1
|
Smith ALW, Hamilton S, Murphy SE, Cowen PJ, Harmer CJ. The behavioural effects of the serotonin 1A receptor agonist buspirone on cognition and emotional processing in healthy volunteers. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06770-6. [PMID: 40087174 DOI: 10.1007/s00213-025-06770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 02/27/2025] [Indexed: 03/17/2025]
Abstract
RATIONALE The 5-HT1A receptor is expressed widely across the brain and is implicated in the mechanism of action of several therapeutics for mood disorders. However, there is limited and contradictory evidence about the role of this receptor in emotional processing and cognition. OBJECTIVES The current study tested the acute effects of a single dose of the 5-HT1A agonist buspirone (20 mg), on a range of emotional processing (Emotional Test Battery) and cognitive (Auditory Verbal Learning Task (AVLT) and N-back) tasks in healthy, male and female volunteers (N = 62). The study was a randomised, double-blind, placebo controlled, parallel group design. RESULTS Buspirone reduced accuracy for detection of facial expressions of disgust and increased misclassification of negative facial emotions. It had no significant effects on categorisation or recall of emotionally-valanced words. Buspirone also reduced recall accuracy in the AVLT but had no significant effect in the N-back task. Participants receiving buspirone were more likely to experience nausea, light-headedness and sleepiness. CONCLUSIONS Acute buspirone administration produced a mild impairment in verbal memory and a subtle negative bias in emotional processing in healthy volunteers. These effects are consistent with the mixed effects of buspirone on pre- and post-synaptic 5-HT1A receptors.
Collapse
Affiliation(s)
- Alexander L W Smith
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK.
- Oxford Health NHS Foundation Trust, Oxford, UK.
| | - Sorcha Hamilton
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Susannah E Murphy
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Philip J Cowen
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Catherine J Harmer
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| |
Collapse
|
2
|
Colwell MJ, Tagomori H, Shang F, Cheng HI, Wigg CE, Browning M, Cowen PJ, Murphy SE, Harmer CJ. Direct serotonin release in humans shapes aversive learning and inhibition. Nat Commun 2024; 15:6617. [PMID: 39122687 PMCID: PMC11315928 DOI: 10.1038/s41467-024-50394-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 07/09/2024] [Indexed: 08/12/2024] Open
Abstract
The role of serotonin in human behaviour is informed by approaches which allow in vivo modification of synaptic serotonin. However, characterising the effects of increased serotonin signalling in human models of behaviour is challenging given the limitations of available experimental probes, notably selective serotonin reuptake inhibitors. Here we use a now-accessible approach to directly increase synaptic serotonin in humans (a selective serotonin releasing agent) and examine its influence on domains of behaviour historically considered core functions of serotonin. Computational techniques, including reinforcement learning and drift diffusion modelling, explain participant behaviour at baseline and after week-long intervention. Reinforcement learning models reveal that increasing synaptic serotonin reduces sensitivity for outcomes in aversive contexts. Furthermore, increasing synaptic serotonin enhances behavioural inhibition, and shifts bias towards impulse control during exposure to aversive emotional probes. These effects are seen in the context of overall improvements in memory for neutral verbal information. Our findings highlight the direct effects of increasing synaptic serotonin on human behaviour, underlining its role in guiding decision-making within aversive and more neutral contexts, and offering implications for longstanding theories of central serotonin function.
Collapse
Affiliation(s)
- Michael J Colwell
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK.
| | - Hosana Tagomori
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Fei Shang
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Hoi Iao Cheng
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Chloe E Wigg
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Michael Browning
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Philip J Cowen
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Susannah E Murphy
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Catherine J Harmer
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK.
| |
Collapse
|
3
|
Chao YS, Parrilla-Carrero J, Eid M, Culver OP, Jackson TB, Lipat R, Taniguchi M, Jhou TC. Innate cocaine-seeking vulnerability arising from loss of serotonin-mediated aversive effects of cocaine in rats. Cell Rep 2023; 42:112404. [PMID: 37083325 PMCID: PMC12035767 DOI: 10.1016/j.celrep.2023.112404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/11/2023] [Accepted: 04/02/2023] [Indexed: 04/22/2023] Open
Abstract
Cocaine blocks dopamine reuptake, thereby producing rewarding effects that are widely studied. However, cocaine also blocks serotonin uptake, which we show drives, in rats, individually variable aversive effects that depend on serotonin 2C receptors (5-HT2CRs) in the rostromedial tegmental nucleus (RMTg), a major GABAergic afferent to midbrain dopamine neurons. 5-HT2CRs produce depolarizing effects in RMTg neurons that are particularly strong in some rats, leading to aversive effects that reduce acquisition of and relapse to cocaine seeking. In contrast, 5-HT2CR signaling is largely lost after cocaine exposure in other rats, leading to reduced aversive effects and increased cocaine seeking. These results suggest a serotonergic biological marker of cocaine-seeking vulnerability that can be targeted to modulate drug seeking.
Collapse
Affiliation(s)
- Ying S Chao
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - Maya Eid
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Oliver P Culver
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Tyler B Jackson
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Rachel Lipat
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Makoto Taniguchi
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Thomas C Jhou
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
4
|
McLauchlan DJ, Lancaster T, Craufurd D, Linden DEJ, Rosser AE. Different depression: motivational anhedonia governs antidepressant efficacy in Huntington's disease. Brain Commun 2022; 4:fcac278. [PMID: 36440100 PMCID: PMC9683390 DOI: 10.1093/braincomms/fcac278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/13/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Depression is more common in neurodegenerative diseases such as Huntington's disease than the general population. Antidepressant efficacy is well-established for depression within the general population: a recent meta-analysis showed serotonin norepinephrine reuptake inhibitors, tricyclic antidepressants and mirtazapine outperformed other antidepressants. Despite the severe morbidity, antidepressant choice in Huntington's disease is based on Class IV evidence. We used complementary approaches to determine treatment choice for depression in Huntington's disease: propensity score analyses of antidepressant treatment outcome using the ENROLL-HD data set, and a dissection of the cognitive mechanisms underlying depression in Huntington's disease using a cognitive battery based on the Research Domain Criteria for Depression. Study 1 included ENROLL-HD 5486 gene-positive adult patients started on an antidepressant medication for depression. Our outcome measures were depression (Hospital Anxiety and Depression Scale or Problem Behaviours Assessment 'Depressed Mood' item) at first follow-up (primary outcome) and all follow-ups (secondary outcome). The intervention was antidepressant class. We used Svyglm&Twang in R to perform propensity scoring, using known variables (disease progression, medical comorbidity, psychiatric morbidity, sedatives, number of antidepressants, demographics and antidepressant contraindications) to determine the probability of receiving different antidepressants (propensity score) and then included the propensity score in a model of treatment efficacy. Study 2 recruited 51 gene-positive adult patients and 26 controls from the South Wales Huntington's Disease Management Service. Participants completed a motor assessment, in addition to measures of depression and apathy, followed by tasks measuring consummatory anhedonia, motivational anhedonia, learning from reward and punishment and reaction to negative outcome. We used generalised linear models to determine the association between task performance and depression scores. Study 1 showed selective serotonin reuptake inhibitors outperformed serotonin norepinephrine reuptake inhibitors on the primary outcome (P = 0.048), whilst both selective serotonin reuptake inhibitors (P = 0.00069) and bupropion (P = 0.0045) were superior to serotonin norepinephrine reuptake inhibitors on the secondary outcome. Study 2 demonstrated an association between depression score and effort for reward that was not explained by apathy. No other mechanisms were associated with depression score. We found that selective serotonin reuptake inhibitors and bupropion outperform serotonin norepinephrine reuptake inhibitors at alleviating depression in Huntington's disease. Moreover, motivational anhedonia appears the most significant mechanism underlying depression in Huntington's disease. Bupropion is improves motivational anhedonia and has a synergistic effect with selective serotonin reuptake inhibitors. This work provides the first large-scale, objective evidence to determine treatment choice for depression in Huntington's disease, and provides a model for determining antidepressant efficacy in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Duncan James McLauchlan
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK.,Department of Neurology, Morriston Hospital, Swansea Bay University Health Board, Swansea SA6 6NL, UK
| | - Thomas Lancaster
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK.,Cardiff University Brain Research Imaging Center, Cardiff University, Cardiff CF24 4HQ, UK.,Department of Psychology, University of Bath, Bath BA2 7AY, UK
| | - David Craufurd
- Manchester Center for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Center, Manchester M13 9PL, UK.,St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Center, Manchester M13 9WL, UK
| | - David E J Linden
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK.,Cardiff University Brain Research Imaging Center, Cardiff University, Cardiff CF24 4HQ, UK.,Department of Psychology, University of Bath, Bath BA2 7AY, UK.,School for Mental Health and Neuroscience, Fac. Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Anne E Rosser
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK.,Department of Neurology, Morriston Hospital, Swansea Bay University Health Board, Swansea SA6 6NL, UK.,School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
5
|
Trotter PD, Smith SA, Moore DJ, O’Sullivan N, McFarquhar MM, McGlone FP, Walker SC. Acute tryptophan depletion alters affective touch perception. Psychopharmacology (Berl) 2022; 239:2771-2785. [PMID: 35554625 PMCID: PMC9385795 DOI: 10.1007/s00213-022-06151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 04/11/2022] [Indexed: 11/29/2022]
Abstract
RATIONALE Affiliative tactile interactions help regulate physiological arousal and confer resilience to acute and chronic stress. C-tactile afferents (CTs) are a population of unmyelinated, low threshold mechanosensitive cutaneous nerve fibres which respond optimally to a low force stimulus, moving at between 1 and 10 cm/s. As CT firing frequencies correlate positively with subjective ratings of touch pleasantness, they are hypothesised to form the first stage of encoding affiliative tactile interactions. Serotonin is a key modulator of social responses with known effects on bonding. OBJECTIVES The aim of the present study was to determine the effect of acutely lowering central serotonin levels on perceptions of CT-targeted affective touch. METHODS In a double blind, placebo-controlled design, the effect of acute tryptophan depletion (ATD) on 25 female participants' ratings of directly and vicariously experienced touch was investigated. Psychophysical techniques were used to deliver dynamic tactile stimuli; some velocities were targeted to optimally activate CTs (1-10 cm/s), whereas other, faster and slower strokes fell outside the CT optimal range. Discriminative tactile function, cold pain threshold and tolerance were also measured. RESULTS ATD significantly increased pleasantness ratings of both directly and vicariously experienced affective touch, increasing discrimination of the specific hedonic value of CT targeted velocities. While ATD had no effect on either tactile or cold pain thresholds, there was a trend for reduced tolerance to cold pain. CONCLUSIONS These findings are consistent with previous reports that depletion of central serotonin levels modulates neural and behavioural responsiveness to appetitive sensory signals.
Collapse
Affiliation(s)
- Paula D. Trotter
- Research Centre for Brain and Behaviour, Liverpool John Moores University, Liverpool, UK
| | - Sharon A. Smith
- Research Centre for Brain and Behaviour, Liverpool John Moores University, Liverpool, UK
| | - David J. Moore
- Research Centre for Brain and Behaviour, Liverpool John Moores University, Liverpool, UK
| | | | - Martyn M. McFarquhar
- Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester, UK
| | - Francis P. McGlone
- Research Centre for Brain and Behaviour, Liverpool John Moores University, Liverpool, UK ,Institute of Psychology, Health and Society, University of Liverpool, Liverpool, UK
| | - Susannah C. Walker
- Research Centre for Brain and Behaviour, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
6
|
Crane NA, Chang F, Kinney KL, Klumpp H. Individual differences in striatal and amygdala response to emotional faces are related to symptom severity in social anxiety disorder. NEUROIMAGE-CLINICAL 2021; 30:102615. [PMID: 33735785 PMCID: PMC7985697 DOI: 10.1016/j.nicl.2021.102615] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/21/2020] [Accepted: 02/25/2021] [Indexed: 11/05/2022]
Abstract
Amygdala & striatal neural activity may underlie Social Anxiety Disorder (SAD). 80 individuals with SAD completed an emotion processing task during fMRI. Dorsal striatal & amygdala response to angry > happy related to illness severity. Activity in these regions may contribute to individual differences in SAD.
Social anxiety disorder (SAD) is a common heterogeneous disorder characterized by excessive fear and deficient positive experiences. Case-control emotion processing studies indicate that altered amygdala and striatum function may underlie SAD; however, links between these regions and symptomatology have yet to be established. Therefore, in the current study, 80 individuals diagnosed with SAD completed a validated emotion processing task during functional magnetic resonance imaging. Anatomy-based regions of interest were amygdala, caudate, putamen, and nucleus accumbens. Neural activity in response to angry > happy faces and fearful > happy faces in these regions were submitted to multiple linear regression analysis with bootstrapping. Additionally, multiple linear regression analysis was performed to explore clinical features of SAD. Results showed greater putamen activity and less amygdala activity in response to angry > happy faces were related to greater social anxiety severity. In the model consisting of caudate and amygdala activity in response to angry > happy faces, results were marginally related to social anxiety severity and the pattern of activity was similar to the regression model comprising putamen and amygdala. Nucleus accumbens activity was not related to social anxiety severity. There was no correspondence between brain activity in response to fearful > happy faces and social anxiety severity. Clinical variables revealed greater levels of anhedonia and general anxiety were related to social anxiety severity, however, neural activity was not related to these features of SAD. Neuroimaging findings suggest that variance in dorsal striatal and amygdala activity in response to certain social signals of threat contrasted with an approach/rewarding social signal may contribute to individual differences in SAD. Clinical findings indicate variance in anhedonia and general anxiety symptoms may contribute to individual differences in social anxiety severity.
Collapse
Affiliation(s)
- Natania A Crane
- Department of Psychiatry (NAC, FC, KLK, HK), University of Illinois at Chicago, 1601 W. Taylor St (M/C 912), Chicago, IL 60612, United States.
| | - Fini Chang
- Department of Psychiatry (NAC, FC, KLK, HK), University of Illinois at Chicago, 1601 W. Taylor St (M/C 912), Chicago, IL 60612, United States; Department of Psychology (FC, KLK, HK), University of Illinois at Chicago, 1007 W. Harrison St (M/C 285), Chicago, IL 60607, United States
| | - Kerry L Kinney
- Department of Psychiatry (NAC, FC, KLK, HK), University of Illinois at Chicago, 1601 W. Taylor St (M/C 912), Chicago, IL 60612, United States; Department of Psychology (FC, KLK, HK), University of Illinois at Chicago, 1007 W. Harrison St (M/C 285), Chicago, IL 60607, United States
| | - Heide Klumpp
- Department of Psychiatry (NAC, FC, KLK, HK), University of Illinois at Chicago, 1601 W. Taylor St (M/C 912), Chicago, IL 60612, United States; Department of Psychology (FC, KLK, HK), University of Illinois at Chicago, 1007 W. Harrison St (M/C 285), Chicago, IL 60607, United States
| |
Collapse
|
7
|
Smith SA, Trotter PD, McGlone FP, Walker SC. Effects of Acute Tryptophan Depletion on Human Taste Perception. Chem Senses 2020; 46:6024443. [PMID: 33277648 DOI: 10.1093/chemse/bjaa078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Taste perception has been reported to vary with changes in affective state. Distortions of taste perception, including blunted recognition thresholds, intensity, and hedonic ratings have been identified in those suffering from depressive disorders. Serotonin is a key neurotransmitter implicated in the etiology of anxiety and depression; systemic and peripheral manipulations of serotonin signaling have previously been shown to modulate taste detection. However, the specific effects of central serotonin function on taste processing have not been widely investigated. Here, in a double-blind placebo-controlled study, acute tryptophan depletion was used to investigate the effect of reduced central serotonin function on taste perception. Twenty-five female participants aged 18-28 attended the laboratory on two occasions at least 1 week apart. On one visit, they received a tryptophan depleting drink and on the other, a control drink was administered. Approximately, 6 h after drink consumption, they completed a taste perception task which measured detection thresholds and supra-threshold perceptions of the intensity and pleasantness of four basic tastes (sweet, sour, bitter, and salt). While acutely reducing central levels of serotonin had no effect on the detection thresholds of sweet, bitter, or sour tastes, it significantly enhanced detection of salt. For supra-threshold stimuli, acutely reduced serotonin levels significantly enhanced the perceived intensity of both bitter and sour tastes and blunted pleasantness ratings of bitter quinine. These findings show manipulation of central serotonin levels can modulate taste perception and are consistent with previous reports that depletion of central serotonin levels enhances neural and behavioral responsiveness to aversive signals.
Collapse
Affiliation(s)
- Sharon A Smith
- Research Centre for Brain and Behaviour, School of Psychology, Liverpool John Moores University, Liverpool, UK
| | - Paula D Trotter
- Research Centre for Brain and Behaviour, School of Psychology, Liverpool John Moores University, Liverpool, UK
| | - Francis P McGlone
- Research Centre for Brain and Behaviour, School of Psychology, Liverpool John Moores University, Liverpool, UK.,Department of Psychology, University of Liverpool, Liverpool, UK
| | - Susannah C Walker
- Research Centre for Brain and Behaviour, School of Psychology, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
8
|
Psychological mechanisms and functions of 5-HT and SSRIs in potential therapeutic change: Lessons from the serotonergic modulation of action selection, learning, affect, and social cognition. Neurosci Biobehav Rev 2020; 119:138-167. [PMID: 32931805 DOI: 10.1016/j.neubiorev.2020.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
Uncertainty regarding which psychological mechanisms are fundamental in mediating SSRI treatment outcomes and wide-ranging variability in their efficacy has raised more questions than it has solved. Since subjective mood states are an abstract scientific construct, only available through self-report in humans, and likely involving input from multiple top-down and bottom-up signals, it has been difficult to model at what level SSRIs interact with this process. Converging translational evidence indicates a role for serotonin in modulating context-dependent parameters of action selection, affect, and social cognition; and concurrently supporting learning mechanisms, which promote adaptability and behavioural flexibility. We examine the theoretical basis, ecological validity, and interaction of these constructs and how they may or may not exert a clinical benefit. Specifically, we bridge crucial gaps between disparate lines of research, particularly findings from animal models and human clinical trials, which often seem to present irreconcilable differences. In determining how SSRIs exert their effects, our approach examines the endogenous functions of 5-HT neurons, how 5-HT manipulations affect behaviour in different contexts, and how their therapeutic effects may be exerted in humans - which may illuminate issues of translational models, hierarchical mechanisms, idiographic variables, and social cognition.
Collapse
|
9
|
Hansen HD, Lindberg U, Ozenne B, Fisher PM, Johansen A, Svarer C, Keller SH, Hansen AE, Knudsen GM. Visual stimuli induce serotonin release in occipital cortex: A simultaneous positron emission tomography/magnetic resonance imaging study. Hum Brain Mapp 2020; 41:4753-4763. [PMID: 32813903 PMCID: PMC7555083 DOI: 10.1002/hbm.25156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 06/25/2020] [Accepted: 07/21/2020] [Indexed: 12/27/2022] Open
Abstract
Endogenous serotonin (5-HT) release can be measured noninvasively using positron emission tomography (PET) imaging in combination with certain serotonergic radiotracers. This allows us to investigate effects of pharmacological and nonpharmacological interventions on brain 5-HT levels in living humans. Here, we study the neural responses to a visual stimulus using simultaneous PET/MRI. In a cross-over design, 11 healthy individuals were PET/MRI scanned with the 5-HT1B receptor radioligand [11 C]AZ10419369, which is sensitive to changes in endogenous 5-HT. During the last part of the scan, participants either viewed autobiographical images with positive valence (n = 11) or kept their eyes closed (n = 7). The visual stimuli increased cerebral blood flow (CBF) in the occipital cortex, as measured with pseudo-continuous arterial spin labeling. Simultaneously, we found decreased 5-HT1B receptor binding in the occipital cortex (-3.6 ± 3.6%), indicating synaptic 5-HT release. Using a linear regression model, we found that the change in 5-HT1B receptor binding was significantly negatively associated with change in CBF in the occipital cortex (p = .004). For the first time, we here demonstrate how cerebral 5-HT levels change in response to nonpharmacological stimuli in humans, as measured with PET. Our findings more directly support a link between 5-HT signaling and visual processing and/or visual attention.
Collapse
Affiliation(s)
- Hanne Demant Hansen
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Massachusetts, Massachusetts
| | - Ulrich Lindberg
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Brice Ozenne
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen K, Denmark
| | - Patrick MacDonald Fisher
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Annette Johansen
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Svarer
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Sune Høgild Keller
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Adam Espe Hansen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Lewis LR, Benn A, Dwyer DM, Robinson ESJ. Affective biases and their interaction with other reward-related deficits in rodent models of psychiatric disorders. Behav Brain Res 2019; 372:112051. [PMID: 31276704 DOI: 10.1016/j.bbr.2019.112051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/09/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
Major depressive disorder (MDD) is one of the leading global causes of disability. Symptoms of MDD can vary person to person, and current treatments often fail to alleviate the poor quality of life that patients experience. One of the two core diagnostic criteria for MDD is the loss of interest in previously pleasurable activities, which suggests a link between the disease aetiology and reward processing. Cognitive impairments are also common in patients with MDD, and more recently, emotional processing deficits known as affective biases have been recognised as a key feature of the disorder. Studies in animals have found similar affective biases related to reward. In this review we consider these affective biases in the context of other reward-related deficits and examine how affective biases associated with learning and memory may interact with the wider behavioural symptoms seen in MDD. We discuss recent developments in how analogues of affective biases and other aspects of reward processing can be assessed in rodents, as well as how these behaviours are influenced in models of MDD. We subsequently discuss evidence for the neurobiological mechanisms contributing to one or more reward-related deficits in preclinical models of MDD, identified using these behavioural assays. We consider how the relationships between these selective behavioural assays and the neurobiological mechanisms for affective bias and reward processing could be used to identify potential treatment strategies.
Collapse
Affiliation(s)
- Lucy R Lewis
- School of Psychology, Tower Building, Cardiff University, Park Place, Cardiff, CF10 3AT, United Kingdom.
| | - Abigail Benn
- University of Oxford, Department of Experimental Psychology, Tinsley Building, Marsden Road, Oxford, OX1 3TA, United Kingdom.
| | - Dominic M Dwyer
- School of Psychology, Tower Building, Cardiff University, Park Place, Cardiff, CF10 3AT, United Kingdom.
| | - Emma S J Robinson
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, United Kingdom.
| |
Collapse
|
11
|
Weinberg-Wolf H, Chang SWC. Differences in how macaques monitor others: Does serotonin play a central role? WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2019; 10:e1494. [PMID: 30775852 PMCID: PMC6570566 DOI: 10.1002/wcs.1494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 01/22/2023]
Abstract
Primates must balance the need to monitor other conspecifics to gain social information while not losing other resource opportunities. We consolidate evidence across the fields of primatology, psychology, and neuroscience to examine individual, population, and species differences in how primates, particularly macaques, monitor conspecifics. We particularly consider the role of serotonin in mediating social competency via social attention, aggression, and dominance behaviors. Finally, we consider how the evolution of variation in social tolerance, aggression, and social monitoring might be explained by differences in serotonergic function in macaques. This article is categorized under: Economics > Interactive Decision-Making Psychology > Comparative Psychology Neuroscience > Behavior Cognitive Biology > Evolutionary Roots of Cognition.
Collapse
Affiliation(s)
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, Connecticut
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
12
|
Bell PT, Gilat M, Shine JM, McMahon KL, Lewis SJG, Copland DA. Neural correlates of emotional valence processing in Parkinson's disease: dysfunction in the subcortex. Brain Imaging Behav 2019; 13:189-199. [PMID: 28812218 DOI: 10.1007/s11682-017-9754-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Parkinson's disease (PD) is frequently accompanied by cognitive and neuropsychiatric symptoms including impairments in affective processing. Despite this, mechanisms underlying vulnerability to deficits in affective processing remain unclear. In this study, we utilized functional Magnetic Resonance Imaging (fMRI) and an Affective Go-NoGo paradigm, to examine the neural correlates of emotional valence processing in PD. Results suggest that PD is associated with aberrant processing of emotional valence in subcortical limbic structures. Specifically, we found significant group-by-valence interactions in the ventral striatum and amygdala in response to words of differing emotional valence. Our findings contribute to a broader understanding of affective processing in PD and may provide insights into the mechanisms underlying vulnerability to mood disorders in PD.
Collapse
Affiliation(s)
- Peter T Bell
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia. .,University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia.
| | - Moran Gilat
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - James M Shine
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Katie L McMahon
- Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, Australia
| | - Simon J G Lewis
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - David A Copland
- University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia.,School of Health & Rehabilitation Sciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Langenecker SA, Mickey BJ, Eichhammer P, Sen S, Elverman KH, Kennedy SE, Heitzeg MM, Ribeiro SM, Love TM, Hsu DT, Koeppe RA, Watson SJ, Akil H, Goldman D, Burmeister M, Zubieta JK. Cognitive Control as a 5-HT 1A-Based Domain That Is Disrupted in Major Depressive Disorder. Front Psychol 2019; 10:691. [PMID: 30984083 PMCID: PMC6450211 DOI: 10.3389/fpsyg.2019.00691] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/12/2019] [Indexed: 12/21/2022] Open
Abstract
Heterogeneity within Major Depressive Disorder (MDD) has hampered identification of biological markers (e.g., intermediate phenotypes, IPs) that might increase risk for the disorder or reflect closer links to the genes underlying the disease process. The newer characterizations of dimensions of MDD within Research Domain Criteria (RDoC) domains may align well with the goal of defining IPs. We compare a sample of 25 individuals with MDD compared to 29 age and education matched controls in multimodal assessment. The multimodal RDoC assessment included the primary IP biomarker, positron emission tomography (PET) with a selective radiotracer for 5-HT1A [(11C)WAY-100635], as well as event-related functional MRI with a Go/No-go task targeting the Cognitive Control network, neuropsychological assessment of affective perception, negative memory bias and Cognitive Control domains. There was also an exploratory genetic analysis with the serotonin transporter (5-HTTLPR) and monamine oxidase A (MAO-A) genes. In regression analyses, lower 5-HT1A binding potential (BP) in the MDD group was related to diminished engagement of the Cognitive Control network, slowed resolution of interfering cognitive stimuli, one element of Cognitive Control. In contrast, higher/normative levels of 5-HT1A BP in MDD (only) was related to a substantial memory bias toward negative information, but intact resolution of interfering cognitive stimuli and greater engagement of Cognitive Control circuitry. The serotonin transporter risk allele was associated with lower 1a BP and the corresponding imaging and cognitive IPs in MDD. Lowered 5HT 1a BP was present in half of the MDD group relative to the control group. Lowered 5HT 1a BP may represent a subtype including decreased engagement of Cognitive Control network and impaired resolution of interfering cognitive stimuli. Future investigations might link lowered 1a BP to neurobiological pathways and markers, as well as probing subtype-specific treatment targets.
Collapse
Affiliation(s)
- Scott A. Langenecker
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Brian J. Mickey
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Peter Eichhammer
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Srijan Sen
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | | | - Susan E. Kennedy
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Mary M. Heitzeg
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Saulo M. Ribeiro
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Tiffany M. Love
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - David T. Hsu
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Robert A. Koeppe
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Stanley J. Watson
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Huda Akil
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - David Goldman
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Margit Burmeister
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Jon-Kar Zubieta
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
14
|
Abstract
This article reviews the interactions of estrogen changes and psychosocial stress in contributing to vulnerability to major depressive disorder (MDD) in women. Estrogen modulates brain networks and processes related to changes in stress response, cognition, and emotional dysregulation that are core characteristics of MDD. Synergistic effects of estrogen on cognitive and emotional function, particularly during psychosocial stress, may underlie the association of ovarian hormone fluctuation and depression in women. We propose a model of estrogen effects on multiple brain systems that interface with stress-related emotional and cognitive processes implicated in MDD and discuss possible mechanisms through which reproductive events and changes in estrogen may contribute to MDD risk in women with other concurrent risk factors.
Collapse
Affiliation(s)
- Kimberly M Albert
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37212, USA;
| | - Paul A Newhouse
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37212, USA; .,Geriatric Research, Education, and Clinical Center, Tennessee Valley Veterans Affairs Medical Center, Nashville, Tennessee 37212, USA
| |
Collapse
|
15
|
Blanchard D, Meyza K. Risk assessment and serotonin: Animal models and human psychopathologies. Behav Brain Res 2019; 357-358:9-17. [DOI: 10.1016/j.bbr.2017.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/19/2017] [Accepted: 07/07/2017] [Indexed: 02/08/2023]
|
16
|
Dowlati Y, de Jesus DR, Selby P, Fan I, Meyer JH. Depressed mood induction in early cigarette withdrawal is unaffected by acute monoamine precursor supplementation. Neuropsychiatr Dis Treat 2019; 15:311-321. [PMID: 30774343 PMCID: PMC6352866 DOI: 10.2147/ndt.s172334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Cigarette smoking is the leading preventable cause of death; however, quitting is difficult and early relapse is common. Dysphoric mood during early cigarette withdrawal is associated with relapse, and with the exception of bupropion and nortriptyline, few interventions have been developed to prevent this. During early cigarette withdrawal there is an elevation in the levels of monoamine oxidase-A (MAO-A), which removes monoamines excessively and induces oxidative stress and is implicated in creating sad mood. Hence, we conducted a randomized, placebo-controlled, double-blind crossover trial of a dietary supplement designed to counter the effects of elevated MAO-A levels on vulnerability to depressed mood. METHODS Twenty-one otherwise healthy cigarette smokers completed the protocol, receiving either active dietary supplement followed by washout and placebo or the same in reverse order. The dietary supplement was composed of monoamine precursors (2 g tryptophan, 10 g tyrosine) and blueberry antioxidants (blueberry juice with blueberry extract). Vulnerability to depressed mood was measured by the change in scores of depressed mood on the visual analog scale (VAS) following the sad mood induction paradigm (MIP). RESULTS There was a significant increase in VAS depressed mood scores after the sad MIP during supplement and placebo, but no difference between active and placebo conditions. There was also a significant increase in urge-to-smoke scores after sad MIP during supplement and placebo but no difference between active and placebo conditions. Reliability of the increase in VAS after MIP was very good. CONCLUSION The dietary supplement had negligible effect on depressed mood, but sad MIP is a very reliable method that can be applied in future studies to assess other interventions for preventing dysphoric mood during early cigarette withdrawal.
Collapse
Affiliation(s)
- Yekta Dowlati
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada, .,Department of Psychiatry, University of Toronto, ON, Canada,
| | - Danilo R de Jesus
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada, .,Department of Psychiatry, University of Toronto, ON, Canada,
| | - Peter Selby
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada, .,Department of Psychiatry, University of Toronto, ON, Canada, .,Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| | - Ian Fan
- Department of Psychiatry, University of Toronto, ON, Canada, .,Mood Disorders Association of British Columbia, Vancouver, BC, Canada
| | - Jeffrey H Meyer
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada, .,Department of Psychiatry, University of Toronto, ON, Canada,
| |
Collapse
|
17
|
Abstract
Depression is one of the most common but poorly understood psychiatric conditions. Although drug treatments and psychological therapies are effective in some patients, many do not achieve full remission and some patients receive no apparent benefit. Developing new improved treatments requires a better understanding of the aetiology of symptoms and evaluation of novel therapeutic targets in pre-clinical studies. Recent developments in our understanding of the basic cognitive processes that may contribute to the development of depression and its treatment offer new opportunities for both clinical and pre-clinical research. This chapter discusses the clinical evidence supporting a cognitive neuropsychological model of depression and antidepressant efficacy, and how this information may be usefully translated to pre-clinical investigation. Studies using neuropsychological tests in depressed patients and at risk populations have revealed basic negative emotional biases and disrupted reward and punishment processing, which may also impact on non-affective cognition. These affective biases are sensitive to antidepressant treatments with early onset effects observed, suggesting an important role in recovery. This clinical work into affective biases has also facilitated back-translation to animals and the development of assays to study affective biases in rodents. These animal studies suggest that, similar to humans, rodents in putative negative affective states exhibit negative affective biases on decision-making and memory tasks. Antidepressant treatments also induce positive biases in these rodent tasks, supporting the translational validity of this approach. Although still in the early stages of development and validation, affective biases in depression have the potential to offer new insights into the clinical condition, as well as facilitating the development of more translational approaches for pre-clinical studies.
Collapse
Affiliation(s)
- E S J Robinson
- School of Physiology and Pharmacology, Medical Sciences Building, University Walk, Bristol, BS8 4PX, UK.
| | - J P Roiser
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AR, UK
| |
Collapse
|
18
|
A Pontine Region is a Neural Correlate of the Human Affective Processing Network. EBioMedicine 2016; 2:1799-805. [PMID: 26870804 PMCID: PMC4740328 DOI: 10.1016/j.ebiom.2015.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/15/2015] [Accepted: 10/19/2015] [Indexed: 11/22/2022] Open
Abstract
The in vivo neural activity of the pons during the perception of affective stimuli has not been studied despite the strong implications of its role in affective processing. To examine the activity of the pons during the viewing of affective stimuli, and to verify its functional and structural connectivity with other affective neural correlates, a multimodal magnetic resonance imaging methodology was employed in this study. We observed the in vivo activity of the pons when viewing affective stimuli. Furthermore, small-world connectivity indicated that the functional connectivity (FC) between the pons and the cortico-limbic affective regions was meaningful, with the coefficient λ being positively associated with self-reported emotional reactivity. The FC between the pons and the cortico-limbic-striatal areas was related to self-reported negative affect. Corroborating this finding was the observation that the tract passing through the pons and the left hippocampus was negatively related to self-reported positive affect and positively correlated with emotional reactivity. Our findings support the framework that the pons works conjunctively with the distributed cortico-limbic-striatal systems in shaping individuals' affective states and reactivity. Our work paves the path for future research on the contribution of the pons to the precipitation and maintenance of affective disorders.
Collapse
|
19
|
Shao R, Keuper K, Geng X, Lee TMC. Pons to Posterior Cingulate Functional Projections Predict Affective Processing Changes in the Elderly Following Eight Weeks of Meditation Training. EBioMedicine 2016; 10:236-48. [PMID: 27349456 PMCID: PMC5006446 DOI: 10.1016/j.ebiom.2016.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/13/2016] [Accepted: 06/13/2016] [Indexed: 12/22/2022] Open
Abstract
Evidence indicates meditation facilitates affective regulation and reduces negative affect. It also influences resting-state functional connectivity between affective networks and the posterior cingulate (PCC)/precuneus, regions critically implicated in self-referential processing. However, no longitudinal study employing active control group has examined the effect of meditation training on affective processing, PCC/precuneus connectivity, and their association. Here, we report that eight-week meditation, but not relaxation, training 'neutralized' affective processing of positive and negative stimuli in healthy elderly participants. Additionally, meditation versus relaxation training increased the positive connectivity between the PCC/precuneus and the pons, the direction of which was largely directed from the pons to the PCC/precuneus, as revealed by dynamic causal modeling. Further, changes in connectivity between the PCC/precuneus and pons predicted changes in affective processing after meditation training. These findings indicate meditation promotes self-referential affective regulation based on increased regulatory influence of the pons on PCC/precuneus, which new affective-processing strategy is employed across both resting state and when evaluating affective stimuli. Such insights have clinical implications on interventions on elderly individuals with affective disorders.
Collapse
Affiliation(s)
- Robin Shao
- Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong; Laboratory of Cognitive Affective Neuroscience, The University of Hong Kong, Hong Kong
| | - Kati Keuper
- Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong; Laboratory of Cognitive Affective Neuroscience, The University of Hong Kong, Hong Kong
| | - Xiujuan Geng
- Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong; Laboratory of Cognitive Affective Neuroscience, The University of Hong Kong, Hong Kong; The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong.
| | - Tatia M C Lee
- Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong; Laboratory of Cognitive Affective Neuroscience, The University of Hong Kong, Hong Kong; The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Institute of Clinical Neuropsychology, The University of Hong Kong, Hong Kong.
| |
Collapse
|
20
|
Trotter PD, McGlone F, McKie S, McFarquhar M, Elliott R, Walker SC, Deakin JFW. Effects of acute tryptophan depletion on central processing of CT-targeted and discriminatory touch in humans. Eur J Neurosci 2016; 44:2072-83. [DOI: 10.1111/ejn.13298] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/18/2016] [Accepted: 06/13/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Paula Diane Trotter
- Research Centre in Brain and Behaviour; School of Natural Sciences & Psychology; Liverpool John Moores University; Byrom Street Liverpool L3 3AF UK
| | - Francis McGlone
- Research Centre in Brain and Behaviour; School of Natural Sciences & Psychology; Liverpool John Moores University; Byrom Street Liverpool L3 3AF UK
- Institute of Psychology, Health and Society; University of Liverpool; Liverpool UK
| | - Shane McKie
- Neuroscience and Psychiatry Unit; The University of Manchester; Manchester UK
| | - Martyn McFarquhar
- Neuroscience and Psychiatry Unit; The University of Manchester; Manchester UK
| | - Rebecca Elliott
- Neuroscience and Psychiatry Unit; The University of Manchester; Manchester UK
| | - Susannah Claire Walker
- Research Centre in Brain and Behaviour; School of Natural Sciences & Psychology; Liverpool John Moores University; Byrom Street Liverpool L3 3AF UK
| | | |
Collapse
|
21
|
Abstract
Depression is one of the most common but poorly understood psychiatric conditions. Although drug treatments and psychological therapies are effective in some patients, many do not achieve full remission and some patients receive no apparent benefit. Developing new improved treatments requires a better understanding of the aetiology of symptoms and evaluation of novel therapeutic targets in pre-clinical studies. Recent developments in our understanding of the basic cognitive processes that may contribute to the development of depression and its treatment offer new opportunities for both clinical and pre-clinical research. This chapter discusses the clinical evidence supporting a cognitive neuropsychological model of depression and antidepressant efficacy, and how this information may be usefully translated to pre-clinical investigation. Studies using neuropsychological tests in depressed patients and at risk populations have revealed basic negative emotional biases and disrupted reward and punishment processing, which may also impact on non-affective cognition. These affective biases are sensitive to antidepressant treatments with early onset effects observed, suggesting an important role in recovery. This clinical work into affective biases has also facilitated back-translation to animals and the development of assays to study affective biases in rodents. These animal studies suggest that, similar to humans, rodents in putative negative affective states exhibit negative affective biases on decision-making and memory tasks. Antidepressant treatments also induce positive biases in these rodent tasks, supporting the translational validity of this approach. Although still in the early stages of development and validation, affective biases in depression have the potential to offer new insights into the clinical condition, as well as facilitating the development of more translational approaches for pre-clinical studies.
Collapse
Affiliation(s)
- E S J Robinson
- School of Physiology and Pharmacology, Medical Sciences Building, University Walk, Bristol, BS8 4PX, UK.
| | - J P Roiser
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AR, UK
| |
Collapse
|
22
|
Gracia-Rubio I, Moscoso-Castro M, Pozo OJ, Marcos J, Nadal R, Valverde O. Maternal separation induces neuroinflammation and long-lasting emotional alterations in mice. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:104-17. [PMID: 26382758 DOI: 10.1016/j.pnpbp.2015.09.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/31/2015] [Accepted: 09/07/2015] [Indexed: 12/27/2022]
Abstract
Early life experiences play a key role in brain function and behaviour. Adverse events during childhood are therefore a risk factor for psychiatric disease during adulthood, such as mood disorders. Maternal separation is a validated mouse model for maternal neglect, producing negative early life experiences that result in subsequent emotional alteration. Mood disorders have been found to be associated with neurochemical changes and neurotransmitter deficits such as reduced availability of monoamines in discrete brain areas. Emotional alterations like depression result in reduced serotonin availability and enhanced kynurenine metabolism through the action of indoleamine 2, 3-dioxygenase in response to neuroinflammatory factors. This mechanism involves regulation of the neurotransmitter system by neuroinflammatory agents, linking mood regulation to neuroinmunological reactions. In this context, the aim of this study was to investigate the effects of maternal separation with early weaning on emotional behaviour in mice. We investigated neuroinflammatory responses and the state of the tryptophan-kynurenine metabolic pathway in discrete brain areas following maternal separation. We show that adverse events during early life increase risk of long-lasting emotional alterations during adolescence and adulthood. These emotional alterations are particularly severe in females. Behavioural impairments were associated with microglia activation and disturbed tryptophan-kynurenine metabolism in brain areas related to emotional control. This finding supports the preeminent role of neuroinflammation in emotional disorders.
Collapse
Affiliation(s)
- Irene Gracia-Rubio
- Neurobiology of Behavior Research Group (GReNeC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Maria Moscoso-Castro
- Neurobiology of Behavior Research Group (GReNeC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Oscar J Pozo
- Bioanalysis Research Group, IMIM (Hospital del Mar Research Institute), Barcelona, Spain
| | - Josep Marcos
- Bioanalysis Research Group, IMIM (Hospital del Mar Research Institute), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Roser Nadal
- Institut de Neurociències and Psychobiology Unit, Universitat Autònoma de Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behavior Research Group (GReNeC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM (Hospital del Mar Research Institute) Barcelona, Spain.
| |
Collapse
|
23
|
Helmbold K, Zvyagintsev M, Dahmen B, Bubenzer-Busch S, Gaber TJ, Crockett MJ, Klasen M, Sánchez CL, Eisert A, Konrad K, Habel U, Herpertz-Dahlmann B, Zepf FD. Effects of serotonin depletion on punishment processing in the orbitofrontal and anterior cingulate cortices of healthy women. Eur Neuropsychopharmacol 2015; 25:846-56. [PMID: 25869157 DOI: 10.1016/j.euroneuro.2015.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 01/27/2015] [Accepted: 02/21/2015] [Indexed: 11/30/2022]
Abstract
Diminished synthesis of the neurotransmitter serotonin (5-HT) has been linked to disrupted impulse control in aversive contexts. However, the neural correlates underlying a serotonergic modulation of female impulsivity remain unclear. The present study investigated punishment-induced inhibition in healthy young women. Eighteen healthy female subjects (aged 20-31) participated in a double-blinded, counterbalanced, placebo-controlled, within subjects, repeated measures study. They were assessed on two randomly assigned occasions that were controlled for menstrual cycle phase. In a randomized order, one day, acute tryptophan depletion (ATD) was used to reduce 5-HT synthesis in the brain. On the other day, participants received a tryptophan-balanced amino acid load (BAL) as a control condition. Three hours after administration of ATD/BAL, neural activity was recorded during a modified Go/No-Go task implementing reward or punishment processes using functional magnetic resonance imaging (fMRI). Neural activation during No-Go trials in punishment conditions after BAL versus ATD administration correlated positively with the magnitude of central 5-HT depletion in the ventral and subgenual anterior cingulate cortices (ACC). Furthermore, neural activation in the medial orbitofrontal cortex (mOFC) and the dorsal ACC correlated positively with trait impulsivity. The results indicate reduced neural sensitivity to punishment after short-term depletion of 5-HT in brain areas related to emotion regulation (subgenual ACC) increasing with depletion magnitude and in brain areas related to appraisal and expression of emotions (mOFC and dorsal ACC), increasing with trait impulsivity. This suggests a serotonergic modulation of neural circuits related to emotion regulation, impulsive behavior, and punishment processing in females.
Collapse
Affiliation(s)
- K Helmbold
- RWTH Aachen University, Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Germany; Jülich Aachen Research Alliance, JARA Translational Brain Medicine, Germany
| | - M Zvyagintsev
- Jülich Aachen Research Alliance, JARA Translational Brain Medicine, Germany; RWTH Aachen University, Department of Psychiatry, Psychotherapy and Psychosomatics, Germany
| | - B Dahmen
- RWTH Aachen University, Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Germany
| | - S Bubenzer-Busch
- RWTH Aachen University, Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Germany; Jülich Aachen Research Alliance, JARA Translational Brain Medicine, Germany
| | - T J Gaber
- RWTH Aachen University, Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Germany; Jülich Aachen Research Alliance, JARA Translational Brain Medicine, Germany
| | - M J Crockett
- Wellcome Trust Centre for Neuroimaging, University College London, United Kingdom
| | - M Klasen
- Jülich Aachen Research Alliance, JARA Translational Brain Medicine, Germany; RWTH Aachen University, Department of Psychiatry, Psychotherapy and Psychosomatics, Germany
| | - C L Sánchez
- RWTH Aachen University, Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Germany; Jülich Aachen Research Alliance, JARA Translational Brain Medicine, Germany
| | - A Eisert
- Department of Pharmacy, RWTH Aachen University, Aachen, Germany
| | - K Konrad
- RWTH Aachen University, Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Germany; Jülich Aachen Research Alliance, JARA Translational Brain Medicine, Germany; Institute for Neuroscience and Medicine, Jülich Research Centre, Germany
| | - U Habel
- Jülich Aachen Research Alliance, JARA Translational Brain Medicine, Germany; RWTH Aachen University, Department of Psychiatry, Psychotherapy and Psychosomatics, Germany
| | - B Herpertz-Dahlmann
- RWTH Aachen University, Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Germany; Jülich Aachen Research Alliance, JARA Translational Brain Medicine, Germany
| | - F D Zepf
- Department of Health in Western Australia, Specialised Child and Adolescent Mental Health Services (CAMHS), Perth, WA, Australia; Department of Child and Adolescent Psychiatry, School of Psychiatry & Clinical Neurosciences and School of Paediatrics & Child Health, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
24
|
Biskup CS, Gaber T, Helmbold K, Bubenzer-Busch S, Zepf FD. Amino acid challenge and depletion techniques in human functional neuroimaging studies: an overview. Amino Acids 2015; 47:651-83. [DOI: 10.1007/s00726-015-1919-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/09/2015] [Indexed: 01/16/2023]
|
25
|
Rygula R, Clarke HF, Cardinal RN, Cockcroft GJ, Xia J, Dalley JW, Robbins TW, Roberts AC. Role of Central Serotonin in Anticipation of Rewarding and Punishing Outcomes: Effects of Selective Amygdala or Orbitofrontal 5-HT Depletion. Cereb Cortex 2014; 25:3064-76. [PMID: 24879752 PMCID: PMC4537445 DOI: 10.1093/cercor/bhu102] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Understanding the role of serotonin (or 5-hydroxytryptamine, 5-HT) in aversive processing has been hampered by the contradictory findings, across studies, of increased sensitivity to punishment in terms of subsequent response choice but decreased sensitivity to punishment-induced response suppression following gross depletion of central 5-HT. To address this apparent discrepancy, the present study determined whether both effects could be found in the same animals by performing localized 5-HT depletions in the amygdala or orbitofrontal cortex (OFC) of a New World monkey, the common marmoset. 5-HT depletion in the amygdala impaired response choice on a probabilistic visual discrimination task by increasing the effectiveness of misleading, or false, punishment and reward, and decreased response suppression in a variable interval test of punishment sensitivity that employed the same reward and punisher. 5-HT depletion in the OFC also disrupted probabilistic discrimination learning and decreased response suppression. Computational modeling of behavior on the discrimination task showed that the lesions reduced reinforcement sensitivity. A novel, unitary account of the findings in terms of the causal role of 5-HT in the anticipation of both negative and positive motivational outcomes is proposed and discussed in relation to current theories of 5-HT function and our understanding of mood and anxiety disorders.
Collapse
Affiliation(s)
- Rafal Rygula
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK Current Address: Affective Cognitive Neuroscience Laboratory, Department of Behavioral Neurobiology and Drug Development, Institute of Pharmacology Polish Academy of Sciences, ul Smetna 12, 31-343 Krakow, Poland
| | - Hannah F Clarke
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Rudolf N Cardinal
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge CB2 0QQ, UK Liaison Psychiatry Service, Cambridgeshire and Peterborough NHS Foundation Trust, Box 190, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Gemma J Cockcroft
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Jing Xia
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Jeff W Dalley
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Angela C Roberts
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| |
Collapse
|
26
|
Kroes MCW, van Wingen GA, Wittwer J, Mohajeri MH, Kloek J, Fernández G. Food can lift mood by affecting mood-regulating neurocircuits via a serotonergic mechanism. Neuroimage 2013; 84:825-32. [PMID: 24076224 DOI: 10.1016/j.neuroimage.2013.09.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/14/2013] [Accepted: 09/17/2013] [Indexed: 02/08/2023] Open
Abstract
It is commonly assumed that food can affect mood. One prevalent notion is that food containing tryptophan increases serotonin levels in the brain and alters neural processing in mood-regulating neurocircuits. However, tryptophan competes with other long-neutral-amino-acids (LNAA) for transport across the blood-brain-barrier, a limitation that can be mitigated by increasing the tryptophan/LNAA ratio. We therefore tested in a double-blind, placebo-controlled crossover study (N=32) whether a drink with a favourable tryptophan/LNAA ratio improves mood and modulates specific brain processes as assessed by functional magnetic resonance imaging (fMRI). We show that one serving of this drink increases the tryptophan/LNAA ratio in blood plasma, lifts mood in healthy young women and alters task-specific and resting-state processing in brain regions implicated in mood regulation. Specifically, Test-drink consumption reduced neural responses of the dorsal caudate nucleus during reward anticipation, increased neural responses in the dorsal cingulate cortex during fear processing, and increased ventromedial prefrontal-lateral prefrontal connectivity under resting-state conditions. Our results suggest that increasing tryptophan/LNAA ratios can lift mood by affecting mood-regulating neurocircuits.
Collapse
Affiliation(s)
- Marijn C W Kroes
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, 6500 HE Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
27
|
Nakamura K. The role of the dorsal raphé nucleus in reward-seeking behavior. Front Integr Neurosci 2013; 7:60. [PMID: 23986662 PMCID: PMC3753458 DOI: 10.3389/fnint.2013.00060] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 07/30/2013] [Indexed: 12/22/2022] Open
Abstract
Pharmacological experiments have shown that the modulation of brain serotonin levels has a strong impact on value-based decision making. Anatomical and physiological evidence also revealed that the dorsal raphé nucleus (DRN), a major source of serotonin, and the dopamine system receive common inputs from brain regions associated with appetitive and aversive information processing. The serotonin and dopamine systems also have reciprocal functional influences on each other. However, the specific mechanism by which serotonin affects value-based decision making is not clear. To understand the information carried by the DRN for reward-seeking behavior, we measured single neuron activity in the primate DRN during the performance of saccade tasks to obtain different amounts of a reward. We found that DRN neuronal activity was characterized by tonic modulation that was altered by the expected and received reward value. Consistent reward-dependent modulation across different task periods suggested that DRN activity kept track of the reward value throughout a trial. The DRN was also characterized by modulation of its activity in the opposite direction by different neuronal subgroups, one firing strongly for the prediction and receipt of large rewards, with the other firing strongly for small rewards. Conversely, putative dopamine neurons showed positive phasic responses to reward-indicating cues and the receipt of an unexpected reward amount, which supports the reward prediction error signal hypothesis of dopamine. I suggest that the tonic reward monitoring signal of the DRN, possibly together with its interaction with the dopamine system, reports a continuous level of motivation throughout the performance of a task. Such a signal may provide "reward context" information to the targets of DRN projections, where it may be integrated further with incoming motivationally salient information.
Collapse
Affiliation(s)
- Kae Nakamura
- Department of Physiology, Kansai Medical University Hirakata, Japan ; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency Kawaguchi, Japan
| |
Collapse
|
28
|
Pringle A, McCabe C, Cowen PJ, Harmer CJ. Antidepressant treatment and emotional processing: can we dissociate the roles of serotonin and noradrenaline? J Psychopharmacol 2013; 27:719-31. [PMID: 23392757 DOI: 10.1177/0269881112474523] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The ability to match individual patients to tailored treatments has the potential to greatly improve outcomes for individuals suffering from major depression. In particular, while the vast majority of antidepressant treatments affect either serotonin or noradrenaline or a combination of these two neurotransmitters, it is not known whether there are particular patients or symptom profiles which respond preferentially to the potentiation of serotonin over noradrenaline or vice versa. Experimental medicine models suggest that the primary mode of action of these treatments may be to remediate negative biases in emotional processing. Such models may provide a useful framework for interrogating the specific actions of antidepressants. Here, we therefore review evidence from studies examining the effects of drugs which potentiate serotonin, noradrenaline or a combination of both neurotransmitters on emotional processing. These results suggest that antidepressants targeting serotonin and noradrenaline may have some specific actions on emotion and reward processing which could be used to improve tailoring of treatment or to understand the effects of dual-reuptake inhibition. Specifically, serotonin may be particularly important in alleviating distress symptoms, while noradrenaline may be especially relevant to anhedonia. The data reviewed here also suggest that noradrenergic-based treatments may have earlier effects on emotional memory that those which affect serotonin.
Collapse
Affiliation(s)
- A Pringle
- Department of Psychiatry, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
29
|
Abstract
We discuss the importance of cognitive abnormalities in unipolar depression, drawing the distinction between "hot" (emotion-laden) and "cold" (emotion-independent) cognition. "Cold" cognitive impairments are present reliably in unipolar depression, underscored by their presence in the diagnostic criteria for major depressive episodes. There is good evidence that some "cold" cognitive abnormalities do not disappear completely upon remission, and that they predict poor response to antidepressant drug treatment. However, in many studies the degree of impairment is moderately related to symptoms. We suggest that "cold" cognitive deficits in unipolar depression may in part be explicable in terms of alterations in "hot" processing, particularly on tasks that utilize feedback, on which depressed patients have been reported to exhibit a "catastrophic response to perceived failure." Other abnormalities in "hot" cognition are commonly observed on tasks utilizing emotionally valenced stimuli, with numerous studies reporting mood-congruent processing biases in depression across a range of cognitive domains. Additionally, an emerging literature indicates reliable reward and punishment processing abnormalities in depression, which are especially relevant for hard-to-treat symptoms such as anhedonia. Both emotional and reward biases are strongly influenced by manipulations of the neurochemical systems targeted by antidepressant drugs. Such a pattern of "hot" and "cold" cognitive abnormalities is consistent with our cognitive neuropsychological model of depression, which proposes central roles for cognitive abnormalities in the generation, maintenance, and treatment of depressive symptoms. Future work should examine in greater detail the role that "hot" and "cold" cognitive processes play in mediating symptomatic improvement following pharmacological, psychological, and novel brain circuit-level interventions.
Collapse
|
30
|
Taren AA, Creswell JD, Gianaros PJ. Dispositional mindfulness co-varies with smaller amygdala and caudate volumes in community adults. PLoS One 2013; 8:e64574. [PMID: 23717632 PMCID: PMC3661490 DOI: 10.1371/journal.pone.0064574] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/15/2013] [Indexed: 12/15/2022] Open
Abstract
Mindfulness, a psychological process reflecting attention and awareness to what is happening in the present moment, has been associated with increased well-being and decreased depression and anxiety in both healthy and patient populations. However, little research has explored underlying neural pathways. Recent work suggests that mindfulness (and mindfulness training interventions) may foster neuroplastic changes in cortico-limbic circuits responsible for stress and emotion regulation. Building on this work, we hypothesized that higher levels of dispositional mindfulness would be associated with decreased grey matter volume in the amgydala. In the present study, a self-report measure of dispositional mindfulness and structural MRI images were obtained from 155 healthy community adults. Volumetric analyses showed that higher dispositional mindfulness is associated with decreased grey matter volume in the right amygdala, and exploratory analyses revealed that higher dispositional mindfulness is also associated with decreased grey matter volume in the left caudate. Moreover, secondary analyses indicate that these amygdala and caudate volume associations persist after controlling for relevant demographic and individual difference factors (i.e., age, total grey matter volume, neuroticism, depression). Such volumetric differences may help explain why mindful individuals have reduced stress reactivity, and suggest new candidate structural neurobiological pathways linking mindfulness with mental and physical health outcomes.
Collapse
Affiliation(s)
- Adrienne A. Taren
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - J. David Creswell
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Peter J. Gianaros
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
31
|
Grady CL, Siebner HR, Hornboll B, Macoveanu J, Paulson OB, Knudsen GM. Acute pharmacologically induced shifts in serotonin availability abolish emotion-selective responses to negative face emotions in distinct brain networks. Eur Neuropsychopharmacol 2013; 23:368-78. [PMID: 22739125 DOI: 10.1016/j.euroneuro.2012.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/14/2012] [Accepted: 06/07/2012] [Indexed: 11/26/2022]
Abstract
Pharmacological manipulation of serotonin availability can alter the processing of facial expressions of emotion. Using a within-subject design, we measured the effect of serotonin on the brain's response to aversive face emotions with functional MRI while 20 participants judged the gender of neutral, fearful and angry faces. In three separate and counterbalanced sessions, participants received citalopram (CIT) to raise serotonin levels, underwent acute tryptophan depletion (ATD) to lower serotonin, or were studied without pharmacological challenge (Control). An analysis designed to identify distributed brain responses identified two brain networks with modulations of activity related to face emotion and serotonin level. The first network included the left amygdala, bilateral striatum, and fusiform gyri. During the Control session this network responded only to fearful faces; increasing serotonin decreased this response to fear, whereas reducing serotonin enhanced the response of this network to angry faces. The second network involved bilateral amygdala and ventrolateral prefrontal cortex, and these regions also showed increased activity to fear during the Control session. Both drug challenges enhanced the neural response of this set of regions to angry faces, relative to Control, and CIT also enhanced activity for neutral faces. The net effect of these changes in both networks was to abolish the selective response to fearful expressions. These results suggest that a normal level of serotonin is critical for maintaining a differentiated brain response to threatening face emotions. Lower serotonin leads to a broadening of a normally fear-specific response to anger, and higher levels reduce the differentiated brain response to aversive face emotions.
Collapse
Affiliation(s)
- Cheryl L Grady
- Rotman Research Institute at Baycrest, University of Toronto, Toronto, Canada.
| | | | | | | | | | | |
Collapse
|
32
|
Robinson OJ, Overstreet C, Allen PS, Letkiewicz A, Vytal K, Pine DS, Grillon C. The role of serotonin in the neurocircuitry of negative affective bias: serotonergic modulation of the dorsal medial prefrontal-amygdala 'aversive amplification' circuit. Neuroimage 2013; 78:217-23. [PMID: 23583742 DOI: 10.1016/j.neuroimage.2013.03.075] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 03/27/2013] [Accepted: 03/31/2013] [Indexed: 10/26/2022] Open
Abstract
Serotonergic medications can mitigate the negative affective biases in disorders such as depression or anxiety, but the neural mechanism by which this occurs is largely unknown. In line with recent advances demonstrating that negative affective biases may be driven by specific medial prefrontal-amygdala circuitry, we asked whether serotonin manipulation can alter affective processing within a key dorsal medial prefrontal-amygdala circuit: the putative human homologue of the rodent prelimbic-amygdala circuit or 'aversive amplification' circuit. In a double-blind, placebo-controlled crossover pharmaco-fMRI design, subjects (N=19) performed a forced-choice face identification task with word distractors in an fMRI scanner over two separate sessions. On one session subjects received dietary depletion of the serotonin precursor tryptophan while on the other session they received a balanced placebo control diet. Results showed that dorsal medial prefrontal responding was elevated in response to fearful relative to happy faces under depletion but not placebo. This negative bias under depletion was accompanied by a corresponding increase in positive dorsal medial prefrontal-amygdala functional connectivity. We therefore conclude that serotonin depletion engages a prefrontal-amygdala circuit during the processing of fearful relative to happy face stimuli. This same 'aversive amplification' circuit is also engaged during anxiety induced by shock anticipation. As such, serotonergic projections may inhibit engagement of the 'aversive amplification' circuit and dysfunction in this projection may contribute to the negative affective bias in mood and anxiety disorders. These findings thus provide a promising explanation for the role of serotonin and serotonergic medications in the neurocircuitry of negative affective bias.
Collapse
Affiliation(s)
- Oliver J Robinson
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Price JS, Strong J, Eliassen J, McQueeny T, Miller M, Padula CB, Shear P, Lisdahl K. Serotonin transporter gene moderates associations between mood, memory and hippocampal volume. Behav Brain Res 2012; 242:158-65. [PMID: 23266326 DOI: 10.1016/j.bbr.2012.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 11/08/2012] [Accepted: 11/12/2012] [Indexed: 11/24/2022]
Abstract
BACKGROUND The short (S) allele of the serotonin transporter gene (5-HTTLPR) is associated with reduced serotonin turnover compared to the long (L) allele in Caucasians. Few studies have examined its impact on memory and brain structure in healthy young adults. METHODS Participants included 51 healthy young adults (25 female; ages 18-25). Multiple regressions examined the independent contribution of 5-HTTLPR biomarker genotype and its interactions with gender and sub-clinical depressive symptoms on hippocampal volumes and memory. RESULTS The 5-HTTLPR genotype significantly interacted with gender in predicting larger left hippocampal volumes in S-carrying females and smaller hippocampal volumes in males (p<.03). Gender also moderated the impact of the 5-HTTLPR on neurocognition. In females, S allele carriers had poorer visual recall compared to L carriers (p<.05). A three-way interaction between 5-HTTLPR, gender, and depressive symptoms was also observed (p<.04). In females, larger left hippocampal volumes were associated with increased depressive symptoms while the opposite was seen in males. Finally, in male and female S carriers, increased depressive symptoms were marginally associated with poorer verbal memory (p<.09). CONCLUSIONS In females, the 5-HTTLPR S allele was associated with poorer memory performance, increased depressive symptoms and larger hippocampal volumes. In males, the S allele predicted smaller hippocampal volumes and increased depressive symptoms. The opposite morphometric patterns likely reflect gender differences in adolescent hippocampal development. Larger longitudinal studies are needed to examine whether the impact of 5-HTTLPR genotype on neurocognition across development differs according to extent of mood symptoms and gender.
Collapse
Affiliation(s)
- Jenessa S Price
- University of Cincinnati, Departments of Psychology, United States
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Foland-Ross LC, Gotlib IH. Cognitive and neural aspects of information processing in major depressive disorder: an integrative perspective. Front Psychol 2012; 3:489. [PMID: 23162521 PMCID: PMC3495336 DOI: 10.3389/fpsyg.2012.00489] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 10/23/2012] [Indexed: 12/05/2022] Open
Abstract
Researchers using experimental paradigms to examine cognitive processes have demonstrated that Major Depressive Disorder (MDD) is associated not with a general deficit in cognitive functioning, but instead with more specific anomalies in the processing of negatively valenced material. Indeed, cognitive theories of depression posit that negative biases in the processing of information play a critical role in influencing the onset, maintenance, and recurrence of depressive episodes. In this paper we review findings from behavioral studies documenting that MDD is associated with specific difficulties in attentional disengagement from negatively valenced material, with tendencies to interpret information in a negative manner, with deficits in cognitive control in the processing of negative material, and with enhanced memory for negative material. To gain a better understanding of the neurobiological basis of these abnormalities, we also examine findings from functional neuroimaging studies of depression and show that dysfunction in neural systems that subserve emotion processing, inhibition, and attention may underlie and contribute to the deficits in cognition that have been documented in depressed individuals. Finally, we briefly review evidence from studies of children who are at high familial risk for depression that indicates that abnormalities in cognition and neural function are observable before the onset of MDD and, consequently, may represent a risk factor for the development of this disorder. By integrating research from cognitive and neural investigations of depression, we can gain a more comprehensive understanding not only of how cognitive and biological factors interact to affect the onset, maintenance, and course of MDD, but also of how such research can aid in the development of targeted strategies for the prevention and treatment of this debilitating disorder.
Collapse
|
35
|
Roiser JP, Levy J, Fromm SJ, Goldman D, Hodgkinson CA, Hasler G, Sahakian BJ, Drevets WC. Serotonin transporter genotype differentially modulates neural responses to emotional words following tryptophan depletion in patients recovered from depression and healthy volunteers. J Psychopharmacol 2012; 26:1434-42. [PMID: 22495688 PMCID: PMC3506165 DOI: 10.1177/0269881112442789] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Previous studies have suggested that polymorphism in the serotonin transporter gene (5-HTTLPR) influences responses to serotonergic manipulation, with opposite effects in patients recovered from depression (rMDD) and controls. Here we sought to clarify the neurocognitive mechanisms underpinning these surprising results. Twenty controls and 23 rMDD subjects completed the study; functional magnetic resonance imaging (fMRI) and genotype data were available for 17 rMDD subjects and 16 controls. Following tryptophan or sham depletion, subjects performed an emotional-processing task during fMRI. Although no genotype effects on mood were identified, significant genotype*diagnosis*depletion interactions were observed in the hippocampus and subgenual cingulate in response to emotionally valenced words. In both regions, tryptophan depletion increased responses to negative words, relative to positive words, in high-expression controls, previously identified as being at low-risk for mood change following this procedure. By contrast, in higher-risk low-expression controls and high-expression rMDD subjects, tryptophan depletion had the opposite effect. Increased neural responses to negative words following tryptophan depletion may reflect an adaptive mechanism promoting resilience to mood change following perturbation of the serotonin system, which is reversed in sub-groups vulnerable to developing depressive symptoms. However, this interpretation is complicated by our failure to replicate previous findings of increased negative mood following tryptophan depletion.
Collapse
Affiliation(s)
- Jonathan P Roiser
- Institute of Cognitive Neuroscience, University College London, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Lee TMC, Leung MK, Hou WK, Tang JCY, Yin J, So KF, Lee CF, Chan CCH. Distinct neural activity associated with focused-attention meditation and loving-kindness meditation. PLoS One 2012; 7:e40054. [PMID: 22905090 PMCID: PMC3419705 DOI: 10.1371/journal.pone.0040054] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 06/05/2012] [Indexed: 11/29/2022] Open
Abstract
This study examined the dissociable neural effects of ānāpānasati (focused-attention meditation, FAM) and mettā (loving-kindness meditation, LKM) on BOLD signals during cognitive (continuous performance test, CPT) and affective (emotion-processing task, EPT, in which participants viewed affective pictures) processing. Twenty-two male Chinese expert meditators (11 FAM experts, 11 LKM experts) and 22 male Chinese novice meditators (11 FAM novices, 11 LKM novices) had their brain activity monitored by a 3T MRI scanner while performing the cognitive and affective tasks in both meditation and baseline states. We examined the interaction between state (meditation vs. baseline) and expertise (expert vs. novice) separately during LKM and FAM, using a conjunction approach to reveal common regions sensitive to the expert meditative state. Additionally, exclusive masking techniques revealed distinct interactions between state and group during LKM and FAM. Specifically, we demonstrated that the practice of FAM was associated with expertise-related behavioral improvements and neural activation differences in attention task performance. However, the effect of state LKM meditation did not carry over to attention task performance. On the other hand, both FAM and LKM practice appeared to affect the neural responses to affective pictures. For viewing sad faces, the regions activated for FAM practitioners were consistent with attention-related processing; whereas responses of LKM experts to sad pictures were more in line with differentiating emotional contagion from compassion/emotional regulation processes. Our findings provide the first report of distinct neural activity associated with forms of meditation during sustained attention and emotion processing.
Collapse
Affiliation(s)
- Tatia M. C. Lee
- Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong, China
- Laboratory of Cognitive Affective Neuroscience, The University of Hong Kong, Hong Kong, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Social Neuroscience Research Network, The University of Hong Kong, Hong Kong, China
- * E-mail: (TMCL); (CCHC)
| | - Mei-Kei Leung
- Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong, China
- Laboratory of Cognitive Affective Neuroscience, The University of Hong Kong, Hong Kong, China
| | - Wai-Kai Hou
- Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong, China
- Laboratory of Cognitive Affective Neuroscience, The University of Hong Kong, Hong Kong, China
- Social Neuroscience Research Network, The University of Hong Kong, Hong Kong, China
| | - Joey C. Y. Tang
- Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong, China
- Number Laboratory, The University of Hong Kong, Hong Kong, China
| | - Jing Yin
- Social Neuroscience Research Network, The University of Hong Kong, Hong Kong, China
- Centre of Buddhist Studies, The University of Hong Kong, Hong Kong, China
| | - Kwok-Fai So
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Social Neuroscience Research Network, The University of Hong Kong, Hong Kong, China
- Department of Anatomy, The University of Hong Kong, Hong Kong, China
| | - Chack-Fan Lee
- Social Neuroscience Research Network, The University of Hong Kong, Hong Kong, China
- Centre of Buddhist Studies, The University of Hong Kong, Hong Kong, China
| | - Chetwyn C. H. Chan
- Social Neuroscience Research Network, The University of Hong Kong, Hong Kong, China
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
- * E-mail: (TMCL); (CCHC)
| |
Collapse
|
37
|
Alramadhan E, Hanna MS, Hanna MS, Goldstein TA, Avila SM, Weeks BS. Dietary and botanical anxiolytics. Med Sci Monit 2012; 18:RA40-8. [PMID: 22460105 PMCID: PMC3560823 DOI: 10.12659/msm.882608] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Drugs used to treat anxiety have many negative side effects including addiction, depression, suicide, seizures, sexual dysfunction, headaches and more. Anxiolytic medications do not restore normal levels of neurotransmitters but instead manipulate the brain chemistry. For example, selective serotonin reuptake inhibitors (SSRIs) prevent the reuptake of serotonin from the synapse allowing serotonin to remain in the area of activity for a longer period of time but does not correct the lack of serotonin production. Benzodiazepines, such as Valium and Xanax®, stimulate GABA receptors, thus mimicking the calming effects of GABA but again do not fix the lack of GABA production. Often, the brain becomes accustomed to these medications and they often lose their effectiveness, requiring higher doses or different drugs. In contrast to anxiolytic drugs, there are herbs and nutrients which can stimulates neurotransmitter synthesis and more naturally effect and even adjust brain chemistry in the absence of many of the side effects experienced with drugs. Therefore this paper explores several herbal and nutritional approaches to the treatment of anxiety.
Collapse
Affiliation(s)
- Elham Alramadhan
- Department of Biology Adelphi University, One South Avenue, Garden City, NY 11530, USA
| | | | | | | | | | | |
Collapse
|
38
|
Browne CA, Clarke G, Dinan TG, Cryan JF. An effective dietary method for chronic tryptophan depletion in two mouse strains illuminates a role for 5-HT in nesting behaviour. Neuropharmacology 2012; 62:1903-15. [DOI: 10.1016/j.neuropharm.2011.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 12/01/2011] [Accepted: 12/08/2011] [Indexed: 12/31/2022]
|
39
|
Packard MG, Goodman J. Emotional arousal and multiple memory systems in the mammalian brain. Front Behav Neurosci 2012; 6:14. [PMID: 22470324 PMCID: PMC3313468 DOI: 10.3389/fnbeh.2012.00014] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/06/2012] [Indexed: 11/13/2022] Open
Abstract
Emotional arousal induced by stress and/or anxiety can exert complex effects on learning and memory processes in mammals. Recent studies have begun to link study of the influence of emotional arousal on memory with earlier research indicating that memory is organized in multiple systems in the brain that differ in terms of the "type" of memory they mediate. Specifically, these studies have examined whether emotional arousal may have a differential effect on the "cognitive" and stimulus-response "habit" memory processes sub-served by the hippocampus and dorsal striatum, respectively. Evidence indicates that stress or the peripheral injection of anxiogenic drugs can bias animals and humans toward the use of striatal-dependent habit memory in dual-solution tasks in which both hippocampal and striatal-based strategies can provide an adequate solution. A bias toward the use of habit memory can also be produced by intra-basolateral amygdala (BLA) administration of anxiogenic drugs, consistent with the well documented role of efferent projections of this brain region in mediating the modulatory influence of emotional arousal on memory. In some learning situations, the bias toward the use of habit memory produced by emotional arousal appears to result from an impairing effect on hippocampus-dependent cognitive memory. Further research examining the neural mechanisms linking emotion and the relative use of multiple memory systems should prove useful in view of the potential role for maladaptive habitual behaviors in various human psychopathologies.
Collapse
Affiliation(s)
- Mark G. Packard
- Department of Psychology, Texas A&M University, College StationTX, USA
| | | |
Collapse
|
40
|
Passamonti L, Crockett MJ, Apergis-Schoute AM, Clark L, Rowe JB, Calder AJ, Robbins TW. Effects of acute tryptophan depletion on prefrontal-amygdala connectivity while viewing facial signals of aggression. Biol Psychiatry 2012; 71:36-43. [PMID: 21920502 PMCID: PMC3368260 DOI: 10.1016/j.biopsych.2011.07.033] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 07/15/2011] [Accepted: 07/18/2011] [Indexed: 12/30/2022]
Abstract
BACKGROUND Reduced levels of serotonin (5-HT) within prefrontal cortex (PFC)-amygdala circuits have long been implicated in impulsive aggression. However, whether lowering 5-HT alters the dynamic interplay between the PFC and the amygdala has not been directly tested in humans. It is known that manipulating 5-HT via acute tryptophan depletion (ATD) causes variable effects on brain responses to a variety of emotional stimuli, but it remains unclear whether ATD affects functional connectivity in neural networks involved in processing social signals of aggression (e.g., angry faces). METHODS Thirty healthy individuals were enrolled in a randomized, double-blind, placebo-controlled ATD study. On each treatment, brain responses to angry, sad, and neutral faces were measured with functional magnetic resonance imaging. Two methods (psycho-physiological-interaction in a general linear model and dynamic causal modeling) were used to assess the impact of ATD on the functional connectivity between PFC and amygdala. RESULTS Data from 19 subjects were available for the final analyses. A whole-brain psycho-physiological-interaction in a general linear model showed that ATD significantly modulated the connectivity between the amygdala and two PFC regions (ventral anterior cingulate cortex and ventrolateral PFC) when processing angry vs. neutral and angry vs. sad but not sad vs. neutral faces. Dynamic causal modeling corroborated and extended these findings by showing that 5-HT depletion reduced the influence of processing angry vs. neutral faces on circuits within PFC and on PFC-amygdala pathways. CONCLUSIONS We provide strong support for neurobiological accounts positing that 5-HT significantly influences PFC-amygdala circuits implicated in aggression and other affective behaviors.
Collapse
Affiliation(s)
- Luca Passamonti
- Unità di Ricerca Neuroimmagini, Consiglio Nazionale delle Ricerche, Catanzaro, Italy.
| | | | | | | | | | | | | |
Collapse
|
41
|
Krämer UM, Riba J, Richter S, Münte TF. An fMRI study on the role of serotonin in reactive aggression. PLoS One 2011; 6:e27668. [PMID: 22110714 PMCID: PMC3218006 DOI: 10.1371/journal.pone.0027668] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 10/21/2011] [Indexed: 11/18/2022] Open
Abstract
Reactive aggression after interpersonal provocation is a common behavior in humans. Little is known, however, about brain regions and neurotransmitters critical for the decision-making and affective processes involved in aggressive interactions. With the present fMRI study, we wanted to examine the role of serotonin in reactive aggression by means of an acute tryptophan depletion (ATD). Participants performed in a competitive reaction time task (Taylor Aggression Paradigm, TAP) which entitled the winner to punish the loser. The TAP seeks to elicit aggression by provocation. The study followed a double-blind between-subject design including only male participants. Behavioral data showed an aggression diminishing effect of ATD in low trait-aggressive participants, whereas no ATD effect was detected in high trait-aggressive participants. ATD also led to reduced insula activity during the decision phase, independently of the level of provocation. Whereas previous reports have suggested an inverse relationship between serotonin level and aggressive behavior with low levels of serotonin leading to higher aggression and vice versa, such a simple relationship is inconsistent with the current data.
Collapse
Affiliation(s)
- Ulrike M Krämer
- Department of Neurology, University of Lübeck, Lübeck, Germany.
| | | | | | | |
Collapse
|
42
|
Sato K, Kawamura T, Yamagiwa S. The "Senobi" breathing exercise ameliorates depression in obese women through up-regulation of sympathetic nerve activity and hormone secretion. Biomed Res 2011; 32:175-80. [PMID: 21551954 DOI: 10.2220/biomedres.32.175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Obese individuals have an increased risk of developing depression. This study aimed to determine whether the "Senobi" breathing exercise (SBE), a stretching-breathing exercise that we have established, could relieve depression, especially in obese women. Forty premenopausal women, aged 40 to 49 years, participated in the present study. Twenty were healthy, and the other 20 were obese (body mass index > 25 and body fat > 30%) and in a depressive state (OWD). Sympathetic nerve activity determined by analyzing heart rate variability, and the hormone levels in the urine were investigated before and 30 min after one minute of SBE. The relative proportion of sympathetic nerve activity among healthy women in the daytime was 79.2 ± 2.3%, whereas that in OWD group was 30.4 ± 1.9%. After one minute of SBE, significant up-regulation of sympathetic nerve activity and increased concentrations of catecholamines, estradiol, and growth hormone (all P values < 0.001) were observed in OWD group. After 30 days of SBE, the sympathetic nerve activity and hormone levels had recovered in OWD group, and the depressive state, as evaluated by the Hamilton Depression Scale, had ameliorated. The "Senobi" breathing exercise was found to be effective for amelioration of depression in obese women possibly through up-regulation of sympathetic nerve activity and hormone secretion.
Collapse
Affiliation(s)
- Kazunari Sato
- Division of Internal Medicine, Aoyama Clinic, Niigata, Japan
| | | | | |
Collapse
|
43
|
Feder A, Skipper J, Blair JR, Buchholz K, Mathew SJ, Schwarz M, Doucette JT, Alonso A, Collins KA, Neumeister A, Charney DS. Tryptophan depletion and emotional processing in healthy volunteers at high risk for depression. Biol Psychiatry 2011; 69:804-7. [PMID: 21377656 PMCID: PMC3941748 DOI: 10.1016/j.biopsych.2010.12.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 12/27/2010] [Accepted: 12/30/2010] [Indexed: 12/16/2022]
Abstract
BACKGROUND Studies in depressed patients have demonstrated the presence of emotional bias toward negative stimuli, as well as dysregulated brain serotonin function. The present study compared the effects of acute tryptophan depletion (ATD) on both an emotional processing and a planning task in never-depressed healthy volunteers at high and low familial risk for depression. METHODS Young adults with no personal psychiatric history were stratified into two groups based on family history (n = 25). Participants were enrolled in a randomized, double-blind, placebo-controlled crossover ATD study and completed the affective go/no-go and Tower of London tasks once during each condition. RESULTS There was a significant treatment by valence by group interaction on the affective go/no-go, driven primarily by a greater frequency of inappropriate responses to sad than to happy distracters in the high-risk group during ATD. No group differences were observed on the Tower of London. CONCLUSIONS Asymptomatic individuals at high familial risk for depression showed abnormalities in emotional processing while undergoing experimentally induced tryptophan depletion. These findings support emotional processing disturbances as potential trait-level abnormalities associated with the risk of mood disorder.
Collapse
Affiliation(s)
- Adriana Feder
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
van der Plasse G, Feenstra MGP. WITHDRAWN: Is acute tryptophan depletion a valid method to assess central serotonergic function? Neurosci Biobehav Rev 2011:S0149-7634(11)00053-4. [PMID: 21435352 DOI: 10.1016/j.neubiorev.2011.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/16/2011] [Accepted: 03/15/2011] [Indexed: 10/18/2022]
Abstract
This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Geoffrey van der Plasse
- Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Department of Psychiatry, PO Box 85500, 3508 GAUtrecht,The Netherlands
| | | |
Collapse
|
45
|
Abstract
Given that we live in highly complex social environments, many of our most important decisions are made in the context of social interactions. Simple but sophisticated tasks from a branch of experimental economics known as game theory have been used to study social decision-making in the laboratory setting, and a variety of neuroscience methods have been used to probe the underlying neural systems. This approach is informing our knowledge of the neural mechanisms that support decisions about trust, reciprocity, altruism, fairness, revenge, social punishment, social norm conformity, social learning, and competition. Neural systems involved in reward and reinforcement, pain and punishment, mentalizing, delaying gratification, and emotion regulation are commonly recruited for social decisions. This review also highlights the role of the prefrontal cortex in prudent social decision-making, at least when social environments are relatively stable. In addition, recent progress has been made in understanding the neural bases of individual variation in social decision-making.
Collapse
Affiliation(s)
- James K Rilling
- Department of Anthropology, Emory University, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
46
|
Gopin CB, Burdick KE, Derosse P, Goldberg TE, Malhotra AK. Emotional modulation of response inhibition in stable patients with bipolar I disorder: a comparison with healthy and schizophrenia subjects. Bipolar Disord 2011; 13:164-72. [PMID: 21443570 PMCID: PMC3066455 DOI: 10.1111/j.1399-5618.2011.00906.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Bipolar disorder (BD) has been associated with impairment in affective processing during depressive and manic states; however, there are limited data as to whether this population exhibits such difficulty during stable periods. We examined the pattern of affective processing in stable BD patients and compared their profile to that of healthy controls (HC) and patients diagnosed with schizophrenia (SZ). METHODS A total of 336 subjects were administered an Affective Go/No-go test to evaluate target detection of negatively valenced, positively valenced, and neutral stimuli. Accuracy and response bias served as dependent variables in a series of multivariate analyses of covariance to test for group differences. RESULTS The BD group relative to the HC group exhibited response biases toward negatively valenced information (p<0.01). Deficits were also evident in discrimination of and accurate responses to positively valenced information in the BD group versus the HC group (p<0.05). In contrast to the controls, the SZ group performed poorly on all task components and was less accurate across all conditions regardless of affective valence (p<0.01). Patients with SZ evidenced reverse biases for positive information, as they were less likely to respond to positive words (p<0.05) despite comparable response bias on neutral and negative conditions. CONCLUSIONS Affective processing impairment evident in BD is a feature of the disorder that is present even during stable periods. Prior studies comparing BD with SZ have highlighted clear quantitative but inconsistent qualitative differences in cognitive functioning. Our data suggest that a response bias toward negative stimuli may be a critical and relatively specific feature of BD.
Collapse
Affiliation(s)
- Chaya B Gopin
- Department of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, 75-59 263rd Street, Glen Oaks, NY 11004, USA.
| | | | | | | | | |
Collapse
|
47
|
Elliott R, Zahn R, Deakin JFW, Anderson IM. Affective cognition and its disruption in mood disorders. Neuropsychopharmacology 2011; 36:153-82. [PMID: 20571485 PMCID: PMC3055516 DOI: 10.1038/npp.2010.77] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/23/2010] [Accepted: 05/03/2010] [Indexed: 01/13/2023]
Abstract
In this review, we consider affective cognition, responses to emotional stimuli occurring in the context of cognitive evaluation. In particular, we discuss emotion categorization, biasing of memory and attention, as well as social/moral emotion. We discuss limited neuropsychological evidence suggesting that affective cognition depends critically on the amygdala, ventromedial frontal cortex, and the connections between them. We then consider neuroimaging studies of affective cognition in healthy volunteers, which have led to the development of more sophisticated neural models of these processes. Disturbances of affective cognition are a core and specific feature of mood disorders, and we discuss the evidence supporting this claim, both from behavioral and neuroimaging perspectives. Serotonin is considered to be a key neurotransmitter involved in depression, and there is a considerable body of research exploring whether serotonin may mediate disturbances of affective cognition. The final section presents an overview of this literature and considers implications for understanding the pathophysiology of mood disorder as well as developing and evaluating new treatment strategies.
Collapse
Affiliation(s)
- Rebecca Elliott
- Neuroscience and Psychiatry Unit, School of Community-Based Medicine, University of Manchester, Manchester, UK.
| | | | | | | |
Collapse
|
48
|
Le Floc'h N, Otten W, Merlot E. Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids 2010; 41:1195-205. [PMID: 20872026 DOI: 10.1007/s00726-010-0752-7] [Citation(s) in RCA: 375] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/09/2010] [Indexed: 11/28/2022]
Abstract
Tryptophan is an indispensable amino acid that should to be supplied by dietary protein. Apart from its incorporation into body proteins, tryptophan is the precursor for serotonin, an important neuromediator, and for kynurenine, an intermediary metabolite of a complex metabolic pathway ending with niacin, CO(2), and kynurenic and xanthurenic acids. Tryptophan metabolism within different tissues is associated with numerous physiological functions. The liver regulates tryptophan homeostasis through degrading tryptophan in excess. Tryptophan degradation into kynurenine by immune cells plays a crucial role in the regulation of immune response during infections, inflammations and pregnancy. Serotonin is synthesized from tryptophan in the gut and also in the brain, where tryptophan availability is known to influence the sensitivity to mood disorders. In the present review, we discuss the major functions of tryptophan and its role in the regulation of growth, mood, behavior and immune responses with regard to the low availability of this amino acid and the competition between tissues and metabolic pathways for tryptophan utilization.
Collapse
Affiliation(s)
- Nathalie Le Floc'h
- INRA, UMR, Système d'Elevage, Nutrition Animale et Humaine, Saint Gilles, France.
| | | | | |
Collapse
|
49
|
Bambico FR, Cassano T, Dominguez-Lopez S, Katz N, Walker CD, Piomelli D, Gobbi G. Genetic deletion of fatty acid amide hydrolase alters emotional behavior and serotonergic transmission in the dorsal raphe, prefrontal cortex, and hippocampus. Neuropsychopharmacology 2010; 35:2083-100. [PMID: 20571484 PMCID: PMC3055302 DOI: 10.1038/npp.2010.80] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pharmacological blockade of the anandamide-degrading enzyme, fatty acid amide hydrolase (FAAH), produces CB(1) receptor (CB(1)R)-mediated analgesic, anxiolytic-like and antidepressant-like effects in murids. Using behavioral and electrophysiological approaches, we have characterized the emotional phenotype and serotonergic (5-HT) activity of mice lacking the FAAH gene in comparison to their wild type counterparts, and their response to a challenge of the CB(1)R antagonist, rimonabant. FAAH null-mutant (FAAH(-/-)) mice exhibited reduced immobility in the forced swim and tail suspension tests, predictive of antidepressant activity, which was attenuated by rimonabant. FAAH(-/-) mice showed an increase in the duration of open arm visits in the elevated plus maze, and a decrease in thigmotaxis and an increase in exploratory rearing displayed in the open field, indicating anxiolytic-like effects that were reversed by rimonabant. Rimonabant also prolonged the initiation of feeding in the novelty-suppressed feeding test. Electrophysiological recordings revealed a marked 34.68% increase in dorsal raphe 5-HT neural firing that was reversed by rimonabant in a subset of neurons exhibiting high firing rates (33.15% mean decrease). The response of the prefrontocortical pyramidal cells to the 5-HT(2A/2C) agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane ((+/-)-DOI) revealed desensitized 5-HT(2A/2C) receptors, likely linked to the observed anxiolytic-like behaviors. The hippocampal pyramidal response to the 5-HT(1A) antagonist, WAY-100635, indicates enhanced tonus on the hippocampal 5-HT(1A) heteroreceptors, a hallmark of antidepressant-like action. Together, these results suggest that FAAH genetic deletion enhances anxiolytic-like and antidepressant-like effects, paralleled by altered 5-HT transmission and postsynaptic 5-HT(1A) and 5-HT(2A/2C) receptor function.
Collapse
Affiliation(s)
| | - Tommaso Cassano
- Department of Biomedical Sciences, University of Foggia, Foggia, Italy
| | - Sergio Dominguez-Lopez
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Noam Katz
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Claire Dominique Walker
- Neuroscience and Mood, Anxiety and Impulsivity Disorders-Related Research Division, Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Daniele Piomelli
- Department of Pharmacology and Center for Drug Discovery, University of California, Irvine, CA, USA
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montréal, QC, Canada,Department of Psychiatry Research and Training Building, McGill University, Neurobiological Psychiatry Unit, 1033 Pine Avenue West, Montréal, Québec, Canada H3A 1A1, Tel: +1 514 398 1290, Fax: +1 514 398 4866, E-mail:
| |
Collapse
|
50
|
Understanding vulnerability for depression from a cognitive neuroscience perspective: A reappraisal of attentional factors and a new conceptual framework. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2010; 10:50-70. [PMID: 20233955 DOI: 10.3758/cabn.10.1.50] [Citation(s) in RCA: 383] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We propose a framework to understand increases in vulnerability for depression after recurrent episodes that links attention processes and schema activation to negative mood states, by integrating cognitive and neurobiological findings. Depression is characterized by a mood-congruent attentional bias at later stages of information processing. The basic idea of our framework is that decreased activity in prefrontal areas, mediated by the serotonin metabolism which the HPA axis controls, is associated with an impaired attenuation of subcortical regions, resulting in prolonged activation of the amygdala in response to stressors in the environment. Reduced prefrontal control in interaction with depressogenic schemas leads to impaired ability to exert attentional inhibitory control over negative elaborative processes such as rumination, leading in turn to sustained negative affect. These elaborative processes are triggered by the activation of negative schemas after confrontation with stressors. In our framework, attentional impairments are postulated as a crucial process in explaining the increasing vulnerability after depressive episodes, linking cognitive and biological vulnerability factors. We review the empirical data on the biological factors associated with the attentional impairments and detail how they are associated with rumination and mood regulation. The aim of our framework is to stimulate translational research.
Collapse
|