individual personality dimensions of agreeableness and neuroticism. Conclusions Gene (BDNF val66met polymorphism) x environment (personality traits) interactions on long-term cardiac outcomes were found in ACS.
Collapse
Affiliation(s)
- Jae-Min Kim
- Departments of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
- * E-mail:
| | - Robert Stewart
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom, and South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Seon-Young Kim
- Departments of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Ju-Wan Kim
- Departments of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Hee-Ju Kang
- Departments of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Ju-Yeon Lee
- Departments of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Sung-Wan Kim
- Departments of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Il-Seon Shin
- Departments of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Min Chul Kim
- Department of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| | - Young Joon Hong
- Department of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| | - Youngkeun Ahn
- Department of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| | - Myung Ho Jeong
- Department of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| | - Jin-Sang Yoon
- Departments of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
12
|
Rodríguez-Ramos Á, Moriana JA, García-Torres F, Ruiz-Rubio M. Emotional stability is associated with the MAOA promoter uVNTR polymorphism in women. Brain Behav 2019; 9:e01376. [PMID: 31448578 PMCID: PMC6749489 DOI: 10.1002/brb3.1376] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Neuroticism is associated with low emotional stability, and it is characterized by a tendency to perceive ordinary situations as threatening and difficult to manage. This personality trait has been associated with psychological distress and predicts some mental disorders. Previous studies have shown that women tend to be more neurotic than men and, in general, females have also a higher incidence of anxious and depressive disorders. METHODS We analyzed in a sample of 99 female university students (from 18 to 26 years old) if emotional stability, measured using the Big Five Questionnaire, was linked to polymorphic variants in candidate genes related to dopaminergic and serotonergic systems, and other personality variables. RESULTS We found that emotional stability and its subdimensions are genetically associated with MAOA-uVNTR polymorphism. Thus, women carriers of the 3-repeat allele (lower MAO-A expression) showed higher levels of emotional stability. No associations were found with other polymorphisms analyzed, including COMT Val158 Met, 5-HTTLPR, and DAT 3'UTR VNTR. Furthermore, our results showed a negative correlation between emotional stability and depression, state anxiety, and trait anxiety. In fact, MAOA-uVNTR and trait anxiety also explained emotional stability and its subdimensions. We also found that other genetic characteristic, phenylthiocarbamide tasting, explained impulsivity, specifically tasters controlled impulses better than nontasters. CONCLUSION Our results indicate that neuroticism might be regulated by MAOA and could be a common factor between different phenotypes, such as aggressive behaviors or personality disorders, observed in women with higher activity genotype who had been exposed to negative environments during childhood. This study could lead to a better understanding of the basis of emotional stability and could lead to future projects for this purpose.
Collapse
Affiliation(s)
- Ángel Rodríguez-Ramos
- Department of Genetics, University of Córdoba, Córdoba, Spain.,Department of Psychology, University of Córdoba, Córdoba, Spain.,Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.,University Hospital Reina Sofía of Córdoba, Córdoba, Spain
| | - Juan Antonio Moriana
- Department of Psychology, University of Córdoba, Córdoba, Spain.,Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.,University Hospital Reina Sofía of Córdoba, Córdoba, Spain
| | - Francisco García-Torres
- Department of Psychology, University of Córdoba, Córdoba, Spain.,Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.,University Hospital Reina Sofía of Córdoba, Córdoba, Spain
| | - Manuel Ruiz-Rubio
- Department of Genetics, University of Córdoba, Córdoba, Spain.,Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.,University Hospital Reina Sofía of Córdoba, Córdoba, Spain
| |
Collapse
|
13
|
Altshuler DB, Wang L, Zhao L, Miklja Z, Linzey J, Brezzell A, Kakaizada S, Krishna S, Orringer DA, Briceño EM, Gabel N, Hervey-Jumper SL. BDNF, COMT, and DRD2 polymorphisms and ability to return to work in adult patients with low- and high-grade glioma. Neurooncol Pract 2019; 6:375-385. [PMID: 31555452 PMCID: PMC6753359 DOI: 10.1093/nop/npy059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Cognitive and language dysfunction is common among patients with glioma and has a significant impact on survival and health-related quality of life (HRQOL). Little is known about the factors that make individual patients more or less susceptible to the cognitive sequelae of the disease. A better understanding of the individual and population characteristics related to cognitive function in glioma patients is required to appropriately stratify patients, prognosticate, and develop more efficacious treatment regimens. There is evidence that allelic variation among genes involved in neurotransmission and synaptic plasticity are related to neurocognitive performance in states of health and neurologic disease. METHODS We studied the association of single-nucleotide polymorphism variations in brain-derived neurotrophic factor (BDNF, rs6265), dopamine receptor 2 (DRD2, rs1076560), and catechol-O-methyltransferase (COMT, rs4680) with neurocognitive function and ability to return to work in glioma patients at diagnosis and at 3 months. We developed a functional score based on the number of high-performance alleles that correlates with the capacity for patients to return to work. RESULTS Patients with higher-performing alleles have better scores on neurocognitive testing with the Repeatable Battery for the Assessment of Neuropsychological Status and Stroop test, but not the Trail Making Test. CONCLUSIONS A better understanding of the genetic contributors to neurocognitive performance in glioma patients and capacity for functional recovery is necessary to develop improved treatment strategies based on patient-specific factors.
Collapse
Affiliation(s)
| | - Lin Wang
- Department of Neurosurgery, University of Michigan, Ann Arbor, USA
| | - Lili Zhao
- Department of Biostatistics, University of Michigan, Ann Arbor, USA
| | - Zachary Miklja
- Department of Neurosurgery, University of Michigan, Ann Arbor, USA
| | - Joey Linzey
- Department of Neurosurgery, University of Michigan, Ann Arbor, USA
| | - Amanda Brezzell
- Department of Neurosurgery, University of Michigan, Ann Arbor, USA
| | - Sofia Kakaizada
- Department of Neurosurgery, University of California San Francisco, USA
| | - Saritha Krishna
- Department of Neurosurgery, University of California San Francisco, USA
| | - Daniel A Orringer
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, USA
| | - Emily M Briceño
- Department of Neurosurgery, Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, USA
| | - Nicolette Gabel
- Department of Neurosurgery, Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, USA
| | - Shawn L Hervey-Jumper
- Department of Neurosurgery, University of Michigan, Ann Arbor, USA
- Department of Neurosurgery, University of California San Francisco, USA
| |
Collapse
|
14
|
Blum K, Gondré-Lewis MC, Modestino EJ, Lott L, Baron D, Siwicki D, McLaughlin T, Howeedy A, Krengel MH, Oscar-Berman M, Thanos PK, Elman I, Hauser M, Fried L, Bowirrat A, Badgaiyan RD. Understanding the Scientific Basis of Post-traumatic Stress Disorder (PTSD): Precision Behavioral Management Overrides Stigmatization. Mol Neurobiol 2019; 56:7836-7850. [PMID: 31124077 DOI: 10.1007/s12035-019-1600-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 04/02/2019] [Indexed: 12/20/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a severe polygenic disorder triggered by environmental factors. Many polymorphic genes, particularly the genetic determinants of hypodopaminergia (low dopamine function), associate with a predisposition to PTSD as well as substance use disorder. Support from the National Institutes of Health for neuroimaging research and molecular, genetic applied technologies has improved understanding of brain reward circuitry functions that have inspired the development of new innovative approaches to their early diagnosis and treatment of some PTSD symptomatology and addiction. This review presents psychosocial and genetic evidence that vulnerability or resilience to PTSD can theoretically be impacted by dopamine regulation. From a neuroscience perspective, dopamine is widely accepted as a major neurotransmitter. Questions about how to modulate dopamine clinically in order to treat and prevent PTSD and other types of reward deficiency disorders remain. Identification of genetic variations associated with the relevant genotype-phenotype relationships can be characterized using the Genetic Addiction Risk Score (GARS®) and psychosocial tools. Development of an advanced genetic panel is under study and will be based on a new array of genes linked to PTSD. However, for now, the recommendation is that enlistees for military duty be given the opportunity to voluntarily pre-test for risk of PTSD with GARS, before exposure to environmental triggers or upon return from deployment as part of PTSD management. Dopamine homeostasis may be achieved via customization of neuronutrient supplementation "Precision Behavioral Management" (PBM™) based on GARS test values and other pro-dopamine regulation interventions like exercise, mindfulness, biosensor tracking, and meditation.
Collapse
Affiliation(s)
- Kenneth Blum
- Graduate School of Biomedical Sciences, Western University Health Sciences, Pomona, CA, USA. .,Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary. .,Department of Psychiatry, Boonshoft School of Medicine, Wright University, Dayton, OH, USA. .,Department of Precision Behavioral Management, Geneus Health, San Antonio, TX, USA. .,Division of Neurogenetic Research & Addiction Therapy, The Florida House Experience, Deerfield Beach, FL, USA. .,Division of Addiction Services, Dominion Diagnostics, North Kingston, RI, USA. .,Division of Neuroscience & Addiction Research, Pathway Healthcare, LLC., Burmingham, AL, USA.
| | - M C Gondré-Lewis
- Department of Anatomy, Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, Washington, DC, USA
| | - E J Modestino
- Department of Psychology, Curry College, Milton, MA, USA
| | - L Lott
- Department of Precision Behavioral Management, Geneus Health, San Antonio, TX, USA
| | - D Baron
- Graduate School of Biomedical Sciences, Western University Health Sciences, Pomona, CA, USA
| | - D Siwicki
- Department of Precision Behavioral Management, Geneus Health, San Antonio, TX, USA.,Division of Addiction Services, Dominion Diagnostics, North Kingston, RI, USA
| | - T McLaughlin
- Center for Psychiatric Medicine, Lawrence, MA, USA
| | - A Howeedy
- Division of Neurogenetic Research & Addiction Therapy, The Florida House Experience, Deerfield Beach, FL, USA
| | - M H Krengel
- Department of Neurology, Boston University School of Medicine and VA Boston Healthcare System, Boston, MA, USA
| | - M Oscar-Berman
- Department of Neurology, Boston University School of Medicine and VA Boston Healthcare System, Boston, MA, USA
| | - P K Thanos
- Behavioral Neuropharmacology & Neuroimaging Laboratory on Addiction, Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY, USA
| | - I Elman
- Department of Psychiatry, Cooper University School of Medicine, Camden, NJ, USA
| | - M Hauser
- Division of Addiction Services, Dominion Diagnostics, North Kingston, RI, USA
| | - L Fried
- Department of Precision Behavioral Management, Geneus Health, San Antonio, TX, USA.,Transformations Treatment Center, Delray Beach, FL, USA
| | - A Bowirrat
- Division of Anatomy, Biochemistry and Genetics Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - R D Badgaiyan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
15
|
González-Castro TB, Pool-García S, Tovilla-Zárate CA, Juárez-Rojop IE, López-Narváez ML, Frésan A, Genis-Mendoza AD, Pérez-Hernández N, Nicolini H. Association between BDNF Val66Met polymorphism and generalized anxiety disorder and clinical characteristics in a Mexican population: A case-control study. Medicine (Baltimore) 2019; 98:e14838. [PMID: 30882674 PMCID: PMC6426483 DOI: 10.1097/md.0000000000014838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/11/2018] [Accepted: 02/19/2019] [Indexed: 11/25/2022] Open
Abstract
The aim of the present case-control study was to explore the association between BDNF Val66Met (rs6265) polymorphism and generalized anxiety disorder in Mexican individuals, and whether this polymorphism plays a role in the symptomatology of anxiety.A total of 212 subjects were included in the study. Around 75 patients with generalized anxiety disorder were diagnosed by psychiatrists based on the DSM-IV instrument and 137 unrelated subjects psychiatrically healthy were used as comparison group. The subclinical symptomatology in patients was assessed with the State-Trait Anxiety Inventory. BDNF rs6265 genotypes were analyzed using the polymerase chain reaction end-point method.The association between BDNF Val66Met with the risk for generalized anxiety disorder was evaluated using 4 inheritance models. The present study showed that carrying the Met allele confers increased risk for the presence of generalized anxiety disorder (χ = 4.7, P = .03; OR (95%) 1.96 (1.05-3.56)) when patients with generalized anxiety disorder were compared with the comparison group.Our results provide evidence of an association between the Val66Met polymorphism of the BDNF gene and generalized anxiety disorder in a Mexican population. However, no association was observed between this polymorphism and the symptomatology of anxiety.
Collapse
Affiliation(s)
- Thelma Beatriz González-Castro
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, México
| | | | - Carlos Alfonso Tovilla-Zárate
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Comalcalco, Tabasco, México
| | - Isela Esther Juárez-Rojop
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - María Lilia López-Narváez
- Hospital General de Yajalón “Dr. Manuel Velazco Suarez”, Secretaría de Salud, Yajalón, Chiapas, México
| | - Ana Frésan
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| | - Alma Delia Genis-Mendoza
- Servicios de Atención Psiquiátrica (SAP), Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México
| | - Nonanzit Pérez-Hernández
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Humberto Nicolini
- Servicios de Atención Psiquiátrica (SAP), Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México
| |
Collapse
|
16
|
BDNF and NRG1 polymorphisms and temperament in selective serotonin reuptake inhibitor-treated patients with major depression. Acta Neuropsychiatr 2018; 30:168-174. [PMID: 29310728 DOI: 10.1017/neu.2017.37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE We investigated the separate effects of and possible interactions between the functional polymorphisms of brain-derived neurotrophic factor (BDNF) rs11030101, BDNF rs61888800, and neuregulin-1 (NRG1) rs3924999 and NRG1 rs6994992 on change of temperament scores in a clinical sample of subjects with major depression (MDD), who received selective serotonin reuptake inhibitor treatment for a period of 6 weeks. METHODS The study population consisted of 98 Finnish individuals with MDD. They were assessed by the 107-item Temperament and Character Inventory temperament questionnaire (version IX) and the Montgomery-Åsberg Depression Rating Scale (MADRS). In general linear univariate models (GLM) for novelty seeking (NS) or reward dependence (RD) change age, gender, MADRS score change and BDNF and NRG1 genotypes were used as explaining explanatory variables. RESULTS Mean comparisons between corresponding temperament dimensions and genotypes showed significant differences between NS change and BDNF rs61888800 T-carrying status (mean difference: GG 0.30, GT/TT 2.47, p=0.022, t-test) and between RD change and NRG1 rs3924999 A-carrying status (mean difference: GG 1.21, GA/AA -0.33, p=0.003). In GLM models for NS change the significant predictors comprised BDNF rs61888800 T-carrying status, age and MADRS score change (model 1), and additionally NRG1 rs6994992 T-carrying status (model 2). For RD change the predictors included NRG1 rs3924999 A-carrying status, age and MADRS score change (model 1) and additionally gender (model 2). CONCLUSION According to the current results both BDNF and NRG1 are associated with temperament traits during depression. These results warrant further studies regarding the impact of this association on depression recovery.
Collapse
|
17
|
Notzon S, Vennewald N, Gajewska A, Klahn AL, Diemer J, Winter B, Fohrbeck I, Arolt V, Pauli P, Domschke K, Zwanzger P. Is prepulse modification altered by continuous theta burst stimulation? DAT1 genotype and motor threshold interact on prepulse modification following brain stimulation. Eur Arch Psychiatry Clin Neurosci 2017; 267:767-779. [PMID: 28337537 DOI: 10.1007/s00406-017-0786-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 03/13/2017] [Indexed: 12/14/2022]
Abstract
Previous studies suggest an inhibitory top-down control of the amygdala by the prefrontal cortex (PFC). Both brain regions play a role in the modulation of prepulse modification (PPM) of the acoustic startle response by a pre-stimulus. Repetitive transcranial magnetic stimulation (rTMS) can modulate the activity of the PFC and might thus affect PPM. This study tested the effect of inhibitory rTMS on PPM accounting for a genetic variant of the dopamine transporter gene (DAT1). Healthy participants (N = 102) were stimulated with continuous theta burst stimulation (cTBS, an intense form of inhibitory rTMS) or sham treatment over the right PFC. Afterwards, during continuous presentation of a background white noise a louder noise burst was presented either alone (control startle) or preceded by a prepulse. Participants were genotyped for a DAT1 variable number tandem repeat (VNTR) polymorphism. Two succeeding sessions of cTBS over the right PFC (2 × 600 stimuli with a time lag of 15 min) attenuated averaged prepulse inhibition (PPI) in participants with a high resting motor threshold. An attenuation of PPI induced by prepulses with great distances to the pulse (480, 2000 ms) was observed following active cTBS in participants that were homozygous carriers of the 10-repeat-allele of the DAT1 genotype and had a high resting motor threshold. Our results confirm the importance of the prefrontal cortex for the modulation of PPM. The effects were observed in participants with a high resting motor threshold only, probably because they received a higher dose of cTBS. The effects in homozygous carriers of the DAT1 10-repeat allele confirm the relevance of dopamine for PPM. Conducting an exploratory study we decided against the use of a correction for multiple testing.
Collapse
Affiliation(s)
- S Notzon
- Department of Psychiatry and Psychotherapy, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A9, 48149, Münster, Germany.
| | - N Vennewald
- School of Health, Münster University of Applied Sciences, Leonardo Campus 8, 48149, Münster, Germany
| | - A Gajewska
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - A L Klahn
- Department of Psychiatry and Psychotherapy, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A9, 48149, Münster, Germany
| | - J Diemer
- kbo-Inn-Salzach-Hospital, Gabersee 7, 83512, Wasserburg am Inn, Germany
| | - B Winter
- Catholic University of Applied Sciences North Rhine-Westphalia, Münster, Piusallee 89, 48147, Münster, Germany
| | - I Fohrbeck
- Department of Psychiatry and Psychotherapy, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A9, 48149, Münster, Germany
| | - V Arolt
- Department of Psychiatry and Psychotherapy, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A9, 48149, Münster, Germany
| | - P Pauli
- Department of Biological Psychology, Clinical Psychology and Psychotherapy, University of Würzburg, Marcusstraße 9-11, 97070, Würzburg, Germany
| | - K Domschke
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
- Department of Psychiatry and Psychotherapy, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany
| | - P Zwanzger
- Department of Psychiatry and Psychotherapy, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A9, 48149, Münster, Germany
- kbo-Inn-Salzach-Hospital, Gabersee 7, 83512, Wasserburg am Inn, Germany
- Department of Psychiatry und Psychotherapy, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
18
|
Unpredictable chronic mild stress differentially impairs social and contextual discrimination learning in two inbred mouse strains. PLoS One 2017; 12:e0188537. [PMID: 29166674 PMCID: PMC5699833 DOI: 10.1371/journal.pone.0188537] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/08/2017] [Indexed: 12/28/2022] Open
Abstract
Alterations in the social and cognitive domain are considered important indicators for increased disability in many stress-related disorders. Similar impairments have been observed in rodents chronically exposed to stress, mimicking potential endophenotypes of stress-related psychopathologies such as major depression disorder (MDD), anxiety, conduct disorder, and posttraumatic stress disorder (PTSD). Data from numerous studies suggest that deficient plasticity mechanisms in hippocampus (HC) and prefrontal cortex (PFC) might underlie these social and cognitive deficits. Specifically, stress-induced deficiencies in neural plasticity have been associated with a hypodopaminergic state and reduced neural plasticity persistence. Here we assessed the effects of unpredictable chronic mild stress (UCMS) on exploratory, social and cognitive behavior of females of two inbred mouse strains (C57BL/6J and DBA/2J) that differ in their dopaminergic profile. Exposure to chronic stress resulted in impaired circadian rhythmicity, sociability and social cognition in both inbred strains, but differentially affected activity patterns and contextual discrimination performance. These stress-induced behavioral impairments were accompanied by reduced expression levels of brain derived neurotrophic factor (BDNF) in the prefrontal cortex. The strain-specific cognitive impairment was coexistent with enhanced plasma corticosterone levels and reduced expression of genes related to dopamine signaling in hippocampus. These results underline the importance of assessing different strains with multiple test batteries to elucidate the neural and genetic basis of social and cognitive impairments related to chronic stress.
Collapse
|
19
|
Coskunoglu A, Orenay-Boyacioglu S, Deveci A, Bayam M, Onur E, Onan A, Cam FS. Evidence of associations between brain-derived neurotrophic factor (BDNF) serum levels and gene polymorphisms with tinnitus. Noise Health 2017; 19:140-148. [PMID: 28615544 PMCID: PMC5501024 DOI: 10.4103/nah.nah_74_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) gene polymorphisms are associated with abnormalities in regulation of BDNF secretion. Studies also linked BDNF polymorphisms with changes in brainstem auditory-evoked response test results. Furthermore, BDNF levels are reduced in tinnitus, psychiatric disorders, depression, dysthymic disorder that may be associated with stress, conversion disorder, and suicide attempts due to crises of life. For this purpose, we investigated whether there is any role of BDNF changes in the pathophysiology of tinnitus. MATERIALS AND METHODS In this study, we examined the possible effects of BDNF variants in individuals diagnosed with tinnitus for more than 3 months. Fifty-two tinnitus subjects between the ages of 18 and 55, and 42 years healthy control subjects in the same age group, who were free of any otorhinolaryngology and systemic disease, were selected for examination. The intensity of tinnitus and depression was measured using the tinnitus handicap inventory, and the differential diagnosis of psychiatric diagnoses made using the Structured Clinical Interview for Fourth Edition of Mental Disorders. BDNF gene polymorphism was analyzed in the genomic deoxyribonucleic acid (DNA) samples extracted from the venous blood, and the serum levels of BDNF were measured. One-way analysis of variance and Chi-squared tests were applied. RESULTS Serum BDNF level was found lower in the tinnitus patients than controls, and it appeared that there is no correlation between BDNF gene polymorphism and tinnitus. CONCLUSIONS This study suggests neurotrophic factors such as BDNF may have a role in tinnitus etiology. Future studies with larger sample size may be required to further confirm our results.
Collapse
Affiliation(s)
- Aysun Coskunoglu
- Department of Medical Genetics, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Seda Orenay-Boyacioglu
- Department of Medical Genetics, Faculty of Medicine, Adnan Menderes University, Efeler, Aydin, Turkey
| | - Artuner Deveci
- Department of Psychiatry, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Mustafa Bayam
- Department of Otorhinolaryngology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Ece Onur
- Department of Medical Biochemistry, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Arzu Onan
- Department of Medical Biochemistry, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Fethi S. Cam
- Department of Medical Genetics, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| |
Collapse
|
20
|
A Novel Interaction between Tryptophan Hydroxylase 2 (TPH2) Gene Polymorphism (rs4570625) and BDNF Val66Met Predicts a High-Risk Emotional Phenotype in Healthy Subjects. PLoS One 2016; 11:e0162585. [PMID: 27695066 PMCID: PMC5047464 DOI: 10.1371/journal.pone.0162585] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/25/2016] [Indexed: 12/31/2022] Open
Abstract
Poor inhibitory processing of negative emotional content is central to many psychiatric disorders, including depression and anxiety. Moreover, increasing evidence suggests that core aspects of emotion-inhibitory processing are largely inherited and as such may represent a key intermediate or risk-related phenotype for common affective diseases (e.g., unipolar depressive, anxiety disorders). The current study employed a candidate-gene approach in order to most effectively examine this complex behavioral phenotype. We examined the novel interaction between BDNF (Val66Met) and TPH2 (rs4570625) polymorphisms and their influence on behavioral inhibition of negative emotion in two independent investigations of healthy adults. BDNF Met carriers consistently report greater symptoms of affective disease and display corresponding behavioral rigidity, while TPH2 T carriers display poor inhibitory processing. These genotypes are traditionally perceived as ‘risk’ genotypes when compared to their respective major Val and G homozygous genotypes, but evidence is mixed. Recent studies in humans and mutant mouse models suggest biological epistasis between BDNF and genes involved in serotonin regulation. Moreover, polymorphisms in the TPH2 gene may have greater influence on serotonergic function than other more commonly studied polymorphisms (e.g., 5-HTTLPR). We observed consistent evidence across two different emotion-inhibition paradigms, one with high internal validity (Study 1, n = 119) and one with high ecological validity (Study 2, n = 115) that the combination of Val/Val and G/G genotypes was clearly associated with impaired inhibition of negative emotional content. This was followed by individuals carrying the BDNF—Met allele (including Met/Val and Met/Met) when combined with the TPH2—T allele (including T/G and T/T combinations). The consistency of these results across tasks and studies suggests that these two groups may be particularly vulnerable to the most common psychiatric disorders and should be targets for future clinical investigation.
Collapse
|
21
|
Growth factors as clinical biomarkers of prognosis and diagnosis in psychiatric disorders. Cytokine Growth Factor Rev 2016; 32:85-96. [PMID: 27618303 DOI: 10.1016/j.cytogfr.2016.08.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/19/2016] [Accepted: 08/25/2016] [Indexed: 12/21/2022]
Abstract
The psychiatric disorders are one of the most disabling illnesses in the world and represent a major problem for public health. These disorders are characterized by neuroanatomical or biochemical changes and it has been suggested that such changes may be due to inadequate neurodevelopment. Diverse alterations in the gene expression and/or serum level of specific growth factors have been implicated in the etiology, symptoms and progression of some psychiatric disorders. Herein, we summarize the latest information regarding the role of brain-derived neurotrophic factor (BDNF), epidermal growth factor (EGF), fibroblast growth factor (FGF), Insulin-like growth factor (IGF-1), neuroregulin-1 (NGR-1), erythropoietin (EPO), vascular growth factor (VEGF), transforming growth factor beta (TGF-β), nerve growth factor (NGF) and others cytokines in the pathogenesis of schizophrenia, depression, bipolar and anxiety disorders. Focusing on the role of these growth factors and their relationship with the main impairments (cognitive, emotional and social) of these pathologies. Some of these signaling molecules may be suitable biological markers for diagnosis and prognosis in cognitive, mood and social disabilities across different mental disorders.
Collapse
|
22
|
Enge S, Fleischhauer M, Gärtner A, Reif A, Lesch KP, Kliegel M, Strobel A. Brain-Derived Neurotrophic Factor (Val66Met) and Serotonin Transporter (5-HTTLPR) Polymorphisms Modulate Plasticity in Inhibitory Control Performance Over Time but Independent of Inhibitory Control Training. Front Hum Neurosci 2016; 10:370. [PMID: 27524961 PMCID: PMC4966207 DOI: 10.3389/fnhum.2016.00370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 07/11/2016] [Indexed: 01/17/2023] Open
Abstract
Several studies reported training-induced improvements in executive function tasks and also observed transfer to untrained tasks. However, the results are mixed and there is a large interindividual variability within and across studies. Given that training-related performance changes would require modification, growth or differentiation at the cellular and synaptic level in the brain, research on critical moderators of brain plasticity potentially explaining such changes is needed. In the present study, a pre-post-follow-up design (N = 122) and a 3-weeks training of two response inhibition tasks (Go/NoGo and Stop-Signal) was employed and genetic variation (Val66Met) in the brain-derived neurotrophic factor (BDNF) promoting differentiation and activity-dependent synaptic plasticity was examined. Because Serotonin (5-HT) signaling and the interplay of BDNF and 5-HT are known to critically mediate brain plasticity, genetic variation in the 5-HTT gene-linked polymorphic region (5-HTTLPR) was also addressed. The overall results show that the kind of training (i.e., adaptive vs. non-adaptive) did not evoke genotype-dependent differences. However, in the Go/NoGo task, better inhibition performance (lower commission errors) were observed for BDNF Val/Val genotype carriers compared to Met-allele ones supporting similar findings from other cognitive tasks. Additionally, a gene-gene interaction suggests a more impulsive response pattern (faster responses accompanied by higher commission error rates) in homozygous l-allele carriers relative to those with the s-allele of 5-HTTLPR. This, however, is true only in the presence of the Met-allele of BDNF, while the Val/Val genotype seems to compensate for such non-adaptive responding. Intriguingly, similar results were obtained for the Stop-Signal task. Here, differences emerged at post-testing, while no differences were observed at T1. In sum, although no genotype-dependent differences between the relevant training groups emerged suggesting no changes in the trained inhibition function, the observed genotype-dependent performance changes from pre- to post measurement may reflect rapid learning or memory effects linked to BDNF and 5-HTTLPR. In line with ample evidence on BDNF and BDNF-5-HT system interactions to induce (rapid) plasticity especially in hippocampal regions and in response to environmental demands, the findings may reflect genotype-dependent differences in the acquisition and consolidation of task-relevant information, thereby facilitating a more adaptive responding to task-specific requirements.
Collapse
Affiliation(s)
- Sören Enge
- Department of Psychology, Technische Universität DresdenDresden, Germany
| | - Monika Fleischhauer
- Department of Psychology, Technische Universität DresdenDresden, Germany
- Department of Psychology, PFH Private Hochschule GöttingenGöttingen, Germany
| | - Anne Gärtner
- Department of Psychology, Technische Universität DresdenDresden, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital FrankfurtFrankfurt am Main, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics, and Psychotherapy, University of WuerzburgWuerzburg, Germany
| | - Matthias Kliegel
- Department of Psychology, University of GenevaGeneva, Switzerland
| | - Alexander Strobel
- Department of Psychology, Technische Universität DresdenDresden, Germany
| |
Collapse
|
23
|
The Met allele of BDNF Val66Met polymorphism is associated with increased BDNF levels in generalized anxiety disorder. Psychiatr Genet 2016; 25:201-7. [PMID: 26110341 DOI: 10.1097/ypg.0000000000000097] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Generalized anxiety disorder (GAD) is a common psychiatric disorder characterized by long-term worry, tension, nervousness, fidgeting, and symptoms of autonomic system hyperactivity. The neurobiology of this disorder is still unclear, although it has been shown consistently that the environment and the genetic profile could increase its risk. We examined whether a polymorphism in the brain-derived neurotrophic factor (BDNF) gene, which plays a role in neuroplasticity and memory, could increase the vulnerability to this disorder. PARTICIPANTS AND METHODS In our study, 816 participants from a population-based study were genotyped by qPCR for the BDNF functional variant rs6265 (Val66Met) and the BDNF serum levels were measured by ELISA. RESULTS Our results showed a significant association between the Met allele and risk for GAD (P=0.014), but no differences were observed in the serum levels of BDNF according to diagnosis (P=0.531) or genotype distribution (P=0.197). However, after stratification according to the GAD diagnosis, the Met allele was associated significantly with an increase in serum BDNF levels compared with the Val/Val genotype in GAD participants (F=3.93; P=0.048). The logistic regression analysis confirmed the independent association of Met allele as a risk factor for development of GAD after adjusting for confounder variables (β=0.528; 95% confidence interval: 0.320-0.871; P=0.012). CONCLUSION These results suggest that BDNF could be involved in the neurobiology of GAD and might represent a useful marker associated with the disease.
Collapse
|
24
|
Jung YH, Lee US, Jang JH, Kang DH. Effects of Mind-Body Training on Personality and Behavioral Activation and Inhibition System According to BDNF Val66Met Polymorphism. Psychiatry Investig 2016; 13:333-40. [PMID: 27247601 PMCID: PMC4878969 DOI: 10.4306/pi.2016.13.3.333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE It has been known that mind-body training (MBT) can affect personality and behavior system as well as emotional well-being, but different effects of MBT on them has not been reported according to BDNF genetic polymorphism. METHODS Healthy subjects consisted of 64 subjects and the MBT group who practiced meditation regularly consisted of 72 practitioners. Participants completed neuroticism-extraversion-openness (NEO) Five-Factor Inventory and Behavioral Activation System/Behavioral Inhibition System (BAS/BIS) scales. All subjects were genotyped for the BDNF Val66Met polymorphism. RESULTS In the same genotypes of the BDNF Val/Val+Val/Met group, MBT group showed the increased Extraversion (p=0.033) and the increased Openness to Experience (p=0.004) compared to the control group. Also, in the same Met/Met carriers, MBT group exhibited the increase of Extraversion (p=0.008), the reduction of Neuroticism (p=0.002), and the increase of Openness to Experience (p=0.008) compared to the control group. In the same genotypes of the BDNF Val/Val+Val/Met group, MBT group showed the decreased BAS-Reward Responsiveness (p=0.016) and the decrease of BIS (p=0.004) compared to the control group. In the BDNF Met/Met group, MBT group increased BAS-Fun Seeking (p=0.045) and decreased BIS (p=0.013) compared to the control group. CONCLUSION MBT would differently contribute to NEO personality and BAS/BIS according to BDNF genetic polymorphism, compensating for different vulnerable traits based on each genotype.
Collapse
Affiliation(s)
- Ye-Ha Jung
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ul Soon Lee
- Global Cyber University, Cheonan, Republic of Korea
| | - Joon Hwan Jang
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Do-Hyung Kang
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
25
|
Armbruster D, Müller-Alcazar A, Strobel A, Lesch KP, Kirschbaum C, Brocke B. BDNF val(66)met genotype shows distinct associations with the acoustic startle reflex and the cortisol stress response in young adults and children. Psychoneuroendocrinology 2016; 66:39-46. [PMID: 26773399 DOI: 10.1016/j.psyneuen.2015.12.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 12/28/2022]
Abstract
Brain Derived Neurotrophic Factor (BDNF) is a crucial regulator of neuronal development, organization and function and the val(66)met polymorphism in the BDNF gene has been associated with several (endo-) phenotypes of cognitive and affective processing. The BDNF met allele is considered a risk factor for anxiety and fear related phenotypes although findings are not entirely consistent. Here, the impact of BDNF val(66)met on two parameters of anxiety and stress was investigated in a series of studies. Acoustic startle responses were assessed in three adult samples (N1=117, N2=104, N3=116) as well as a children sample (N4=123). Cortisol increase in response to the Trier Social Stress Test (TSST) was measured in one adult sample (N3) and in the children sample (N4). The BDNF met allele was associated with enhanced cortisol responses in young adults (p=0.039) and children (p=0.013). On the contrary, BDNF met allele carriers showed a reduced acoustic startle response which reached significance in most samples (N1: p=0.004; N2: p=0.045; N3: n.s., N4: p=0.043) pointing to differential effects of BDNF val(66)met on distinct endophenotypes of anxiety and stress-related responses. However, small effect sizes suggest substantial additional genetic as well as environmental contributors.
Collapse
Affiliation(s)
- Diana Armbruster
- Institute of Psychology II, Technische Universität Dresden, Dresden, Germany.
| | - Anett Müller-Alcazar
- MSH Medical School Hamburg, University of Applied Science and Medical University, Hamburg, Germany
| | - Alexander Strobel
- Institute of Psychology II, Technische Universität Dresden, Dresden, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Laboratory of Translational Neurobiology, Department of Psychiatry, Psychosomatics, and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Clemens Kirschbaum
- Institute of Psychology I, Technische Universität Dresden, Dresden, Germany
| | - Burkhard Brocke
- Institute of Psychology II, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
26
|
Interactive effects of age and multi-gene profile on motor learning and sensorimotor adaptation. Neuropsychologia 2016; 84:222-34. [PMID: 26926580 DOI: 10.1016/j.neuropsychologia.2016.02.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 02/03/2016] [Accepted: 02/17/2016] [Indexed: 01/29/2023]
Abstract
The interactive association of age and dopaminergic polymorphisms on cognitive function has been studied extensively. However, there is limited research on whether age interacts with the association between genetic polymorphisms and motor learning. We examined a group of young and older adults' performance in three motor tasks: explicit sequence learning, visuomotor adaptation, and grooved pegboard. We assessed whether individuals' motor learning and performance were associated with their age and genotypes. We selected three genetic polymorphisms: Catechol-O-Methyl Transferase (COMT val158met) and Dopamine D2 Receptor (DRD2 G>T), which are involved with dopaminergic regulation, and Brain Derived Neurotrophic Factor (BDNF val66met) that modulates neuroplasticity and has been shown to interact with dopaminergic genes. Although the underlying mechanisms of the function of these three genotypes are different, the high performance alleles of each have been linked to better learning and performance. We created a composite polygene score based on the Number of High Performance Alleles (NHPA) that each individual carried. We found several associations between genetic profile, motor performance, and sensorimotor adaptation. More importantly, we found that this association varies with age, task type, and engagement of implicit versus explicit learning processes.
Collapse
|
27
|
Asthana MK, Brunhuber B, Mühlberger A, Reif A, Schneider S, Herrmann MJ. Preventing the Return of Fear Using Reconsolidation Update Mechanisms Depends on the Met-Allele of the Brain Derived Neurotrophic Factor Val66Met Polymorphism. Int J Neuropsychopharmacol 2015; 19:pyv137. [PMID: 26721948 PMCID: PMC4926796 DOI: 10.1093/ijnp/pyv137] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/17/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Memory reconsolidation is the direct effect of memory reactivation followed by stabilization of newly synthesized proteins. It has been well proven that neural encoding of both newly and reactivated memories requires synaptic plasticity. Brain derived neurotrophic factor (BDNF) has been extensively investigated regarding its role in the formation of synaptic plasticity and in the alteration of fear memories. However, its role in fear reconsolidation is still unclear; hence, the current study has been designed to investigate the role of the BDNF val66met polymorphism (rs6265) in fear memory reconsolidation in humans. METHODS An auditory fear-conditioning paradigm was conducted, which comprised of three stages (acquisition, reactivation, and spontaneous recovery). One day after fear acquisition, the experimental group underwent reactivation of fear memory followed by the extinction training (reminder group), whereas the control group (non-reminder group) underwent only extinction training. On day 3, both groups were subjected to spontaneous recovery of earlier learned fearful memories. The treat-elicited defensive response due to conditioned threat was measured by assessing the skin conductance response to the conditioned stimulus. All participants were genotyped for rs6265. RESULTS The results indicate a diminishing effect of reminder on the persistence of fear memory only in the Met-allele carriers, suggesting a moderating effect of the BDNF polymorphism in fear memory reconsolidation. CONCLUSIONS Our findings suggest a new role for BDNF gene variation in fear memory reconsolidation in humans.
Collapse
Affiliation(s)
- Manish Kumar Asthana
- Social and Cognitive Neuroscience Laboratory, Mackenzie Presbyterian University, São Paulo, Brazil (Dr Asthana); Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany (Drs Brunhuber, Schneider, and Herrmann); Department of Psychology, University of Regensburg, Germany (Dr Mühlberger); Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University of Frankfurt, Germany (Dr Reif)
| | - Bettina Brunhuber
- Social and Cognitive Neuroscience Laboratory, Mackenzie Presbyterian University, São Paulo, Brazil (Dr Asthana); Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany (Drs Brunhuber, Schneider, and Herrmann); Department of Psychology, University of Regensburg, Germany (Dr Mühlberger); Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University of Frankfurt, Germany (Dr Reif)
| | - Andreas Mühlberger
- Social and Cognitive Neuroscience Laboratory, Mackenzie Presbyterian University, São Paulo, Brazil (Dr Asthana); Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany (Drs Brunhuber, Schneider, and Herrmann); Department of Psychology, University of Regensburg, Germany (Dr Mühlberger); Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University of Frankfurt, Germany (Dr Reif)
| | - Andreas Reif
- Social and Cognitive Neuroscience Laboratory, Mackenzie Presbyterian University, São Paulo, Brazil (Dr Asthana); Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany (Drs Brunhuber, Schneider, and Herrmann); Department of Psychology, University of Regensburg, Germany (Dr Mühlberger); Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University of Frankfurt, Germany (Dr Reif)
| | - Simone Schneider
- Social and Cognitive Neuroscience Laboratory, Mackenzie Presbyterian University, São Paulo, Brazil (Dr Asthana); Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany (Drs Brunhuber, Schneider, and Herrmann); Department of Psychology, University of Regensburg, Germany (Dr Mühlberger); Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University of Frankfurt, Germany (Dr Reif)
| | - Martin J Herrmann
- Social and Cognitive Neuroscience Laboratory, Mackenzie Presbyterian University, São Paulo, Brazil (Dr Asthana); Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany (Drs Brunhuber, Schneider, and Herrmann); Department of Psychology, University of Regensburg, Germany (Dr Mühlberger); Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University of Frankfurt, Germany (Dr Reif).
| |
Collapse
|
28
|
Späti J, Chumbley J, Doerig N, Brakowski J, Holtforth MG, Seifritz E, Spinelli S. Valence and agency influence striatal response to feedback in patients with major depressive disorder. J Psychiatry Neurosci 2015; 40:394-400. [PMID: 26107160 PMCID: PMC4622637 DOI: 10.1503/jpn.140225] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Reduced sensitivity to positive feedback is common in patients with major depressive disorder (MDD). However, findings regarding negative feedback are ambiguous, with both exaggerated and blunted responses being reported. The ventral striatum (VS) plays a major role in processing valenced feedback, and previous imaging studies have shown that the locus of controls (self agency v. external agency) over the outcome influences VS response to feedback. We investigated whether attributing the outcome to one's own action or to an external agent influences feedback processing in patients with MDD. We hypothesized that depressed participants would be less sensitive to the feedback attribution reflected by an altered VS response to self-attributed gains and losses. METHODS Using functional MRI and a motion prediction task, we investigated the neural responses to self-attributed (SA) and externally attributed (EA) monetary gains and losses in unmedicated patients with MDD and healthy controls. RESULTS We included 21 patients and 25 controls in our study. Consistent with our prediction, healthy controls showed a VS response influenced by feedback valence and attribution, whereas in depressed patients striatal activity was modulated by valence but was insensitive to attribution. This attribution insensitivity led to an altered ventral putamen response for SA - EA losses in patients with MDD compared with healthy controls. LIMITATIONS Depressed patients with comorbid anxiety disorder were included. CONCLUSION These results suggest an altered assignment of motivational salience to SA losses in patients with MDD. Altered striatal response to SA negative events may reinforce the belief of not being in control of negative outcomes contributing to a cycle of learned helplessness.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Simona Spinelli
- Correspondence to: S. Spinelli, Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, August Forel-Strasse 7, CH-8008 Zurich, Switzerland;
| |
Collapse
|
29
|
Lisiecka DM, O'Hanlon E, Fagan AJ, Carballedo A, Morris D, Suckling J, Frodl T. BDNF Val66Met polymorphism in patterns of neural activation in individuals with MDD and healthy controls. J Affect Disord 2015; 184:239-44. [PMID: 26117067 DOI: 10.1016/j.jad.2015.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/04/2015] [Accepted: 06/04/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Rs6265 single nucleotide polymorphism, which influences brain-derived neurotrophic factor (BDNF) levels in the cortical and subcortical brain structures, may result in distinguished patterns of neural activation during a major depressive disorder (MDD) episode. Valine homozygotes with high levels of BDNF and methionine carriers with lower levels of BDNF may present specific neural correlates of MDD. In our study we have tested differences in blood oxygen level dependant (BOLD) signal between individuals with MDD and healthy controls for both allelic variants. METHODS Individuals with MDD (N = 37) and healthy controls (N = 39) were genotyped for rs6265 and compared separately in each allelic variant for BOLD response in a functional magnetic resonance imaging experiment examining appraisal of emotional scenes. The two allelic variants were also compared separately for both individuals with MDD and healthy controls. RESULTS In the homozygous valine group MDD was associated with decreased neural activation in areas responsible for cognitive appraisal of emotional scenes. In the methionine group MDD was related to increased activation in subcortical regions responsible for visceral reaction to emotional stimuli. During an MDD episode methionine carriers showed more activation in areas associated with cognitive appraisal of emotional information in comparison to valine homozygotes. LIMITATIONS Small sample size of healthy controls carrying methionine (N=8). CONCLUSION Our results suggest that allelic variations in the rs6265 gene lead to specific neural correlates of MDD which may be associated with different mechanisms of MDD in the two allelic groups. This may have potential importance for screening and treatment of patients.
Collapse
Affiliation(s)
- Danuta M Lisiecka
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, UK; Behavioural and Clinical Neuroscience Institute, Department of Psychiatry, University of Cambridge, UK.
| | - Erik O'Hanlon
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Royal College of Surgeons, Dublin, Ireland
| | - Andrew J Fagan
- Centre for Advanced Medical Imaging (CAMI), St James's Hospital, Dublin, Ireland; Department of Clinical Medicine, Trinity College Dublin, Ireland
| | | | - Derek Morris
- Cognitive Genetics and Therapy Group, Discipline of Biochemistry and School of Psychology, National University of Ireland, Galway, Ireland
| | - John Suckling
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, UK; Behavioural and Clinical Neuroscience Institute, Department of Psychiatry, University of Cambridge, UK; Cambridge and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Thomas Frodl
- Department of Psychiatry, Trinity College Dublin, Ireland; Department of Psychiatry, University of Regensburg, Germany
| |
Collapse
|
30
|
Shen N, Zhu X, Lin H, Li J, Li L, Niu F, Liu A, Wu X, Wang Y, Liu Y. Role of BDNF Val66Met functional polymorphism in temporal lobe epilepsy. Int J Neurosci 2015; 126:436-41. [DOI: 10.3109/00207454.2015.1026967] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Marconi S, Scarlatti F, Rizzo G, Antelmi E, Innamorati M, Pompili M, Brugnoli R, Belvederi Murri M, Amore M, Provini F. Is nocturnal eating in restless legs syndrome linked to a specific psychopathological profile? A pilot study. J Neural Transm (Vienna) 2015; 122:1563-71. [DOI: 10.1007/s00702-015-1435-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
|
32
|
Notaras M, Hill R, van den Buuse M. The BDNF gene Val66Met polymorphism as a modifier of psychiatric disorder susceptibility: progress and controversy. Mol Psychiatry 2015; 20:916-30. [PMID: 25824305 DOI: 10.1038/mp.2015.27] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/22/2014] [Accepted: 02/09/2015] [Indexed: 02/06/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has a primary role in neuronal development, differentiation and plasticity in both the developing and adult brain. A single-nucleotide polymorphism in the proregion of BDNF, termed the Val66Met polymorphism, results in deficient subcellular translocation and activity-dependent secretion of BDNF, and has been associated with impaired neurocognitive function in healthy adults and in the incidence and clinical features of several psychiatric disorders. Research investigating the Val66Met polymorphism has increased markedly in the past decade, and a gap in integration exists between and within academic subfields interested in the effects of this variant. Here we comprehensively review the role and relevance of the Val66Met polymorphism in psychiatric disorders, with emphasis on suicidal behavior and anxiety, eating, mood and psychotic disorders. The cognitive and molecular neuroscience of the Val66Met polymorphism is also concisely reviewed to illustrate the effects of this genetic variant in healthy controls, and is complemented by a commentary on the behavioral neuroscience of BDNF and the Val66Met polymorphism where relevant to specific disorders. Lastly, a number of controversies and unresolved issues, including small effect sizes, sampling of allele inheritance but not genotype and putative ethnicity-specific effects of the Val66Met polymorphism, are also discussed to direct future research.
Collapse
Affiliation(s)
- M Notaras
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - R Hill
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - M van den Buuse
- 1] Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia [2] School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
33
|
Gareeva AE, Traks T, Koks S, Khusnutdinova EK. The role of neurotrophins and neurexins genes in the risk of paranoid schizophrenia in Russians and Tatars. RUSS J GENET+ 2015. [DOI: 10.1134/s102279541506006x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism influences the association of the methylome with maternal anxiety and neonatal brain volumes. Dev Psychopathol 2015; 27:137-50. [DOI: 10.1017/s0954579414001357] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractEarly life environments interact with genotype to determine stable phenotypic outcomes. Here we examined the influence of a variant in the brain-derived neurotropic factor (BDNF) gene (Val66Met), which underlies synaptic plasticity throughout the central nervous system, on the degree to which antenatal maternal anxiety associated with neonatal DNA methylation. We also examined the association between neonatal DNA methylation and brain substructure volume, as a function of BDNF genotype. Infant, but not maternal, BDNF genotype dramatically influences the association of antenatal anxiety on the epigenome at birth as well as that between the epigenome and neonatal brain structure. There was a greater impact of antenatal maternal anxiety on the DNA methylation of infants with the methionine (Met)/Met compared to both Met/valine (Val) and Val/Val genotypes. There were significantly more cytosine–phosphate–guanine sites where methylation levels covaried with right amygdala volume among Met/Met compared with both Met/Val and Val/Val carriers. In contrast, more cytosine–phosphate–guanine sites covaried with left hippocampus volume in Val/Val infants compared with infants of the Met/Val or Met/Met genotype. Thus, antenatal Maternal Anxiety × BDNF Val66Met Polymorphism interactions at the level of the epigenome are reflected differently in the structure of the amygdala and the hippocampus. These findings suggest that BDNF genotype regulates the sensitivity of the methylome to early environment and that differential susceptibility to specific environmental conditions may be both tissue and function specific.
Collapse
|
35
|
Park MH, Chang KD, Hallmayer J, Howe ME, Kim E, Hong SC, Singh MK. Preliminary study of anxiety symptoms, family dysfunction, and the brain-derived neurotrophic factor (BDNF) Val66Met genotype in offspring of parents with bipolar disorder. J Psychiatr Res 2015; 61:81-8. [PMID: 25498133 DOI: 10.1016/j.jpsychires.2014.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/27/2014] [Accepted: 11/20/2014] [Indexed: 12/17/2022]
Abstract
Several genetic and environmental factors place youth offspring of parents with bipolar disorder (BD) at high risk for developing mood and anxiety disorders. Recent studies suggest that anxiety symptoms, even at subclinical levels, have been associated with an increased risk for developing BD. The brain-derived neurotrophic factor (BDNF) gene has been implicated in the pathophysiology of both BD and anxiety disorders. We aimed to explore whether anxiety in BD offspring was associated with the BDNF Val66Met polymorphism. 64 BD offspring (mean age: 13.73 (S.D. 3.45) M = 30, F = 34) and 51 HC (mean age: 13.68 (S.D. 2.68) M = 23, F = 28) were compared on presence of the met allele and on scores from the Multidimensional Anxiety Scale for Children (MASC). To assess family function, we used the Family Adaptability and Cohesion Evaluation Scales (FACES-IV). The Baron & Kenny method was the statistical approach used to examine the moderating effects between variables. BD offspring showed higher levels of overall anxiety than did the HC group. BD offspring with the val/val genotype showed higher levels of anxiety than BD offspring with other genotypes. No significant levels of anxiety or its association with BDNF genotype were found in the HC group. BD offspring group showed significantly more family dysfunction when compared with the HC group and the family dysfunction moderated the association between the BDNF genotype and anxiety symptoms. This study demonstrated the potential interplay of three factors: BD offspring, anxiety symptoms and family dysfunction.
Collapse
Affiliation(s)
- Min-Hyeon Park
- Department of Psychiatry, The Catholic University of Korea, St. Vincent Hospital, Suwon, Korea
| | - Kiki D Chang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Joachim Hallmayer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Meghan E Howe
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Eunjoo Kim
- Department of Psychiatry and Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Chul Hong
- Department of Psychiatry, The Catholic University of Korea, St. Vincent Hospital, Suwon, Korea
| | - Manpreet K Singh
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
36
|
Zhang XY, Chen DC, Tan YL, Luo X, Zuo L, Lv MH, Shah NN, Zunta-Soares GB, Soares JC. Smoking and BDNF Val66Met polymorphism in male schizophrenia: a case-control study. J Psychiatr Res 2015; 60:49-55. [PMID: 25455509 DOI: 10.1016/j.jpsychires.2014.09.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 12/29/2022]
Abstract
Some recent studies show an association between a functional polymorphism of BDNF gene (Val66Met) and the susceptibility to nicotine dependence and we hypothesized that this polymorphism was associated with smoking in both schizophrenia patients and healthy controls. The BDNF Val66Met gene polymorphism was genotyped in 690 chronic male schizophrenia patients (smoker/nonsmoker = 522/169) and 628 male controls (smoker/nonsmoker = 322/306) using a case-control design. Nicotine dependence (ND) was assessed by the cigarettes smoked per day (CPD), the Heaviness of Smoking Index (HSI), and the Fagerstrom Test for ND (FTND). Patients also were rated on the Positive and Negative Syndrome Scale (PANSS). The results showed no significant differences in BDNF Val66Met genotype and allele distributions between the patients and healthy controls or between smokers and nonsmokers in either patients or healthy controls alone. In patient groups, however, the smokers with the Met allele had significantly higher HSI scores (Met/Met: 2.8 ± 1.7 vs. Met/Val: 2.2 ± 1.7 vs. Val/Val: 2.0 ± 1.6, p < 0.01) and a trend toward a significantly higher FTND score (p = 0.09) than those with the Val/Val genotype. In addition, the smokers showed significantly lower PANSS negative symptom and total scores, longer duration of illness and more hospitalizations (all p < 0.05). In the control group, the smokers with the Met allele started smoking significantly earlier than those with the Val/Val genotype (both p < 0.05). These results suggest that the BDNF Val66Met polymorphism may affect a smoker's response to nicotine in both schizophrenia and healthy controls from a Chinese Han population, but with differential effects in different aspects of smoking behaviors.
Collapse
Affiliation(s)
- Xiang Yang Zhang
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China; Department of Psychiatry and Behavioral Sciences, Harris County Psychiatric Center, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Da-Chun Chen
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Yun-Long Tan
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Lingjun Zuo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Meng-Han Lv
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Nurun N Shah
- Department of Psychiatry and Behavioral Sciences, Harris County Psychiatric Center, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Giovana B Zunta-Soares
- Department of Psychiatry and Behavioral Sciences, Harris County Psychiatric Center, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, Harris County Psychiatric Center, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
37
|
Lee LC, Tu CH, Chen LF, Shen HD, Chao HT, Lin MW, Hsieh JC. Association of brain-derived neurotrophic factor gene Val66Met polymorphism with primary dysmenorrhea. PLoS One 2014; 9:e112766. [PMID: 25383981 PMCID: PMC4226574 DOI: 10.1371/journal.pone.0112766] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 10/15/2014] [Indexed: 12/31/2022] Open
Abstract
Primary dysmenorrhea (PDM), the most prevalent menstrual cycle-related problem in women of reproductive age, is associated with negative moods. Whether the menstrual pain and negative moods have a genetic basis remains unknown. Brain-derived neurotrophic factor (BDNF) plays a key role in the production of central sensitization and contributes to chronic pain conditions. BDNF has also been implicated in stress-related mood disorders. We screened and genotyped the BDNF Val66Met polymorphism (rs6265) in 99 Taiwanese (Asian) PDMs (20–30 years old) and 101 age-matched healthy female controls. We found that there was a significantly higher frequency of the Met allele of the BDNF Val66Met polymorphism in the PDM group. Furthermore, BDNF Met/Met homozygosity had a significantly stronger association with PDM compared with Val carrier status. Subsequent behavioral/hormonal assessments of sub-groups (PDMs = 78, controls = 81; eligible for longitudinal multimodal neuroimaging battery studies) revealed that the BDNF Met/Met homozygous PDMs exhibited a higher menstrual pain score (sensory dimension) and a more anxious mood than the Val carrier PDMs during the menstrual phase. Although preliminary, our study suggests that the BDNF Val66Met polymorphism is associated with PDM in Taiwanese (Asian) people, and BDNF Met/Met homozygosity may be associated with an increased risk of PDM. Our data also suggest the BDNF Val66Met polymorphism as a possible regulator of menstrual pain and pain-related emotions in PDM. Absence of thermal hypersensitivity may connote an ethnic attribution. The presentation of our findings calls for further genetic and neuroscientific investigations of PDM.
Collapse
Affiliation(s)
- Lin-Chien Lee
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Hao Tu
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Li-Fen Chen
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Horng-Der Shen
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsiang-Tai Chao
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Wei Lin
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Public Health, National Yang-Ming University, Taipei, Taiwan
- * E-mail: (JCH); (MWL)
| | - Jen-Chuen Hsieh
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- * E-mail: (JCH); (MWL)
| |
Collapse
|
38
|
Chumbley J, Späti J, Dörig N, Brakowski J, Grosse Holtforth M, Seifritz E, Spinelli S. BDNF Val66Met polymorphism influence on striatal blood-level-dependent response to monetary feedback depends on valence and agency. Neuroscience 2014; 280:130-41. [PMID: 25234319 DOI: 10.1016/j.neuroscience.2014.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/01/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
Abstract
Animal work implicates the brain-derived neurotrophic factor (BDNF) in function of the ventral striatum (VS), a region known for its role in processing valenced feedback. Recent evidence in humans shows that BDNF Val66Met polymorphism modulates VS activity in anticipation of monetary feedback. However, it remains unclear whether the polymorphism impacts the processing of self-attributed feedback differently from feedback attributed to an external agent. In this study, we emphasize the importance of the feedback attribution because agency is central to computational accounts of the striatum and cognitive accounts of valence processing. We used functional magnetic resonance imaging and a task, in which financial gains/losses are either attributable to performance (self-attributed, SA) or chance (externally-attributed, EA) to ask whether BDNF Val66Met polymorphism predicts VS activity. We found that BDNF Val66Met polymorphism influenced how feedback valence and agency information were combined in the VS and in the right inferior frontal junction (IFJ). Specifically, Met carriers' VS response to valenced feedback depended on agency information, while Val/Val carriers' VS response did not. This context-specific modulation of valence effectively amplified VS responses to SA losses in Met carriers. The IFJ response to SA losses also differentiated Val/Val from Met carriers. These results may point to a reduced allocation of attention and altered motivational salience to SA losses in Val/Val compared to Met carriers. Implications for major depressive disorder are discussed.
Collapse
Affiliation(s)
- J Chumbley
- Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Switzerland
| | - J Späti
- Department of Psychophysiology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - N Dörig
- Department of Psychology, University of Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Switzerland
| | - J Brakowski
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Switzerland
| | - M Grosse Holtforth
- Department of Psychology, University of Zurich, Switzerland; Department of Psychology, University of Bern, Switzerland
| | - E Seifritz
- Neuroscience Center, University and ETH Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - S Spinelli
- Neuroscience Center, University and ETH Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland; Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Switzerland.
| |
Collapse
|
39
|
Association between amygdala reactivity and a dopamine transporter gene polymorphism. Transl Psychiatry 2014; 4:e420. [PMID: 25093598 PMCID: PMC4150236 DOI: 10.1038/tp.2014.50] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 04/07/2014] [Accepted: 04/22/2014] [Indexed: 12/29/2022] Open
Abstract
Essential for detection of relevant external stimuli and for fear processing, the amygdala is under modulatory influence of dopamine (DA). The DA transporter (DAT) is of fundamental importance for the regulation of DA transmission by mediating reuptake inactivation of extracellular DA. This study examined if a common functional variable number tandem repeat polymorphism in the 3' untranslated region of the DAT gene (SLC6A3) influences amygdala function during the processing of aversive emotional stimuli. Amygdala reactivity was examined by comparing regional cerebral blood flow, measured with positron emission tomography and [(15)O]water, during exposure to angry and neutral faces, respectively, in a Swedish sample comprising 32 patients with social anxiety disorder and 17 healthy volunteers. In a separate US sample, comprising 85 healthy volunteers studied with blood oxygen level-dependent functional magnetic resonance imaging, amygdala reactivity was assessed by comparing the activity during exposure to threatening faces and neutral geometric shapes, respectively. In both the Swedish and the US sample, 9-repeat carriers displayed higher amygdala reactivity than 10-repeat homozygotes. The results suggest that this polymorphism contributes to individual variability in amygdala reactivity.
Collapse
|
40
|
Domingos da Silveira da Luz AC, Pereira Dias G, do Nascimento Bevilaqua MC, Cocks G, Gardino PF, Thuret S, Nardi AE. Translational findings on brain-derived neurotrophic factor and anxiety: contributions from basic research to clinical practice. Neuropsychobiology 2014; 68:129-38. [PMID: 24051499 DOI: 10.1159/000353269] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 05/27/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Anxious responses are evolutionarily adaptive, but excessive fear can become disabling and lead to anxiety disorders. Translational models of anxiety might be useful sources for understanding the neurobiology of fear and anxiety and can contribute to future proposals of therapeutic intervention for the disorders studied. Brain-derived neurotrophic factor (BDNF), which is known for its importance on neuroplasticity and contextual memory, has emerged as a relevant element for emotional memory. Recent studies show that the Val(66)Met BDNF polymorphism correlates with various psychiatric disorders, including anxiety, but there are several differences between experimental and clinical studies. METHODS In this work, we review the literature focused on the BDNF Val(66)Met polymorphism and anxiety, and discuss biological findings from animal models to clinical studies. RESULTS As occurs with other psychiatric disorders, anxiety correlates with anatomical, behavioral and physiological changes related to the BDNF polymorphism. In animal studies, it has been shown that a significant decrease in regulated secretion from both BDNFVal/Met and BDNFMet/Met neurons represented a significant decrease in available BDNF. CONCLUSION These studies suggest that developing pharmacological strategies facilitating the release of BDNF from synapses or prolongation of the half-life of secreted BDNF may improve the therapeutic responses of humans expressing the BDNF polymorphism.
Collapse
|
41
|
The BDNF Val66Met polymorphism modulates the generalization of cued fear responses to a novel context. Neuropsychopharmacology 2014; 39:1187-95. [PMID: 24247044 PMCID: PMC3957113 DOI: 10.1038/npp.2013.320] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 12/11/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) has a crucial role in activity-dependent synaptic plasticity and learning and memory. The human functional single-nucleotide BDNF rs6265 (Val66Met) polymorphism has been found to be associated with alteration in neural BDNF release and function correlating with altered emotional behavior. Here, we investigated for the first time the hypothesis that this polymorphism in humans modulates the context dependency of conditioned fear responses. Applying a new paradigm examining generalization of cued fear across contexts, 70 participants stratified for BDNF Val66Met polymorphism were guided through two virtual offices (context) in which briefly illuminated blue and yellow lights served as cues. In the fear context, one light (conditioned stimulus, CS+) but not the other light (CS-) was associated with an electric shock (unconditioned stimulus, US). In the safety context, both lights were presented too, but no US was delivered. During the test phase, lights were presented again both in learning contexts and in a novel generalization context without any US. All participants showed clear fear conditioning to the CS+ in the fear context as indicated by potentiation of startle responses and reports of fear. No fear reactions were found for the CS+ in the safety context. Importantly, generalization of fear responses indicated by the potentiation of startle response to the CS+ compared with the CS- in the novel context was evident only in the Met-carrying group. These are the first results to provide evidence in humans that BDNF modulates the generalization of fear responses. Such context-dependent generalization processes might predispose Met carriers for affective and anxiety disorders.
Collapse
|
42
|
Abstract
The study of the biological basis of personality is a timely research endeavor, with the aim of deepening our understanding of human nature. In recent years, a growing body of research has investigated the role of the brain derived neurotrophic factor (BDNF) in the context of individual differences across human beings, with a focus on personality traits. A large number of different approaches have been chosen to illuminate the role of BDNF for personality, ranging from the measurement of BDNF in the serum/plasma to molecular genetics to (genetic) brain imaging. The present review provides the reader with an overview of the current state of affairs in the context of BDNF and personality.
Collapse
|
43
|
Taurines R, Segura M, Schecklmann M, Albantakis L, Grünblatt E, Walitza S, Jans T, Lyttwin B, Haberhausen M, Theisen FM, Martin B, Briegel W, Thome J, Schwenck C, Romanos M, Gerlach M. Altered peripheral BDNF mRNA expression and BDNF protein concentrations in blood of children and adolescents with autism spectrum disorder. J Neural Transm (Vienna) 2014; 121:1117-28. [DOI: 10.1007/s00702-014-1162-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 01/18/2014] [Indexed: 10/25/2022]
|
44
|
Kourmouli N, Samakouri M, Mamatsiou A, Trypsianis G, Livaditis M, Veletza S. Effect of BDNF Val66Met and serotonin transporter 5-HTTLPR polymorphisms on psychopathological characteristics in a sample of university students. Psychiatr Genet 2013; 23:188-97. [DOI: 10.1097/ypg.0b013e3283643629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Brandys MK, Kas MJH, van Elburg AA, Ophoff R, Slof-Op't Landt MCT, Middeldorp CM, Boomsma DI, van Furth EF, Slagboom PE, Adan RAH. The Val66Met polymorphism of the BDNF gene in anorexia nervosa: new data and a meta-analysis. World J Biol Psychiatry 2013; 14:441-51. [PMID: 21936709 DOI: 10.3109/15622975.2011.605470] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVES The Val66Met polymorphism (rs6265) of the BDNF gene is a non-synonymous polymorphism, previously associated with anorexia nervosa (AN). METHODS We genotyped rs6265 in 235 patients with AN and 643 controls. Furthermore, we performed a systematic review of all case-control and family-based studies testing this SNP in AN, and combined the results in a meta-analysis. RESULTS The results of the case-control study were non-significant. For the meta-analysis, nine studies were identified (ncases = 2,767; ncontrols = 3,322, ntrios = 53) and included. Primarily, the analyses indicated an association with OR of 1.11 (P = 0.024) in the allelic contrast, and OR of 1.14 (P = 0.025) for the dominant effect of the Met allele. However, additional analyses revealed that the first published study (from those included in the meta-analysis) overly influenced the pooled effect size (possibly due to a phenomenon known as a winner's curse). When this case-control study was replaced by a trio study (ntrios = 293) performed on a largely overlapping sample, the effect size became smaller and non-significant, both for the allelic contrast (OR = 1.07, P = 0.156) and the dominant effect (OR = 1.07, P = 0.319). The quality of included studies was good and there was no significant heterogeneity across the effect sizes. CONCLUSIONS Our analyses indicate that the BDNF Val66Met variant is not associated with AN at detectable levels.
Collapse
Affiliation(s)
- Marek K Brandys
- Department of Neuroscience & Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Min JA, Lee HJ, Lee SH, Park YM, Kang SG, Chae JH. Gender-specific effects of brain-derived neurotrophic factor Val66Met polymorphism and childhood maltreatment on anxiety. Neuropsychobiology 2013; 67:6-13. [PMID: 23221871 DOI: 10.1159/000342384] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 08/06/2012] [Indexed: 12/19/2022]
Abstract
BACKGROUND Although the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is thought to play an important role in the pathophysiology of anxiety, studies on the association between the BDNF polymorphism and anxiety have reported inconsistent results. As possible confounders in determining anxiety, childhood maltreatment and gender as well as their interactions with BDNF polymorphism have been suggested. This study examined the effect of BDNF genotype, childhood maltreatment, and their interaction on anxiety levels by gender. METHODS A total of 206 unrelated Korean healthy young adults (108 were male and the mean age was 23.1 ± 3.2 years) were genotyped for the BDNFVal66Met polymorphism. Measures for anxiety and childhood maltreatment were completed. The main and interaction effects of BDNF polymorphism and childhood maltreatment on anxiety were analyzed by general linear models in all subjects and then in gender-stratified groups. RESULTS Gender-specific analyses revealed that the interaction effect was significant only in males (p = 0.014). Interestingly, male subjects with the Val/Met genotype tended to be resilient against the increased anxiety after childhood maltreatment. In females, the main effects of both BDNF genotype and childhood maltreatment were significant (p = 0.024 and p = 0.009, respectively) and post-hoc analysis revealed that the Val/Val genotype was associated with a higher anxiety than the Met/Met genotype (p = 0.004). CONCLUSIONS Our results support the interaction effect between the BDNFVal66Met polymorphism and childhood maltreatment in determining anxiety and further emphasize the possible moderating role of gender in this gene-environment interaction.
Collapse
Affiliation(s)
- Jung-Ah Min
- Department of Psychiatry, Seoul St. Mary's Hospital, Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
47
|
Interaction between novelty seeking and the aldehyde dehydrogenase 2 gene in heroin-dependent patients. J Clin Psychopharmacol 2013; 33:386-90. [PMID: 23609397 DOI: 10.1097/jcp.0b013e3182900fb3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Heroin dependence is a multifactor disorder. We investigated the association of genetic factors and heroin-dependent temperaments to determine whether a temperament-gene interaction is involved in the pathogenesis of heroin dependence. METHODS Three hundred seventy participants (259 heroin-dependent patients and 111 healthy controls) were recruited and finished the Tridimensional Personality Questionnaire to assess personality traits (temperament). The genotypes of the aldehyde dehydrogenase 2 (ALDH2) gene and the Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene using polymerase chain reactions plus restriction fragment length polymorphism analysis. RESULTS Multiple logistic regression analysis showed significant main effects for novelty seeking (P ≤ 0.001) and harm-avoidance (P = 0.001) scores, and a significant interaction effect between novelty seeking and ALDH2 genotypes (P = 0.016) in heroin-dependent patients compared with controls. When stratified by the ALDH2 genotypes, only heroin-dependent patients with the *1*2 and *2*2 genotypes at ALDH2 had higher novelty-seeking scores than did controls (heroin dependence = 15.94, controls = 12.46; P ≤ 0.001). CONCLUSIONS Our results provide initial evidence that the ALDH2 gene interacted with novelty seeking in heroin-dependent Han Chinese patients in Taiwan.
Collapse
|
48
|
Lit L, Belanger JM, Boehm D, Lybarger N, Haverbeke A, Diederich C, Oberbauer AM. Characterization of a dopamine transporter polymorphism and behavior in Belgian Malinois. BMC Genet 2013; 14:45. [PMID: 23718893 PMCID: PMC3680094 DOI: 10.1186/1471-2156-14-45] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 05/22/2013] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The Belgian Malinois dog breed (MAL) is frequently used in law enforcement and military environments. Owners have reported seizures and unpredictable behavioral changes including dogs' eyes "glazing over," dogs' lack of response to environmental stimuli, and loss of behavioral inhibition including owner-directed biting behavior. Dogs with severe behavioral changes may be euthanized as they can represent a danger to humans and other dogs. In the dog, the dopamine transporter gene (DAT) contains a 38-base pair variable number tandem repeat (DAT-VNTR); alleles have either one or two copies of the 38-base pair sequence. The objective of this study was to assess frequency of DAT-VNTR alleles, and characterize the association between DAT-VNTR alleles and behavior in MAL and other breeds. RESULTS In an American sample of 280 dogs comprising 26 breeds, most breeds are predominantly homozygous for the DAT-VNTR two-tandem-repeat allele (2/2). The one-tandem-repeat allele is over-represented in American MAL (AM-MAL) (n = 144), both as heterozygotes (1/2) and homozygotes (1/1). All AM-MAL with reported seizures (n = 5) were 1/1 genotype. For AM-MAL with at least one "1" allele (1/1 or 1/2 genotype, n = 121), owners reported higher levels of attention, increased frequency of episodic aggression, and increased frequency of loss of responsiveness to environmental stimuli. In behavior observations, Belgian Military Working Dogs (MWD) with 1/1 or 1/2 genotypes displayed fewer distracted behaviors and more stress-related behaviors such as lower posture and increased yawning. Handlers' treatment of MWD varied with DAT-VNTR genotype as did dogs' responses to handlers' behavior. For 1/1 or 1/2 genotype MWD, 1) lower posture after the first aversive stimulus given by handlers was associated with poorer obedience performance; 2) increased aversive stimuli during protection exercises were associated with decreased performance; 3) more aversive stimuli during obedience were associated with more aversive stimuli during protection; and 4) handlers used more aversive stimuli in protection compared with obedience exercises. CONCLUSIONS The single copy allele of DAT-VNTR is associated with owner-reported seizures, loss of responsiveness to environmental stimuli, episodic aggression, and hyper-vigilance in MAL. Behavioral changes are associated with differential treatment by handlers. Findings should be considered preliminary until replicated in a larger sample.
Collapse
Affiliation(s)
- Lisa Lit
- Department of Animal Science, University of California Davis, Davis, CA 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Genetic polymorphisms of the dopamine and serotonin systems modulate the neurophysiological response to feedback and risk taking in healthy humans. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2013; 12:678-91. [PMID: 22810728 PMCID: PMC3505534 DOI: 10.3758/s13415-012-0108-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genetic differences in the dopamine and serotonin systems have been suggested as potential factors underlying interindividual variability in risk taking and in brain activation during the processing of feedback. Here, we studied the effects of dopaminergic (dopamine transporter [DAT1], catecholamine-O-methyltransferase val158met [COMT]) and serotonergic (serotonin transporter [5HTTLPR]) polymorphisms on risk taking and brain responses following feedback in 60 healthy female subjects. The subjects completed a well-established experimental gambling paradigm while an electroencephalogram was recorded. During the task, risk-taking behavior and prefrontal brain responses (feedback-related negativity [FRN]) following monetary gains and losses were assessed. FRN amplitudes were enhanced for nine-repeat-allele carriers of the DAT1 and short-allele carriers of 5HTTLPR, which are both presumably linked to less transporter activity and higher neurotransmitter levels. Moreover, nine-repeat DAT1 carriers displayed a trend toward increased risk taking in general, whereas 5HTTLPR short-allele carriers showed decreased risk taking following gains. COMT val158met genotype was unrelated to FRN amplitude and average risk taking. However, COMT met/met carriers showed a pronounced feedback P3 amplitude independent of valence, and a gradual increase in risk taking during the gambling task. In sum, the present findings underline the importance of genetic variability in the dopamine and serotonin systems regarding the neurophysiology of feedback processing.
Collapse
|
50
|
Heitland I, Kenemans JL, Oosting RS, Baas JMP, Böcker KBE. Auditory event-related potentials (P3a, P3b) and genetic variants within the dopamine and serotonin system in healthy females. Behav Brain Res 2013; 249:55-64. [PMID: 23619133 DOI: 10.1016/j.bbr.2013.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/11/2013] [Accepted: 04/14/2013] [Indexed: 11/30/2022]
Abstract
The late positive components of the human event-related brain potential comprise electrocortical reflections of stimulus-driven attentional capture (the anteriorly distributed P3a) and top-down control detection of relevant events (the posteriorly distributed P3b). As of yet, the neuropharmacologic and neurogenetic origin of the P3a and P3b is not fully understood. In this study, we address the contribution of dopaminergic and serotoninergic mechanisms. Sixty healthy females completed an active auditory novelty oddball paradigm while EEG was recorded. In all subjects, genetic polymorphisms within the dopamine system (dopamine transporter [DAT1], catecholamine-O-methyltransferase val158met [COMT val158met]) and the serotonin system (serotonin transporter [5HTTLPR]) were assessed. Across genotypes, novels (relative to standards) elicited a fronto-centrally distributed P3a, and targets (relative to standards) a parieto-centrally distributed P3b. Genotypes effects were observed for both P3a (COMT, 5HTTPLR) and P3b (DAT1, COMT, 5HTTLPR) only at prefrontal electrode location (Fz). Specifically, the frontal P3a was enhanced in COMT met/met homozygotes, but not in DAT1 9R. The target-related P3b was enhanced in COMT met/met and DAT1 9R relative to its genetic counterparts, but only at frontal electrodes. This 'anteriorized' enhancement may reflect either an additional frontal component in the target-related P3 dependent on dopamine, or a more subtle shift in the neural ensemble that generates the target-related P3. Results for 5HTTLPR short allele homozygotes mimicked those in COMT met/met homozygotes. In all, the present findings suggest involvement of frontal-cortical dopaminergic and serotoninergic mechanisms in bottom-up attentional capture (COMT val158met, 5HTTLPR), with an additional top-down component sensitive to striatal signals (DAT1).
Collapse
Affiliation(s)
- I Heitland
- Department of Experimental Psychology & Psychopharmacology, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|